
J. Cryptology (1999) 12: 91–115

© 1999 International Association for
Cryptologic Research

Bucket Hashing and Its Application
to Fast Message Authentication∗

Phillip Rogaway
Department of Computer Science, University of California,

Davis, CA 95616, U.S.A.
rogaway@cs.ucdavis.edu

Communicated by Joan Feigenbaum

Received 13 May 1996 and revised 13 October 1997

Abstract. We introduce a new technique for constructing a family of universal hash
functions. At its center is a simple metaphor: to hash a stringx, cast each of its words
into a small number ofbuckets; xor the contents of each bucket; then collect up all the
buckets’ contents. Used in the context of Wegman–Carter authentication, this style of
hash function provides a fast approach for software message authentication.

Key words. Cryptography, Hashing, Message authentication codes, Universal
hashing.

1. Introduction

Message authentication. Message authentication is one of the most common crypto-
graphic aims. The setting is that two parties, a signerS and verifierV , share a (short,
random, secret) key,k. When S wants to sendV a message,x, S computes for it a
message authentication code(MAC), σ ← MACk(x), andS sendsV the pair(x, σ).
On receipt of(x′, σ ′), verifierV checks that MACVk(x′, σ ′) = 1.

To describe the security of a message authentication scheme, an adversaryE is given
an oracle for MACk(·). The adversary is declaredsuccessfulif she outputs an(x∗, σ ∗)
such that MACVk(x∗, σ ∗) = 1 but x∗ was never asked of the MACk(·) oracle. For a
scheme to be “good,” reasonable adversaries should rarely succeed.

Software-efficient MACs. In the current computing environment it is often necessary to
compute MACs frequently and over strings which are commonly hundreds to thousands
of bytes long. Despite this, there will usually be no special-purpose hardware to help
out: MAC generation and verification will need to be done in software on a conventional
workstation or personal computer. So to reduce the impact of message authentication

∗ This work was supported in part by NSF CCR-9624560.

91

92 P. Rogaway

on the machine’s overall performance, and to facilitate more pervasive use of message
authentication, we need to develop faster techniques. This paper provides one such
technique.

Two approaches to message authentication. The fastest software MACs in common
use today are exemplified by MACk(x) = h(k ‖ x ‖ k), with h a (software-efficient)
cryptographic hash function, such ash = MD5 [22]. Such methods are described in
[30]. The algorithm HMAC [3] represents the most refined algorithm in this direction.
Schemes like these might seem to be about as software-efficient as one might realistically
hope for: after all, we are computing one of the fastest types of cryptographic primitives
over a string nearly identical in length to that which we want to authenticate. However, it is
well known that this reasoning is specious: in particular, Wegman and Carter [32] showed
back in 1981 that we do not have to transform the entire stringx “cryptographically”.

In the Wegman–Carter approach communicating partiesS andV share a secret key
k = (h, P) which specifies both an infinite random stringP and a functionh drawn
randomly from a strongly universal2 family of hash functionsH. (Recall thatH is strongly
universal2 if, for all x 6= x′, the random variableh(x) ‖ h(x′), for h ∈ H, is uniformly
distributed.) To authenticate a messagex, the sender transmitsh(x) xor-ed with the next
piece of the padP. The thing to notice is thatx is transformed first by a noncryptographic
operation (universal hashing) and only then is it subjected to a cryptographic operation
(encryption), now applied to a much shorter string.

A standard cryptographic technique—the use of a pseudorandom function family,
F— allowsSandV to use a short stringa in lieu of the infinite stringP. SignerSnow
MACs thei th message,xi , with MAC(h,a)(xi) = (i, Fa(i)⊕ h(xi)).

As it turns out, to make a good MAC it is enough to construct something weaker than
a strongly universal2 family. Carter and Wegman [10] also introduced the notion of an
almost universal2 family,H. This must satisfy the weaker condition that Prh∈H[h(x) =
h(x′)] is small for allx 6= x′. As observed by Stinson [27], an almost universal2 family
can easily be turned into an almost strongly universal2 family by composing the almost
universal2 family with an almost strongly universal2 one. In computingh2(h1(x)), where
h1 is drawn from an almost universal2 family andh2 is drawn from a strongly universal2

one, the bulk of the time will typically be spent in computingh1(x), sincex may be a
long string buth1(x) will be a short string, and soh2 will not have much work left to
do. Thus the problem of finding a fast-to-compute MAC has effectively been reduced to
finding a family of almost universal2 hash functions whose members are fast to compute.

Bucket hashing. This paper provides a new almost universal2 family of hash functions.
We call our hash familybucket hashing. It is distinguished by its member functions
being extremely fast to compute—as few as six elementary machine instructions per
word (independent of word size) for the version of bucket hashing we concentrate on in
this paper. Putting such a family of hash functions to work in the framework described
above will give rise to a software-efficient MAC.

A bucket-hash MAC will involve significant overhead beyond the time which is spent
bucket hashing. For one thing, the output of bucket hashing is too long to use directly;
it will need to be composed with an additional layer of hashing. All the same, one
can compare the instruction count mentioned above to that of MD5, which uses≈ 36

Bucket Hashing and Its Application to Fast Message Authentication 93

instructions per 32-bit word [8], and see that there is potential for substantial efficiency
gains even if the true cost of using bucket hashing substantially exceeds six instructions
per word.

A bucket-hash MAC has advantages in addition to speed. Bucket hashing is alinear
function—it is a special case of matrix multiplication over GF(2)—and this linearity
yields many pleasant characteristics for a bucket-hash MAC. In particular, bucket hashing
is parallelizable, since each word of the hash is just the xor of certain words of the
message. Bucket hashing isincrementalin the sense of [4] with respect to bothappend
and substitute operations. Finally, the only processor instructions a bucket-hash
MAC needs are word-alignedload , store , and xor ; thus a bucket-hash MAC is
essentially endian-indifferent.

In a bucket-hash MAC—indeed in any Wegman–Carter MAC—one is afforded the
luxury of conservative (slow) cryptography even in a MAC whose software speed has
been aggressively optimized. This is because one arranges that the time complexity for
the MAC is dominated by the noncryptographic work.

One might worry that the linearity or simple character of bucket hashing might give
rise to some “weakness” in a MAC which exploits it. However, it does not. A bucket-
hash MAC, like any MAC which follows the Wegman–Carter paradigm, enjoys the
assurance advantages of provable security. Moreover, this provable security is achieved
under extremely “tight” reductions, so that an adversary who can successfully break the
MAC can break the underlying cryptographic primitive (the pseudorandom functionF)
with essentially identical efficiency.

Previous work. The general theory of unconditional authentication was developed by
Simmons; see [26] for a survey. As we have already explained, the universal-hash-and-
then-encrypt paradigm is due to Wegman and Carter [32]. The idea springs from their
highly influential paper of 1979 [10].

In Wegman–Carter authentication the size of the hash family corresponds to the num-
ber of bits of shared key—one reason to find smaller families of universal hash functions
than those of [10] and [32]. Siegel (for other reasons) [25] constructs families of fast-to-
compute hash functions which use few bits of randomness and have small description
size. Stinson finds small hash families in [27], and also gives general results on the con-
struction of universal hash functions. We exploit some of these ideas here. Subsequent
improvements (rooted in coding theory) came from Bierbrauer et al. [6] and Gemmell
and Naor [12].

The above work concentrates on universal hash families and unconditionally secure au-
thentication. Brassard [9] first connects the Wegman–Carter approach to the complexity-
theoretic case. The complexity-theoretic notion for a secure MAC is a straightforward
adaptation of the definition of a digital signature due to Goldwasser et al. [14]. Their
notion of an adaptive chosen-message attack is equally at home for defining an un-
conditionally secure MAC. Thus we view work like ours as making statements about
unconditionally secure authentication which give rise to corresponding statements and
concrete schemes in the complexity-theoretic tradition. To make this translation we re-
gard a finite pseudorandom function (PRF) as the most appropriate tool. Bellare et al.
[5] were the first to formalize such objects, investigate their usage in the construction
of efficient MACs, and suggest them as a desirable starting point for practical, provably

94 P. Rogaway

good constructions. Finite PRFs are a refinement of the PRF notion of Goldreich et al.
[13] to take account of the fixed lengths of inputs and outputs in the efficient primitives
of cryptographic practice.

Zobrist [33] gives a hashing technique which predates [10] and essentially coincides
with one method from [10]. Arnold and Coppersmith [2] give an interesting hashing
technique which allows one to map a set of keyski into a set of corresponding valuesvi

using a table only slightly bigger than
∑

i vi . The proof of our main technical result is
somewhat reminiscent of their analysis.

Lai et al. [19], Taylor [28], and Krawczyk [18] have all been interested in com-
putationally efficient MACs. The last two works basically follow the Wegman–Carter
paradigm. In particular, Krawczyk obtains efficient message authentication codes from
hash families which resemble traditional cyclic redundancy codes (CRCs), and matrix
multiplication using Toeplitz matrices. Though originally intended for hardware, these
techniques are fast in software, too. We recall Krawczyk’s CRC-like hash in Section 2.

An earlier version of this paper appeared as [23].

Subsequent work. Shoup [24] has carried out implementations and analysis of hash
function families akin to polynomial evaluation. Such hash functions make good candi-
dates for “second level hashing” when a speed-optimized hash function is applied to a
long string. The techniques are also fast enough to be gainfully employed by themselves.

Halevi and Krawczyk describe a family of hash functions, MMH, which achieves
extremely impressive software speeds on some modern platforms [15]. To achieve such
performance one needs the underlying hardware to be able to multiply two 32-bit integers
quickly to form a 64-bit product.

Johansson investigates how to reduce the size of the key for bucket hashing, which,
in the current paper, is quite enormous [16].

Organization. We continue in Section 2 by reviewing the definition and basic properties
of universal hash families. Sections 3 and 4 give our main result. In the former we
formally define our family of hash functions,B; we state a theorem which upper bounds
the collision probability ofB; and we discuss the efficiency of computing functions
drawn fromB. In the latter we prove our main theorem, relegating one lemma to the
Appendix. Section 5 reviews the Wegman–Carter approach for making a MAC out of a
universal family of hash functions, while Section 6 gives a concrete example of this and
discusses some of the difficulties involved in constructing a good MAC using bucket
hashing. Section 7 considers some extensions and directions for our work.

2. Preliminaries

This section provides background drawn from Carter and Wegman [10], [32], Stinson
[27], and Krawczyk [18]. Proofs are omitted.

A family of hash functionsis a finite multisetH of string-valued functions, each
h ∈ H having the same nonempty domainA ⊆ {0,1}∗ and rangeB ⊆ {0,1}b, for some
constantb.

Bucket Hashing and Its Application to Fast Message Authentication 95

Definition 1 [10]. A family of hash functionsH = {h : A → {0,1}b} is ε-almost
universal2, writtenε-AU2, if, for all distinct x, x′ ∈ A, Prh∈H

[
h(x) = h(x′)

] ≤ ε. The
family of hash functionsH is ε-almost XOR universal2, written ε-AXU2, if, for all
distinctx, x′ ∈ A, and for allc ∈ {0,1}b, Prh∈H

[
h(x)⊕ h(x′) = c

] ≤ ε.
The value ofε = maxx 6=x′ {Prh[h(x) = h(x′)]} is called thecollision probability. For us,
the principle measures of the worth of an AU2 hash family are how small its collision
probability is and how fast one can compute its functions.

To make a fast MAC one may wish to “glue together” various universal hash families.
The following are the basic methods for doing this.

First we need a way to make the domain of a hash family bigger. LetH = {h :
{0,1}a → {0,1}b}. By Hm = {h : {0,1}am→ {0,1}bm} we denote the family of hash
functions whose elements are the same as inH but whereh(x1x2 · · · xm), for |xi | = a,
is defined byh(x1) ‖ h(x2) ‖ · · · ‖ h(xm).

Proposition 2 [27]. If H is ε-AU2, thenHm is ε-AU2.

Sometimes one needs a way to make the collision probability smaller. LetH1 = {h :
A→ {0,1}b1}andH2 = {h : A→ {0,1}b2}be families of hash functions. ByH1&H2 =
{h : A→ {0,1}b1+b2} we mean the family of hash functions whose elements are pairs
of functions(h1, h2) ∈ H1×H2 and where(h1, h2)(x) is defined ash1(x) ‖ h2(x).

Proposition 3. If H1 is ε1-AU2 andH2 is ε2-AU2, thenH1&H2 is ε1ε2-AU2.

Next is a way to make the image of a hash function shorter. LetH1 = {h : {0,1}a →
{0,1}b} andH2 = {h : {0,1}b → {0,1}c} be families of hash functions. Then by
H2◦H1 = {h : {0,1}a→ {0,1}c}we mean the family of hash function whose elements
are pairs of functions(h1, h2) ∈ H1×H2 and where(h1, h2)(x) is defined ash2(h1(x)).

Proposition 4 [27]. If H1 is ε1-AU2 andH2 is ε2-AU2, thenH2◦H1 is (ε1+ ε2)-AU2.

Composition can also be used to turn an AU2 family H1 whose members hashA to B,
and an AXU2 family H2 whose members hashB to C, into an AXU2 family H2 ◦H1

whose members hashA to C. If B = {0,1}b for some smallb, and elements ofH2 are
fast to compute on this domain, we have effectively “promoted”H1 from being AU2 to
AXU2 at little cost.

Proposition 5 [27]. SupposeH1 = {h : A→ B} is ε1-AU2, andH2 = {h : B→ C}
is ε2-AXU2. ThenH2 ◦H1 = {h : A→ C} is (ε1+ ε2)-AXU2.

We end this section with a sample construction for a software-efficient AXU2 hash
family, this one due to Krawczyk [18]. Letn, ` ≥ 1 be numbers and letm ∈ {0,1}n` be
the string we wish to hash. We can viewm as a polynomialm(x) over GF(2) of degree
n` − 1 (or less) by viewing the bits ofm as the coefficients ofxn`−1, . . . , x2, x,1. We
then define a family of hash functionsK[n, `] = {h : {0,1}n` → {0,1}`} as follows. A
random hash functionh ∈ K is described by a random irreducible polynomialh over

96 P. Rogaway

GF(2) of degreè. To hashm usingh we compute the degreè− 1 (or less) polynomial
m(x) · x` modh(x). Viewing the coefficients of this polynomial as a string of length`
gives us the hash functionh evaluated atm.

Theorem 6[18]. K[n, `] is ((n`+ `)/2`−1)-AXU2.

The efficiency with which hash functionsh ∈ K can be computed has been studied
by Shoup [24] (who also looked at related hash families). These functions are fast to
compute—about six instructions per byte on a 32-bit machine, assuming` = 64, and
ignoring the time to “preprocess” the functionh. Still, for sufficiently long messages, it
will be faster to use the bucket hashing technique from the following section.

We comment that there are many other well-known techniques for universal hashing,
such as the linear congruential hash (modulo a prime) [10], the shift register hash [31],
or the Toeplitz matrix hash [18].

3. Bucket Hashing

Let X = X1 · · · Xn be a string, partitioned inton words. To hashX using bucket hashing
we scatter the words ofX into N “buckets,” then XOR the contents of each bucket, and
then concatenate the bucket contents.

Some ways of scattering the words ofX work out better than others. In this paper we
analyze a particular bucket hashing scheme, which we denote byB. The scheme depends
on parametersn, N, w. SchemeB scatters each word into three buckets.

3.1. Defining the Bucket Hash FamilyB
Fix a word sizew ≥ 1 and parametersn ≥ 1 andN ≥ 3. We will be hashing from
domain D = {0,1}wn to rangeR = {0,1}wN . As a typical example, takew = 32,
n = 1024, andN = 140. If we want to be explicit, such a family would be denoted
B[32,1024,140]. For the scheme we describe to make sense we require that

(N
3

) ≥ n.
Each hash functionh ∈ B is specified by a length-n list of cardinality-3 subsets of
{1, . . . , N}. We denote this list byh = h1 · · · hn. The three elements ofhi are written
hi = {hi 1, hi 2, hi 3}.

Choosing a randomh from B[w,n, N] means choosing a random length-n list of
three-element subsets of{1, . . . , N} subject to the constraint that no two of these sets
are the same. That is, we insist thathi 6= hj for all i 6= j .

Let h ∈ B and letX = X1 · · · Xn be the string we want to hash, where each|Xi | = w.
Thenh(X) is defined by the following algorithm. First, for eachj ∈ {1, . . . , N}, initialize
Yj to 0w. Then, for eachi ∈ {1, . . . ,n} andk ∈ hi , replaceYk by Yk ⊕ Xi . When done,
seth(X) = Y1 ‖ Y2 ‖ · · · ‖ YN .

In pseudocode we have

for j ← 1 to N do Yj ← 0w

for i ← 1 to n do
Yhi 1 ← Yhi 1 ⊕ Xi

Yhi 2 ← Yhi 2 ⊕ Xi

Yhi 3 ← Yhi 3 ⊕ Xi

return Y1 ‖ Y2 ‖ · · · ‖ YN

Bucket Hashing and Its Application to Fast Message Authentication 97

The computation of anh(X) can be envisioned as follows. We haveN buckets, each
initially empty. The first word ofX is thrown into the three buckets specified byh1;
the second word ofX is thrown into the three buckets specified byh2; and so on, with
the last word ofX being thrown into the three buckets specified byhn. Our N buckets
now contain a total of 3n words. Compute the xor of the words in each of the buckets
(with the xor of no words being defined as the zero-word). The hash ofX, h(X), is the
concatenation of the final contents of theN buckets.

3.2. Collision Probability of the Bucket Hash FamilyB
The collision probability forB[w,n, N] is the maximum, over all distinctx, x′ ∈
{0,1}nw, of the probability thath(x) = h(x′). Our main theorem gives an upper bound on
the collision probability ofB. The bound is about 3312N−6. In other words,B[w,n, N]
is ε-AU2 for ε ≈ 3312N−6.

Theorem 7(Main Result). Assumew ≥ 1, N ≥ 32, and n ≤ (N
3

)
/12. Let ε be the

collision probability forB[w,n, N]. Thenε ≤ B(N), where B(N) = λ(N)β(N), for
λ(N) = 1/(1− 6/

(N
3

)
) and

β(N) = 720(N − 3)(N − 4)(N − 5)+1944(N − 3)(N − 4)2+648(N − 2)(N − 3)2

N3(N − 1)3(N − 2)3
.

The proof of Theorem 7 is given in Section 4.

Plot of B(N). In Fig. 1 we plotB(N) againstN. Consulting the graph we see, for
example, that if you hash a string down to 140 words the collision probability is about
2−31.

Comments. In the applications of bucket hashing to message authentication one typi-
cally wants a collision probability of, say,ε ≤ 2−30 or less. As can be seen from Fig. 1,
getting such a small collision probability requires a fairly large value ofN. SinceN is
the length of our hashed string (in words), large values ofN are undesirable and typically
require additional layers of hashing. An example of this is illustrated in Section 5.

Note that our bound shows no dependency onw or n (though there is the technical
restriction thatn ≤ (N

3

)
/12). Indeed it is easy to see (and the proof of Theorem 7 shows)

that the collision probability does not depend onw. In fact, it is a consequence of the
proof that, when 4≤ n ≤ (N

3

)
/12, the collision probability does not depend onn, either.

Observe thatλ(N) = N /(N−36), whereN = N(N−1)(N−2). By our assumption
that N ≥ 32 we have that 1≤ λ(N) ≤ 1.002. So the multiplication byλ(N) can
effectively be ignored;B(N) ≈ β(N).

We believe that it is possible to relax the restrictionn ≤ (N
3

)
/12 all the way ton <

(N
3

)
.

However, doing this would add considerable complexity to the proof, yet have relatively
little practical value, since the number of buckets,N, needs to be quite large in order to
obtain what would usually be regarded as a suitably small collision probability.

Explanation. Here is a bit of intuition for what is going on. Suppose an adversary wants
to find a pair of distinct messagesx, x′ ∈ {0,1}wn which are most likely to collide under

98 P. Rogaway

Fig. 1. A graphical representation of Theorem 7. We plot ofN verses,B(N), our bound on the collision
probability ofB[w,n, N].

a function fromB. What two messages should she choose? In the proof of Theorem 7 we
recast this question into the following one. An adversary will throwt triples of balls into
N buckets. Each of the 3t balls will land in a random bucket, except for the following
constraints: threedistinct buckets are selected for the three balls of each toss; and no
tosses will land in identical triples of buckets. The adversary’s goal is the following:
make every bucket end up with an even number of balls in it. All the adversary can do
is choose how many triples of balls,t , she will disperse. The question we must answer
is: what choice oft , where 1≤ t ≤ n, will maximize the adversary’s chance to win this
game?

It is not hard to guess the right answer to this question:four. Here is an explanation.
If the adversary tosses justone triple of balls into the buckets she cannot possibly win:
three buckets are guaranteed to have an odd number of balls. If she throws outtwo triples
of balls she again cannot win, thanks to the constraint that no two triples of balls land in
identical triples of buckets. If she throws outthree triples of balls she again cannot win
because nine balls cannot be distributed into buckets in such a way that every bucket has
an even number of balls. If the adversary throws outfour triples of balls then, finally,
she has a chance to win. This seems like it ought to be the best thing for the adversary to
do, because it would seem to become increasingly unlikely to geteverybucket to have
an even number of balls when more balls get tossed into theN buckets. Though this

Bucket Hashing and Its Application to Fast Message Authentication 99

intuition is a long way from being formal, four triples of balls does turn out to be the
right answer. Translating back into the adversary’s original goal, the adversary can do
no better than to choose messagesX andX′ which differ by exactly four words: forX
these words are, say, 0w, while for X′ these words are, say, 1w.

3.3. The Efficiency of the Bucket Hash FamilyB
Instruction counts. To get a feel for the efficiency of bucket hashing, we do some
approximate instruction counts for computing a functionh ∈ B. Though instruction
counting is an extremely crude predictor of speed, an analysis like this is still a good
implementation-independent way to get some feel for our method’s potential efficiency.

To construct a good MAC we will probably want a collision probability ofε ≈ 2−30

(perhaps less) and so, in view of Fig. 1, we will be using a reasonably large value of
N, sayN ≥ 120. Thus we will be needing more buckets than can be accommodated by
a typical machine’s register set. There are then two natural strategies to hash the string
X = X1 · · · Xn, where eachXi is a word of the machine’s basic word size:

• Method-1 (Process wordsX1, . . . , Xn). We can read eachXi from memory (in se-
quence) and then, three times: (1) load from memory the valueYj of the appropriate
bucket j ; (2) computeXi ⊕Yj ; (3) store this back into memory, modifyingYj . Total
instruction count is 10 instructions per word (4 reads, 3 writes, 3 xors).
• Method-2 (Fill bucketsY1, . . . ,YN). We can xor together all words that should

wind up in bucket 1; then xor all words that go into bucket 2; and so forth, for each
of theN buckets. We will need a total of 3n reads intoX1, . . . , Xn, plus 3n−N xor
operations (assuming each bucket contains at least one word). Depending on what
we want done with the hash, we may need anotherN writes to put the hash value
back into memory. So the total instruction count is about six instructions per word.

Achieving the stated instruction counts requires the use of a self-modifying code (“sm-
code”); in effect, we implicitly assumed that the representation ofh ∈ B is the piece of
executable code which computesh. In implementation, this can be tricky. If we do not
want to use a self-modifying code (“sm-code”) we will need to load from memory the
bucket locations (Method-1) or word location (Method-2). This would add three loads
per word. For Method-2,sm-code would further increase the instruction count because
of the overhead needed to control the looping: it ish-dependent how many words will
fall into a given bucket, so this will have to be read from memory, and loop-unrolling
may be difficult. Assuming an additional one instruction per word to account for this
work, we have the following approximate instruction counts:

Approx.
instructions

Implementation per word

Method-1, sm-code 10
Method-1,sm-code 13
Method-2, sm-code 6
Method-2,sm-code 10

Thesm-code uses a table to specifyh. Assume a machine with a word size of 32 bits.

100 P. Rogaway

For Method-1 the needed table would typically be 3n or 12n bytes long (depending on
whether one packs bucket indices into bytes or words). For Method-2 that table would
typically be be 6n or 12n bytes long (depending on whether one packs word indices into
double-bytes or words), plus an additionalN or 4N bytes long (depending on whether
one packs counter-limits into bytes or words). To get a fast implementation, tables need
to fit into a cache. Note that there is better locality of reference for Method-1 than
Method-2, and this can have a substantial efficiency impact when actually coded.

Implementation. A variety of bucket hashing schemes have been implemented (that
is, B and methods similar toB). The observed performance of these implementations
varies enormously according to the particular scheme, the parametersn andN, and the
implementation. As a couple of points of reference: on a typical 32-bit RISC machine
(an SGI with a 150 MHz IP22 processor, 16 kbyte data cache, 16 kbytes instruction
cache) the most straightforward Method-1/sm implementation ran at 340 Mbytes/s to
hash 1024 words to 140, while a Method-2/sm implementation of a bucket hash family
based on theC[10,6] graph (see Section 7) ran at 1160 Mbytes/s to hash 909 words
to 182.

Rough comparisons. Shoup estimates a cost of about 24 instructions per word (6 in-
structions per byte) for computing a hash functionh ∈ K[n,64], whereK is described
in Section 2 [24]. Bosselaers et al. have implemented MD5 at a cost of 36 instructions
per word on a Pentium [8] (they obtain a good degree of overlapping instruction-issue,
too). In recent work, Halevi and Krawczyk estimate a cost of about 7.5 instructions
per word (assuming architectural support for multiplying two 32-bit words to yield a
64-bit product) for their MMH technique [15]. We emphasize that trying to compare
such numbers hides many significant factors, including length of hash output (worst for
bucket hashing), table sizes and caching issues, and the degree of available parallelism.
We have not studied these tradeoffs in detail and do not know if bucket hashing will
eventually “win out” in the choice of hash techniques for making a practical MAC.

4. Proof of the Main Theorem

In this section we prove Theorem 7. Throughout this section fix values ofn and N
satisfying the conditions of the theorem.

Our first two claims show how to simplify the setting.

One can assume a word length ofw = 1. First we argue that, without loss of generality,
we can assume that the word length forB[w,n, N] isw = 1. Intuitively, this follows from
the “bitwise” character of bucket hashing: when we hashX1 · · · Xn down toY1 · · ·YN ,
where|Xi | = |Yj | = w, the`th bit of Yi depends only onX1[`], . . . , Xn[`]. For this
reason, no advantage can be gained by trying to exploit long words.

Claim 8.

max
X,X′∈{0,1}nw

X 6=X′
Pr

H∈B[w,n,N]

[
H(X) = H(X′)

] = max
x,x′∈{0,1}n

x 6=x′
Pr

h∈B[1,n,N]

[
h(x) = h(x′)

]
.

Bucket Hashing and Its Application to Fast Message Authentication 101

Proof. Let X, X′ ∈ {0,1}wn be distinct strings which maximize PrH [H(X) = H(X′)].
SinceX 6= X′ there must be some bit position 1≤ ` ≤ w such that then-bit strings
x = X1[`] · · · Xn[`] andx′ = X′1[`] · · · X′n[`] are distinct. Now notice that we can treat
anyH ∈ B[w,n, N] as a hash functionh = H fromB[1,n, N], and conversely, because
the description of a bucket hash function (a sequence of triples of indices) is insensitive
to the word lengthw. Furthermore,H(X) = H(X′) implies thath(x) = h(x′), and so
PrH [H(X) = H(X′)] ≤ Prh[h(x) = h(x′)] . We conclude that maxX,X′ PrH [H(X) =
H(X′)] ≤ maxx,x′ Prh[h(x) = h(x′)].

For the opposite inequality, letx, x′ ∈ {0,1}n be distinct strings which maximize
Prh[h(x) = h(x′)]. Write x = x1 · · · xn andx′ = x′1 · · · x′n, wherexi andx′i are bits,
for all 1 ≤ i ≤ n. Define thewn-bit strings X = X1 · · · Xn and X′ = X′1 · · · X′n
by settingXi [j] = xi and X′i [j] = x′i for each 1≤ j ≤ w. Clearly, Prh[h(x) =
h(x′)] = PrH [H(X) = H(X′)]. We conclude that maxx 6=x′ Prh[h(x) = h(x′)] ≤
maxX 6=X′ PrH [H(X) = H(X′)], as desired.

Given what we have just shown, we henceforth assume a word length asw = 1. We use
B as shorthand forB[1,n, N].

Exploiting linearity. For 0≤ t ≤ n, let 1t = 1t0n−t and let0 = 0N . For 0< t ≤ n
define

δt = Pr
h∈B

[h(1t) = 0].

We are trying to boundε, the collision probability ofB, which is the maximum, over
all distinctx, x′ ∈ {0,1}n, of Prh∈B[h(x) = h(x′)]. We use Claim 8 and the structure of
bucket hashing (particularly its linearity) to get the following:

Claim 9. If n ≥ 4, thenε = maxt=4,6,8,... δt . If n < 4, thenε = 0.

Proof. First observe that, forh ∈ B, computingh(x) amounts to computing a product
Ax over GF[2] of anN × n matrix A and a column vectorx. In fact, selecting a random
hash functionh ∈ B corresponds to picking a random binaryn× N matrix A which has
three ones in each column and no two identical columns. WritingA for the set of all
such matrices we observe that

ε = max
x 6=x′

Pr
h∈B

[h(x) = h(x′)]

= max
x 6=x′

Pr
A∈A

[Ax = Ax′]

= max
x 6=x′

Pr
A∈A

[A(x − x′) = 0]

= max
x 6=0n

Pr
A∈A

[Ax = 0]

= max
x 6=0n

Pr
h∈B

[h(x) = 0].

102 P. Rogaway

Thus we do not have to think about the probability of distinct strings colliding; it is
simpler and more convenient to think about the probability that a nonzero string gets
hashed to0.

Next we argue that Prh[h(x) = 0] depends only on the number of ones inx (its
Hamming weight), and not on the particular arrangement of zeros and ones withinx.
Suppose thatx hast ones: we claim that PrA[Ax = 0] = PrA[A1t = 0]. For suppose that
the nonzero positions ofx = x1 · · · xn are at locations 1≤ j1 < · · · < jt ≤ n (meaning
that xi = 1 if and only if i ∈ { j1, . . . , jt }). Then we pair each matrixA ∈ A with a
matrix A′ ∈ A by permuting the columns ofA so that columnsj1, . . . , jt come first.
Then, for everyA ∈ A, Ax = A′1t . Since, for anyx, the associated pairingA ↪→ A′ is
bijective, PrA[Ax = 0] = PrA[A1t = 0].

From Claim 8 and what we have just shown, we now know thatε = maxt=1,2,3,... δt .
So we ask: for whicht ≥ 1 is δt largest? One thing is clear: it cannot be any any odd-
indexed1t , for if t is odd, thenh(1t) 6= 0, because it is impossible to partition 3t ones
into disjoint sets in such a way that there are an even number of ones in each set. In other
words, Prh[h(1t) = 0] = 0 for oddt . Likewise, PrA[A12 = 0], because of our insistence
that no two columns ofA are identical. The claim now follows.

Strategy. Our plan is as follows. First we will boundδ4 from above byB(N). Then we
will show thatδt ≤ B(N) for all event ≥ 6. Using Claim 9 we can then conclude that
ε ≤ B(N).

Our analysis is made possible by using a particular Markov chain,M . This Markov
chain does not describe bucket hashing accurately. However, we can correct for the
inaccuracy which the chain introduces.

Markov chain model. Consider for a moment an inferior form of bucket hashing: instead
of B, where eachhi amongh = h1 · · · hn is required to be different from any other,
consider the family of hash functionsC which removes that constraint. In other words, a
randomh = h1 · · · hn ∈ C[1,n, N] is a sequence of random triples,hi = {hi 1, hi 2, hi 3},
wherehi 1, hi 2, hi 3 ∈ {1, . . . , N} are distinct. This corresponds to a randomN×n binary
matrixC with three ones per column.

While there is no natural Markov chain model forB, there is a natural Markov chain
M corresponding toC. This chain keeps track of the number of buckets with an odd
number of ones. Thus the Markov chainM has(N + 1)-states,{0,1, . . . , N}. Being
in statei means thati buckets now have an odd number of ones (andN − i buckets
have an even number of ones). A transition inM corresponds to throwing three balls
into three distinct buckets: after each such throw, there is a new number of buckets with
an odd number of ones. So state 0 is the start state. Since three balls are tossed with
each throw, there can be a nonzero transition probability from statesi to j only when
|i − j | ≤ 3. (In fact, the only transitions that can happen are from a statei to a state
j ∈ {i −3, i −1, i +1, i +3}∩ {0, . . . , N}.) The probability of returning to state 0 after
t steps corresponds precisely to Prh∈C [h(1t) = 0].

Let N = N(N − 1)(N − 2). Let Pi j denote the transition probability ofM : the
probability of moving from statei to statej in a single step. To capture the processC

Bucket Hashing and Its Application to Fast Message Authentication 103

we have described we need to defineM ’s transition probabilistic as follows:

Pi j =

1 if (i, j) ∈ {(0,3), (N, N − 3)},
3(N − 1)(N − 2)/N if (i, j) ∈ {(1,2), (N − 1, N − 2)},
(N − 1)(N − 2)(N − 3)/N if (i, j) ∈ {(1,4), (N − 1, N − 4)},
6(N − 2)/N if (i, j) ∈ {(2,1), (N − 2, N − 1)},
6(N − 2)(N − 3)/N if (i, j) ∈ {(2,3), (N − 2, N − 3)},
(N − 2)(N − 3)(N − 4)/N if (i, j) ∈ {(2,5), (N − 2, N − 5)},
i (i − 1)(i − 2)/N if 3 ≤ i ≤ N − 3 and j = i − 3,
3i (i − 1)(N − i)/N if 3 ≤ i ≤ N − 3 and j = i − 1,
3i (N − i)(N − i − 1)/N if 3 ≤ i ≤ N − 3 and j = i + 1,
(N − i)(N − i − 1)(N − i − 2))/N if 3 ≤ i ≤ N − 3 and j = i + 3,
0 otherwise.

(1)
We give an example of how the above values are computed. ConsiderPi j for the case
associated to 3≤ i ≤ N − 3 and j = i + 1. In order to go from statei to statei + 1 in
a single step, one ball of the three will have to land in one of thei buckets that has an
odd number of balls already, while the remaining two balls must land among theN − i
remaining buckets. There are 3i (N− i)(N− i −1) ordered triples of bucket indices that
will accomplish this among theN ordered triples of bucket indices. (The “3” takes care
of the fact that there are 3i ways to choose the ball which lands in a bucket with an odd
number of balls; after that ball is selected, the remaining two balls have to land in the
otherN − i buckets.) The reasoning for all of the otherPi j values is similar.

In Fig. 2 we depict the Markov chainM for the case where the number of states is
N = 10. The transition probabilities are computed from (1).

Fig. 2. The Markov chainM for N = 10 states. The start state is state 0. Divide the number labeling each
arc i → j byN = N(N − 1)(N − 2) = 720 to get the transition probabilityPi j .

104 P. Rogaway

Using M to boundδ4. We are now ready to show thatδ4 ≤ B(N). Recall thatB(N) =
λ(N) · β(N), whereλ(N) and β(N) are given by the formulas in the statement of
Theorem 7.

Lemma 10. δ4 ≤ B(N) .

Proof. First some notation. Lett ≤ n be a number and leth1 · · · ht be a sequence of
triples of distinct elements drawn from{1, . . . , N}. We make the following definitions.

• Parity(h1 · · · ht) is the N-vector whosei th component,i ∈ {1, . . . , N}, is 0 if i
occurs an even number of times in the multiseth1 ∪ · · · ∪ ht , and 1 if i occurs an
odd number of times. (ThusParity(h1 · · · ht) records the parity of the number of
balls in each of theN buckets, if we toss balls according toh1, . . . , ht .)
• Given anN-vector of bitsy = y1 · · · yN , let NumOnes(y) denote the number of

1-bits in y.
• Define State(h1 · · · ht) = NumOnes(Parity(h1 · · · ht)). (ThusState(h1 . . . ht)

records the state ofM after hashing1t with h = h1 · · · ht · · ·. After tossing balls
according toh1, . . . , ht , State(h1 . . . ht) buckets contain an odd number of balls
while N − State(h1 . . . ht) buckets contain an even number of balls.)
• Forσ an N-vector of bits, define

Stateσ (h1 · · · ht) = NumOnes(σ ⊕ Parity(h1 · · · ht)).

(ThusStateσ (h1 . . . ht)captures thestateofM afterhashing1t with h = h1 · · · ht · · ·,
given that we start in the configuration specified byσ .)
• Let

Hist(h1h2 · · · ht) = 0 State(h1) State(h1h2)

· · · State(h1h2 · · · ht−1) State(h1h2 · · · ht).

This is a list oft + 1 numbers, each in{0, · · · , N}, and it encodes the sequence of
states inM one passes through on hashing1t according toh = h1h2 · · · ht · · ·.
• Let Distinct(h1 · · · ht) betrue if h1, . . . , ht are all distinct, andfalse otherwise.
• Let Rt (“random”) be the uniform distribution onh1, · · · , ht (that is, eachhi is a

random triple of distinct points from{1, . . . , N}).
• Let Dt (“distinct”) be the uniform distribution on distincth1, . . . , ht (that is, each

hi is a random triple of distinct points from{1, . . . , N}, and no two of these triples
are identical).
• Let C(m, t) denote the probability of at least one collision in the experiment of

throwingt balls, independently and at random, intom bins.

We are now ready to prove the lemma.

δ4 = Pr
D4

[
State(h1h2h3h4) = 0

]
= Pr

R4

[
State(h1h2h3h4) = 0 | Distinct(h1h2h3h4)

]
= PrR4

[
State(h1h2h3h4) = 0 andDistinct(h1h2h3h4)

]
PrR4

[
Distinct(h1h2h3h4)

]

Bucket Hashing and Its Application to Fast Message Authentication 105

≤ PrR4

[
Hist(h1h2h3h4) 3 {03630, 03430, 03230}]

1− C(
(N

3

)
,4)

(2)

≤ λ(N) ·
(
Pr
R4

[
Hist(h1h2h3h4) = 03630

]+ Pr
R4

[
Hist(h1h2h3h4) = 03430

]
+ Pr

R4

[
Hist(h1h2h3h4) = 03230

])
= λ(N) · (P03P36P63P30+ P03P34P43P30+ P03P32P23P30)

= λ(N) ·
(

1 · (N − 3)(N − 4)(N − 5)

N · 120

N ·
6

N

+ 1 · 9(N − 3)(N − 4)

N · 36(N − 4)

N · 6

N
+ 1 · 18(N − 3)

N · 6(N − 2)(N − 3)

N · 6

N

)
(3)

= λ(N) · 720(N−3)(N−4)(N−5)+ 1944(N−3)(N−4)2+648(N−2)(N−3)2

N 3

= B(N).

Equation (2) is justified by referring to Fig. 2: the only length-4 routes from state 0 back
to state 0 are 03630, 03430, 03230, and 03030. The last of these can only arise from
nondistincth1, h2, h3, h4. For the other three we simply disregard the conjunction with
Distinct(h1h2h3h4) because we are giving an upper bound. Equation (3) is obtained
directly from (1).

Using M to boundδ6, δ8, Assume thatN is even andN ≥ 6. We will show, in
this case, thatδt ≤ B(N). Here is the idea. Take a random functionh ∈ B and look at
its last six maps—for convenience of notation, we writeh = h7 · · · ht h1h2h3h4h5h6,
numbering the final six mapsh1, . . . , h6. Now h1, . . . , h6 are statistically correlated to
h7, . . . , ht (for example,h1 6= h7), yet h1, . . . , h6 are nottoo far from being random
and independent, in the sense that, for anyh7 · · · ht , a uniformly selected sequence of
mapsh′1h′2h′3h′4h′5h′6 would have been a valid continuation with probability at least 1/2.
(This follows from our assumption thatn ≤ (N

3

)
/12.) Thus, up to a factor of 2, we can

bound the chance of landing in state 0 on applyingh to 1t by looking at the chance of
landing in state 0 after applying a uniformly selectedh1 · · · h6 starting in some arbitrary
(unknown) state of the Markov chain.

To formalize the above argument, letfi (t) denote the maximum, over all initial states
s, of the probability that we arrive in statei in exactlyt transitions, given that we start
in states. This is the same as the supremum, over all distributionsπ on the starting state
of M , of the probability that we arrive in statei in exactlyt transitions, given that we
start in an initial state as chosen by sampling fromπ . We will need the following lemma
about the behavior of Markov chainM .

Lemma 11. f0(6) ≤ (25920N8+ 154080N7)/N 5.

The proof is a tedious but straightforward calculation using the transition probabilities

106 P. Rogaway

of M . It is relegated to the Appendix. The point is not the specific formula, but only that
f0(6) is less than halfB(N) for all sufficiently largeN.

Lemma 12. Assume6≤ t ≤ n. Thenδt ≤ B(N).

Proof. We use the same notation as in the proof of Lemma 10.

δt = Pr
h∈B

[h(1t) = 0)]

= Pr
h7···ht h1h2h3h4h5h6∈Dt

[
State(h7 · · · ht h1h2h3h4h5h6) = 0

]
= E

h7···ht∈Dt−6

[
Pr

h1···h6∈D6
{h1,···,h6}∩{h7,···,ht }=∅

[
State(h7 · · · ht h1h2h3h4h5h6) = 0

]]
≤ max

h7···ht∈Dt−6

Pr
h1···h6∈D6

{h1,···,h6}∩{h7,···,ht }=∅

[
NumOnes(Parity(h7 · · · ht)

⊕Parity(h1h2h3h4h5h6)) = 0
]

= Pr
h1···h6∈E

[
NumOnes(σ ⊕ Parity(h1h2h3h4h5h6)) = 0

]
,

whereE andσ are defined by fixing someh7 · · · ht which maximize the probability
above and then lettingσ = Parity(h7 · · · ht) and lettingE be the uniform distribution
onh1 · · · h6 subject toh1, . . . , h6 being distinct from all ofh7, . . . , ht and distinct from
each other. Continuing, the above expression is

= Prh1···h6∈R6

[
Stateσ (h1h2h3h4h5h6) = 0 andDistinct(h1 · · · h6 h7 · · · ht)

]
Prh1···h6∈D6

[
Distinct(h1h2h3h4h5h6 h7 · · · ht)

]
≤ Prh1···h6∈R6

[
Stateσ (h1h2h3h4h5h6) = 0

]
1− 6 t/

(N
3

)
≤ 2 · Pr

h1···h6∈R6

[
Stateσ (h1h2h3h4h5h6) = 0

]
(From assumption thatn ≤ (N

3

)
/12)

≤ 2 · f0(6) (Definition of f)

≤ 2 · 25920N8+ 154080N7

N 5
(By Lemma 11)

≤ B(N) for all N ≥ 32.

For the last inequality: it is easy to verify that this holds for sufficiently largeN. The
crossover point was determined numerically.

We have now shown that, under the conditions of the theorem,B(N) ≥ δt for all
t ≥ 1. This completes the proof.

5. From Universal Hash Families to Message Authentication

In this section we review the Wegman–Carter construction (and its complexity-theoretic
variant), as well as the formal notion of a message authentication code (MAC) and a
pseudorandom function family.

Bucket Hashing and Its Application to Fast Message Authentication 107

MACs. We follow [14] and [5] and define deterministic, counter-based message authen-
ticationcodes.AMACschemeMspecifies: constantsL andc, determiningMessages =
{0,1}≤L and Tags = {0,1}c; a set of stringsKeys; a numberMAX (alternatively,
MAX = ∞); and a pair of functions(MAC,MACV), where

MAC: Keys×Messages× {1, . . . ,MAX} → Tags, and

MACV: Keys×Messages× Tags→ {0,1}.

The first argument to MAC and MACV will usually be written as a subscript. We
demand that, for anyx ∈ Messages, k ∈ Keys, and cnt ∈ {1, . . . ,MAX},
MACV k(x,MACk(x, cnt)) = 1.

LetM be a message authentication scheme. A MAC oracle MACk(·) forM behaves
as follows: it answers its first query,x1, with MACk(x1,1); it answers its second query,
x2, with MACk(x2,2); and so forth. The MAC oracle responds with the empty string to
queries beyond theMAXth or to queries not in the setMessages.

An adversaryE for a message authentication schemeM is an algorithm equipped
with a MAC oracle MACk(·). AdversaryE is said to forge on a particular execu-
tion, this execution having MAC oracle MACk(·), if E outputs a string(x∗, σ ∗) where
MACV k(x∗, σ ∗) = 1 yet E made no oracle query ofx∗. When we speak ofE forging
with a particular probability, that probability is taken overE’s coin tosses and a random
key k ∈ Keys for the MAC oracle. Running times are measured in a standard RAM
model of computation, with oracle queries counting as one step. By convention, the
running time ofE also includes the size ofE’s description.

One can also provide the adversary with a MACVk(·, ·) oracle, but this leaves the
notion essentially unchanged.

The Wegman–Carter construction. Given a family of hash functionsH = {A →
{0,1}b} we wish to construct from it a MAC. In the scheme we denote WC[H], the
signer and verifier share a random elementh ∈ H, as well as an infinite random string
P = P1P2P3 · · ·, where|Pi | = b. The pair(h, P) is the key shared by the signer and
verifier. The signer maintains a counter, cnt, which is initially 0. To generate a MAC for the
messagex the signer increments cnt and then computes the MACσ = (cnt, Pcnt⊕h(x))
which authenticatesx. To verify a MACσ = (i, s) for the messagex the verifier checks
if s= Pi ⊕ h(x).

The following theorem says that it is impossible (regardless of time, number of queries,
or amount of MACed text) to forge with probability exceeding the collision probability.

Proposition 13[32], [18]. LetH beε-AXU2 and suppose adversary E forges in the
schemeWC[H] with probabilityδ. Thenδ ≤ ε.

PRFs. We follow [13] and [5]. A finite pseudorandom function family (PRF) is a map
F : {0,1}κ × {0,1}l → {0,1}b. We write Fa(x) in place of F(a, x). Let Rl ,b be the
set of all functions mapping{0,1}l to {0,1}b. A distinguisheris an algorithmD with
access to an oracle. We say that a PRFF is ε(t,q)-secure if, for every distinguisherD
which runs in timet and makesq or fewer queries to its oracle, Prk←{0,1}κ [DFk(·) = 1]−
Prρ←Rl ,b[D

ρ(·) = 1] ≤ ε(t,q) . Running times are measured in a standard RAM model

108 P. Rogaway

of computation, with oracle queries counting as one step. By convention, the running
time of E also includes the size ofE’s description.

Wegman–Carter with a PRF. A natural complexity-theoretic variant is to use, instead
of the random padP, a random indexa ∈ {0,1}κ into a finite PRFF : {0,1}κ×{0,1}l →
{0,1}b. The signer maintains a counter cnt∈ {0,1}l , initially 0. (We will not distinguish
between numbers and their binary encodings intol -bits.) The signer and verifier share a
randoma ∈ {0,1}κ and a randomh ∈ H. When the signer wishes to MAC a message
x, if cnt < 2l − 1, then the signer computesσ = (cnt, Fa(cnt)⊕ h(x)) and increments
cnt. (In the unlikely event that cnt reaches 2l − 1, a new MAC key is required by the
signer and verifier.) To verify a MACσ = (i, s) for the messagex the verifier checks if
s = Fa(i) ⊕ h(x). At most 2l messages may be MACed (after that, the keya must be
changed). We call the scheme just described WC[H, F]. The following result is obtained
by standard techniques.

Proposition 14. LetH = {h : A→ {0,1}b} be anε-AXU2 family of hash functions.
Let TH denote the time required to compute a representation of a random element h∈ H,
and let Th(q, µ) denote the time required to compute from this representation the hash
of q strings, these strings totalingµ bits. Let F: {0,1}κ × {0,1}l → {0,1}b be an
ε′(t,q)-secure finite PRF. Let E be an adversary which, in time t, making q queries,
these queries totalingµ bits, forges with probabilityδ against the schemeWC[H, F].
Thenδ ≤ ε + ε′(t +1t, q + 1), where1t = O(Th(q, µ)+ TH + ql + qb).

The value of1t would usually be insignificant compared witht . Note that in Proposi-
tion 13 the forging probability is independent of the number of queries (q) and the length
of the queried messages (µ). In Proposition 14 the forging probability depends on these
quantities only insofar as they are detrimental to the security of the underlying PRF.

We emphasize that the signer is stateful in the schemes WC[H] and WC[H, F]. The
signer being stateful improves security (compared with using a random index) and at
little practical cost. Note that the verifier is not stateful. This is possible because our
notion of MAC security (Section 5), does not credit the adversary for “replay attacks.”

6. Toy Example, and Limitations on Bucket Hashing

In this section we describe a concrete MAC based on the ideas presented so far. This is
only a “toy” example; doing a good job at specifying a software-optimized bucket hash
MAC would involve much design, experimental, and theoretical work which we have
not carried out. Still, the example helps to illustrate the strengths of bucket hashing in
making a MAC, as well as the limitations.

Toy example. To keep things simple, suppose the strings we will MAC are of length at
most 4096 bytes. Assume a word size of 4 bytes (32 bits). LetF : {0,1}κ × {0,1}64→
{0,1}64 be a finite PRF (defined, for example, from the compression function of MD5).
Here is a way for the signer to MAC a stringX whose length is at most 1024 words.
Assume an even number of words. The signer and verifier share as a MAC key (i) a

Bucket Hashing and Its Application to Fast Message Authentication 109

random elementh1 ∈ B[32,1024,140], (ii) a random elementh2 ∈ K[71,64], and
a (iii) a random stringa ∈ {0,1}κ . We use the construction of Proposition 5 (slightly
modified to account for length-variability). In the algorithm below,|X|denotes the length
of X, encoded as a 2-word string. The functionh1 is extended to strings of length less
than 1024 words in the natural way: we stop casting words into buckets when we reach
the end of the string. (This is equivalent to 0-padding the string to 1024 words.)

Algorithm TOY-MAC(X).
if cnt= 264− 1 then return error
σ = 〈cnt, Fa(cnt)⊕ h2(|X| . h1(X))〉
cnt= cnt+ 1
return σ

We count the instructions forTOY-MAC to hash a 4096-byte message. If we bucket hash
in 10 instructions per word (Section 3.3), hash usingh2 ∈ K in 24 instruction per word
[24], and computeF with 600 instructions (easy to accomplish), then we will spend
10+ (142/1024) · 24+ 600/1024= 10+ 3.3+ 0.6= 13.9 instructions per word.

Notice that the “cryptographic” contribution to the above time (i.e., the time to compute
F) is very small. In a Wegman–Carter MAC one is afforded the luxury of conservative
(and slow) cryptography even in an aggressively speed-optimized design. This is because
one arranges that the time to compute the MAC is dominated by the noncryptographic
work.

Limitations on bucket hashing. If the strings we are MACing are short, then, at some
point, it makes sense to switch strategies and stop using bucket hashing. In ourTOY-MAC
we might hash with onlyh2 when the input string has length less than some constant.
This is an important limitation on bucket hashing; because the output length is substan-
tial, the technique is simply not useful until the strings to be hashed get long enough.
As a consequence, any “real” MAC which employs bucket hashing would likely be a
patchwork of different techniques for different message lengths. Therefore a real bucket
hash MAC is unlikely to be simple to describe or implement.

On the other hand, if the strings to be hashed arevery long, then, at some point, it
makes sense to break the input into blocks and independently bucket hash each block,
using the construction of Proposition 2. This is because the size of the description of
h ∈ B grows linearly in the maximal length string whichh can hash. We do not want
hash functions with excessively long descriptions (certainly the hash function should
fit in cache). This is another limitation on the bucket hashing technique, and something
which will further complicate the definition of any real bucket-hash MAC.

In our TOY-MAC, if we wanted a substantially better collision probability we could
apply the construction of Proposition 3, but this would roughly halve the rate for bucket
hashing, and perhaps other techniques might then be faster. This is a third limitation
on bucket hashing: until better constructions are found, obtaining an extremely small
collision probability, say 2−50, would require an excessive number of buckets. That is,
the output length of the hash function would be very long, and so the technique would
only be useful for hashing extremely long messages.

The last limitation we will mention is the time needed to compute a description ofh.

110 P. Rogaway

In any real MAC scheme the functionh ∈ B would be determined from some underlying
key k with the help of a pseudorandom generator. Because the description ofh is large
and of a special form, computingh might take a significant amount of time. In most
applications of fast message authentications, a one-time key preprocessing delay is not
important. However, if there is a limited amount of text to be MACed, or if the latency of
the first MAC must be minimized, then the time to compute the description ofh could be
an issue. One approach is to find a version of bucket hashing that uses a small key (i.e.,
a short description forh). This way the underlying pseudorandom generator (if present)
is less taxed. This approach has been investigated by Johansson [16], who achieves a
major reduction in the size of the description ofh.

Balancedagainst these limitations is thepossibilityofanextremelyhighMACthrough-
put, at least for long strings.

7. Extensions and Directions

GeneralizingB, we call by “bucket hashing” any scheme in which the hash functionh is a
given by a listh1 · · · hn of “small” subsets of{1, . . . , N} and the hash ofX = X1 · · · Xn,
where|Xi | = w, is

for j ← 1 to N do Yj ← 0w

for i ← 1 to n do
for eachk ∈ hi do

Yk ← Yk ⊕ Xi

return Y1 ‖ Y2 ‖ · · · ‖ YN

In the general case the distribution onh-values is arbitrary. SoB is just the special case
in which we use the uniform distribution on distinct triples in{1, . . . , N}.

One could imagine many alternative distributions, some of which will give rise to
faster-to-compute hash functions or better bounds on the collision probability. As an
example, supposeh ∈ H is chosen by randomly reordering a listh1 · · · hn of triples
which are chosen so that, for all setsI ⊆ {1, . . . ,n} of cardinality 2 or 4, it is not the
case that the multiset

⋃
h∈I h has an even number of each point 1, . . . , N. This new

family of hash functions may have a substantially smaller collision probability thanB
for a givenn, N.

The bucket hash scheme of a graph. Hash familyB would have been more efficient had
each word gone into two buckets instead of three. One way to specify a scheme where
each word lands in two buckets is with a graphG whoseN vertices comprise theN
buckets and whosem edges{1, . . . ,m} indicate the pairs of buckets into which a word
may fall. A random hash function from the family is given by a random permutationπ

on {1, . . . ,m}. To hash a stringX1 · · · Xn usingπ , where|Xi | = w andn ≤ m, each
word Xi is dropped into the two buckets at the endpoints of edgeπ(i). As before, we
xor the contents of each bucket and output their concatenation in some canonical order.
We call the above scheme the bucket hash of the graphG.

Bucket Hashing and Its Application to Fast Message Authentication 111

For a graphG to be “good” we want a small number of verticesN, a large number of
edgesm, and such that, for allk where 1≤ k ≤ n ≤ m, if k distinct edges are selected
at random fromG, then the probability that their union (with multiplicities) comprises
a union of cycles is at most some tiny numberε.

One possible choice of graphs in this regard are the(d, g)-cages (see [7]). A(d, g)-
cage is a smallestd-regular graph whose shortest cycle hasg edges. These graphs have
been explicitly constructed for various values of(d, g). Though(d, g)-cages are rather
large (for eveng they have at least(2(d −1)g/2 − 2)/(d −2) nodes) and the definition
of a (d, g)-cage does not exactly correspond to having small collision probability, we
conjecture that some(d, g)-cages may still give rise to useful hash families. For example,
assumed − 1 is a prime power. LetC[d,6] be the(d,6)-cage. This is the point-line
incidence graph of the projective plane of orderd − 1. Bucket hashing withC[10,6]
may be a good way to hash 909 words down to 182 words.

Open questions. The generalized notion of bucket hashing amounts to saying that
hashing is achieved for each bit position 1· · ·w by matrix multiplication with a sparse
Boolean matrixH . Expressing the method in this generality raises questions like the
following: for a givenN, n, andk, for what distributionsD of binaryN × n matricesH
havingk ones per column is maxx∈{0,1}n−{0n} PrH∈D [Hx = 0] minimized? What if we
also demand that each row has a fixed number of ones? What if, instead of saying that
there arek ones per column, we cap the density of the matrix at some valueρ? Answers
to such questions may lead to faster bucket-hash MACs.

Acknowledgments

Many thanks to the two anonymous referees for their careful reviews. Thanks also
to Mihir Bellare, Don Coppersmith, Hugo Krawczyk, and David Zuckerman for their
comments and suggestions.

Appendix. Proof of Lemma 11

Here we prove Lemma 11, giving a suitable upper bound onf0(6). We do this by
direct calculation, paying attention to the states 0,1,2,3,4,6 and “everything else.” To
that end, letR = {5,7,8, . . . , N} (i.e., “everything else”) and definefR(t) to be the
maximum, over all initial statess, of the probability that we arrive at a stater ∈ R in
exactlyt transitions, given that we start in states. We write PRj for

∑
r∈R Pr j . Keep in

mind thatR is nota state of any Markov chain we have defined; this is just a convenient
shorthand.

We will establish the bounds indicated in Table 1, where rowt , columni is the upper
bound we show forfi (t). To see how these bounds are computed, refer to Fig. 3, which
depicts the relevant transition probabilities ofM .

We start with the trivial bounds:f1(1) ≤ 1, f3(1) ≤ 1, fR(1) ≤ 1, f4(2) ≤ 1, and
f2(6) ≤ 1. These are obvious, since eachfi (t) represents a probability. Now refer to
Fig. 3 and calculate. Some of the mundane arithmetic is omitted. In cases such as the

112 P. Rogaway

Table 1. Row t , column i gives our bound onfi (t). The only value needed isf0(6); we need that
2 f0(6) ≤ B(N).

0 1 2 3 4 6 R

t=1 1 1 1

t=2
6

N
3N2+10N

N 1 1

t=3
42N3

N 2

54N4

N 2
1

t=4
324N4

N 2

60

N +
1098N5

N 3

60N

N + 438N6

N 3

15N2

N + 25N4

N 2

t=5
4320N8+25680N7

N 4

t=6
25920N8+154080N7

N 5

calculation of f6(4), the final inequality is easily seen to hold for sufficiently largeN;
the crossover point was determined numerically.

f0(2) = f3(1) · P30

≤ 1 · 6

N
= 6

N ,

Fig. 3. A view of the Markov chainM , where, for purposes of analysis, we have lumped together all states
other than 0,1,2,3,4,6. Divide the number labeling each arci → j byN = N(N − 1)(N − 2) to get the
transition probabilityPi j .

Bucket Hashing and Its Application to Fast Message Authentication 113

f2(2) ≤ f1(1) · P12+ f3(1) · P32+ fR(1)PR2

≤ 1 · 3(N − 1)(N − 2)

N + 1 · 18(N − 3)

N + 1 · 60

N

≤ 3N2+ 10N

N (N ≥ 12),

f1(3) = f2(2) · P21+ f4(2) · P41

≤ 3N2+ 10N

N · 6(N − 2)

N + 1 · 24

N

= (3N2+ 10N)(6N − 12)+ 24N(N − 1)(N − 2)

N 2

≤ 42N3

N 2
,

f3(3) = f0(2) · P03+ f2(2) · P23+ f4(2) · P43+ f6(2) · P63

≤ 6

N · 1+
3N2+ 10N

N · 6(N − 2)(N − 3)

N + 1 · 36(N − 4)

N + 1 · 120

N

≤ 54N4

N 2
,

f0(4) = f3(3) · P30

≤ 54N4

N 3
· 6

N

≤ 324N4

N 3
,

f2(4) ≤ f1(3) · P12+ f3(3) · P32+ fR(3)PR2

≤ 42N3

N 2
· 3(N − 1)(N − 2)

N + 54N4

N 2
· 18(N − 3)

N + 1 · 60

N

≤ 60

N +
1098N5

N 3
(N ≥ 3),

f4(4) ≤ f1(3) · P14+ f3(3) · P34+ fR(3) · PR4

≤ 42N3

N 2
· 1+ 54N4

N 2
· 9(N − 3)(N − 4)

N + 1 · 60(N − 5)+ 210

N

≤ 60

N +
438N6

N 3
,

f6(4) ≤ f3(3) · P36+ fR(3) · PR6

≤ 54N4

N 2
· 1+ 1 · 15(N − 5)(N − 6)+ 126(N − 7)+ 504

N

= 15N2

N + 15N4+ 189N3− 294N2− 144N

N 2

≤ 15N4

N 2
+ 25N2

N (N ≥ 18),

114 P. Rogaway

f3(5) = f0(4) · P03+ f2(4) · P23+ f4(4) · P43+ f6(4) · P63

≤ 324N4

N 3
· 1+

(
60

N +
1098N5

N 3

)
· 6(N − 2)(N − 3)

N

+
(

60N

N + 438N6

N 3

)
· 36(N − 4)

N +
(

15N2

N + 25N4

N 2

)
· 120

N

≤ 4320N8+ 25680N7

N 4
,

f0(6) = f3(5) · 6

N

≤ 4320N8+ 25680N7

N 4
· 6

N

= 25920N8+ 154080N7

N 5
.

This completes the proof of the lemma.

References

[1] N. Alon, O. Goldreich, J. H˚astad, and R. Peralta, Simple constructions of almostk-wise independent
random variables,Proceedings of the31st Annual IEEE Symposium on Foundations of Computer Science,
1990, pp. 544–553.

[2] R. Arnold and D. Coppersmith, An alternative to perfect hashing, IBM RC 10332, 1984.
[3] M. Bellare, R. Canetti, and H. Krawczyk, Keying hash functions for message authentication,Advances

in Cryptology – CRYPTO ’96, Lecture Notes in Computer Science, vol. 1109, Springer-Verlag, Berlin,
1996, pp. 1–15.

[4] M. Bellare, O. Goldreich, and S. Goldwasser, Incremental cryptography: the case of hashing and signing,
Advances in Cryptology – CRYPTO ’94, Lecture Notes in Computer Science, vol. 839, Springer-Verlag,
Berlin, 1994, pp. 216–233.

[5] M. Bellare, J. Kilian, and P. Rogaway, The security of cipher block chaining,Advances in Cryptology –
CRYPTO ’94, Lecture Notes in Computer Science, vol. 839, Springer-Verlag, Berlin, 1994, pp. 341–358.

[6] J. Bierbrauer, T. Johansson, G. Kabatianskii, and B. Smeets, On families of hash functions via geometric
codes and concatenation,Advances in Cryptology – CRYPTO ’93, Lecture Notes in Computer Science,
vol. 773, Springer-Verlag, Berlin, 1994, pp. 331–342.

[7] J. Bondy and U. Murty,Graph Theory with Applications, North-Holland, Amsterdam, 1976.
[8] A. Bosselaers, R. Govaerts, and J. Vandewalle, Fast hashing on the Pentium,Advances in Cryptology –

CRYPTO96, Lecture Notes in Computer Science, vol. 1109, Springer-Verlag, Berlin, 1996, pp. 298–312.
[9] G. Brassard, On computationally secure authentication tags requiring short secret shared keys,Advances

in Cryptology – CRYPTO ’82, Springer-Verlag, Berlin, 1983, pp. 79–86.
[10] L. Carter and M. Wegman, Universal hash functions,Journal of Computer and System Sciences, vol. 18,

1979, pp. 143–154.
[11] Y. Desmedt, Unconditionally secure authentication schemes and practical and theoretical consequences,

Advances in Cryptology – CRYPTO ’85, Lecture Notes in Computer Science, vol. 218, Springer-Verlag,
Berlin, 1985, pp. 42–45.

[12] P. Gemmell and M. Naor, Codes for interactive authentication,Advances in Cryptology – CRYPTO ’93,
Lecture Notes in Computer Science, vol. 773, Springer-Verlag, Berlin, 1994, pp. 355–367.

[13] O. Goldreich, S. Goldwasser, and S. Micali, How to construct random functions,Journal of the ACM,
vol. 33, no. 4, 1986, pp. 210–217.

[14] S. Goldwasser, S. Micali, and R. Rivest, A digital signature scheme secure against adaptive chosen-
message attacks,SIAM Journal of Computing, vol. 17, no. 2, 1988, pp. 281–308.

Bucket Hashing and Its Application to Fast Message Authentication 115

[15] S. Halevi and H. Krawczyk, MMH: message authentication in software in the Gbit/second rates,Proceed-
ings of the4th Workshop on Fast Software Encryption, Springer-Verlag, New York, 1997, pp. 172–189.

[16] T. Johansson, Bucket hashing with small key size,Advances in Cryptology – EUROCRYPT ’97, Lecture
Notes in Computer Science, Springer-Verlag, Berlin, 1997, pp. 149–162.

[17] T. Johansson, G. Kabatianskii, and B. Smeets, On the relation between A-codes and codes correcting
independent errors.Advances in Cryptology – EUROCRYPT ’93, Lecture Notes in Computer Science,
vol. 765, Springer-Verlag, 1994, pp. 1–11.

[18] H. Krawczyk, LFSR-based hashing and authentication,Advances in Cryptology – CRYPTO ’94, Lecture
Notes in Computer Science, vol. 839, Springer-Verlag, 1994, pp. 129–139.

[19] X. Lai, R. Rueppel, and J. Woollven, A fast cryptographic checksum algorithm based on stream ciphers,
Advances in Cryptology, Proceedings of AUSCRYPT92, Lecture Notes in Computer Science, vol. 718,
Springer-Verlag, Berlin, 1992, pp. 339–348.

[20] M. Luby and C. Rackoff, How to construct pseudorandom permutations from pseudorandom functions,
SIAM Journal on Computing, vol. 17, no. 2, 1988, pp. 373–386.

[21] P. Pearson, Fast hashing of variable-length text strings,Communications of the ACM, vol. 33, no. 6,
1990, pp. 677–680.

[22] R. Rivest, The MD5 message digest algorithm, IETF RFC-1321, 1992.
[23] P. Rogaway, Bucket hashing and its application to fast message authentication,Advances in Cryptology –

CRYPTO ’95, Lecture Notes in Computer Science, vol. 963, Springer-Verlag, Berlin, 1995, pp. 313–328.
[24] V. Shoup, On fast and provably secure message authentication based on universal hashing,Advances

in Cryptology – CRYPTO ’96, Lecture Notes in Computer Science, vol. 1109, Springer-Verlag, Berlin,
1996, pp. 74–85.

[25] A. Siegel, On universal classes of fast high performance hash functions, their time-space tradeoff,
and their applications,Proceedings of the30th Annual IEEE Symposium on Foundations of Computer
Science, 1989, pp. 20–25.

[26] G. Simmons, A survey of information authentication, inContemporary Cryptography, The Science of
Information Integrity, G. Simmons, editor, IEEE Press, New York, 1992, pp. 379–419.

[27] D. Stinson, Universal hashing and authentication codes,Designs, Codes and Cryptography, vol. 4, 1994,
pp. 369–380.

[28] R. Taylor, An integrity check value algorithm for stream ciphers,Advances in Cryptology – CRYPTO ’93,
Lecture Notes in Computer Science, vol. 773, Springer-Verlag, Berlin, 1994, 40–48.

[29] J. Touch, Performance analysis of MD5,Proceedings of Sigcomm ’95, ACM Press, New York, 1995,
pp. 77–86.

[30] G. Tsudik, Message authentication with one-way hash functions,Proceedings of Infocom92, IEEE
Press, New York, 1992, pp. 29–38.

[31] U. Vazirani, Efficiency considerations in using semi-random sources,Proceedings of the Nineteenth
Annual ACM Symposium on Theory of Computing, ACM Press, New York, 1987, pp. 160–168.

[32] M. Wegman and L. Carter, New hash functions and their use in authentication and set equality,Journal
of Computer and System Sciences, vol. 22, 1981, pp. 265–279.

[33] A. Zobrist, A new hashing method with applications for game playing, TR #88, Dept. of Computer
Science, University of Wisconsin, April 1970.

