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Abstract
In this paper, we show how surface-micromachined buckled cantilevers can be used to
construct out-of-plane structures. We include the relevant theory necessary to predict the
height and angle of plates attached to buckled cantilevers, as well as the mechanical stresses
involved in assembly. These platforms can be assembled to any angle between 0◦ and 90◦ with
respect to the substrate by changing the attachment point and the amount of deflection.
Example devices were fabricated using PolyMUMPsTM and assembled. Using these devices,
the deflection of the buckled cantilevers was verified, as well as the placement for raised
platforms.

1. Introduction

Since the seminal paper on surface-micromachined hinges
[1], many interesting designs for out-of-plane structures have
been presented. Examples of applications exist, for example,
in free-space optics [2–4] and RF systems [5]. Out-of-
plane structures are important because they free systems from
the constraints of planar processing. Unfortunately, effective
methods of assembling these structures after release impose
additional demands on the fabrication process. A wide variety
of mechanisms have been suggested to achieve the post-
release assembly. These include on-chip mechanisms [6, 7],
which consume significant on-chip real estate, and specialized
off-chip mechanisms [8–13]. Techniques have also been
developed to take advantage of micro-scale phenomena, such
as thermal kinetic assembly [14], surface tension [15–19] and
non-uniform residual stresses [20–23].

However, as with many other sliding contact systems,
researchers have also investigated out-of-plane assembly
techniques that eliminate staple hinges. For example,
surface tension mediated assembly can be accomplished
without mechanical hinges [19]. Some of the previously
mentioned techniques can be combined with compliant hinges.
Combining non-uniform stress assembly with compliant
mechanisms leads to micro-origami [20, 21]. Combining
off-chip mechanisms with compliant mechanisms leads to
nonlinear suspensions [11–13]. Additionally, unlike sliding
contact hinges, compliant hinges can often be fabricated using

a single free-standing layer, making them useful in many
microfabrication processes that do not support staple hinges.

In particular, Tsang et al [11–13] have developed a
compliant suspension for use in assembling 90◦ out-of-plane
structures. This design uses off-chip mechanical actuation
to complete the assembly after release, but the assembly
process is particularly simple, and can be accomplished
with a single push. This design thus achieves out-of-
plane structures while imposing minimal additional fabrication
complexity. However, Tsang-suspensions really only handle
90◦ structures. Thermal isolation platforms, which are
parallel to the substrate, can be fabricated using two Tsang-
suspensions, but this then loses the simple assembly process.

In this paper, we present a compliant device capable of
assembling off-chip platforms parallel to the substrate surface
with a single push. Additionally, the platforms can be set to
an orientation anywhere in a continuous range of from 0◦ to
90◦ with respect to the substrate. This is accomplished by
using a buckled cantilever [24, 25]. The cantilever is buckled
using a single mechanical push, and afterwards is constrained
from relaxing by a mechanical stop (figure 1). Depending
on where along the cantilever the platform is attached, the
angle can be controlled. Additionally, since the cantilever is
connected to the substrate through a compliant connection,
electrical connections can be readily routed to the platform.

In addition to the simplicity of assembly, buckled
cantilevers can be fabricated in any surface-micromachining
process with a single free-standing layer. So far,

0960-1317/08/045024+07$30.00 1 © 2008 IOP Publishing Ltd Printed in the UK

http://dx.doi.org/10.1088/0960-1317/18/4/045024
mailto:rjohnsto@sfu.ca
http://stacks.iop.org/ JMM/18/045024


J. Micromech. Microeng. 18 (2008) 045024 R W Johnstone et al

Figure 1. Illustration of a buckled cantilever. The cantilever is
anchored on the left. On the right, the cantilever’s tip is hooked
behind a mechanical stop. This configuration forms a fixed-hinged
beam.

implementations have been shown in SU-8 [25], polyimide
and polysilicon.

2. Theory

2.1. Linear solution

An illustration of a buckled cantilever is shown in figure 1.
As one can see, the structure is quite simple and consists of
the cantilever itself along with a mechanical stop. The left
end of the cantilever is constrained so that both its deflection
and slope are fixed, while for right end, only the position is
fixed. The cantilever can thus be modelled as a fixed-hinged
beam. Using linear beam-bending theory, one can determine
the buckling load and mode-shape of the buckled cantilever
[26].

First, the critical force necessary to induce buckling is
[26]

Pcr = π2EI

L2
eff

= π2EI

(0.6992L)2
. (1)

Above, Pcr is the critical force, E is the modulus of
elasticity for the cantilever material, I is the bending moment
of inertia for the cantilever, and Leff is the effective length
of the cantilever. The effective length of the beam is related
to the actual cantilever length, but corrected to account for
the boundary conditions. In the case of a fixed-hinged beam,
Leff = 0.6992L, where L is the cantilever’s actual length.

The mode-shape for the buckled cantilever is [26]

w(x) = sin(kx) − kL cos(kx) + kL
(

1 − x

L

)
. (2)

In equation (2), w(x) is the transverse deflection of the
cantilever, x is the position along the cantilever with x = 0
being the fixed end, and k = 1.4303π/L. This mode shape
is illustrated in figure 2. Note, w(x) is an eigenfunction, and
so only specifies the shape of the deflection. It cannot be used
to calculate the magnitude of the deflection. However, this is
sufficient to find the location of key points of interest, if not
their associated values. For our particular application, there
are three points that we would like to locate: the highest point
along the cantilever, the point of maximum stress, and any
points of no stress.

Finding the first point, the point of maximum height, is
a simple question of finding the extrema of the mode-shape.
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Figure 2. Plot of the mode-shape for buckled fixed-hinged beams.
The normalized distance is x̂ = x/L.

From figure 2, one can exclude the end-points of the function.
Thus the problem reduces to solving w′(x) = 0, which has
two solutions. One solution is the already discarded case of
x = 0, and the second solution is x = 0.6017L. Thus, to
first order, attaching a platform to the buckled cantilever at a
position 60.17% along its length will provide the maximum
height. Also, since the slope of the cantilever is zero at this
point, the attached platform will be parallel to the substrate.

The second point of interest is the point of maximum
stress in the beam. This point can be located by first noting
that the stress is related bending moment as follows:

σmax(x) = c

I
|M(x)|

= c

I

∣∣∣∣−EI
d2w(x)

dx2

∣∣∣∣

= Ec

∣∣∣∣
d2w(x)

dx2

∣∣∣∣ . (3)

Equation (3) can be considered, in a sense, a mode-shape
for the stress profile for the cantilever. In this equation,
we have introduced M(x), the bending moment, and c, the
maximum fibre distance. For a cantilever with a rectangular
cross-section, c = t/2, where t is the cantilever’s thickness.

Using equation (3), one can calculate the maximum stress
in a cross-section anywhere along the beam. However, we are
interested in finding the point of maximum stress overall, σmax.
We thus want to find the extrema of the second derivative. The
point of maximum stress is located at x = 0.6504L.

Finally, we note that there is a point where the bending
moment is zero, located at x = 0.3008L. This point might
be the preferred attachment point for any devices that would
be adversely affected by stress. However, as will be shown
later, other options for relatively stress-free attachment exist
that could give more height, as well as place the device parallel
to the substrate.

Before continuing, it should be noted that the position
of the three points located are only valid to first order.
A numerical solution, which does not use the paraxial
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approximation, will be presented next. This nonlinear
approach not only corrects for some small errors in the
positions already located, but can also provide values for the
maximum height and the maximum stress.

2.2. Nonlinear solution

Determining a relationship between the applied load and
the cantilever’s deflection is considerably more complicated
when the paraxial approximation is dropped. Solving the
solution requires a change in perspective, and instead the
beam’s position is determined as a function of the position
along the cantilever, s. Somewhat reasonable close-form
solutions involving elliptic integrals are available to determine
the deflection from the load and the cantilever’s material
and geometric parameters [27]. However, we would like to
specify the deflection of the tip, and then determine the load.
Furthermore, we would like to determine the complete
displacement profile to determine the maximum height, the
position of maximum height, and other points of interest. We
have therefore resorted to a numerical solution.

To solve for the beam’s deflection profile, we start by
assuming an end load. The moment at all positions along
the cantilever can be readily determined from the following
formula:

M(s) = [a − x(s)]P sin φ − [b − y(s)]P cos φ + M0. (4)

In equation (4), M(s) is the moment at a distance s
along the cantilever, a and b are the target horizontal and
vertical coordinates for the position of the cantilever’s end,
x(s) and y(s) are the coordinates of the element of the
cantilever currently under consideration, P is the magnitude of
the applied force, and φ is the angle between the applied force
and the negative x-axis, and M0 is a moment applied to the
end of the cantilever. However, for this application, M0 = 0
as there is no applied moment.

The sign conventions for the force magnitude and
direction in equation (4) are set for positive axially applied
forces. A positive value for P with φ = 0 implies an axially
applied compressive force.

The deflection profile of the cantilever can be specified in
terms of a nonlinear boundary value problem (BVP). However,
the BVP was solved using a method somewhat analogous to
the shooting method, and so the BVP was reduced to an initial
value problem. This formulation specifies the configuration of
each differential segment of the cantilever by its position and
angle. A system of ordinary differential equations describing
the cantilevers deflection is [27]

dθ(s)

ds
= M(s)

EI
dx(s)

ds
= cos θ(s) (5)

dy(s)

ds
= sin θ(s).

The initial value problem also has the following initial
conditions. The initial conditions are derived from the
boundary conditions on the fixed-end of the cantilever, which

are the known position and orientation of the cantilever’s
anchor:

θ(s)|s=0 = 0

x(s)|s=0 = 0 (6)

y(s)|s=0 = 0.

The problem description also includes two other
conditions, x(s)|s=L = a and y(s)|s=L = b. These are the
target for the shooting method and correspond to the boundary
conditions on the hinged-end of the cantilever. These
conditions ensure that the cantilever’s end is actually at the
position where the applied force was specified. The two
conditions at s = L are not enforced by the initial value
problem specified in equations (5) and (6). This will be
handled later.

To ease analysis, we have converted the initial value
problem to a non-dimensional form. We have also substituted
equation (4) into equation (5). This results in the following
system:

dθ(ŝ)

dŝ
= {[â − x̂(ŝ)] sin φ − [b̂ − ŷ(ŝ)] cos φ + η}γ

dx̂(ŝ)

dŝ
= cos θ(ŝ) (7)

dŷ(ŝ)

dŝ
= sin θ(ŝ).

In equation (7), the variables with a hat are simply
normalized versions of the variables from equation (5). For
example, â = a/L. Two new non-dimensional variables have
been added, which are the normalized moment, η = M0/PL,
and the normalized force, γ = PL2/EI . Again, η is being
included for completeness, although it will be zero in this
application. Solving the system of differential equations
specified by equation (7) is a simple numerical problem, except
for enforcing the constraints on the beam end. To overcome
this problem, we used a nonlinear minimization to find the
values of P and φ such that the deflection of the cantilever end,
as predicted by the system of differential equations, matches
the target values of â and b̂. The nonlinear minimization
used the sum of the squared errors for P and φ as the fitness
function. Furthermore, the fitness function was minimized
using the coordinate descent method [28].

Solving the system specified by equation (7) not only
provides the deflection profile of the cantilever, but can also be
used to readily determine the bending stresses along the length
of the cantilever. However, typically only the maximum stress
is of interest [27]:

σmax = c

I
|M(s)|max

= c

I

∣∣∣∣EI
dθ(s)

ds

∣∣∣∣
max

= Ec

L
σ̂max. (8)

Where we have defined the non-dimensional maximum
stress, σ̂max, as follows:

σ̂max ≡
∣∣∣∣
dθ(ŝ)

dŝ

∣∣∣∣
max

. (9)
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Figure 3. Plot of the non-dimensional force and the force angle
necessary to buckle the cantilever back to a specified position.

The non-dimensional maximum stress is readily extracted
from the numerical solution. One can then use equation (8) to
work out the actual maximum stress.

Using the above mathematics, we have calculated the
parameters for values of â from 0.5 to 1. Clearly, â = 1
is the maximum value possible. The value of â = 0.5 as the
minimum is somewhat arbitrary, as the cantilever could, in
principle, be deflected further. However, the results indicate
that even deflecting the cantilever back to this value is not
practical, as the angle of cantilever’s tip is already greater than
90◦ at this point. In all of these simulations, b̂ = 0, implying
no vertical displacement of the tip. In reality, because of
the design of the mechanical stop, the tip will see a small
downward deflection (see figure 1). However, this would
typically only be a small correction, and is neglected in the
plots that follow.

First of interest is the non-dimensional force, shown in
figure 3. As expected, the required force, γ , is a minimum
for the smallest deflections, which correspond to the largest
values of â. This minimum should be less than 20.2, which
was calculated for â = 0.999. Referring back to equation (1),
one can make a predication of γ by simple rearrangement.
This gives a value for γ = 20.19, showing good agreement
for small deflections.

Second, moving to the nonlinear solution has provided
a numerical value for the maximum height of the cantilever,
shown in figure 4. Additionally, the position of the maximum
height is shown. The linear model predicts that the position
of maximum height should be ŝ = 0.6017. Again, this agrees
very well with the nonlinear model as â → 1, but the nonlinear
model also shows corrections as â is varied.

Figure 4 also plots the angle of the cantilever end as â is
varied. As expected, the angle approaches zero as â → 1. An
important transition occurs at â = 0.6697. At this value, the
angle of the cantilever’s tip is equal to 90◦. Thus, for example,
if one wanted to assemble plates so that they were oriented
at 90◦, those plates could be attached to the cantilever’s
tip. While the cantilever can be deflected further, the angle
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Figure 4. Plot of the maximum non-dimensional height (solid), the
position along the cantilever where the maximum deflection occurs
(dashed), and the angle of the cantilever end.
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Figure 5. Plot of the maximum non-dimensional stress and the
position along the cantilever where the maximum stress occurs.

will continue to increase, reducing the effectiveness of the
mechanical stop.

The maximum stress is plotted in figure 5. The position of
the maximum stress, ŝσ̂ ,max again shows very good agreement
as â → 1. The numerical solution reaches 0.650, which
matches the linear model.

3. Failure prior to buckling

In addition to failure from the bending stresses, cantilevers
may fail prior to buckling. This can occur if the cantilever
cannot withstand the critical axial stress necessary to induce
buckling. Modifying equation (1) to find the critical stress
instead of the critical force, one finds that

σcr = π2Eh2

12L2
eff

= π2Ec2

3L2
eff

. (10)
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Figure 6. SEM of an assembled buckled cantilever fabricated in
polysilicon. This cantilever was fabricated in the POLY2 layer of
PolyMUMPsTM The cantilever has a length of 300 µm a width of
30 µm and a thickness of 1.5 µm. The mechanical stops are set at
â = 0.8. One of the parallel platforms is supporting a piece of
debris from a nearby cantilever that failed during assembly.

Comparing equation (10), for the critical buckling stress,
to equation (8), for maximum stress after bending, one should
note different scaling based on the geometric parameters. In
particular, shorter thicker cantilevers may fail prior to buckling,
even if they could withstanding the bending stresses in their
final configuration. This is especially true as â → 1, as the
bending stress goes to zero while the critical buckling stress
remains fixed.

Although not seen in the PolyMUMPsTM cantilevers
discussed later, this was noted as an important failure mode
for earlier SU-8 cantilevers [25].

4. Experiment

To confirm the design and theory of buckled cantilevers,
several implementations were fabricated using
PolyMUMPsTM [29]. An example of a assembled cantilever
is shown in figure 6. Previous work has shown buckled
cantilevers fabricated using SU-8 [25], and we have also
successfully assembled buckled cantilevers fabricated in
polyimide (figure 7). Buckled cantilevers were fabricated in
both POLY1 and POLY2, with lengths of 100 µm 200 µm and
300 µm. For each length, various values of â between 0.65
and 0.85 were fabricated. For this work, the cantilevers were
assembled manually using a micropositioner. The buckled
cantilevers all have two pairs of beams.

• Each buckled cantilever has a pair of beams attached
partway down their length that are positioned, according
to the calculations in section 2.2, at the position of
maximum height. These beams should also be parallel
with the substrate. The beams are extended so that their

Figure 7. SEM of an assembled buckled cantilever fabricated in
polyimide. This cantilever was fabricated using an in-house process.
The cantilever has a length of 500 µm a width of 50 µm and a
thickness of 7.3 µm. The mechanical stops are set at â = 0.67.

plane may be compared against the substrate to double-
check that they are indeed parallel.

• Each buckled cantilever also has a pair of beams attached
at the cantilever tip. Again, the purpose of these beams
is to allow for their orientation to be extracted. The
angle of the cantilever tip can thus be compared against
predictions.

The lengths chosen for the buckled cantilevers were
unfortunately chosen based on initial, incorrect calculations,
which underestimated the necessary bending stresses.
Corrected values show that, for the material and thicknesses in
PolyMUMPsTM these cantilevers are too short, and subject to
unsafe stresses. While all of the cantilevers could be buckled,
most of the designs could not be deflected sufficiently to
engage the mechanical stops. The corrected bending stress
predications are shown in table 1 for a subset of the values of
â fabricated.

While the fracture statistics of micro-scale structures is
subject to significant statistical variation [30], the POLY2 layer
of the PolyMUMPsTM process has a measured yield strength
of 1.51 ± 0.26 GPa [31]. This is in good agreement with
our ability to assemble these structures. Nearly all of the
buckled cantilevers with L = 300 µm and â = 0.85 were
assembled, while only a few cantilevers with L = 300 µm and
â = 0.8 were assembled successfully. No buckled cantilever
with other geometric parameters, in either POLY1 or POLY2,
were successfully assembled.

For POLY1, the agreement is nearly as good. The reported
strength of POLY1 is 1.67 ± 0.23 GPa. This would indicate
that some of the longest POLY1 buckled cantilever should
have been able to withstand the buckling stresses, which is
not the case. However, the value is borderline, and the failure
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Table 1. Predicted maximum bending stresses for buckled cantilevers at the fabricated lengths for a subset of â. The difference in the
maximum bending stress in POLY1 and POLY2 is due to their different thicknesses, at 2.0 µm and 1.5 µm, respectively.

POLY1 (GPa) POLY2 (GPa)
Length
(µm) â = 0.75 â = 0.8 â = 0.85 â = 0.75 â = 0.8 â = 0.85

100 7.6 6.8 5.8 5.7 5.1 4.3
200 3.8 3.4 2.9 2.9 2.5 2.2
300 2.5 2.3 1.9 1.9 1.7 1.4

could easily result in difference in the mechanical properties
between fabrication runs.

Furthermore, for both POLY1 and POLY2, assembly
requires that the cantilever be deflected past the mechanical
stop. This obviously requires the cantilever’s to endure
transient stresses in excess of those listed in table 1. This
over-stress is further compounded when the applied force is
not aligned axially, leading to additional torsional stresses on
the cantilever.

Many of the failures also occurred at the cantilever’s
anchor, instead of near ŝ = 0.65 as expected. While that is the
point of maximum stress, the stress at the cantilever’s anchor is
not much less. For example, at â = 0.85, the maximum non-
dimensional stress is 3.67 while the non-dimensional stress at
the anchor is 3.55. The bending stress at the anchor is thus
nearly as large as the maximum stress. When this stress is
combined either with thinner polysilicon films on sidewalls or
with the stress concentration at the corner, the anchor becomes
the point of failure.

Not clear from figure 6, most of the mechanical stops
were damaged during assembly. This was not a problem with
the design of the mechanical stops per se, but the small gap
between the stops, which left insufficient room for the passage
of the micropositioner’s tip.

Using optical microscopy, the height of the parallel
platforms connected to several of the successfully assembled
cantilevers were measured. For the â = 0.85 cantilevers,
the height was measured at 64 ± 3 µm. This compares to the
predicted value of 68.22 µm. However, correcting for the
small downward deflection caused by the mechanical stop,
b̂ = −0.014, leads to a more accurate prediction of 65.69 µm.
Measurements of a â = 0.8 cantilever determined the height
of the platform to be 70 ± 2 µm high. With the correction for
b̂, the predicted height is 74.50 µm.

For cantilevers with â = 0.85, the tip angles were
measured to be 52 ± 1◦. This compares to a predicted tip
angle of 57◦.

Although the first measurement is within error, both height
measurements are below their corresponding predictions.
There is an additional discrepancy in the cantilevers tip angles.
These differences are likely due to a non-ideality of the device
shown in figure 6, which is that the connection for the platforms
is 25 µm wide, stiffening that portion of the cantilever. In total,
slightly less than 17% of the cantilever is stiffened because of
the attached platforms. This flattens the top portion of the
cantilever, thus lowering the maximum height. This could be
corrected by using a smaller connection between the platforms
and the cantilever.

Figure 8. SEM of a buckled cantilever with the predicted cantilever
shaper super-imposed. Predicted shape was superimposed using an
affine transformation.

The shape that the cantilevers follow matches closely the
predicted paths. An example is shown in figure 8. The
superimposed shape contains some inaccuracy, as the mapped
path does not correct for the vanishing perspective of the
SEM. While the match is relatively good, there are deviations.
These deviations are due to the additional stiffness created
by the wide connections to the two pairs of attached platforms.
The influence of the platforms parallel to the substrate could be
minimized by moving to narrower connections, although that
might not be possible if those connections must carry electrical
interconnects.

5. Summary

In this paper, we have shown how the shape of a buckled
cantilever can be determined. Plates can be attached to these
cantilevers to create various types of out-of-plane structures,
including raised platforms and 90◦ plates. The angle of the
attached plates can be controlled by varying the attachment
point and cantilever tip’s deflection. When compared to
other methods of achieving these types of structures, buckled
cantilevers are an attractive solution because they can be
assembled with a simple mechanical motion. Furthermore,
the cantilevers have a compliant connection to the substrate,
which can be used for electrical routing.
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