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Abstract 

Thermal buckling analyses of S-FGM are investigated by using first order 

shear deformation theory. Material properties are varied continuously in the 

thickness direction according to a sigmoid distribution. The thermal buckling 

behaviours under uniform, linear and sinusoidal temperature rise across the 

thickness are analyzed. In addition, the effects of temperature field, volume 

fraction distributions, and system geometric parameters are investigated. The 

results are compared with the results of the classic plate theory (CPT). 
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Introduction 

 

Functionally graded materials (FGMs) have been designed and developed in many 

engineering parts that need to be super heat resistant, such as thermal barrier materials for 

Text for this section, aerospace structural applications and fusion reactors. In FGMs, material 

properties vary smoothly and continuously from one surface to the other, especially from 
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metal to ceramic. From this smooth and continuous change in composition, FGMs can 

withstand extremely high temperature environments while maintain their structural integrity. 

Nan et al. [1] directly address the constitutive relations of FGM and specifically, used 

an analytical approach to describe the uncoupled thermomechanical properties of 

metal/ceramic FGM. These novel materials were first introduced by a group of scientists in 

Sendai, Japan (Koizumi, [2]) and then rapidly developed by the scientists. 

The nonlinear equilibrium equations and associated linear stability equations were 

expressed for bars, plates, and shells by Brush and Almroth [3]. The subject matter of this 

book is the buckling behavior of structural members subjected to mechanical loads. 

Subsequently, many researchers developed equilibrium and stability equations for plates and 

shells made of composite layered materials and used them to determine the buckling and 

vibration behaviour of structures. A review of recent developments in laminated composite 

plate buckling was carried out by Leissa [4]. Considerable research has focused on the 

buckling analysis of composite plates under mechanical and thermal loads based on the 

classical plate theory (Birman and Bert, [5]; Pandey and Sherbourne, [6] using the classical 

plate theory, which neglects the effects of transverse shear deformation, the calculations of the 

buckling loads are rather simple and generally may result in closed-form solutions. 

In this study, Thermal buckling analyses of S-FGM are investigated by using first 

order shear deformation theory. Material properties are varied continuously in the thickness 

direction according to a sigmoid distribution. The thermal buckling behaviours under 

uniform, linear and sinusoidal temperature rise across the thickness are analyzed. In addition, 

the effects of temperature field, volume fraction distributions, and system geometric 

parameters are investigated. The results are compared with the results of the classic plate 

theory (CPT). 

 

Theoretical Formulation  

The functionally graded material (FGM) can be produced by continuously varying the 

constituents of multi-phase materials in a predetermined profile. The most distinct features of 

an FGM are the non-uniform microstructures with continuously graded properties. A FGM 

can be defined by the variation in the volume fractions. Most researchers use the power-law 

function, exponential function, or sigmoid function to describe the volume fractions. In order 
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to avoid the stress concentrations appear in one of the interfaces (Lee and Erdogan [7]), the 

sigmoid function is used in this study. 

 

Sigmoid FGM structures 

In order to analyze sigmoid FGM structures as shown in Fig. 1, the sigmoid function 

(Lee and Erdogan [7], Bouazza et al [8]) can be employed in this study. The volume fraction 

using two power-law functions to ensure smooth distribution of stresses is defined. 
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where h is the thickness of the plate and k is the material parameter that dictates the material 

variation profile through the thickness.  

By using the rule of mixture, the material properties of the S-FGM can be calculated 

by: 
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(2) 

where E(z) denotes a generic material property such as modulus, Ec and Em indicate the 

property of the top and bottom faces of the structure, respectively. 
 

 
Figure 1. Typical FGM square plate 

 

Fig. 2 showed that the variation of volume fraction in Eq.(1) represents sigmoid 

distributions, and this FGM structure is thus called a sigmoid FGM structure (S-FGM 

structures). Consider an elastic rectangular plate. The local coordinates x and y define the 
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mid-plane of the plate, whereas the z-axis originated at the middle surface of the plate is in the 

thickness direction. The material properties, Young's modulus, on the upper and lower 

surfaces are different but are pre-assigned according to the performance demands. However 

the Young's modulus of the plates and vary continuously only in the thickness direction (z-

axis) i.e., E=E(z). It is called functionally graded material (FGM) plates. There have been 

numerous works on studying the response of FG plates made of isotropic elastic constituents 

with the homogenized material also modelled as isotropic elastic, the only other study on FG 

anisotropic plate [9] has assumed that all elastic constants vary exponentially through the 

plate thickness at the same rate. It is highly unlikely that elastic modulus of a FG anisotropic 

plate will exhibit this property. 
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Figure 2. Young’s modulus variation associated with different exponent indexes for a 

S-FGM plate 
 

Stability equations 

Assume that u,v,w denote the displacements of the neutral plane of the plate in x, y, z 

directions respectively; εx, εy denote the rotations of the normal to the plate mid-plane. 

According to the first order shear deformation theory, the strains of the plate can be 

expressed: 
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(3) 

The forces and moments per unit length of the plate expressed in terms of the stress 

components through the thickness are: 
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The nonlinear equations of equilibrium according to Von Karman’s theory are given 

by: 
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(5) 

Using Eqs.(2) (3) and (4), and assuming that the temperature variation is either linear 

with respect to x- and y-directions, or constant, the equilibrium Eq. (5) may be reduced to a 

set of two equations as: 
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where  
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To establish the stability equations, the critical equilibrium method is used. Assuming 

that the state of stable equilibrium of a general plate under thermal load may be designated by 

w0. The displacement of the neighbouring state is w0+w1, where w1 is an arbitrarily small 

increment of displacement. Substituting w0+w1 into Eq.(6) and subtracting the original 

equation, results in the following stability equation: 

0)wN2wNwN(
EEE

)1(E

)wN2wNwN(
E

)1(2w

xy,1
0
xyyy,1

0
yxx,1

0
x2

231

2
1

xy,1
0
xyyy,1

0
yxx,1

0
x

2

1
1

4

=++
−
ν−

−

++∇
ν+

+∇

 

(8) 

where,  refer to the pre-buckling force resultants 0
xy

0
y

0
x NandN,N

To determine the buckling temperature difference ∆Tcr, the pre-buckling thermal 

forces should be found firstly. Solving the membrane form of equilibrium equations, gives the 

pre-buckling force resultants: 
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Substituting Eq(9) into Eq. (8), one obtains: 
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The simply supported boundary condition is defined as: 
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(11) 

The following approximate solution is seen to satisfy both the governing equation and 

the boundary conditions: 

)b/yn(sin)a/xm(sincw1 ππ=  (12) 

where m, n are number of half waves in the x and y directions, respectively, and c is a 

constant coefficient. 

 

Buckling Analysis 

 

In this section, the thermal buckling behaviours of fully simply supported rectangular 

metal – ceramic plates under thermal environment are analyzed. The thermal load is assumed 

to be uniform, linear and sinusoidal temperature rise through the thickness direction. The 

reference temperature is assumed to be 5°C. The effects of volume fraction index and 

geometric parameter a/h are investigated in each case. 

 

Table 1. Material properties of metal and ceramic [10, 11] 
Property  

Material E (GPa) ρ(kg/m3) ν α (1/°C)  k(W/mk)  
Aluminum 
Alumina 

70 
380 

2707 
3800 

0.3 
0.3 

23e-6 
7.4e-6 

204 
10.4 

 
Uniform temperature rises 

Substituting Eq. (12) into Eq. (10), and substituting for the thermal parameter Φ  from 

Eq. (7), yields: 

TP ∆=Φ  (13) 
where: 
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The critical temperature difference is obtained for the values of m=n=1. 
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The variation of the critical temperature change ∆Tcr of metal -ceramic S-FGM plates 

under uniform temperature rise according to a/h and plate aspect ratio a/b is presented in Fig. 

3. The cases of a/b = 1, 0.75, 0.5and 0.25 are for the graded plates with two constituent 

materials. In this figure, the as aspect ratio a/b is decreased, the critical temperature change 

decreases. However, the critical temperature change decreases rapidly, when the geometric 

parameter a/h is increased. Thus when the plates are thicker, the critical temperature change 

becomes higher. 
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Figure 3. Critical temperature change with respect to aspect ratio and a/h under uniform 

temperature rise 
 

Linear Temperature Rise 

The temperature field under linear temperature rise through the thickness is assumed 

as: 

mT)2/hz(
h
T)z(T ++

∆
=  

(16) 

where z is the coordinate variable in the thickness direction which measured from the middle 

plane of the plate. 
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Tm is the ceramic temperature and ∆T is the temperature difference between metal 

surface and ceramic surface, i.e., ∆T = Tc - Tm. For this loading case, the thermal parameter Φ 

can be expressed as: 

ThXTP m ∆+=Φ  (17) 

where: 

∫
−
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2/h
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dz)2/hz)(z()z(EX  
(18) 

From Eq.(17) one has: 

X
TPT m−Φ

=∆  
(19) 

By solving Eq.(19), the critical temperature gradient ∆Tcr can be obtained. Fig. 4 gives 

the variation of the critical temperature gradient ∆Tcr of fully clamped Aluminum–Alumina 

FGM plates under linear temperature rise. The responses are very similar comparing to those 

under uniform temperature rise; however, the critical temperature gradient under linear 

temperature rise is higher than that under uniform temperature rise. 
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Figure 4. Critical temperature gradient with respect to aspect ratio and a/h under linear 

temperature rise 
 

 

Sinusoidal temperature rise 

The temperature field under sinusoidal temperature rise across the thickness is 

assumed as: 
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where T(z) is the temperature gradient. From Eq(20) and (7) the expression become as 

follows: 
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From Eq.(21): 
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TPT m

−
−Φ

=∆  
(23) 
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Figure 5.Critical temperature gradient with respect to aspect ratio and a/h under sinusoidal 

temperature rise 
 

By solving Eq.(23), the critical temperature gradient ∆Tcr can be obtained. The critical 

temperature gradient with respect to aspect ratio a/b and a/h is presented in Fig. 5. The 

responses are very similar comparing to previous results, but the critical temperature gradient 

of sinusoidal temperature rise is the highest in three cases. The critical temperature gradient 

increases as aspect ratio a/b is increased. When a/h is increased, the critical temperature 

gradient decreases, rapidly. From the results, one can find that as the plates are thicker, the 

critical temperature gradient becomes higher. 
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Figure.6. Comparison between temperature graphs vs. ratio b/h based on first order shear 
deformation theory, classic plate theory in the case of uniform temperature rise with simply 

supported edge 
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Figure.7. Comparison between temperature graphs vs. ratio b/h based on first order shear 
deformation theory, classic plate theory in the case of linear temperature rise with simply 

supported edge. 
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Figure 8. Comparison between temperature graphs vs. ratio b/h based on first order shear 

deformation theory, classic plate theory in the case of sinusoidal temperature rise with simply 
supported edge 

 

In Figures 6-8 the graphs of results of thermal buckling analysis for the S-FGM based 

on the FSDT compared to CPT are presented. This figure shows that the buckling temperature 

increases when the ratio b/h reduces. Also, based on the figure, the results obtained by first 

order shear deformation theory coincide well with the results of classic plate theory, except 

for very low values of b/h.  This is well explained by the large plate aspect ratio b/h=20, 30, 

40, 50,60,70,80, 90,100 or the small plate thickness h. 

 

 

Conclusions 

 

Thermal buckling of rectangular Aluminum–Alumina plates under thermal 

environment is investigated by using first order shear deformation theory. The thermal load is 

assumed to be uniform, linear and sinusoidal temperature rise through the thickness direction. 

In thermal buckling analysis, as geometric parameter a/h is increased, the critical temperature 

gradient decreases rapidly. When plate aspect ratio a/b is decreased, the critical temperature 

reduces as the plate becomes thinner. The critical temperature under sinusoidal temperature 

rise has the highest value in three cases, and that under linear temperature rise is higher than 

that under uniform temperature rise. 
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