
NASA / TM-1998-208419

Buckets: Aggregative, Intelligent Agents

for Publishing

Michael L. Nelson

Langley Research Center, Hampton, Virginia

Kurt Maly, Stewart N. T. Shen, and Mohammad Zubair

Old Dominion University, Norfolk, Virginia

National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

May 1998

Available from the following:

NASA Center for AeroSpace Information (CASI)
7121 Standard Drive

Hanover, MD 21076-1320

(301) 621-0390

National Technical Information Service (NTIS)

5285 Port Royal Road
Springfield, VA 22161-2171

(703) 487-4650

Buckets: Aggregative, Intelligent Agents for Publishing

Michael L. Nelson

NASA Langley Research Center

MS 158

Hampton, VA 23681-0001, USA

E-mail: m.l.nelson @ larc.nasa.gov

Kurt Maly, Stewart N. T. Shen, Mohammad Zubair

Old Dominion University

Computer Science Department

Norfolk, VA 23529, USA

E-mail: {maly, shen, zubair} @cs.odu.edu

ABSTRACT

Buckets are an aggregative, intelligent construct for
publishing in digital libraries. The goal of research projects
is to produce information. This information is often
instantiated in several forms, differentiated by semantic
types (report, software, video, datasets, etc.). A given
semantic type can be further differentiated by syntactic
representations as well (PostScript version, PDF version,
Word version, etc.). Although the information was created
together and subtle relationships can exist between them,
different semantic instantiations are generally segregated
along currently obsolete media boundaries. Reports
placed in report archives, software might go into a software
archive, but most of the data and supporting materials are
likely to be kept in informal personal archives or discarded
altogether. Buckets provide an archive-independent
container construct in which all related semantic and

syntactic data types and objects can be logically grouped
together, archived, and manipulated as a single object.
Furthermore, buckets are active archival objects and can
communicate with each other, people, or arbitrary network
services.

KEYWO R DS: Digital library architectures, agents,
archiving, multi-format, bucket, container, package.

INTRODUCTION

Digital libraries (DLs) are an important research topic in
many scientific communities and have already become an
integral part of the research process. However, access to
these DLs is not as easy as users would like. Digital
libraries are partitioned both by the discipline they serve
(computer science, aeronautics, physics, etc.) and by the
format of their holdings (technical reports, video, software,
etc.). There are two significant problems with current DLs.
First, interdisciplinary research is difficult because the
collective knowledge of each discipline is stored in
incompatible DLs that are known only to the specialists in
the subject. The second significant problem is that although
scientific and technical information (STI) consists of

manuscripts, software, datasets, etc., the manuscript
receives the majority of attention, and the other components
are often discarded (Figure 1) [20]. Although non-
manuscript digital libraries such as the software archive
Nettib [2] have been in use for some time, they still place
the burden of ST! reintegration on the customer. A NASA
study found that customers desire to have the entire set of

manuscripts, software, data, etc. available in one place [19].
With the increasing availability of all-digital storage _xt
transmission, maintaining the tight integration of the

original STI collection is now possible.

Old Dominion University and NASA Langley Research
Center are developing NCSTRL+ to address the multi-
discipline and multi-genre problems. NCSTRL+ is based
on the Networked Computer Science Technical Report
Library (NCSTRL) [5], which is a highly successful digital
library offering access to over 100 university departments
and laboratories since 1994, and is implemented using the
Dienst protocol [9]. During the development stage,
NCSTRL+ includes selected holdings from the NASA
Technical Report Server (NTRS) [14] and NCSTRL,
providing clusters of collections along the dimension of
disciplines such as aeronautics, space science, mathematics,
computer science, and physics, as well as clusters along the
dimension of publishing organization and genre, such as
project reports, journal articles, theses, etc. The DL aspects
of NCSTRL+ are discussed in [15, 16]. Although
developed for NCSTRL+ and with our modified version of
the Dienst protocol in mind, buckets are protocol and
archive independent, needing only standard World Wide Web
(WWW) capability to function. This paper gives an
overview of bucket functionality, examines similar work,
and discusses current implementation and future plans.

OVERVIEW

Buckets are object-oriented container constructs in which
logically grouped items can be collected, stored, and
transported as a single unit. For example, a typical research
project at NASA Langley Research Center produces
information tuples: raw data, reduced data, manuscripts,
notes, software, images, video, etc. Normally, only the
report part of this information tuple is officially published
and tracked. The report might reference on-line resources, or
even include a CD-ROM, but these items are likely to be

lost or degrade over time. Some portions such as software,
can go into separate archives (i.e., COSMIC or the Langley
Software Server) but this leaves the researcher to re-integrate

the information tuple by selecting pieces from multiple
archives. Most often, the software and other items, such as
datasets are simply discarded. After l0 years, the

manuscript is almost surely the only surviving artifact of
the information tuple.

Project

manuscript _ library

ow. I_own User

images I_ filing cabinet

New

Project

project ._ _ archival _ _ reuse

Figure 1: STI Lost in Project / Archival / Reuse Process

Large archives could have buckets with many different
functionalities. Not all bucket types or applications me
known at this time. However, we can describe a generalized
bucket as containing many formats of the same data item
(PS, Word, Framemaker, etc.) but more importantly, it can
also contain collections of related non-traditional STI

materials (manuscripts, software, datasets, etc.) Thus,
buckets allow the digital library to address the long standing
problem of ignoring software and other supportive material
in favor of archiving only the manuscript [20] by providing
a common mechanism to keep related STI products
together. A single bucket can have multiple packages.
Packages can correspond to the semantics of the information
(manuscript, software, etc.), or can be more abstract entities
such as the metadata for the entire bucket, bucket terms md

conditions, pointers to other buckets or packages, etc. A
single package can have several elements, which am
typically different file formats of the same information,
such as the manuscript package having both PostScript aml
PDF elements. Elements correspond to the syntax of a
package. Packages and elements are illustrated in Figure 2.

Bucket Requirements

All buckets have unique ids, handles [7], associated with

them. Buckets are intended to be either standalone objects

or to be placed in digital libraries. A standalone bucket can
be accessible through normal WWW means without the aid

of a repository. Buckets are intended to be useful even in

repositories that are not knowledgeable about buckets in

general, or possibly just not about the specific form of
buckets. Buckets should not lose functionality when

removed from their repository. The envisioned scenario is

that NCSTRL+ will eventually have moderate numbers of

(10s - 100s of thousands) of intelligent, custom buckets

instead of large numbers (millions) of homogenous buckets.

Figure 3 contrasts a traditional architecture of having the

repository interface contain all the intelligence and

functionality with that of a bucket architecture where the

repository intelligence and functionality can be split

between the repository and individual buckets. This could be

most useful when individual buckets require custom terms

and conditions for access (security, payment, etc.). Figure 3

also illustrates a bucket gaining some repository

intelligence as it is extracted from the archive en route to

becoming a standalone bucket. A high level list of bucket

requirements include:

a bucket is of arbitrary size
a bucket has a globally unique identifier
a bucket contains 0 or more components, called
packages (no defined limit)

• a package contains 1 or more components, called
elements (no defined limit)

• an element can be a file, or a "pointer" to another
• both packages and elements can be other buckets (i.e.,

buckets can be nested)
• a package can be a "pointer" to a remote bucket,

package, or element (remote package or element access
requires "going through" the remote hosting bucket)

• packages and elements can be "pointers" to arbitrary
network services, foreign keys to databases, etc.

• buckets can keep internal logs of actions performed on
them

• interactions with packages or elements are made only
through defined methods on a bucket

• buckets can initiate actions; they do not have to wait to
be acted on

• buckets can exist inside or out of a repository

Table 1 lists the required bucket methods; other methods can
be custom defined. Note that Table 1 differs from protocols
such as the Repository Access Protocol (RAP) [10]. RAP
defines what actions the Repository understands, while we
define the actions that buckets understand. Although the
two are not mutually exclusive, the current plan is to not
implement RAP for NCSTRL+. Table 2 lists the default
private methods for the bucket. We expect this list to grow
as the public methods are refined, especially as the current
terms and conditions model moves past its current hostname
and username/password capability.

CNRJ Handle

(unique id)

Access Methods

Packages
inside the

bucket

Terms and Conditions]

I Metadata (RFC 1807, Dublin Core) I

Manuscript .ps .pdf .tex .doc

Software .tar .c .java

images .gif .jpeg

data sets .xls .tar

Elements inside

User

,l
©©©

Archived Objects

Figure 2: Bucket Architecture

User

I Repository Interfaceoptional intelligence

bucket

extraction

procedure

Archivil Bu_ckets

Figure 3: Traditional

Bucket Tools

There are two main tools for bucket use. One is the author

tool, which allows the author to construct a bucket with no

programming knowledge. Here, the author specifies the

metadata for the entire bucket, adds packages to bucket, adds

elements to the packages, provides metadata for the

packages, and selects applicable clusters. The author tool

gathers the various packages into a single component and

parses the packages based on rules defined at the author's

site. Many of the options of the author tool will be set

locally via the second bucket tool, the mcmagement tool.

The management tool provides an interface to allow site

managers to configure the default settings for all authors at

that site. The management tool also provides an interface to

query and update buckets at a given repository. Additional

methods can be added to buckets residing in a repository by

invoking addmethod on them and transmitting the new

code. From this interface, the manager can halt the archive

and perform operations on it, including updating or adding

packages to individual buckets, updating or aditng methods

and Bucket Repository Architectures

to groups of buckets, and performing other archival

management functions.

Bucket Implementation

Our bucket prototypes are written in Perl 5, and make use of

the fact that Dienst uses hypertext transfer protocol (HTI'P)

as a transport protocol. Like Dienst, bucket metadata is

stored in RFC-1807 format [12], and package and element

information is stored in newly defined optional and

repeatable fields. Dienst has all of a document's files

gathered into a single Unix directory. A bucket follows the

same model and has all relevant files collectedtogether using

directories from file system semantics. Thus a Dienst

at_inistrator can ed into the appropriate directory and access

the contents. However, access for regular users occurs

through the WWW. The bucket is accessible through a

Common Gateway Interface (CGI) script that enforces terms

and conditions, and negotiates presentation to the WWW

client.

Table 1: Default Public Bucket Methods

Method Argument Currently

Implemented
metadata format Yes

Description

with no argument, returns the met,adam in the default format; with an argument, derives and

returns the desired format

display, - - Yes default method; bucket "unveils" it_lf to requester
id -- Yes

list_tc -- No

list_methods -- Yes

list owners -- Yes

add_owner owner No

returns the bucket's unique identifier (handle)

describes the nature of the publicl_¢ visible terms and conditions

list all public methods known b), a bucket

list all principals that can modi_ the bucket
add to the list of owners

delete_owner owner No delete from the list of owners

add_package package Yes

delete_package package Yes

add element element Yes

delete element element Yes

get_package package No

get element element No

adds a package to an existin_ bucket

deletes a packa_:e from an existin_ bucket

adds an element to an existin[g]aacka[ge

deletes an element from an existinl_ package

capability' to _et an entire package, inctudin_ all elements

get an element from a package in a bucket; currently direct URLs are used for element
extraction

add_method method Yes

deletemethod method Yes

name

"teaches" a new method to an existin_ bucket
removes a method from a bucket

cop),_bucket destination No

movebucket destination No

Method Argument

tc method name

derive_metadata format

export a cop)_ of a bucket, original remains

move the original bucket, no version remains

Table 2. Default Private Bucket Methods

Currently Description

Implemented

Yes all public methods pass through this terms and conditions method

No converts from the default metadata format to the desired format

The philosophy of Dienst is to minimize the depentEncy on

HTFP. Except for the User Interface service, Dienst does

not make specific assumptions about the existence of HTI'P

or the Hypertext Markup Language (HTML). However,

Dienst does make very explicit assumptions about what
constitutes a document and its related data formats. Built

into the protocol are the definitions of PostScript, ASCII

text, inline images, scanned images, etc. To add a new file

format, such as the increasingly popular PDF, Dienst

configuration files have to be changed. If the protocol was

resident only at one site, this would be acceptable

However, Dienst servers are running at nearly 100 sites -

protocol additions require a coordinated logistical effort to

synchronize versions and provide uniform capability.

We favor making Dienst less knowledgeable about dynamic

topics such as file format, and making that the

responsibility of buckets (Figure 4). In NCSTRL+, Dienst

is used as an index, search, and retrieval protocol. When the

user selects an entry from the search results, Dienst would

normally have the local User Interface service use the

Descr±be verb to peer into the contents of the documents

directory (including the metadata file), and Dienst itself

would control how the contents are presented to the user. In

NCSTRL+, the final step of examining the directories

structure is skipped, and the directory's ±rldex. cg± file is

invoked. The default method for an ±rldex.cg± is

generally the display method, so the user should notice little

difference. However, at that point the bucket, not Dienst,
determines what the user sees.

RELATED WORK

There has been a lot of research in the area of redefining the

concept of "document." In this section we examine some of

these projects and technologies that are similar to buckets.

Digital Objects

Buckets are most similar to the digital objects first described

in the Kahn/Wilensky Framework [8], and its derivatives

such as the Warwick Framework containers [11] and the

more recent Flexible and Extensible Digital Object

Repository Architecture (FEDORA) [4]. In FEDORA,

DigitalObjects are containers, which aggregate one or more

DataStreams. DataStreams are accessed through an

Interface, and an Interface may in turn be protected by an

Enforcer. Table 3 is a continuation of Table 1 from [4],

with the fourth column added to show the bucket

equivalents of concepts from the Kahn/Wilensky

Framework, the Warwick Framework, and FEDORA.

4

Dienst

]_ index holdings

search / retrieve holdings

display holdings

Dienst Operation in NCSTRL

Archive

Dienst

i: indexh°ldingssearch / retrieve holdings

_ display holdings <

Dienst / Bucket Operation in NCSTRL +

Archive

Bucket

Figure 4: Buckets, Not Dienst, Control Display in NCSTRL+

Table 3: Bucket Concepts Added to Table 1 from [4]

The Kalm/Wilemky

Framework Concepts...

Data and Metadata

map to the FEDORA
classes...

DataStream

Digital Obiect DigitalOb)ect

Dissemination Interface

Terms and Conditions Enforcer

which are implemented using the

Extended Warwick Framework

concepts...

Package
Container

Distributed Active Relationship

Distributed Active Relationship

Reposito_ Repository Container

and the Bucket equivalent is...

Packages, Elements
Bucket

get_package, get_element

tc

Repository, or standalone (URL)

FEDORA has not been completely implemented at this

point, and it is unknown what repository or digital library

protocol limitations will be present. Also, it is unknown if

FEDORA plans to allow DigitalObjects to be intelligent

agents, similar to the Bucket Matching System described
below.

Multivalent Documents

Multivalent documents [17] appear similar to buckets at

first glance. However, the focus of multivalent documents

is more on expressing and managing the relationships of

differing "semantic layers" of a document, including

language translations, derived metadata, annotations, etc.

There is not an explicit focus on the aggregation of several

existing data types into a single container.

Open Doc and OLE

OpenDoc [13] and OLE [1] are two similar technologies

that provide the capability for compound documents. Both

technologies can be summarized as viewing the document as

a loose confederation of different embedded data types. The

focus on embedded documents is less applicable to our

digital library requirements than that of a generic container

mechanism with separate facilities for document storage ancl

intelligence. OpenDoc and OLE documents are more

suitable to be elements within a bucket, rather than a

possible bucket implementation.

Digibox

The DigiBox [18] technology is a container construct

designed for electronic commerce. The goal of DigiBox is

"to permit proprietors of digital information to have the

same type and degree of control present in the paper world

[18]. As such, the focus of the DigiBox capabilities are

heavily oriented toward cryptographic integrity of the

contents, and not so much on the less stringent demands of

the current average digital library. There also appear to be

no hooks to make a DigiBox an intelligent agent. DigiBox

is a commercial endeavor and is thus less suitable for the for

our NCSTRL+ prototype.

CURRENT AND FUTURE WORK

We are using the author tool to populate NCSTRL+ to gain

insight on how to improve its operation. We are starting

with buckets authored at Old Dominion University and

NASA Langley Research Center and are choosing the initial

entries to be "full" buckets, with special emphasis on

buckets relating to NSF projects for ODU and for

windtunnel and other experimental data for NASA. Until
NCSTRL+ becomes a full production system, we are

primarily seeking rich functionality buckets that contain
diverse sets of packages.

Alternate Implementations
We are planning to also implement buckets using Lotus
Domino, a Web server integrated with a Lotus Notes
database server, in addition to the current CGI and Purl

implementation. The bucket API as defined in Tables 1 &
2 wilt remain unchanged. In experimenting with Domino,
we also plan to investigate implementing NCSTRL+

components without using Dienst. We plan to evolve
NCSTRL+ to support a generalized publishing and
searching model that can be implemented using Dienst or
other DL protocols.

Bucket Matching System
The premise of the Bucket Matching System (BMS) is that
the archived objects (buckets) should handle as many tasks
as possible, not humans. Toward this end, we are designing
the BMS as a communication mechanism for buckets to

exchange information among themselves. The "tuple-space"
communication of the Linda programming language [3] is
the model for BMS.

The following example illustrates a usage of the BMS.
Consider a technical report published by the CS department
which is also submitted to a conference. The report appears
under the server maintained by the department and
publishing authority which is: ncstrl.odu.cs. If the
conference paper is accepted, it will eventually be published
by the conference sponsor, say the ACM. The publishing
authority would be ncstrl.acm. Although the conference
paper will surely appear in a modified format, the tech
report and the conference paper are clearly related, despite
being separated by publishing authority, date of publication,
and revisions. Two separate but related objects now exist,
and are likely to continue to exist. How best to create the
desired linkage between the objects? "ncstrl.acm" may have
neither the resources nor the interest to spend the time
searching out previous versions of a manuscript.
"ncstrl.odu.cs" cannot link to the conference bucket at the

creation time of the ODU bucket, since the conference

bucket did not exist at the time. It is unrealistic to suggest
that the relevant parties will go back to the ncstrl.odu.cs
collection and create the linkage correctly after several
months have passed.

The solution is to have both buckets publish their metadata,
or some subset of it, in the BMS. When a match, or near

match, is found, the buckets can either l) automatically link
to each other; or more likely 2) bring the possible linkage
to the attention of a person, who will provide the final
approval for the linkage. There are a number of ways that a
"match" can be found, but most likely it will be similar
metadata within some definable threshold (e.g., 90%
similar). Other uses for the BMS could include:

Find similar works by different authors. The exact values
would have to be determined by experimentation, but it is

possible to envision a similarity ranking that is slightly
lower being an indication of a similar work by different
authors. For example, a similar work by a different author
would be: 70% < similarity < 90%.

Arbitrary selective dissemination of information (SDI)

services. When a user's profile is matched, a notification
can be sent immediately or a digest sent at every defined
time interval (i.e., weekly). This method can be used to
track different versions of a report, not just inter-genre
(technical report vs. conference paper) or inter-institution

(the author moves to a different university) issues. If
version 2.0 of a bucket comes out, it can "find" all previous
versions, and the appropriate actions can be taken (i.e.,
create a fully connected graph between the buckets, delete
previous buckets, etc.)

Metadata scrubbing. The issues of maintaining consistency
and quality of metadata information is an increasingly
important concern in digital libraries [6]. Part of the BMS
coud also include a metadata scrubber that, based on rules
and heuristics defined at the scrubber, could automatically

make or suggest updates to metadata. For example, the
scrubber could have all references to "Hampton Institute"
indicate the name change to "Hampton University", or
handle an author's name change (for example, if someone
changes their name upon marriage), or correct errors that
may have been introduced, etc.

The BMS could be implemented on multiple workstations,
and would be primarily batch processing. Given that some
of the operations would be computationally expensive, it
can be done with loose time guarantees, perhaps even done
on stolen idle cycles (from "hallway clusters" of
workstations).

CONCLUSIONS

Buckets provide a mechanism for logically grouping the
various semantic data objects (manuscript, software,
datasets, etc.) and the various syntactic representations
(PostScript, PDF, etc.). The ability to keep all the data
objects together with their relationships intact relieves the
user from having to reintegrate the original information
tuple from many separate archives. Buckets also provide a
more convenient method for describing the output of
research projects, and provide a finer granularity for
controlling terms and conditions within an archive. The
aggregative aspects of buckets have already been
implemented. The tools to make buckets easy to use and
manage are being created. The Bucket Matching System
will allow buckets to be intelligent agents, and allow inter-
bucket communication as well as communication and action

with arbitrary network resources.

REFERENCES
1. K. Brockschmidt, "Inside OLE 2",

Redmond, WA, 1995.
Microsoft Press,

2. S. Browne, J. Dongarra, E. Grosse, S. Green, K. Moore,
T. Rowan, & R. Wade, "Netlib Services and

Resources," University of Tennessc Technical Report
UT-CS-93-222, 1993.

. N. Carriero & D. Gelernter, "Linda in Context,"
Communications of the ACM, Vol. 32, No. 4, 1989,

pp. 444-458.

4. R. Daniel & C. Lagoze, "Distributed Active
Relationships in the Warwick Framework," Proceedings
of the 2nd IEEE Metadata Conference, Silver Spring,
MD, September 16-17, 1997.

5. J. R. Davis, D. B. Krafft, & C. Lagoze, "Dienst:
Building a Production Technical Report Server,"
Advances in Digital Libraries, Springer-Verlag, 1995,
pp. 211-222.

6. J. C. French, A. Powell & E. Schulman, "Automating
the Construction of Authority Files in Digital Libraries:
A Case Study," University of Virginia Technical Report
CS-97-02, January 1997.

7. R. Kahn, '`The Handle System Version 3.0: An
Overview," http://www.handle.net/docs/overview.html

8. R. Kahn & R. Wilensky, "A Framework for Distributed
Digital Object Services," cnri.dib/tn95-01, May, 1995.
http://www.cnri.reston.va.us/home/cstr/arch/k-w.html

9. C. Lagoze, E. Shaw, J. R. Davis, & D. B. Krafft,

"Dienst: Implementation Reference Manual," Cornell
Computer Science Technical Report TR95-1514, 1995.

10. C. Lagoze & D. Ely, "Implementation Issues in an
Open Architectural Framework for Digital Object
Services," Cornell University Computer Science
Technical Report, TR95-1540, June 1995.

11. C. Lagoze, C. A. Lynch & R. Daniel, "The Warwick
Framework: A Container Architecture for Aggregating
Sets of Metadata," Cornell Computer Science Technical
Report TR96-1593, July 1996.

12. R. Lasher, & D. Cohen, "A Format for Bibliographic
Records," Internet RFC- 1807, June 1995.

13. C. Nelson, "OpenDoc and its Architecture," The X
Resource, Vol. 1, No. 13, 1995, pp. 107-126.

14. M. L. Nelson, G. L. Gottlich, D. J. Bianco, S. S.
Pauison, R. L. Binkley, Y. D. Kellogg, C. J.
Beaumont, R. B. Schmunk, M. J. Kurtz & A.

Accomazzi, ''The NASA Technical Report Server,"
Internet Research: Electronic Networking Applications
and Policy, Vol. 5, No. 2, 1995, pp. 25-36.

15. M. L. Nelson, "Building Multi-Discipline, Multi-
Format Digital Libraries Using Clusters and Dienst,"
Old Domion University Computer Science MS Thesis,
August 1997. (Also Available as NASA TM-112876)

16. M. L. Nelson, K. Maly & S. N. T. Shen, "Buckets,
Clusters and Dienst," Old Dominion University

Computer Science Technical Report 97-30, July 1997.
(Also available as NASA TM-112877)

17. T. A. Phelps & R. Wilensky, "Multivalolt Documents:
Inducing Structure and Behaviors in Online Digital
Documents," Proceedings of the 29th Hawaii
lntemtrional Conferenceon System Sciences, Maui, HI,

January 3-6, 1996.

18. O. Sibert, D. Bemstein & D. Van Wie, "DigiBox: A
Self-Pmt_ting Container for Information Commerce,"
Proceedngs of the 1st USENIX Workshop on Electronic
Commerce, New York, NY, July, 1995.

19. D. G. Roper, M. K. McCaskill, S. D. Holland, J. L.
Walsh, M. L. Nelson, S. L. Adkins, M. Y. Ambur &
B. A. Campbell, "A Strategy for Electronic
Dissemination of NASA Langley Technical
Publications," NASA TM-109172, December 1994.

20. J. Sobieszczanski-Sobieski, "A Proposal: How to
Improve NASA-Developed Computer Programs," NASA
CP-10159, 1994, pp. 58-61.

7

REPORT DOCUMENTATION PAGE FormApp_ov_
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching exJslmg data
soumes, gathenn 9 and mainlaining the dala needed, and completing and reviewing the co,eclion of information. Send comments regarding thLsburden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and
Reports, 12t5 Jefferson Davis Highway, Suite 1204, Arlington, VA 222Q2-4302, and to the Office of Management and Budget, Paperwork Reduc_on Project (0704-0188),
Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) 2, REPORT DATE 3. REPORT TYPE AND DATES COVERED

May 1998 Technical Memorandum

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Buckets: Aggregative, Intelligent Agents for Publishing

6. AUTHOR(S)

Michael L. Nelson, Kurt Maly, Stewart N. T. Shen, and Mohammad Zubair

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center

Hampton, VA 23681-2199

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSEES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

8. PERFORMING ORGANIZATION

REPORT NUMBER

L-17753

18. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA/TM-1998-208419

11.SUPPLEMENTARY NOTES

Also available as Old Dominion University Computer Science Technical Report 97-41.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 82 Distribution: Standard
Availability: NASA CASI (301) 621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Buckets are an aggregative, intelligent construct for publishing in digital libraries. The goal of research projects
is to produce information. This information is often instantiated in several forms, differentiated by semantic

types (report, software, video, datasets, etc.). A given semantic type can be further differentiated by syntactic
representations as well (PostScript version, PDF version, Word version, etc.). Although the information was
created together and subtle relationships can exist between them, different semantic instantiations are generally
segregated along currently obsolete media boundaries. Reports are placed in report archives, software might go
into a software archive, but most of the data and supporting materials are likely to be kept in informal personal
archives or discarded altogether. Buckets provide an archive-independent container construct in which all
related semantic and syntactic data types and objects can be logically grouped together, archived, and
manipulated as a single object. Furthermore, buckets are active archival objects and can communicate with each
other, people, or arbitrary network services.

14. SUBJECT TERMS

Digital library architectures, agents, archiving, multi-format, bucket,

container, package

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

12

16. PRICE CODE

A03

20. LIMITATION

OF ABSTRACT

NSN 7540-01-280-5500
Standard Form 298 (Rev. 2-8_

Prescribed by ANSI Std. Z-39-18
298-102

