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ABSTRACT 

Based on energy variation methods we calculated the 
deflection of membranes under the combined load of an 
external pressure and an internal lateral stress. A lateral 
load gives rise to buckling once a critical load is 
exceeded. The combination of transversal loads and 
lateral loads changes the properties of the membrane (and 
other structures) in the vicinity of the buckling load: The 
membrane deflects at all lateral loads and the critic load, 
above which two states are possible shifts. A result 
important for the design of microsystems, which are 
based on the buckling phenomenon, is the pressure 
required to switch the membrane from one state to the 
other. The theory is tested successfully with 
micromachined silicon/silicon-dioxide membranes. 

INTRODUCTION 

The buckling phenomena of thin shells under internal 
compressive stresses have became very interesting also 
for micromachined structures. Investigations on pre 
buckling and post buckling of beams have already been 
published [l]. Applications of buckling of beams in 
switches [2], electromechanical memories 131 and 
applications of buckled membranes in micropumps [4] 
have been demonstrated. This paper focuses on the 
mechanism of buckling of the membranes. 
The principle of buckling of the membranes is illustrated 
in Fig. 1. 
A membrane under uniform compression S, = Sy = S, for 
a compressive stress greater than a critical stress Scr, will 
buckle transversally without any additional external load. 
There are many specific states of equilibrium with specific 
patterns of the deflected shape, related to the value of the 
compressive stress S greater than particular values Scr,i, 
(i=l ... n) with Scr,i+l> Scr,i [5] .  In this paper we studied 
the first order buckling of the membranes. We obtained 
buckled membranes in a silicon wafer using the 
compressive stress which exists in a SiU, thermally 
grown layer. 
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Fig.1 Membrane with biaxial plane stress and two stable 
states for the buckled membrane. 

THEORY 

To investigate bending of plates when the stresses are 
above critical, the strain in the middle plane should be 
considered. A solution of the problem is to use the 
expression for the strain energy of the buckled plate and 
determine its deflection and the critical stress for buckling 
from the condition that the energy is a minimum. 
We made this analysis for the square membrane from 
Fig.1, with clamped edges and under a uniform 
compressive stress in two perpendicular directions. 
We assume that initially the plate is perfectly flat. The 
influence of an initial deflection will be taken into 
consideration later. An expression for the transversal 
displacement of the buckled plate that satisfies the 
boundary conditions is: 

w(x,y)=-(1+cos-x)(l+cos---y) W O  2 a  2a 
4 a U 

where U is the size of the membrane and Wo=w(O,O) 
deflection at the centre of the plate. 

The total strain energy of the plate is U = Ul+U2, with 
U,, U, the energy of bending and the strain energy due to 
the forces acting in the middle plane respectively, [6], 



page 386 and page 337. The relation for the total energy 
of the plate becomes: 

D W2a4 + U =  
a2 

with 

6 0 ( 1 - ~ )  
D =  Eh3 and G =  

12(1- v2) h3 

the flexural rigidity, and the modulus of elasticity in shear 
respectively. E is Young's modulus, vis Poisson's ratio, y 
a shear modulus and h is the thickness of the membrane. 
From the condition for the energy to be minimum we 
obtain the uniform compressive stress for first order 
buckling for a square plate with clamped edges : 

h' E 
a' I -v2 

S,, ~ 4 . 3 8  -- (3) 

and the expressions for the amplitude of the deflection of 
the buckled plate under a uniform compressive stress S in 
two perpendicular directions 

WO = 0, for S I S,, 

WO = f 2.298 h .  - - 1, for S 2 S,, 4 S:, 
(4) 

In the case of a plate with an initial deflection of 
amplitude Win, the behaviour of the plate under a 
compressive stress is analysed in the literature for S < S,, 
and neglecting the work of the forces acting in the middle 
plane. An approximate expression of the amplitude of the 
deflection in this case is, [6], page 345: 

WO =- -%,, for s I s,, 

This expression is valuable with a good approximation 
for: S/S,, < 0.6 [5].  The influence of an initial deflection 
on the deflection of the buckled plate is shown in Fig. 2. 
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Fig.2 Theoretical curves for the deflection of the rectangular 
plate under a uniform compressive stress S. 

The dotted curve represents equation (5) for an initial 
deflection Win= 0.1 h. The solid curve represents 
equation (4) and the dashed curve shows the influence of 
this initial deflection. The dashed and full curves together 
show the complete behaviour of the compressed plate. 

The total energy of the compressed plate in relation to 
the plate deflection W J h  and the internal stress S is given 
by: 

and this expression is represented graphically in Fig. 3. 

- "4'h 
3 

Fig.3 The total strain energy of the plate in relation with the 
deflection and the internal stress 

For S < S,, the energy of the plate has only one minimum 
for W d h  = 0. 
For S>S,, the energy function has two minima. Both 
minima indicate a stable state of the stressed membrane. 

-external pressure q 
Now we consider a membrane which is buckled under 
uniform compressive stress S > S,  and which is loaded 
with an external pressure q. The energy function of the 
plate is the sum of the energy function given in eq. (6) 
and the mechanical work by the external pressure: 
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P.$(+) (7) 

Compared to the energy function for a non loaded plate 
(6) there is an additional term which is linear in q and 
WJh. Eq. (7) describes the plate energy above and below 
Scr As an example, the plate energy function U for S/Sc, 
= 3 with its parametric dependence of the external 
pressure q is shown in Fig. 4. The energy function is no 
longer line-symmetric with respect to the y-axis. For 
relative low external pressures the energy function still 
does have two minima and two stable states, but for high 
pressures, there is only one stable minimum left. 
In general, the deflection WO for a loaded plate wiU be a 
function of both S and q: WO = Wo(S,q). 

Fig.4. Total strain energy of the plate in relation with the 
deflection and the external pressure q. The internal stress 

sts,, = 3. 

The minima of the energy function indicate the stable 
states. The deflection can be calculated from the 
derivative of the energy function: 

This function is shown in Fig. 5. For a stable state the 
energy function has a minimum, so this first derivative is 
zero: 

Solving of this equation results in the q-dependent 
deflection: WJh(S,q). Note that this solution is valid 
below and above the buckling load. We see that a cubic 
equation results for the deflection of the membrane as a 
function of the lateral stress S and the load q. This 
equation has three roots. For three real roots the centre 
root corresponds to an instable state 
(d2U/d(Wdh)2) < 0). 

The two stable roots correspond to the membrane 
buckled upwards or downwards, respectively. At a 
certain stress S, (the index b for bifurcation) and 
pressure q b  there are two roots, it is the point where 
the S-shaped curve in Fig. 5 touches the x-axis, From this 
point on going to larger pressures q there is only one 
stable state (buckled up- or downwards). 
The bifurcation point can be looked at from two points of 
view. One can discuss the deflection as a function of S 
with q as a parameter. At small S then there is only one 
real solution. Increasing S the deflection increases, and 
close to the buckling load, if q is not too large, the 
deflection increases quite quickly (see the discussion in 
Soderkvist's paper [lo]). At and above the bifurcation 
point there are two stable solutions, but in practice the 
deflection wil l  monotonically increase with increasing 
stress. 

Fig. 5. First derivative of the energy function U. 

However, if one is in the other branch, and the stress is 
decreased, the membrane switches to the first state at Sb. 
Generally, sb > Scr 
In fig. 5 we discuss the situation for constant S. If 
S>S,,, we have a symmetric situation at q = O .  q > O  
introduces asymmetry. At constant S the curve in fig. 5 
shifts upward and it is seen that the stable deflections 
shifts to the left: the downward deflection increases and 
the upward deflection decreases (the sign is arbitxary) 
until the point is reached where the curve just touches the 
x-axis. We call this pressure 4b. At larger pressures there 
is only one solution. If the membrane is in the upward 
deflection and the pressure increases, the deflection 
decreases until a critical pressure q b  is reached and the 
membrane flips to the downward state. This critical 
pressure is required to switch the membrane. Note that 
we have a hysteresis; the same argument applies for the 
downward deflection. 
The explicit solution of eq. (9) is standard but quite 
involved. Therefore we discuss in the following only the 
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stiffness of the membrane with respect to the load q at 
constant stress S. We note that a change of q results in a 
shift along the y-axis of the curve shown in fig. 5. The 
following relation therefore is found for the shift of the 
deflection dWo by a shift of the load dq: 

This formula results in the stiffness of the membrane at 
constant stress 

K, = dWo /dq = h.d(Wo / h)/dq= 

""( 4 d(W d: /h)2 r 
So the effective stiffness of the plate can be calculated 
from the second derivative of the energy function U: 

d 2U 

For S > Scr we assume that we can make use of eq. (4) 
for WO, so the combination of (lo), (11)  and (12) results 
in: 

From eq. (13) we see that the effective stiffness is 
proportional to the internal stress S. For S=S,, the 
effective stiffness for an external pressure q reduces to 
zero (if q is not too large). 

The critical pressure qb is easily calculated by noting that 
the minimum of the curve labelled q b  in Fig. 5 shifts to 
the x-axis. The position of the minimum is found from eq. 
(1 2) and is given by 

q b  is calculated from the depth of the minimum, 

YI qb =31.6--[~-1) E'h4 S 
a4 

(14) 

EXPERIMENTS 

In our experiment we fabricated buckled membranes in a 
silicon wafer using the compressive stress, So, which 
remains in thermally grown Si02 layer. 
From [7] the residual stress So in thermally grown Si02 
is: 

So = 0.3.109 N/m2 (17) 

For a <loo> silicon membrane we have [8,9]: 

E'=  E/(1-v2) = 1.551011 N/m2 (18) 

and from equations (3) and (18), we can calculate the 
thickness of the oxide layer hsioz to get the first order 
buckling: 

h3 hio2 = 2263- for one side SiO,, 
a' 
h3 kio2 = 1132, for both sides SiO, 
a 

The relations for WO are than given by: 

WO = 2.298 h -- 1 = K 
2 

1 4.419.10 .--- 4 hi02 a 

h h2 

Silicon square membranes were anisotropically etched in 
KOH and TMAH with mask of thermally grown Si02 
with 1 pm thick Si02 layer at the end of the etching. We 
studied samples similar to that shown in Fig. 6 with side a 
between 100 pm and 5000 pm and thickness h between 
12 pm and 25 pm. 

Fig. 6. Cross section of a sample with buckled membrane 
loaded with a pressure. 

with E' the effective Youngs modulus: E'=E/(l-$). 
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CONCLUSIONS 

I 
Fig 7. Theoretical and experimental behaviour of the buckled 

membrane 

The membranes buckled into the direction of the SiO, 
layer. The membranes buckled according to relation (20) 
and membranes with alh < (a/h),, remained flat. We 
measured the deflection at the centre of the square 
membrane, Wo(S,q); the pressure difference q was made 
with a controllable pressure source Wallace & Tiernan' 
and the deflection was measured with a surface profiler 
type 'DEKTAK 3030'. 
For h ~ i 0 ,  = lpm and a h  = 5000 pm/16 pm, a 
comparison between the theoretical and experimental 
behaviour of the plate is shown in Fig. 7. Fig.7 shows a 
linear dependence of WO on q. 
The theoretically expected buckling pressure is: qb = 1 1.4 
.lo2 N/m2 and the theoretically expected memebrane 
stiffness is: dW,,/dq=4.6 pm/50 mBar. These values 
agree satisfactory with the experimental results. 
A comparison between the pressure required to obtain a 
particular deflection of buckled and flat membranes is 
shown in table 1. 

alh = 4000l18 
deflection [pm] 21.5 28.8 37 
pressure1 [mbar] 4 40 100 
pressure2[mbar] 72 138 255 

alh = 5000l16 
deflection [pm] 42 48 56 
pressure' [mbar] 6 24 54 
uressure2rmbarl 105 167 253 

lbuckled membrane 
%on-stressed membrane 

Table 1. Comparison between pressures necessary to deflect 
buckled and flat membranes. 

In this work we obtained analytical expressions for the 
deflection of buckled square membranes under a lateral 
stress and a pressure difference. The theory also allows 
for the calculation of the pressure difference needed to 
switch the membrane from one state to the other. 
Deflection and switching pressure were determined also 
experimentally; the results agree well with theory. The 
main results are: 
1) Buckled membranes deflect more than flat membranes 
under a pressure difference. This fact makes buckled 
membranes attractive for actuation of micropumps and 
microvalves. 

2)  Buckled membranes can be used as memory elements 
and switched from one state to the other with easily 
accesable pressures (here: 10 mbar). This fact makes 
these structures usefull as elements in e.g. two-state 
valves. The theory presented in this paper makes the 
design of actuators and memory elements possible. 
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