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Abstract: In this study, the buckling loads of a composite sandwich structure, which is reinforced
by a honeycomb layer and filled with viscoelastic damping material, are analyzed. By applying von
Karman anisotropic plate equations for large deflection, the governing equation of the composite
sandwich structure is determined, and the deflection of the structure is further defined by a double
triangular series. According to the dynamic equivalent effective stiffness obtained by the homogenous
asymptotic method and Hill’s generalized self-consistent model based on the Halpin–Tsai model,
limiting the dynamic load buckling of the composite honeycomb reinforced sandwich structure
embedded with viscoelastic damping material under axial compression can be achieved. The factors
that influence the composite sandwich’s buckling loads are discussed and compared, such as the load
and geometry parameters, the thickness of the honeycomb reinforcement layer and the honeycomb’s
width. Finally, the results obtained by the present method are validated by the existing literature.

Keywords: buckling; viscoelastic damping material; honeycomb reinforcements; sandwich plate

1. Introduction

In engineering applications, structure stability evaluation is more important than
stiffness and strength in most cases. On most occasions, structures fail due to instability
factors, such as the structure’s buckling, and as is known, the critical buckling loads of
the structure are far smaller than the allowable loads. Quebec bridge disasters are usually
considered as buckling failures and instability problems, as is known in engineering [1].
Today, to achieve high stiffness/hardness, considerable toughening, light-weight properties
and composite materials and structures are introduced into engineering applications, which
have been capturing more and more researchers’ attention. Therefore, the buckling analysis
of the composite structures is performed extensively in many different fields of engineering,
such as aviation, navigation and mechanical engineering [2]. Accordingly, the buckling
characteristics are taken into consideration. As pointed out by Wang et al. [3], the buckling
of the structure is an important consideration in structural design, especially when the
structure is slender and lightweight. Sayyad and Ghugal [4] presented a state-of-the-art
discussion and critical review on the bending and buckling analysis of composite laminated
structures, especially on comparisons of the methodologies and discussion of the composite
structures, such as laminate theories and numerical methods. By applying the numerical
and experimental methods, Namdar and Darendeliler [5] examined the buckling and failure
process of a composite laminated structure made by bi-directional and oven fabric laminae.
By employing the Kelvin–Voigt model and basing their work on nonlocal elastic theory,
Kolahchi et al. [6] developed the refined Zigzag theory to analyze the dynamic buckling of
laminated nano-plates. The factors that influence the structure’s dynamic buckling were
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thoroughly explored, such as the viscoelastic layer’s damping coefficient, aspect ratio,
various boundary conditions, etc. Based on the cell-based smoothed discrete shear gap
method mixed-variable differential evolution theory, Ho-Huu et al. [7] proposed a novel
numerical optimization procedure with mixed-integer and continuous design variables for
the optimal design of laminated composite plates’ buckling loads. To maximally increase
the buckling loads of the composite laminated plate, thin composite grid layers were
proposed by Ehsani and Rezepazhand [8] by combining the first-order shear deformation
and classical laminated plate theories, and a genetic algorithm was utilized to optimize
the stacking sequence and pattern composition of grid composite laminate. In the present
analysis, as a type of grid, the honeycomb reinforced layer is applied and embedded in the
laminated structure. The buckling response characteristic of the grid stiffened laminated
composite plates was also analyzed by Huang et al. [9] by the finite element model. By
introducing a unique Fourier series function to describe the longitudinal variation of
deflection, Chen and Qiao [10] developed a novel semi-analytical finite strip method to
predict the buckling properties of the composite laminated structures. Based on the first-
order shear deformation theory and a combination of the modified couple stress theory,
Arshid et al. [11] analyzed the bending and buckling characteristics of a heterogeneous
annular/circular micro sandwich plate located on the Pasternak foundation.

The critical buckling analysis of composite laminated structures is focused on static
changes in external loads, which are either very tiny or neglected. However, in mechanical
engineering, the external loads and working environments are changeable. Moreover,
after the composite material is introduced in engineering, the dynamic characteristic of
the materials should be considered for perusing a higher analysis result. Therefore, the
dynamic critical buckling properties of the composite structure are required to consider.
By considering the honeycomb structure applied and analyzed in engineering structures,
such as honeycomb reinforced laminated beams [12–15], plates [16–24] and shells [25–27],
to enhance the structure’s stiffness or to strengthen it, the honeycomb reinforced layer is in-
troduced in the present analysis. Through a stress function approach, Southward et al. [13]
analyzed the buckling response of a composite laminated beam with a honeycomb core
on a Winkler foundation. Through a two-scale theory of the updated Lagrangian type,
Ohno et al. [17] analyzed the buckling of elastic square honeycomb structures subject
to in-plane biaxial compression, and the results were validated by the energy method.
Qiu et al. [16] examined the buckling of honeycomb structures under out-of-plane loads.
Three types of honeycomb were considered, and finally, the results were validated by
numerical and experimental methods. By applying the asymptotic homogenous method
and basing their work on laminated plate theory, Zhou et al. [23] examined the dynamic
equivalent effective modulus of the composite laminated structures with a honeycomb
reinforced core, and factors that affect the structure’s dynamic modulus were qualitatively
and quantitatively discussed and compared.

Compared to the buckling analysis of the traditional analysis, the external energy
applied to the laminated structure is transformed into strain energy and potential energy,
and the energies are stored or transformed in the structure, which do not dissipate. Con-
sequently, instability happens when the loads reach critical buckling, and finally, failure
may occur. Moreover, the flows of material and tiny fractures of the composite structure
may appear microscopically, which can also absorb and dissipate a large amount of me-
chanical energy. For improving the critical buckling loads of the laminated structures,
viscoelastic materials are applied. Viscoelastic materials can transform and dissipate the
mechanical energy and improve the friction coefficient of the laminated structure in mi-
croscopically [28–33]. Moreover, the structure’s toughness is enhanced by the viscoelastic
material’s visco- and friction-characteristic and mechanical energy dissipation properties.
Aiming towards energy dissipation and vibration control, Jung and Aref [34] proposed
a combined polymer composite damping system, and the structure consists of a poly-
mer honeycomb and a viscoelastic solid material. Considering that the constrained layer
dampers are extensively applied for passive vibration damping in fields of engineering, a
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novelty honeycomb structure filled with viscoelastic damping material was proposed by
Aumjaud et al. [35], which can improve the modal loss factor of the composite laminated
structure efficiently.

Following the structures constructed by Zhou et al. [23], in the present analysis, honey-
comb structures and viscoelastic material are applied. The laminate’s stiffness and hardness
can be significantly enhanced by honeycomb reinforcement layers, and its toughening
and energy dissipation characteristics are improved at the same time by the viscoelastic
material. Considering that the dynamic effective equivalent stiffness of the honeycomb
structure with viscoelastic material is strongly influenced by the external load’s frequency,
the structure’s buckling loads are affected by frequency too. Consequently, the dynamic
critical buckling loads of honeycomb reinforced laminated structures with viscoelastic
material are examined here. Moreover, the geometry and external load factors that affect
the dynamic buckling load of composite structures are researched and compared in detail.

2. Mathematical Modeling

A mathematical model of the honeycomb reinforced composite laminated plate with
coupling in-plane forces Nx and Ny on the x- and the y-axis is shown in the following figures.
The length and width of the composite laminate are denoted as a and b. The middle layer is
composed of a honeycomb reinforcement structure and viscoelastic material fillers. The
honeycomb structure is made of elastic material, and the fillers are viscoelastic material. The
thickness of the three-layered composite laminated structure is illustrated in Figure 1c, and
the laminated structure in the present analysis is considered as the symmetrical composite
structure. The thickness of the two face layers is t1 and t3, and the honeycomb reinforced
layer is t2.
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Figure 1. Buckling of the honeycomb reinforced laminated composite plate with two-direction forces.
(a) Macroscopic of composite laminate sandwich; (b) Honeycomb reinforced composite core layer;
(c) Boundary condition of the sandwich structure; (d) A representative unit cell of the sandwich.

3. Methodologies and Theoretical Derivation

In this analysis, the critical buckling load determination mainly contains two sections:
the determination of the critical buckling equation and the prediction of the effective dy-
namic stiffness modulus of the composite sandwich. The determination of the critical
buckling equation is performed based on large deflection theory, and the effective dy-
namic stiffness modulus of the composite sandwich is obtained through the homogenous
asymptotic theory. More detail is presented in the following subsections.
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3.1. Critical Buckling Equation Determination

According to von Karman’s anisotropic plate equations for large deflection [36,37], the
governing equation of the composite sandwich structure under two directions of in-plane
forces can be expressed as

D11
∂4w
∂x4 + 4D16

∂4w
∂x3∂y

+ 2(D12 + 2D66)
∂4w

∂x2∂y2 + 4D26
∂4w

∂x∂y3

+D22
∂4w
∂y4 = Nx

∂2w
∂x2 + 2Nxy

∂2w
∂x∂y

+ Ny
∂2w
∂y2 − px

∂w
∂x
− py

∂w
∂y
− pz

(1)

where w is the out-plane deflection of the composite anisotropic laminate, Nxy is the
shear force, px, py and pz are the distributed loads and Dij is the bending stiffness. In the
present analysis, the sandwich is considered a rectangle with four edges that are simply
supported. Furthermore, we assume that there is an absence of shear and distributed loads,
so the bending stiffness D16 = D26 = 0 can be considered. Moreover, only the axis loads are
considered, and the shear forces on the laminated structure are not considered. Accordingly,
the constitutive equation of the current problem can be obtained as

D11
∂4w
∂x4 + 2(D12 + 2D66)

∂4w
∂x2∂y2 + D22

∂4w
∂y4 = Nx

∂2w
∂x2 + Ny

∂2w
∂y2 (2)

For the simply supported rectangular plate, as shown in Figure 1c, the boundary
conditions can be expressed as

w = Mx = −D11
∂2w
∂x2 − D12

∂4w
∂y4 = 0 at x = 0, a (3)

w = My = −D12
∂2w
∂x2 − D22

∂4w
∂y4 = 0 at y = 0, b (4)

To satisfy the boundary conditions as provided in the above equations, double sinu-
soidal series can be applied to express the deflection of the honeycomb reinforced composite
laminated structure according to [38].

w =
∞

∑
m

∞

∑
n

Amn sin αx sin βx (5)

where Amn denotes the amplitude of w, α and β are coefficients of the sinusoidal function
and α = mπ/a, β = nπ/b. By substituting Equations (3)–(5) into Equation (2), the following
expression can be yielded:

π2 Amn

[
D11m4 + 2(D12 + 2D66)m2n2κ0 + D22n4κa

4
]
= −Amna2

[
Nxm2 + Nyn2ka

2
]

(6)

When critical buckling appears on composite laminated structures, the in-plane deflec-
tion w is not zero. Accordingly, Amn in the above equation can be deleted, and the buckling
load of the honeycomb reinforced viscoelastic-material-composed sandwich structure can
be achieved as

Nb = −
π2[D11m4 + 2(D12 + 2D66)m2n2κ0 + D22n4κa

4]
a2(m2 + knn2κa2)

(7)

where kn = Nx/Ny, and the minus symbol in Equation (7) can be considered the compress
force/load. We can find that the critical buckling load is independent of the amplitude of
deflection, and it is correlated with the dynamical equivalent stiffness Dij, the terms of the
sinusoidal series m and n, the loading parameter kn and the geometry parameter ka = a/b.
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3.2. Equivalent Effective Modulus Determination

Considering that the laminated structures proposed in this analysis are periodically
distributed in the x-y direction, as shown in Figure 1, and that a representative unit cell
is shown according to the three-dimensional elastic theory [39], the elastic mechanics
equilibrium equations of the laminated composites can be written as

σij,j = fi

σij =
1
2

Cijkl(α1, α2, γ)(uk,l + ul,k)

σijn±j = p±j

(8)

where (•),j = ∂(•),αj
, Cijkl is the fourth-order elasticity tensor of the material, fi is the

body force on the laminated structure, p±j represents the surface tractions on the top
and bottom surfaces of the representative unit cell and ul(k) denotes displacements of
the representative unit cell at the mid-plane in the α1(2) direction. n±j is the normal vec-
tor of the representative unit cell’s top and bottom surfaces and can be determined by

n± =
(∓S∓ ,α1 ,∓S∓ ,α2 , 1)√
(S∓ ,α1)

2 + (S∓ ,α2)
2 + 1

.

3.3. Homogenous Asymptotic Methodologies

In this analysis, considering the periodic distribution of viscoelastic material and
honeycomb reinforcements in geometry, the homogenous asymptotic theory is applied,
and the “rapid” parameter ε is introduced. Asymptotic relationships can be written as

ξ1 →
α1 A1

εa
, ξ1 →

α2 A2

εb
, z→ γ

(h1 + h2 + h3)
(9)

where a and b are the length and width of the sandwich laminate. The coordinate transfor-
mation through asymptotic theory can be expressed as

∂

∂ξ1
→ ∂

∂α1

∂α1

∂ξ1
+

∂

∂α2

∂α2

∂ξ1

∂

∂ξ2
→ ∂

∂α1

∂α1

∂ξ2
+

∂

∂α2

∂α2

∂ξ2

(10)

Furthermore, the non-dimensional displacements of the representative volume ele-
ment at the middle plane can be obtained according to the microscopic asymptotic theory

ui(α, ξ, z, ε) = u(0)
i (α) + εu(1)

i (α, ξ, z) + ε2u(2)
i (α, ξ, z) + O

(
ε3
)

(11a)

σij(α, ξ, z, ε) = ε
(0)
ij (α) + εσ

(2)
ij (α, ξ, z) + ε2σ

(2)
ij (α, ξ, z) + O

(
ε3
)

(11b)

where O(ε3) means the infinitesimal of the higher-order term. The relationship between
the displacements and stress tensors in the local coordinate for the representative volume
element can be defined according to coordinate transform as

ui = vi(α1, α2)− ε
z

Ai
w(α1, α2),αi

+ εUµv
i εµv + ε2Vµv

i τµv + O
(

ε3
)

(12a)

u3 = w(α1, α2) + εUµv
3 εµv + ε2Vµv

3 τµv + O
(

ε3
)

(12b)

σij = bµν
ij εµν + εb∗µν

ij τµν (12c)

where ui(α1, α2), vi(α1, α2) and wi(α1, α2), respectively, represent the displacements in
the αi directions on the α1-α2 plane. We can find from Equation (11a,b) that the general
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global displacements and stresses of the representative volume element can be deter-
mined by the general local displacements Uµν

k and V∗µν
k , where Uµν

k = Uµν
k (ξ1, ξ2, z) and

Vµν
k = Vµν

k (ξ1, ξ2, z), and the local strain εµν and τµν as well as bµν
ij and b∗µν

ij denote the

general local stress functions. Uµν
k and V∗µν

k can be obtained according to the physical
behaviors of the viscoelastic material and elastic reinforcements, and they have three
configurations, which can be expressed as

Uλµ
n (ξ1, ξ2, z) =


f (m1ξ1 + z) + g(m2ξ2 + z) ∆ < 0

f (m1ξ1 + z) + ξ1g(m2ξ2 + z) ∆ = 0
f (m2ξ2 + z) + g(m1ξ1 + z) ∆ > 0

(13a)

Vλµ
n (ξ1, ξ2, z) =


g(m1ξ1 + z) + f (m2ξ2 + z) ∆ < 0

g(m1ξ1 + z) + ξ1 f (m2ξ2 + z) ∆ = 0
g(m2ξ2 + z) + f (m1ξ1 + z) ∆ > 0

(13b)

Applying the asymptotic expansion equations as shown in Equations (9) and (10),
two intermediate functions with a double triangular style can be defined, which can be
expressed as

f (ξ1, ξ2, z)

=



N
∑

n=1

N
∑

m=1

[
sin
(

nπξ1

δa
+ z
)

sin
(

mπξ1

δb
+ z
)
+ sin

(
nπξ1

δb
+ z
)

sin
(

mπξ2

δa
+ z
)]

when ∆ < 0

N
∑

n=1

N
∑

m=1

[
sin
(

nπξ1

δa
+ z
)

sin
(

mπξ1

δb
+ z
)
+ ξ1 sin

(
nπξ1

δb
+ z
)

sin
(

mπξ2

δa
+ z
)]

when ∆ = 0

N
∑

n=1

N
∑

m=1

[
sin
(

nπξ2

δa
+ z
)

sin
(

mπξ2

δb
+ z
)
+ sin

(
nπξ1

δb
+ z
)

sin
(

mπξ2

δa
+ z
)]

when ∆ < 0

(14a)

g(ξ1, ξ2, z)

=



N
∑

n=1

N
∑

m=1

[
cos
(

nπξ2

δa
+ z
)

cos
(

mπξ2

δb
+ z
)
+ cos

(
nπξ1

δb
+ z
)

cos
(

mπξ1

δa
+ z
)]

when ∆ > 0

N
∑

n=1

N
∑

m=1

[
cos
(

nπξ2

δa
+ z
)

cos
(

mπξ2

δb
+ z
)
+ ξ2 cos

(
nπξ1

δb
+ z
)

cos
(

mπξ1

δa
+ z
)]

when ∆ = 0

N
∑

n=1

N
∑

m=1

[
cos
(

nπξ1

δa
+ z
)

cos
(

mπξ1

δb
+ z
)
+ cos

(
nπξ2

δb
+ z
)

cos
(

mπξ2

δa
+ z
)]

when ∆ > 0

(14b)

The local deformations of each research object in two directions obtained by Equation (13)

can be further written as
(

Uµν
k

)(Ω(L)
n )

and
(

V∗µν
k

)(Ω(L)
n )

. Once they are determined, their

general local stress tensors can be immediately evaluated, which can be written as
〈

Eλµ
ij

〉(Ω(L)
n )

and
〈

zE∗λµ
ij

〉(Ω(L)
n )

. Then, the effective equivalent stiffness of the macroscopic composite
sandwich structure in global coordinates can be achieved as follows:

〈
Eλµ

ij

〉(G)
=

N

∑
n=1

〈
Eλµ

ij

〉(Ω(L)
n )

(15a)

〈
zE∗λµ

ij

〉(G)
=

N

∑
n=1

〈
zE∗λµ

ij

〉(Ω(L)
n )

(15b)

where
〈

Eλµ
ij

〉(G)
denotes the global effective modulus, and

〈
Eλµ

ij

〉(Ω(L)
n )

is the local effective
modulus coefficient of the nth research object. In this analysis, a representative volume
element consists of nine research objects. Therefore, n = 9 in Equation (16), and its local
deformations, stresses and strains can be calculated individually. Ω(L)

m means the analysis
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object in the RVE of the composite structure. The superscripts in the brackets, L and G,
denote the local coordinate and global coordinate, and these two systems are applied
together to evaluate the global dynamic stiffness of the structure. In Equation (15), ijλµ is
the fourth-order elastic tensor of the viscoelastic/elastic material. In the present analysis,
the fourth-order tensors of the materials are considered to be frequency dependent, and the
viscoelastic/elastic materials are assumed to be isotropic. The Kelvin–Voigt single-subscript
notation is applied, and this transformation can be written as [39].

(•)11 → (•)1, (•)22 → (•)2
(•)33 → (•)3, (•)23 → (•)4
(•)13 → (•)5, (•)12 → (•)6

(16)

Finally, the dynamic equivalent effective stiffness of the honeycomb reinforced com-
posite laminated structure can be determined as follows, according to [40]:

〈•(ξ1, ξ2, z)〉 = 1
|VΩ|
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E E
α

=
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( ) ( )2 2
22 22

22 22

22 22

2
VEM R

R VEM
R VEMR VEM
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where |VΩ| denotes the RVE’s volume. The mid-coefficient for the bending stiffness can be
obtained as 

Qij =

N
∑

n=1

〈
Eλµ

ij

〉(Ω(L)
n )

1−
〈
vVR

12
〉〈

vVR
21
〉 , ij = 12, 21, 22

Q66 =
N
∑

n=1

〈
zE∗λµ

ij

〉(Ω(L)
n )

(18)

In Equation (18),
〈
vVR

21
〉

is the equivalent dynamic Poisson’s ratio of the composite
structure, and it can be approximately evaluated according to the composite laminated
theory [41] as

〈v12〉 =
(

t1 +
t2

2

)
vVR

12

〈
EVR

22

〉
/
(

t1ER
22 +

t2

2

〈
EVR

22

〉)
(19)

where 〈E22〉 is the equivalent modulus of the composite honeycomb reinforced layer,
and it is composed of viscoelastic material and elastic material. The reinforcements are
made of elastic material, and the filler is built of viscoelastic material. Then, it can be
evaluated according to Hill’s generalized self-consistent model based on the Halpin–Tsai
model [42–44] and macroscopically uniform theory [45]

EVR
22 =

1
fR

ER
22

+
fVEM
EVEM

22
− fVEM fRαtt

(20)

αtt =

(vR)
2EVEM

22
ER

22
+

(vVEM)2ER
22

EVEM
22

− 2vRvVEM

fRER
22 + fVEMEVEM

22
(21)

vVR
12 = fRvR + fVEMvVEM (22a)

ρVR = fRρR + fVEMρVEM (22b)

where fVEM and fR are the volume fractions of the viscoelastic material and the honeycomb
reinforcement in a representative volume element, and vR and vVEM denote the Poisson’s
ratio of reinforcements and viscoelastic fillers. The density of the honeycomb reinforced
layer can be obtained through Equation (22a,b), and ρR and ρVEM denote the density of the
viscoelastic and elastic materials.
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By substituting the above equations into Equation (10), the dynamic equivalent Pois-
son’s ratio can be achieved. In the present analysis, the hexagonal honeycomb is considered;
thus, 〈v12〉 = 〈v21〉 can be assumed.

Accordingly, the dynamic equivalent bending stiffness of the honeycomb reinforced
composite laminated with viscoelastic material can be obtained by drawing back the above
equation into Equation (8) as

〈
DG

ij

〉
=


∫ − h

2

− h
2

N
∑

n=1

〈
Eλµ

ij

〉(Ω(L)
n )

1−
〈
vVR

12
〉〈

vVR
21
〉 z2dz, ij = 12, 21, 22

∫ − h
2

− h
2

N

∑
n=1

〈
zE∗λµ

ij

〉(Ω(L)
n )

z2dz, ij = 66

(23)

Finally, the dynamic critical buckling loads of the composite honeycomb reinforced
laminated can be determined as〈

Ñb

〉
= −

π2[〈DG
11
〉
m4 + 2

(〈
DG

12
〉
+ 2
〈

DG
66
〉)

m2n2ka
2 +

〈
DG

22
〉
n4ka

4]
a2(m2 + knn2ka2)

(24)

4. Numerical Analysis

In this section, a numerical analysis is performed. To visualize the regularity of
the parameters’ influence on the critical buckling loads, the axis load parameter kn, the
geometry parameter ka, the thickness ratio of the core layer, the honeycomb reinforcement’s
width dt and the dynamic impulse load’s frequency f are qualitatively and quantitatively
compared and discussed. Geometrically, the external loads and physical parameters in the
numerical section are defined as follows:

Geometrical parameters: face layers and honeycomb reinforcement.
t1 = 2.5 mm, t2 = At1, dt = Bt1, where A = {2,4,8,12,16}, B= {1,2,3,4,5}.
a = La = {0.1:0.1:1}, b = a/ka, ka = {1:1:10}, Lhoney = a/10. The fraction of the VEM filler

and the hexagonal honeycomb reinforcement in the core layer are determined by Lhoney
and dt.

Geometrical parameters: Ny = knNx = knN0, and kn = {−2:0.5:2}. Nx and Ny denote
the compression forces on the simply supported composite laminated structure, and the
negative kn means the tensile force.

Physical parameters: face layers and honeycomb reinforcement made of aluminum.
Poisson’s ratio vR = 0.33, Young’s modulus ER = 68 GPa, shear modulus GR12 = 25.6 Gpa,

density ρR = 2700 kgm−3.
Physical parameters: VEM fillers.
Poisson’s ratio vVEM = 0.49, density ρVEM = 1200 kgm−3

. Young’s modulus and the
shear modulus GR12 of the VEM are frequency dependent.

4.1. Critical Dynamic Buckling Load Affected by the Load Parameter kn

As is known, the dynamic buckling of the composite structure is affected by two axial
loads. The buckling load is changed if the tensional load is applied in one direction and if
the compressional load is performed in the other direction. Moreover, the buckling load is
variable when two compressional axial forces are loaded. To analyze the regularity and
mechanism of the buckling loads affected by two axial forces, the load parameters of the
honeycomb reinforced laminated composite structure are defined as kn, where Ny = N0
and Nx = knNy = knN0. The data are provided in Table 1. The buckling loads affected
by kn are plotted in Figure 2, where ka = 1, and the length and width of the composite
laminated plate are equal and denoted as a. t1 = t3, t2 = 4t1, dt = 1.5t1 and the length of the
composite laminate ranges from 0.1 to 1 m. As shown in this figure, by increasing the load
parameter, the buckling load is decreased significantly. Figure 3a shows that it is affected
by the dimensions of the composite honeycomb reinforced laminate at the defined load
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parameters, and the buckling loads are decreased by increasing the laminate’s geometry
dimensions. To visualize the buckling load of the composite laminate quantitatively, the
tensile and compression loads are numerically analyzed and plotted in Figure 3b. The
reference load parameter is defined as kn = 1, and the reference buckling load is N0 (kn = 1).
The buckling load of the honeycomb reinforced laminate is increased by raising the tensile
loads, whereas it is decreased by increasing the compression loads. It can be seen in the
figure that the buckling load can be dramatically increased by the tensile forces, whereas it
is decreased slowly by the compression forces.

4.2. Critical Buckling Load Affected by the Length/Width Geometry Parameter

Except for the dynamic equivalent effective stiffness of the honeycomb reinforced
composite laminate, the critical dynamic buckling is directly influenced by the length and
width of the honeycomb reinforced composite sandwich structure at the same time. The
geometry shape of the composite structure is determined by the length–width ratio ka.
Accordingly, the critical dynamic buckling is affected by the geometrical parameter ka. In
this section, the critical dynamic buckling of the honeycomb reinforced laminated composite
structure is analyzed numerically. In this section, t1 = t3 = 2.5 mm, t2 = 4t1, dt = 1.5t1, kn = 1
and the buckling loads affected by ka are shown in Table 2. The results are the same as those
shown in Figure 4; the geometry dimensions of the composite laminate affect its buckling
sharply by increasing the length and width of the composite structures, and the structure’s
buckling is decreased significantly. However, it can be observed from Figure 5 that the
structure’s buckling loads are increased by raising the geometry parameters, and a larger
ka can always provide a bigger one when the other parameters are defined. To analyze the
rate changes in the buckling load on the geometrical parameters, Figure 6 is provided. It
can be seen in this figure that the honeycomb reinforced composite structure’s buckling
load sharply increases when ka is smaller than five, but it slowly increases when ka is larger
than five in the considered ranges.

Table 1. Buckling loads vs. kn.

a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

kn

−2 921.69 230.42 102.41 57.61 36.87 25.60 18.81 14.4 11.38 9.22
−1.5 582.62 145.66 64.74 36.41 23.30 16.18 11.89 9.10 7.19 5.83
−1 395.41 98.85 43.93 24.71 15.82 10.98 8.07 6.18 4.88 3.95
0 307.70 76.93 34.19 19.23 12.31 8.55 6.28 4.81 3.80 3.08
1 198.55 49.64 22.06 12.41 7.94 5.52 4.05 3.10 2.45 1.99

1.5 153.49 38.37 17.05 9.59 6.14 4.26 3.13 2.40 1.89 1.53
2 49.170 12.29 5.46 3.07 1.97 1.37 1.00 0.77 0.61 0.49
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Table 2. Buckling loads vs. ka.

a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ka

2 553.83 138.46 61.540 34.61 22.15 15.38 11.30 8.65 6.84 5.54
4 1198.17 299.54 133.13 74.89 47.93 33.28 24.45 18.72 14.79 11.98
6 2193.74 548.44 243.75 137.11 87.75 60.94 44.77 34.28 27.08 21.94
8 3574.88 893.72 397.21 223.43 143.00 99.30 72.96 55.86 44.13 35.75
10 5346.98 1336.75 594.11 334.19 213.88 148.53 109.12 83.55 66.01 53.47

4.3. Critical Buckling Load Affected by the Load Frequency

The load frequency affects the critical buckling load of the composite structures, which
is the same as the results of the analysis performed by Xu et al. [46]. By increasing the
loading frequency, the critical buckling loads are regularly increased. Considering the
frequency-dependent properties of the viscoelastic material and by analyzing the load
frequency influence on the structure’s buckling load, the loading frequency ranging from
1 to 1000 Hz is numerically analyzed in this section. t1 = t3 = 2.5 mm, t2 = 4t1, dt = 1.5t1,
kn = [−2, −1, 0, 1, 2], a = b = 0.1 m and ka = 1. As shown in Figure 7, by increasing the
loading frequency, the buckling load of the honeycomb reinforced laminated structure is
generally increased in the considered frequency, ranging from 1 Hz to 1000 Hz. However,
it should be noted that, in the present analysis, the structure’s buckling load, which is
influenced by the load’s frequency, can be divided into three sections according to its
change rate by red dotted lines, as shown in Figure 7. It is separated into three sections in
terms of the load frequency, which are: 1~100.3 Hz, 100.3~700.9 Hz and 700.9~1000 Hz. In
the considered frequency ranges, the buckling load of the structure is sharply increased
and is then kept stable in a defined range. Then, it goes up significantly, and the critical
frequencies are 100.3 Hz and 700.9 Hz. As a key factor that affects the structure’s buckling,
the trend of the structure buckling is influenced by the load frequency, which is the same as
the normalized effective equivalent stiffness.

4.4. Critical Buckling Load Affected by the Core Layer’s Thickness

The core layer’s thickness of the honeycomb reinforced composite laminated structure
directly influences the structure’s dynamic effective equivalent stiffness, and the stiffness
further affects the buckling load of the composite structures. In this section, the thickness
of the honeycomb reinforcement and viscoelastic material composed layer is analyzed
numerically. The geometrical, physical and load parameters are: t1 = t3 = 2.5 mm, dt = 1.5t1,
kn = ka =1 and a = b, and the numerical data are provided in Table 3. Similar to that which
has been researched, the thickness of the honeycomb and viscoelastic material composed
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layer are defined as t2 = tRt1. tR = {2, 4, 6, 8, 12, 16}. The buckling load of is sharply
decreased by increasing the composite laminate’s geometrical dimensions, which is the
same as the trend displayed in Figure 8. Moreover, it can be observed from Figures 8 and 9
that the buckling load of the structure is increased by increasing the honeycomb reinforced
layer’s thickness. To display the buckling load’s increasing rate on the honeycomb layer’s
thickness, Figure 9 is provided. In the figure, the buckling load of the composite honeycomb
laminate at tR = 2 is considered as the reference value.
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Table 3. Buckling loads vs. core layer’s thickness.

a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t2
t1

2 85.38 21.35 9.49 5.34 3.42 2.37 1.74 1.33 1.05 0.85
4 290.83 72.71 32.31 18.18 11.63 8.08 5.94 4.54 3.59 2.91
8 1368.22 342.06 152.02 85.51 54.73 38.01 27.92 21.38 16.89 13.68
12 3785.82 946.45 420.65 236.61 151.43 105.16 77.26 59.15 46.74 37.86
16 8053.88 2013.47 894.88 503.37 322.16 223.72 164.36 125.84 99.43 80.54
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4.5. Critical Buckling Load Affected by the Honeycomb Reinforcement’s Thickness

The composite structure’s dynamic equivalent effective stiffness is directly affected
by the honeycomb reinforcement’s width. By increasing the reinforcement’s width, the
dynamic equivalent effective stiffness of the composite structure is increased, and further-
more, the structure’s buckling loads in the considered research are significantly influenced.
In the present analysis, to illustrate the trend of the buckling load affected by the honey-
comb reinforcement’s width, a qualitative investigation and quantitative comparison are
performed, as plotted in Figures 10 and 11, and the data is showed in Table 4. The physical
and geometrical parameters in this section are: t1 = t3 = 2.5 mm, t2 = 5t1 =, dt = 1~4 t1,
kn = ka =1 and a = b. It can be seen in Figure 10 that, with the same geometry parameters,
the buckling load of the honeycomb reinforced composite laminated structure is sharply
increased by raising the reinforcement’s width. Moreover, the buckling loads at the defined
width of the honeycomb reinforcement are compared in Figure 12. It can be observed that
the buckling loads of the composite structure are decreased by increasing the dimensions.
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5. Validation

In the present analysis, the buckling load of a honeycomb reinforced composite lami-
nated structure is examined by the asymptotic method. To validate the method performed
and the results obtained in the present analysis, the structure, which is the same as that
which is referred in [37], is established. By submitting the equivalent stiffness of the com-
posite laminate in the method applied in [37], and by defining the load parameter kn = 1 and
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kn = −1, the buckling loads obtained by the two methods can be compared. A comparison
of the two methods is plotted in Figure 12, and it can be seen that the buckling loads
obtained by the asymptotic methods are well consistent with [37]. The calculation error
decreases significantly by increasing the structure’s geometry dimensions.

6. Conclusions and Discussion

In the present analysis, the buckling load of a honeycomb reinforced laminated struc-
ture filled with viscoelastic material is examined by employing the equivalent stiffness
parameters obtained through asymptotic methods and the Halpin–Tsai model. The geo-
metrical and physical parameters that influence the composite laminate’s buckling loads
are qualitatively and quantitatively discussed and compared through an analysis. The
following conclusions can be obtained from this research:

(1) The physical parameters, such as the elastic modulus and shear modulus of the
viscoelastic material, are affected by the load’s frequencies; accordingly, the buckling
loads of the composite structure are influenced by the load’s frequency. The trend
of the buckling loads affected by the loading frequency is the same as the composite
structure’s dynamic equivalent effective stiffness, and the original phenomenon can
be traced back to the behaviors of viscoelastic materials.

(2) Buckling loads are affected by the geometry parameters of the composite sandwich
structure directly. The buckling load is significantly increased by increasing by the
width of the composite structure, but it is decreased sharply by increasing the length
of the sandwich structure. This phenomenon shows the same results as those of the
buckling analysis of classical beams and plates.

(3) The composite structure’s buckling load is influenced by the honeycomb reinforce-
ment layer’s thickness and the honeycomb’s width. The main reason is that the
equivalent stiffness of the composite sandwich structure is changed by the honey-
comb reinforcement’s width and height. It should be noted that, by comparing it to
the honeycomb reinforcement layer’s thickness, the honeycomb’s width affects the
structure’s buckling loads to a relatively smaller degree.

The moisture and temperature of the environment as well as the loading amplitude
influence the viscoelastic material’s physical parameters as well, which is the same as the
frequency-dependent properties. The background temperature in the research is considered
to be 20 ◦C, the loading frequency ranges from 1 to 1000 Hz and the moisture effect on
the viscoelastic material is neglected. Moreover, the loading amplitude properties on the
viscoelastic material are not taken into consideration. In further research, those factors will
be introduced.
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