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Abstract. We introduce a new technique for constructing a family of universal hash
functions. At its center is a simple metaphor: to hash a stirgast each of its words

into a small number abucketsxor the contents of each bucket; then collect up all the
buckets’ contents. Used in the context of Wegman—Carter authentication, this style of
hash function provides a fast approach for software message authentication.
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1. Introduction

Message authentication Message authentication is one of the most common crypto-
graphic aims. The setting is that two parties, a sighand verifierV, share a (short,
random, secret) ke. When S wants to send/ a messagex, S computes for it a
message authentication coldAC), o < MAC(X), and S sendsV the pair(x, o).
On receipt of(x’, o), verifierV checks that MACY(X’, o) = 1.

To describe the security of a message authentication scheme, an ad#eisagiyen
an oracle for MAG(-). The adversary is declareticcessfuif she outputs arix*, o*)
such that MAC\,(x*, 0*) = 1 but x* was never asked of the MAC) oracle. For a
scheme to be “good,” reasonable adversaries should rarely succeed.

Software-efficient MACs In the current computing environment it is often necessary to
compute MACs frequently and over strings which are commonly hundreds to thousands
of bytes long. Despite this, there will usually be no special-purpose hardware to help
out: MAC generation and verification will need to be done in software on a conventional
workstation or personal computer. So to reduce the impact of message authentication
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on the machine’s overall performance, and to facilitate more pervasive use of message
authentication, we need to develop faster techniques. This paper provides one such
technique.

Two approaches to message authenticatiomhe fastest software MACs in common
use today are exemplified by MACG) = h(k | x| k), with h a (software-efficient)
cryptographic hash function, such as= MD5 [22]. Such methods are described in
[30]. The algorithm HMAC [3] represents the most refined algorithm in this direction.
Schemes like these might seem to be about as software-efficient as one might realistically
hope for: after all, we are computing one of the fastest types of cryptographic primitives
over a string nearly identical in length to that which we want to authenticate. However, itis
well known that this reasoning is specious: in particular, Wegman and Carter [32] showed
back in 1981 that we do not have to transform the entire skitaryptographically”.

In the Wegman—Carter approach communicating pagiaadV share a secret key
k = (h, P) which specifies both an infinite random strifgand a functiorh drawn
randomly from a strongly universgamily of hash function®{. (Recall that{ is strongly
universa if, for all x # x’, the random variabla(x) || h(x’), for h € H, is uniformly
distributed.) To authenticate a messagthe sender transmitgx) xor-ed with the next
piece of the padP. The thing to notice is thatis transformed first by a noncryptographic
operation (universal hashing) and only then is it subjected to a cryptographic operation
(encryption), now applied to a much shorter string.

A standard cryptographic technigue—the use of a pseudorandom function family,
F— allows SandV to use a short string in lieu of the infinite stringP. SignerS now
MACs theith messagex;, with MAC h ) (Xi) = (i, Fa(i) @ h(x)).

As it turns out, to make a good MAC it is enough to construct something weaker than
a strongly universalfamily. Carter and Wegman [10] also introduced the notion of an
almost universalfamily, H. This must satisfy the weaker condition thagFyh(x) =
h(x)] is small for allx # x’. As observed by Stinson [27], an almost universainily
can easily be turned into an almost strongly univerfahily by composing the almost
universaj family with an almost strongly universadne. In computingp,(h1 (X)), where
h; is drawn from an almost universdamily andh, is drawn from a strongly universal
one, the bulk of the time will typically be spent in computihgx), sincex may be a
long string buth;(x) will be a short string, and sh, will not have much work left to
do. Thus the problem of finding a fast-to-compute MAC has effectively been reduced to
finding a family of almost universahash functions whose members are fast to compute.

Bucket hashing This paper provides a new almost univesgaimily of hash functions.

We call our hash familypucket hashinglt is distinguished by its member functions
being extremely fast to compute—as few as six elementary machine instructions per
word (independent of word size) for the version of bucket hashing we concentrate on in
this paper. Putting such a family of hash functions to work in the framework described
above will give rise to a software-efficient MAC.

A bucket-hash MAC will involve significant overhead beyond the time which is spent
bucket hashing. For one thing, the output of bucket hashing is too long to use directly;
it will need to be composed with an additional layer of hashing. All the same, one
can compare the instruction count mentioned above to that of MD5, whichruSés
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instructions per 32-bit word [8], and see that there is potential for substantial efficiency
gains even if the true cost of using bucket hashing substantially exceeds six instructions
per word.

A bucket-hash MAC has advantages in addition to speed. Bucket hashitigéaa
function—it is a special case of matrix multiplication over GF(2)—and this linearity
yields many pleasant characteristics for a bucket-hash MAC. In particular, bucket hashing
is parallelizable since each word of the hash is just the xor of certain words of the
message. Bucket hashingngrementain the sense of [4] with respect to bathpend
and substitute operations. Finally, the only processor instructions a bucket-hash
MAC needs are word-aligneldad , store , andxor ; thus a bucket-hash MAC is
essentially endian-indifferent.

In a bucket-hash MAC—indeed in any Wegman—Carter MAC—one is afforded the
luxury of conservative (slow) cryptography even in a MAC whose software speed has
been aggressively optimized. This is because one arranges that the time complexity for
the MAC is dominated by the noncryptographic work.

One might worry that the linearity or simple character of bucket hashing might give
rise to some “weakness” in a MAC which exploits it. However, it does not. A bucket-
hash MAC, like any MAC which follows the Wegman—Carter paradigm, enjoys the
assurance advantages of provable security. Moreover, this provable security is achieved
under extremely “tight” reductions, so that an adversary who can successfully break the
MAC can break the underlying cryptographic primitive (the pseudorandom fundion
with essentially identical efficiency.

Previous work The general theory of unconditional authentication was developed by
Simmons; see [26] for a survey. As we have already explained, the universal-hash-and-
then-encrypt paradigm is due to Wegman and Carter [32]. The idea springs from their
highly influential paper of 1979 [10].

In Wegman—Carter authentication the size of the hash family corresponds to the num-
ber of bits of shared key—one reason to find smaller families of universal hash functions
than those of [10] and [32]. Siegel (for other reasons) [25] constructs families of fast-to-
compute hash functions which use few bits of randomness and have small description
size. Stinson finds small hash families in [27], and also gives general results on the con-
struction of universal hash functions. We exploit some of these ideas here. Subsequent
improvements (rooted in coding theory) came from Bierbrauer et al. [6] and Gemmell
and Naor [12].

The above work concentrates on universal hash families and unconditionally secure au-
thentication. Brassard [9] first connects the Wegman—Carter approach to the complexity-
theoretic case. The complexity-theoretic notion for a secure MAC is a straightforward
adaptation of the definition of a digital signhature due to Goldwasser et al. [14]. Their
notion of an adaptive chosen-message attack is equally at home for defining an un-
conditionally secure MAC. Thus we view work like ours as making statements about
unconditionally secure authentication which give rise to corresponding statements and
concrete schemes in the complexity-theoretic tradition. To make this translation we re-
gard a finite pseudorandom function (PRF) as the most appropriate tool. Bellare et al.
[5] were the first to formalize such objects, investigate their usage in the construction
of efficient MACs, and suggest them as a desirable starting point for practical, provably
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good constructions. Finite PRFs are a refinement of the PRF notion of Goldreich et al.
[13] to take account of the fixed lengths of inputs and outputs in the efficient primitives
of cryptographic practice.

Zobrist [33] gives a hashing technique which predates [10] and essentially coincides
with one method from [10]. Arnold and Coppersmith [2] give an interesting hashing
technique which allows one to map a set of kkymito a set of corresponding values
using a table only slightly bigger than; vi. The proof of our main technical result is
somewhat reminiscent of their analysis.

Lai et al. [19], Taylor [28], and Krawczyk [18] have all been interested in com-
putationally efficient MACs. The last two works basically follow the Wegman—Carter
paradigm. In particular, Krawczyk obtains efficient message authentication codes from
hash families which resemble traditional cyclic redundancy codes (CRCs), and matrix
multiplication using Toeplitz matrices. Though originally intended for hardware, these
techniques are fast in software, too. We recall Krawczyk's CRC-like hash in Section 2.

An earlier version of this paper appeared as [23].

Subsequent work Shoup [24] has carried out implementations and analysis of hash
function families akin to polynomial evaluation. Such hash functions make good candi-
dates for “second level hashing” when a speed-optimized hash function is applied to a
long string. The techniques are also fast enough to be gainfully employed by themselves.

Halevi and Krawczyk describe a family of hash functions, MMH, which achieves
extremely impressive software speeds on some modern platforms [15]. To achieve such
performance one needs the underlying hardware to be able to multiply two 32-bit integers
quickly to form a 64-bit product.

Johansson investigates how to reduce the size of the key for bucket hashing, which,
in the current paper, is quite enormous [16].

Organization We continue in Section 2 by reviewing the definition and basic properties
of universal hash families. Sections 3 and 4 give our main result. In the former we
formally define our family of hash functions; we state a theorem which upper bounds
the collision probability of3; and we discuss the efficiency of computing functions
drawn fromB. In the latter we prove our main theorem, relegating one lemma to the
Appendix. Section 5 reviews the Wegman—Carter approach for making a MAC out of a
universal family of hash functions, while Section 6 gives a concrete example of this and
discusses some of the difficulties involved in constructing a good MAC using bucket
hashing. Section 7 considers some extensions and directions for our work.

2. Preliminaries

This section provides background drawn from Carter and Wegman [10], [32], Stinson
[27], and Krawczyk [18]. Proofs are omitted.

A family of hash functionss a finite multisetH of string-valued functions, each
h € H having the same nonempty domainc {0, 1}* and rangeB < {0, 1}, for some
constanb.
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Definition 1 [10]. A family of hash functions{ = {h : A — {0, 1}°} is e-almost
universap, written e-AU,, if, for all distinctx, X' € A, Phey [h(X) = h(X)] < ¢. The
family of hash functiongH is e-almost XOR universg| written e-AXU 5, if, for all
distinctx, x’ € A, and for allc € {0, 1}°, Pl [h(x) @ h(x) =c] <.

The value ot = maxx {Pm[h(x) = h(x")]} is called thecollision probability. For us,
the principle measures of the worth of an Ablash family are how small its collision
probability is and how fast one can compute its functions.

To make a fast MAC one may wish to “glue together” various universal hash families.
The following are the basic methods for doing this.

First we need a way to make the domain of a hash family biggerH.et {h :
{0, 1}2 - {0, 1}°}. By H™ = {h : {0, 1}*™ — {0, 1}°™} we denote the family of hash
functions whose elements are the same &g tout whereh(x;x, - - - Xm), for |Xi| = a,
is defined byh(xq) [| h(x2) || --- I h(Xm).

Proposition 2[27]. If H is e-AU,, thenH™ is e-AU,.

Sometimes one needs a way to make the collision probability smallet{i et {h :

A — {0, 1}P*}andH, = {h : A — {0, 1}*2} be families of hash functions. By1& H, =

{h: A= {0, 1}>*P2} we mean the family of hash functions whose elements are pairs
of functions(hy, hy) € H; x H, and wherghy, hy)(X) is defined afi1(x) || ha(x).

Proposition 3. If Hj is e1-AU; andH; is g2-AU,, thenH1& Ho is e162-AU 5.

Next is a way to make the image of a hash function shorterHset {h : {0, 1} —
{0,1}°} andH> = {h : {0,1}°> — {0, 1}°} be families of hash functions. Then by
HooHy = {h: {0, 1}* — {0, 1}°} we mean the family of hash function whose elements
are pairs of functionghy, hy) € Hy x H, and wherehy, h,)(x) is defined asi2(h1(X)).

Proposition 4[27]. If Hyise1-AU, andH; is e2-AU», thenH, o Hy iS (g1 + €2)-AU .

Composition can also be used to turn an,Abmily H; whose members hashto B,
and an AXY family H, whose members hadbito C, into an AXU, family H, o Hy
whose members hashto C. If B = {0, 1}° for some smalb, and elements df{, are
fast to compute on this domain, we have effectively “promotdd’from being AU to
AXU > at little cost.

Proposition 5[27]. Supposé{; = (h: A — B}ise;-AU,, andH, = {(h: B — C}
is e2-AXU,. ThenH, 0 Hy = {h : A — C}is (e1 + €2)-AXU 5.

We end this section with a sample construction for a software-efficient AXash
family, this one due to Krawczyk [18]. Let, £ > 1 be numbers and leb € {0, 1} be
the string we wish to hash. We can viemas a polynomiam(x) over GF(2) of degree
n¢ — 1 (or less) by viewing the bits of as the coefficients of™~1, ..., x? x, 1. We
then define a family of hash functiodgn, ¢] = {h : {0, 1}™ — {0, 1}*} as follows. A
random hash functioh € K is described by a random irreducible polynontiabver
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GF(2) of degreé. To hashm usingh we compute the degree- 1 (or less) polynomial
m(x) - x* modh(x). Viewing the coefficients of this polynomial as a string of length
gives us the hash functidnevaluated am.

Theorem 6[18]. K[n, £] is (n€ + £)/2=1)-AXU 5.

The efficiency with which hash functiorts € K can be computed has been studied
by Shoup [24] (who also looked at related hash families). These functions are fast to
compute—about six instructions per byte on a 32-bit machine, assuming4, and
ignoring the time to “preprocess” the functibnStill, for sufficiently long messages, it
will be faster to use the bucket hashing technique from the following section.

We comment that there are many other well-known techniques for universal hashing,
such as the linear congruential hash (modulo a prime) [10], the shift register hash [31],
or the Toeplitz matrix hash [18].

3. Bucket Hashing

Let X = X; --- X, be a string, partitioned intowords. To hastX using bucket hashing
we scatter the words of into N “buckets,” then XOR the contents of each bucket, and
then concatenate the bucket contents.

Some ways of scattering the wordsXfwork out better than others. In this paper we
analyze a particular bucket hashing scheme, which we den@etlye scheme depends
on parameters, N, w. Scheme3 scatters each word into three buckets.

3.1. Defining the Bucket Hash Family

Fix a word sizew > 1 and parametens > 1 andN > 3. We will be hashing from
domainD = {0, 1}*" to rangeR = {0, 1}*N. As a typical example, taker = 32,
n = 1024, andN = 140. If we want to be explicit, such a family would be denoted
B[32, 1024 140]. For the scheme we describe to make sense we requir@‘t)hatn.

Each hash functioh € B is specified by a length-list of cardinality-3 subsets of
{1, ..., N}. We denote this list bjn = h; --- h,. The three elements &f are written
hi = {hi1, hi2, his}.

Choosing a randorh from B[w, n, N] means choosing a random lengtHist of
three-element subsets ff, ..., N} subject to the constraint that no two of these sets
are the same. That is, we insist that# h; for all i # j.

Leth € BandletX = Xy --- X, be the string we want to hash, where el = w.
Thenh(X) is defined by the following algorithm. First, foreagle {1, ..., N}, initialize
Y; to 0”. Then, for each € {1,..., n} andk € h;, replaceYy by Y, & X;. When done,
seth(X) =Y | Y2 || --- || Yn.

In pseudocode we have

for j < 1toNdoY; < Q"
fori < 1tondo

Yhiy < Yhy @ Xi

Yhi, < Yh, © Xi

Yhs < Yhy @ X
return Yo || Yz | -+ || Yn
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The computation of ah(X) can be envisioned as follows. We haMebuckets, each
initially empty. The first word ofX is thrown into the three buckets specified fuy

the second word oK is thrown into the three buckets specifiedhyy and so on, with
the last word ofX being thrown into the three buckets specifiedhgy Our N buckets
now contain a total of 8 words. Compute the xor of the words in each of the buckets
(with the xor of no words being defined as the zero-word). The hash bf X), is the
concatenation of the final contents of tNebuckets.

3.2. Collision Probability of the Bucket Hash Family/

The collision probability for5[w, n, N] is the maximum, over all distinck, X’ €

{0, 1™, of the probability thah(x) = h(x’). Our main theorem gives an upper bound on
the collision probability of3. The bound is about 33N2-6. In other words3[w, n, N]

is e-AU, for ¢ &~ 3312N 6.

Theorem 7 (Main Result). Assumew > 1, N > 32,and n < (’3)/12. Let ¢ be the
collision probability forB[w, n, N]. Thene < B(N), where EN) = A(N)B(N), for
A(N) = 1/(1 - 6/(3)) and

(N) = 720N — 3)(N — 4)(N — 5)+1944N — 3)(N — 4)24+648N — 2)(N — 3)?
pN) = N3(N — 1)3(N — 2)3 '

The proof of Theorem 7 is given in Section 4.

Plot of B(N). In Fig. 1 we plotB(N) againstN. Consulting the graph we see, for

example, that if you hash a string down to 140 words the collision probability is about
273,

Comments In the applications of bucket hashing to message authentication one typi-
cally wants a collision probability of, say,< 273C or less. As can be seen from Fig. 1,
getting such a small collision probability requires a fairly large valudloBinceN is

the length of our hashed string (in words), large valuds afe undesirable and typically
require additional layers of hashing. An example of this is illustrated in Section 5.

Note that our bound shows no dependencywoar n (though there is the technical
restriction thah < (’;‘)/12). Indeed it is easy to see (and the proof of Theorem 7 shows)
that the collision probability does not dependwnin fact, it is a consequence of the
proof that, when 4 n < (Q)/lz, the collision probability does not dependrgreither.

Observe that(N) = N /(N —36), whereN = N(N —1)(N —2). By our assumption
that N > 32 we have that 1< A(N) < 1.002. So the multiplication by.(N) can
effectively be ignoredB(N) ~ S(N).

We believe that it is possible to relax the restrictiog (’;)/12 allthe way t; < (g‘)
However, doing this would add considerable complexity to the proof, yet have relatively
little practical value, since the number of buckeéts,needs to be quite large in order to
obtain what would usually be regarded as a suitably small collision probability.

Explanation Here is abit of intuition for what is going on. Suppose an adversary wants
to find a pair of distinct messaggsx’ € {0, 1}*" which are most likely to collide under
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Upper bound on collision probablity, B(N)

235 i a N I A B
40 60 80 100 120 140 160 180 200
Number of buckets, N

Fig. 1. A graphical representation of Theorem 7. We plothofverses,B(N), our bound on the collision
probability of B[w, n, N].

a function fromB. What two messages should she choose? In the proof of Theorem 7 we
recast this question into the following one. An adversary will thtdriples of balls into
N buckets. Each of thetdalls will land in a random bucket, except for the following
constraints: thredistinct buckets are selected for the three balls of each toss; and no
tosses will land in identical triples of buckets. The adversary’s goal is the following:
make every bucket end up with an even number of balls Allithe adversary can do
is choose how many triples of ballg,she will disperse. The question we must answer
is: what choice of, where 1< t < n, will maximize the adversary’s chance to win this
game?

It is not hard to guess the right answer to this questioar. Here is an explanation.
If the adversary tosses jushetriple of balls into the buckets she cannot possibly win:
three buckets are guaranteed to have an odd number of balls. If she thrdwe tripiles
of balls she again cannot win, thanks to the constraint that no two triples of balls land in
identical triples of buckets. If she throws dhtee triples of balls she again cannot win
because nine balls cannot be distributed into buckets in such a way that every bucket has
an even number of balls. If the adversary throwsfout triples of balls then, finally,
she has a chance to win. This seems like it ought to be the best thing for the adversary to
do, because it would seem to become increasingly unlikely tegtybucket to have
an even number of balls when more balls get tossed intd\theickets. Though this
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intuition is a long way from being formal, four triples of balls does turn out to be the
right answer. Translating back into the adversary’s original goal, the adversary can do
no better than to choose messageand X’ which differ by exactly four words: foX

these words are, say’ Qwhile for X’ these words are, say’1

3.3. The Efficiency of the Bucket Hash Fanily

Instruction counts To get a feel for the efficiency of bucket hashing, we do some
approximate instruction counts for computing a functiore 5. Though instruction
counting is an extremely crude predictor of speed, an analysis like this is still a good
implementation-independent way to get some feel for our method’s potential efficiency.

To construct a good MAC we will probably want a collision probabilityeof 2-30
(perhaps less) and so, in view of Fig. 1, we will be using a reasonably large value of
N, sayN > 120. Thus we will be needing more buckets than can be accommodated by
a typical machine’s register set. There are then two natural strategies to hash the string
X = X1 --- Xp, where eaclX; is a word of the machine’s basic word size:

e Method-1 (Process word¥Xy, ..., X,). We can read eacK; from memory (in se-
guence) and then, three times: (1) load from memory the v4loéthe appropriate
bucketj; (2) computeX; & Y;; (3) store this back into memory, modifyin. Total
instruction count is 10 instructions per word (4 reads, 3 writes, 3 xors).

e Method-2 (Fill bucketsYs, ..., Yn). We can xor together all words that should
wind up in bucket 1; then xor all words that go into bucket 2; and so forth, for each
of the N buckets. We will need a total ofideads intaXy, . .., X, plus 31— N xor
operations (assuming each bucket contains at least one word). Depending on what
we want done with the hash, we may need anotthevrites to put the hash value
back into memory. So the total instruction count is about six instructions per word.

Achieving the stated instruction counts requires the use of a self-modifying code (“sm-
code”); in effect, we implicitly assumed that the representatiom ef53 is the piece of
executable code which computesin implementation, this can be tricky. If we do not
want to use a self-modifying codegfh-code”) we will need to load from memory the
bucket locations (Method-1) or word location (Method-2). This would add three loads
per word. For Method-Zm-code would further increase the instruction count because
of the overhead needed to control the looping: tidependent how many words will

fall into a given bucket, so this will have to be read from memory, and loop-unrolling
may be difficult. Assuming an additional one instruction per word to account for this
work, we have the following approximate instruction counts:

Approx.
instructions
Implementation per word
Method-1, sm-code 10
Method-1,5m-code 13
Method-2, sm-code 6
Method-2,5m-code 10

Thesm-code uses a table to spedifyAssume a machine with a word size of 32 bits.
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For Method-1 the needed table would typically bbed® 12n bytes long (depending on
whether one packs bucket indices into bytes or words). For Method-2 that table would
typically be be & or 12n bytes long (depending on whether one packs word indices into
double-bytes or words), plus an additiomlor 4N bytes long (depending on whether
one packs counter-limits into bytes or words). To get a fast implementation, tables need
to fit into a cache. Note that there is better locality of reference for Method-1 than
Method-2, and this can have a substantial efficiency impact when actually coded.

Implementation A variety of bucket hashing schemes have been implemented (that
is, B and methods similar t#5). The observed performance of these implementations
varies enormously according to the particular scheme, the parametaddN, and the
implementation. As a couple of points of reference: on a typical 32-bit RISC machine
(an SGI with a 150 MHz IP22 processor, 16 kbyte data cache, 16 kbytes instruction
cache) the most straightforward Methogsin implementation ran at 340 Mbyjesto

hash 1024 words to 140, while a Methogsgh implementation of a bucket hash family
based on th€[10, 6] graph (see Section 7) ran at 1160 Mbytes/s to hash 909 words
to 182.

Rough comparisons Shoup estimates a cost of about 24 instructions per word (6 in-
structions per byte) for computing a hash functiose K[n, 64], wherek is described

in Section 2 [24]. Bosselaers et al. have implemented MD5 at a cost of 36 instructions
per word on a Pentium [8] (they obtain a good degree of overlapping instruction-issue,
too). In recent work, Halevi and Krawczyk estimate a cost of about 7.5 instructions
per word (assuming architectural support for multiplying two 32-bit words to yield a
64-bit product) for their MMH technique [15]. We emphasize that trying to compare
such numbers hides many significant factors, including length of hash output (worst for
bucket hashing), table sizes and caching issues, and the degree of available parallelism.
We have not studied these tradeoffs in detail and do not know if bucket hashing will
eventually “win out” in the choice of hash techniques for making a practical MAC.

4. Proof of the Main Theorem

In this section we prove Theorem 7. Throughout this section fix values aid N
satisfying the conditions of the theorem.
Our first two claims show how to simplify the setting.

One can assume aword lengthof= 1. First we argue that, without loss of generality,
we can assume that the word lengthpw, n, N]is w = 1. Intuitively, this follows from
the “bitwise” character of bucket hashing: when we hsh- - X, down toY; - - - Yy,
where|X;| = |Y;| = w, the £th bit of Y; depends only orXy[4], ..., Xn[£]. For this
reason, no advantage can be gained by trying to exploit long words.

Claim 8.

B el [HO0 = HOOI = max | Br, Th00 =hoc)]
#X/ x#x/
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Proof. LetX, X’ € {0, 1}*" be distinct strings which maximize PfH (X) = H(X")].
SinceX # X’ there must be some bit positiond ¢ < w such that the-bit strings

X = Xq[€] - - - Xp[€] andx’ = X}[£] - - - X,[€] are distinct. Now notice that we can treat
anyH € B[w, n, N]as ahash functioh = H from B[1, n, N], and conversely, because

the description of a bucket hash function (a sequence of triples of indices) is insensitive
to the word lengthw. FurthermoreH (X) = H(X’) implies thath(x) = h(x’), and so
Pra[H(X) = H(X")] < Pri[h(x) = h(x)] . We conclude that maxx Prq[H(X) =
H(X")] < max x Pi[h(x) = h(x")].

For the opposite inequality, let, X' € {0, 1}" be distinct strings which maximize
Pr[h(x) = h(X)]. Write X = X --- X, andx’ = x; --- X;,, wherex; andx’ are bits,
forall 1 < i < n. Define thewn-bit stringsX = Xi--- X, and X’ = X} --- X|,
by settingXi[j] = x and X/[j] = x/ for each 1< j < w. Clearly, Pi[h(x)
h(x)] = Pr[H(X) = H(X")]. We conclude that max, Pi[h(x) = h(x)]
maxxx Pry[H (X) = H(X")], as desired.

OIA

Given what we have just shown, we henceforth assume a word length-a%. We use
B as shorthand foB[1, n, N].

Exploiting linearity For0<t <n,letl = 1'0"'andlet0 =0N. ForO<t <n
define

o = hzg[h(lt) =0].

We are trying to bound, the collision probability of3, which is the maximum, over
all distinctx, X’ € {0, 1}", of Pr¢s[h(X) = h(x")]. We use Claim 8 and the structure of
bucket hashing (particularly its linearity) to get the following:

Claim 9. Ifn > 4,thene = max_46s,_. 6. |fn < 4,thens =0.

Proof. First observe that, fan € B, computingh(x) amounts to computing a product
Ax over GF[2] of anN x n matrix A and a column vectox. In fact, selecting a random
hash functiorh € B corresponds to picking a random binaryx N matrix A which has
three ones in each column and no two identical columns. Writlnfigr the set of all
such matrices we observe that

e = 'I;"’B‘hi’é[h(x) =h(x)]

= max Pr[Ax = AX]
X#X' Ac A

= max Pr[A(X — X)) =
x;éax’ AeA[ ( ) O]

= max Pr[Ax = (]
x£0" Ac A

= T Rheo =0l
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Thus we do not have to think about the probability of distinct strings colliding; it is
simpler and more convenient to think about the probability that a nonzero string gets
hashed t®.

Next we argue that Rfh(x) = 0] depends only on the number of onesxn(its
Hamming weight), and not on the particular arrangement of zeros and ones within
Suppose that hast ones: we claim that Rf AX = 0] = Pra[ Al; = 0]. For suppose that
the nonzero positions of = x; - - - X, are at locations k¥ j; < --- < j; < n(meaning
thatx; = 1 if and only ifi € {j1,..., jt}). Then we pair each matriA € A with a
matrix A’ € A by permuting the columns oA so that columngy, ..., j; come first.
Then, for everyA € A, Ax = A'l;. Since, for any, the associated pairing — A’ is
bijective, Ph[Ax = 0] = Pra[AL; = Q].

From Claim 8 and what we have just shown, we now know ¢hatmax—_123 5.

So we ask: for which > 1 is §; largest? One thing is clear: it cannot be any any odd-
indexedl;, for if t is odd, therh(1;) # 0, because it is impossible to partitioh @nes

into disjoint sets in such a way that there are an even number of ones in each set. In other
words, Pg[h(1;) = 0] = Ofor oddt. Likewise, Pr[ Al, = 0], because of our insistence

that no two columns oA are identical. The claim now follows. O

Strategy Our plan is as follows. First we will boursd from above byB(N). Then we
will show thaté; < B(N) for all event > 6. Using Claim 9 we can then conclude that
e < B(N).
Our analysis is made possible by using a particular Markov ciinThis Markov
chain does not describe bucket hashing accurately. However, we can correct for the
inaccuracy which the chain introduces.

Markov chainmodel Considerforamomentan inferior form of bucket hashing: instead
of B, where eacth; amongh = h;---h, is required to be different from any other,
consider the family of hash functio@swhich removes that constraint. In other words, a
randomh = h; --- h, € C[1, n, N]is a sequence of random triplds,= {h;1, hi2, his},
whereh;iy, hi2, hiz € {1, ..., N} are distinct. This corresponds to a randhinx n binary
matrix C with three ones per column.

While there is no natural Markov chain model #6ythere is a natural Markov chain
M corresponding t@. This chain keeps track of the number of buckets with an odd
number of ones. Thus the Markov chaih has(N + 1)-states{0, 1, ..., N}. Being
in statei means that buckets now have an odd number of ones (&hd i buckets
have an even number of ones). A transitionMncorresponds to throwing three balls
into three distinct buckets: after each such throw, there is a new number of buckets with
an odd number of ones. So state O is the start state. Since three balls are tossed with
each throw, there can be a nonzero transition probability from state$ only when
[i — j| < 3. (In fact, the only transitions that can happen are from a staiea state
jel{i—-3i—-21i+1i+3n{0,..., N}.) The probability of returning to state O after
t steps corresponds precisely tgRfh(1;) = 0].

Let V' = N(N — 1)(N — 2). Let B denote the transition probability d¥: the
probability of moving from staté to statej in a single step. To capture the proc€ss
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we have described we need to defMés transition probabilistic as follows:

1 if G, j)e€{0,3),(N,N -3},
3(N = )(N — 2)/N it (Q,j)e{(1,2,(N-1 N —2)},
(N—=1(N-=2(N-3)/N if @i,))e{@4),(N-1N-4}
6(N — 2)/N it G,j)el{21),(N=2N-1),
6(N — 2)(N — 3)/N if (,j)e{23),(N=2N-=3),

Ri=1(N—=2(N-3)(N -4 /N if (,])ef{(25,(N-2 N-5)},
i(i— DG —2)/N if 3<i<N-3 and j=i-3,
3ii—LD(N-i)/N if 3<i<N-3 and j=i-1,
3I(N=D)(N—-i —D/N if 3<i<N-3 and j=i+1,
(N—-D(N—-i —D(N—-i—2)/N if 3<i<N-3 and j=i+3,
0 otherwise

D

We give an example of how the above values are computed. Corfjdfar the case
associatedto X i < N —3andj =i + 1. In order to go from stateto state + 1 in
a single step, one ball of the three will have to land in one of theckets that has an
odd number of balls already, while the remaining two balls must land amony thé
remaining buckets. There arg(8l —i)(N —i — 1) ordered triples of bucket indices that
will accomplish this among th& ordered triples of bucket indices. (The “3” takes care
of the fact that there area 3vays to choose the ball which lands in a bucket with an odd
number of balls; after that ball is selected, the remaining two balls have to land in the
otherN — i buckets.) The reasoning for all of the ott@y values is similar.

In Fig. 2 we depict the Markov chaill for the case where the number of states is
N = 10. The transition probabilities are computed from (1).

start

state /

Fig. 2. The Markov chainM for N = 10 states. The start state is state 0. Divide the number labeling each
arci — j by N'= N(N — 1)(N — 2) = 720 to get the transition probabilif;; .
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Using M to bound;. We are now ready to show th&t < B(N). Recall thaB(N) =
A(N) - B(N), whereA(N) and B(N) are given by the formulas in the statement of
Theorem 7.

Lemma 10. 84 < B(N).

Proof. First some notation. Let < n be a number and ldt; - - - h; be a sequence of
triples of distinct elements drawn froft, ..., N}. We make the following definitions.

e Parity(hy - - - hy) is the N-vector whosdth componentj € {1,..., N}, is O ifi
occurs an even number of times in the multisetU - - - U hy, and 1 ifi occurs an
odd number of times. (ThuBarity(h; - - - hy) records the parity of the number of
balls in each of thé\ buckets, if we toss balls accordingh, ..., h;.)

e Given anN-vector of bitsy = y; - - - yn, let NumOnes(y) denote the number of
1-bitsiny.

e Define State(h; - - - hy) = NumOnes(Parity(h; -- - hy)). (Thus State(h; ... hy)
records the state d¥l after hashingl; with h = hy---h; - ... After tossing balls
according tohg, ..., h, State(h; ... hy) buckets contain an odd number of balls
while N — State(h; ... hy) buckets contain an even number of balls.)

e Foro anN-vector of bits, define

State, (hy - - - hy) = NumOnes(c @ Parity(hy - - - hy)).

(ThusState, (h; ... h;) capturesthe state & after hashing; withh = hy---h; - - -,
given that we start in the configuration specifiedshy

o Let
Hist(hihs - - - hy) = 0 State(h;) State(hih,)
e State(hlhz cee htfl) State(hlhz o ht)
This is a list oft + 1 numbers, each if0, - - -, N}, and it encodes the sequence of
states inM one passes through on hashiagccording tch = h;hy---hy - - .
e LetDistinct(hy---hy) betrue if hq, ..., hyare all distinct, andalse otherwise.
e Let R (“random”) be the uniform distribution ohg, - - -, h; (that is, eachh; is a

random triple of distinct points frorfi, ..., N}).

e Let Dy (“distinct”) be the uniform distribution on distintty, .. ., h; (that is, each
h; is a random triple of distinct points frofd, ..., N}, and no two of these triples
are identical).

e Let C(m,t) denote the probability of at least one collision in the experiment of
throwingt balls, independently and at random, imtdins.

We are now ready to prove the lemma.

84

E{ [State(h1h2h3h4) = 0]

Er[State(h1h2h3h4) =0] DiStinCt(h1h2h3h4)]

PrR4 [State(h1h2h3h4) =0 andDistinct(h1h2h3h4)]
F’I’R4 [Distinct(h1h2h3h4)]
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Prg, [Hist(h:hzhsh,) > {03630 03430 03230

< &)
1-C((3)-4
< A(N) - (Er[Hist(hlhzmm) = 03630 + Pr[Hist(hihzhzha) = 03439
+ Pr[Hist(huhohsha) = 03234
= A(N) - (PosP36Ps3P30 + Po3P3aPagPs0 + PogPs2P23Ps0)
_ (N-3(N-4(N-5 120 6
— A(N) - (1. 7 v
L IN-3(N-4) 36N-4 6
N N N
18N -3 6(N-2(N—-3) 6
L ’N) )
720N —3)(N —4) (N —5) + 1944 N —3)(N —4)2-+ 648N — 2) (N —3)2
= A(N)-
/\/’3
= B(N).

Equation (2) is justified by referring to Fig. 2: the only length-4 routes from state 0 back
to state 0 are 03630, 03430, 03230, and 03030. The last of these can only arise from
nondistincthy, hy, hs, hs. For the other three we simply disregard the conjunction with
Distinct(h;h2h3h,) because we are giving an upper bound. Equation (3) is obtained
directly from (1). O

Using M to boundsg, 8g, .... Assume thalN is even andN > 6. We will show, in
this case, thad; < B(N). Here is the idea. Take a random functiore B and look at
its last six maps—for convenience of notation, we whte- h;---h; hihxhshshshg,
numbering the final six mags,, ..., he. Now hy, ..., hg are statistically correlated to
hs, ..., h (for exampleh; # h7), yethy, ..., hg are nottoo far from being random
and independent, in the sense that, for bBpy- - h;, a uniformly selected sequence of
mapsh’ h,h3h),h;hg would have been a valid continuation with probability at legé. 1
(This follows from our assumption that < (';')/12.) Thus, up to a factor of 2, we can
bound the chance of landing in state 0 on applyirtg 1; by looking at the chance of
landing in state 0 after applying a uniformly seleckgd - - hg starting in some arbitrary
(unknown) state of the Markov chain.

To formalize the above argument, Ig{t) denote the maximum, over all initial states
s, of the probability that we arrive in statén exactlyt transitions, given that we start
in states. This is the same as the supremum, over all distributiona the starting state
of M, of the probability that we arrive in statein exactlyt transitions, given that we
start in an initial state as chosen by sampling feenWe will need the following lemma
about the behavior of Markov cha.

Lemma 11. fo(6) < (25920N8 + 15408(N7)/A/S.

The proof is a tedious but straightforward calculation using the transition probabilities
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of M. Itis relegated to the Appendix. The point is not the specific formula, but only that
fo(6) is less than halB(N) for all sufficiently largeN.

Lemma 12. Assumé <t < n.Thens; < B(N).

Proof. We use the same notation as in the proof of Lemma 10.
8 = Pr[h() =0

t heB[ (1) =0)]

= by hlhzﬁgrh4h5hGED[ [State(h7 o ht h1h2h3h4h5h6) = 0]

hy-hgeDg
hy.- hgINthy, - ht }=0

h7---htEeDt,5 |:( Pr [StatE(h7 e ht hlh2h3h4h5h5) = 0]:|

IA

max Pr NumOnes(Parity(h;---h
h7--hyeDi_g hy--hgeDg [ ( y( 7 t)
{hy.-hginthy, - ht}=¢

@Parity(hihshzhshshe)) = 0]

= Pr _[NumOnes(o & Parity(hih;hshshshg)) = 0],
h1-~~heEE

where E ando are defined by fixing somby - - - hy which maximize the probability
above and then letting = Parity(h; - - - hy) and lettingE be the uniform distribution
onh; - --hg subject tdhy, ..., hg being distinct from all ohs, . . ., h; and distinct from
each other. Continuing, the above expression is
_ Phh,.hgeRs [Statea (h1hshshshshg) = 0 andDistinct(hy---hg h7--- ht)]
B Phh...nges [ Distinct(hihzhshahshg hy - - hy)]
Pliy,..heeRs [State(, (h1hshshszhshg) = O]

- 1-6t/(3)
— H N

<2 hl...'r?erereﬁ [State, (h1hzhshshshe) = 0] (From assumption that < (3)/12)
< 2. fo(6) (Definition of f)

2592(N8 + 15408N”
=2 hs (By Lemma 11)

N5

< B(N) forall N > 32

For the last inequality: it is easy to verify that this holds for sufficiently lakjeThe
crossover point was determined numerically. O

We have now shown that, under the conditions of the theo,) > §; for all

t > 1. This completes the proof. O

5. From Universal Hash Families to Message Authentication

In this section we review the Wegman—Carter construction (and its complexity-theoretic
variant), as well as the formal notion of a message authentication code (MAC) and a
pseudorandom function family.



Bucket Hashing and Its Application to Fast Message Authentication 107

MACs We follow[14] and [5] and define deterministic, counter-based message authen-
tication codes. AMAC schem#! specifies: constantsandc, determininglessages =

{0, 1}=" and Tags = {0, 1}%; a set of stringKeys; a numberMAX (alternatively,

MAX = 00); and a pair of functionsMAC, MACV ), where

MAC: Keys x Messages x {1, ..., MAX} — Tags, and
MACV: Keys x Messages x Tags — {0, 1}.

The first argument to MAC and MACV will usually be written as a subscript. We
demand that, for anx € Messages, k € Keys, and cnt € {1,..., MAX},
MACYV (x, MAC(x, cnt)) = 1.

Let M be a message authentication scheme. A MAC oracle MA@r M behaves
as follows: it answers its first queng, with MACk (X1, 1); it answers its second query,
X2, With MAC (X2, 2); and so forth. The MAC oracle responds with the empty string to
gueries beyond thelAXth or to queries not in the sdtessages.

An adversaryE for a message authentication schemkis an algorithm equipped
with a MAC oracle MAG(-). AdversaryE is said to forge on a particular execu-
tion, this execution having MAC oracle MAQ), if E outputs a stringx*, o*) where
MACV(x*, o*) = 1 yet E made no oracle query of*. When we speak oE forging
with a particular probability, that probability is taken oM&’s coin tosses and a random
key k € Keys for the MAC oracle. Running times are measured in a standard RAM
model of computation, with oracle queries counting as one step. By convention, the
running time ofE also includes the size d&’s description.

One can also provide the adversary with a MACYV-) oracle, but this leaves the
notion essentially unchanged.

The Wegman—Carter constructionGiven a family of hash function$( = {A —
{0, 1}°} we wish to construct from it a MAC. In the scheme we denote W[CEthe
signer and verifier share a random elemert 7, as well as an infinite random string
P = P,P,P;--., where|P| = b. The pair(h, P) is the key shared by the signer and
verifier. The signer maintains a counter, cnt, which is initially 0. To generate a MAC for the
messagea the signer increments cnt and then computes the MAE (cnt, Po® h(X))
which authenticates. To verify a MACo = (i, s) for the message the verifier checks
if s= PR & h(Xx).

The following theorem says that it isimpossible (regardless of time, number of queries,
or amount of MACed text) to forge with probability exceeding the collision probability.

Proposition 13[32], [18]. Let’H bee-AXU; and suppose adversary E forges in the
schema&NC[H] with probabilitys. Thens < e.

PRFs We follow [13] and [5]. A finite pseudorandom function family (PRF) is a map
F: {0, 1} x {0,1}' — {0, 1}°. We write F5(x) in place of F(a, x). Let R ;, be the
set of all functions mapping0, 1}' to {0, 1}°. A distinguisheris an algorithmD with
access to an oracle. We say that a RIS ¢(t, g)-secure if, for every distinguishé
which runs in time and makesj or fewer queries to its oracle,;PJ{o,l}K[DFk(‘) =1]-
Pr,gr,[D”" = 1] < &(t, ) . Running times are measured in a standard RAM model
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of computation, with oracle queries counting as one step. By convention, the running
time of E also includes the size d's description.

Wegman—Carter with a PRF A natural complexity-theoretic variant is to use, instead
of the random pa#®, arandom indea € {0, 1}* into a finite PRFF: {0, 1}* x {0, 1} —

{0, 1}. The signer maintains a counter ent0, 1}', initially 0. (We will not distinguish
between numbers and their binary encodings liftds.) The signer and verifier share a
randoma e {0, 1} and a randonh € H. When the signer wishes to MAC a message
X, if cnt < 2' — 1, then the signer computes= (cnt, Fy(cnt) & h(x)) and increments
cnt. (In the unlikely event that cnt reachds-21, a new MAC key is required by the
signer and verifier.) To verify a MAG = (i, s) for the messagg the verifier checks if

s = Fa(i) ® h(x). At most 2 messages may be MACed (after that, the &ayust be
changed). We call the scheme just described Wt ]. The following resultis obtained
by standard techniques.

Proposition 14. LetH = {h : A — {0, 1}°} be ans-AXU, family of hash functions

Let Ty, denote the time required to compute a representation of a random elemaeht h

and let (g, 1) denote the time required to compute from this representation the hash
of q strings these strings totaling: bits. Let F: {0, 1} x {0,1}' — {0, 1}" be an

£'(t, g)-secure finite PRA_et E be an adversary whigcin time t, making q queries
these queries totaling bits, forges with probabilitys against the schem@/C[H, F].
Thens < e+ &'(t + At, g+ 1), whereAt = O(Tu(q, ) + T + gl + gb).

The value ofAt would usually be insignificant compared withNote that in Proposi-

tion 13 the forging probability is independent of the number of quegjparfd the length

of the queried messages)( In Proposition 14 the forging probability depends on these

guantities only insofar as they are detrimental to the security of the underlying PRF.
We emphasize that the signer is stateful in the schemesHV&id WC[H, F]. The

signer being stateful improves security (compared with using a random index) and at

little practical cost. Note that the verifier is not stateful. This is possible because our

notion of MAC security (Section 5), does not credit the adversary for “replay attacks.”

6. Toy Example, and Limitations on Bucket Hashing

In this section we describe a concrete MAC based on the ideas presented so far. This is
only a “toy” example; doing a good job at specifying a software-optimized bucket hash
MAC would involve much design, experimental, and theoretical work which we have
not carried out. Still, the example helps to illustrate the strengths of bucket hashing in
making a MAC, as well as the limitations.

Toy example To keep things simple, suppose the strings we will MAC are of length at
most 4096 bytes. Assume a word size of 4 bytes (32 bits)FLei0, 1} x {0, 1}64 —

{0, 1}%* be a finite PRF (defined, for example, from the compression function of MD5).
Here is a way for the signer to MAC a strifg whose length is at most 1024 words.
Assume an even number of words. The signer and verifier share as a MAC key (i) a
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random elemenh; € B[32, 1024 140], (ii) a random elemertt, € K[71, 64], and

a (iii) a random stringa € {0, 1}. We use the construction of Proposition 5 (slightly
modified to account for length-variability). In the algorithm belp)} denotes the length

of X, encoded as a 2-word string. The functionis extended to strings of length less
than 1024 words in the natural way: we stop casting words into buckets when we reach
the end of the string. (This is equivalent to 0-padding the string to 1024 words.)

Algorithm TOY-MAC(X).
if cnt= 264 — 1 then return error
o = {cnt Fa(cnh @ ha([X] . hi(X)))
cnt=cnt+ 1
return o

We count the instructions farOY-MAC to hash a 4096-byte message. If we bucket hash
in 10 instructions per word (Section 3.3), hash usiag: X in 24 instruction per word
[24], and compute= with 600 instructions (easy to accomplish), then we will spend
10+ (142/1024 - 24+ 600/1024= 10+ 3.3 + 0.6 = 13.9 instructions per word.

Notice thatthe “cryptographic” contribution to the above time (i.e., the time to compute
F) is very small. In a Wegman—Carter MAC one is afforded the luxury of conservative
(and slow) cryptography even in an aggressively speed-optimized design. This is because
one arranges that the time to compute the MAC is dominated by the noncryptographic
work.

Limitations on bucket hashing If the strings we are MACing are short, then, at some
point, it makes sense to switch strategies and stop using bucket hashingT®Y6NAC

we might hash with onljh, when the input string has length less than some constant.
This is an important limitation on bucket hashing; because the output length is substan-
tial, the technique is simply not useful until the strings to be hashed get long enough.
As a consequence, any “real” MAC which employs bucket hashing would likely be a
patchwork of different techniques for different message lengths. Therefore a real bucket
hash MAC is unlikely to be simple to describe or implement.

On the other hand, if the strings to be hashedvamy long, then, at some point, it
makes sense to break the input into blocks and independently bucket hash each block,
using the construction of Proposition 2. This is because the size of the description of
h € B grows linearly in the maximal length string whithcan hash. We do not want
hash functions with excessively long descriptions (certainly the hash function should
fitin cache). This is another limitation on the bucket hashing technique, and something
which will further complicate the definition of any real bucket-hash MAC.

In our TOY-MAC, if we wanted a substantially better collision probability we could
apply the construction of Proposition 3, but this would roughly halve the rate for bucket
hashing, and perhaps other techniques might then be faster. This is a third limitation
on bucket hashing: until better constructions are found, obtaining an extremely small
collision probability, say 2°, would require an excessive number of buckets. That is,
the output length of the hash function would be very long, and so the technique would
only be useful for hashing extremely long messages.

The last limitation we will mention is the time needed to compute a descriptibn of
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In any real MAC scheme the functidme B would be determined from some underlying
key k with the help of a pseudorandom generator. Because the descriptios t#rge
and of a special form, computing might take a significant amount of time. In most
applications of fast message authentications, a one-time key preprocessing delay is not
important. However, if there is a limited amount of text to be MACed, or if the latency of
the first MAC must be minimized, then the time to compute the descriptibrcobild be
an issue. One approach is to find a version of bucket hashing that uses a small key (i.e.,
a short description fdn). This way the underlying pseudorandom generator (if present)
is less taxed. This approach has been investigated by Johansson [16], who achieves a
major reduction in the size of the descriptionhof

Balanced againstthese limitations is the possibility of an extremely high MAC through-
put, at least for long strings.

7. Extensions and Directions

Generalizing3, we call by “bucket hashing” any scheme in which the hash funttisa
given by alisth; - - - h, of “small” subsets of1, ..., N} and the hash ok = X; - - - X,
where| Xi| = w, is

for j < 1toNdoYj < Q%
fori < 1tondo
for eachk € h; do
Yk < Yk @ X
return Yo || Yz | --- || Yn

In the general case the distribution lotvalues is arbitrary. S8 is just the special case
in which we use the uniform distribution on distinct triple{iiy . . ., N}.

One could imagine many alternative distributions, some of which will give rise to
faster-to-compute hash functions or better bounds on the collision probability. As an
example, supposk € H is chosen by randomly reordering a list- - - h, of triples
which are chosen so that, for all sétsC {1, ..., n} of cardinality 2 or 4, it is not the
case that the multisét),., h has an even number of each point 1, N. This new
family of hash functions may have a substantially smaller collision probability Bhan
for a givenn, N.

The bucket hash scheme of a grapfdash family3 would have been more efficient had
each word gone into two buckets instead of three. One way to specify a scheme where
each word lands in two buckets is with a graghwhoseN vertices comprise thél
buckets and whosm edges(1, ..., m} indicate the pairs of buckets into which a word
may fall. A random hash function from the family is given by a random permutation
on{l,...,m}. To hash a string{y - - - X, usingz, where|Xj| = w andn < m, each

word X; is dropped into the two buckets at the endpoints of ed@¢. As before, we

xor the contents of each bucket and output their concatenation in some canonical order.
We call the above scheme the bucket hash of the g@aph
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For a graptG to be “good” we want a small number of verticls a large number of
edgeam, and such that, for ak where 1< k < n < m, if k distinct edges are selected
at random fromG, then the probability that their union (with multiplicities) comprises
a union of cycles is at most some tiny number

One possible choice of graphs in this regard are(th@)-cages (see [7]). Ad, g)-
cage is a smallest-regular graph whose shortest cycle aedges. These graphs have
been explicitly constructed for various values(df g). Though(d, g)-cages are rather
large (for everg they have at leag2(d —1)9/? — 2)/(d —2) nodes) and the definition
of a (d, g)-cage does not exactly correspond to having small collision probability, we
conjecture that som@, g)-cages may still give rise to useful hash families. For example,
assumed — 1 is a prime power. Le€[d, 6] be the(d, 6)-cage. This is the point-line
incidence graph of the projective plane of order 1. Bucket hashing witiC[10, 6]
may be a good way to hash 909 words down to 182 words.

Open questions The generalized notion of bucket hashing amounts to saying that
hashing is achieved for each bit position- 1w by matrix multiplication with a sparse
Boolean matrixH. Expressing the method in this generality raises questions like the
following: for a givenN, n, andk, for what distribution® of binary N x n matricesH
havingk ones per column is Mg, 17—} Pfien [HX = 0] minimized? What if we

also demand that each row has a fixed number of ones? What if, instead of saying that
there arek ones per column, we cap the density of the matrix at some yddunswers

to such questions may lead to faster bucket-hash MACs.
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Appendix. Proof of Lemma 11

Here we prove Lemma 11, giving a suitable upper boundfg6). We do this by
direct calculation, paying attention to the state§,@, 3, 4, 6 and “everything else.” To
that end, letR = {5,7,8,..., N} (i.e., “everything else”) and definéz(t) to be the
maximum, over all initial states, of the probability that we arrive at a states R in
exactlyt transitions, given that we start in stateWWe write P for ), _ Prj. Keepin
mind thatR is nota state of any Markov chain we have defined; this is just a convenient
shorthand.

We will establish the bounds indicated in Table 1, where rogolumni is the upper
bound we show foff; (t). To see how these bounds are computed, refer to Fig. 3, which
depicts the relevant transition probabilitiesif

We start with the trivial boundsf,(1) < 1, f3(1) < 1, fr(1) < 1, f4(2) < 1, and
f2(6) < 1. These are obvious, since eaflit) represents a probability. Now refer to
Fig. 3 and calculate. Some of the mundane arithmetic is omitted. In cases such as the
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Table 1. Row t, columni gives our bound onfi(t). The only value needed i$y(6); we need that
2fp(6) < B(N).

0 1 2 3 4 6 R
t=1 1 1 1
6 3N2+10N
t=2 — - 1 1
N N
42N8 54N*
t=3 1
NZ 2
t—a 324N* 60+1098\15 60N +438N6 15N2+25N4
N N2 N N3 N N3N N2
4320N8+25680N”
t=5 - AF
s 25920N8+15408N”
=0

calculation of f5(4), the final inequality is easily seen to hold for sufficiently lafde
the crossover point was determined numerically.

fo(2) = f3(1) - Py
6
<1 %

6
N7

15 (N-5) {N-6 \
‘~...,_(126)((N-7))++ T A Py

Lo, S P 6o (N-5)+210
RN v L

R

Fig. 3. A view of the Markov chairM, where, for purposes of analysis, we have lumped together all states
other than 01, 2, 3, 4, 6. Divide the number labeling each dre> j by ' = N(N — 1)(N — 2) to get the
transition probabilityR;; .
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f2(2)

f1(3)

fa(3)

fo(4)

f2(4)

fa(4)

fe(4)

=<

IA

IA

IA

IA

IA

IA

IA

IA

IA

IA

IA

f1(D) - Pra+ f3(1) - P2+ fr(1)Pr2
3(N—-1(N -2 18(N — 3) 60

1. V F1e e L
2

w (N > 12),

N

f2(2) - Poy+ f4(2) - Py
3N24+ 10N 6(N — 2) 24

N N Tl
(3N2 4+ 10N)(6N — 12) + 24N(N — 1)(N — 2)
NZ
42N3
N

fo(2) - Pos+ f2(2) - Pag+ f4(2) - Pas+ f5(2) - Pes
6 . 3NZ+10N B(N-2(N-3) 36(N — 4) 120

NN R A

54N4
N2
f3(3) - Pso
54N* 6
N3N
324N*
N3
f1(3) - Pia+ f3(3) - Ps2+ fr(3)Pr2

42N3 3(N—1)(N—2) 54N* 18N —3) .60

NZ N N2 N N
60 1098N°
N + T (N > 3),

f1(3) - Pua+ 13(3) - Pas+ fr(3) - Pra
42N3 54N4 9(N — 3)(N — 4 60(N — 5 210
14 - ) ( ) L1 ( ) +

N2 N2 N N
60+ 438N°
NN
f3(3) - P3g+ fr(3) - Prs
54N*4 141 15(N — 5 (N — 6) + 126(N — 7) + 504
N2 N
15N2  15N%+ 189N° — 294N2 — 144N
N A2
15N4  25N?
+ (N > 18),
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f3(5) = fo(4) - Pos+ f2(4) - Pz + f4(4) - Paz+ fe(4) - Pes
- &44\14 1 (6—O+ 1098N5> . 6(N —2)(N — 3)
- NE N N3 N
60N  438N®\ 36(N —4) 15N2  25N*\ 120
<N+ g ) N +</\/ +N2>‘W
4320N8 + 25680\
= WA )
fo(6) = f3(5) %
- 4320N° + 2568IN7 6
- N4 N
_ 2592(N® + 15408\’
= e .
This completes the proof of the lemma. O
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