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Abstract: In the present study, the buckling problem of nonhomogeneous microbeams with a variable
cross-section is analyzed. The microcolumn considered in this study is made of functionally graded
materials in the longitudinal direction and the cross-section of the microcolumn varies continuously
throughout the axial direction. The Bernoulli–Euler beam theory in conjunction with modified strain
gradient theory are employed to model the structure by considering the size effect. The Rayleigh–
Ritz numerical solution method is used to solve the eigenvalue problem for various conditions.
The influences of changes in the cross-section and Young’s modulus, size dependency, and non-
classical boundary conditions are examined in detail. It is observed that the size effect becomes more
pronounced for smaller sizes and differences between the classical and non-classical buckling loads
increase by increasing the taper ratios.

Keywords: size effect; Rayleigh–Ritz method; buckling; modified strain gradient theory; tapered
microcolumn
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1. Introduction

Engineering is a profession in which the principles of nature are applied to create
useful objects. A mechanical engineer develops a new engine. A mechatronic engineer
designs a robot. Civil engineers design a bridge, a dam, or a building. An electronic
engineer designs a computer or an integrated circuit. For many reasons, an engineer is not
only interested in a design that works at a nominal level but also one which is somehow the
best design. Simply put, the process of determining the best design is called optimization.
Consequently, we may wish to design the lowest-cost bridge for the site.

On the other hand, it is not always possible or economical to design and build struc-
tures/prismatic structures with one-type (homogeneous) of, or a constant, cross-section.
For this reason, it is useful to use two or more materials with variable cross-sections in
many engineering applications.

Functionally graded materials (FGMs) can be described as relatively new types of
composite materials that are used in various engineering applications, such as turbine
blades, cutting tools, rocket bodies, engine cylinders, artificial bones, and dental implants.
Due to the gradual and smooth variation of their material properties, FGMs have some
desired properties, for example, in avoiding cracking and delamination problems and
diminishing undesired stress concentrations between laminates. These improved materials
were introduced by a group of Japanese scientists in 1984 to propose a thermal barrier
material that can withstand a surface temperature of 2000 ◦K and a temperature range of
1000 ◦K for a section thinner than 10 mm in aircrafts and space shuttles [1].

With rapid developments in technology, FGMs have recently been applied in micro-
/nano-electromechanical systems (MEMS/NEMS), for example, as a structural element in
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shape memory alloy films [2], electrically actuated MEMS devices [3], and atomic force
microscopes [4]. The characteristic dimensions of these microstructures are specified in
micrometers and/or nanometers. As has been demonstrated through experimentation, the
size effect phenomenon plays a key role in the mechanical characteristics of microstruc-
tures [5–12]. Experimental studies to determine the static and dynamic behaviors of
structural elements are very important and valid. However, testing these structures under
different conditions is very laborious, expensive, and not feasible, especially at the micro
and nanoscales.

Solid mechanics is a branch of continuum mechanics that deals with the static and
dynamic responses of structures by modelling them mathematically. The mathemati-
cal modelling of structures can be simpler, cheaper, and more useful than experimental
works. Consequently, continuum mechanics may be considered as a potential approach
to determine the mechanical behaviors of small-sized structures. Unfortunately, classi-
cal continuum theory fails to estimate the responses of microstructures due to inability
to consider the size effect phenomena. Thus, the utilization of size-dependent theories
containing at least one material length scale parameter is required. Several higher-order
elasticity theories have been proposed such as couple stress, nonlocal elasticity, strain
gradient, nonlocal strain gradient, and doublet mechanics theories [13,14]. These theories
have been frequently employed to analyze microstructures in the past [15–30].

Free vibration and buckling behaviors of axially functionally graded (AFG) tapered
beams were numerically investigated by utilizing differential quadrature [31], differential
transform [32], and direct integral methods [33]. The transverse vibration of functionally
graded thick beams was examined using the Timoshenko beam theory [34] and a refined
beam theory considering thickness-stretching effect [35]. The interpolation matrix method
was applied to obtain the critical buckling loads of AFG-tapered thick beams based on the
first-order shear deformation beam theory [36]. A general solution for the free vibration of
AFG-tapered cantilevers with a tip mass was presented based using the Bernoulli–Euler
beam theory and the Myklestad method [37]. The thermo-mechanical buckling of bi-
directional functionally graded porous microbeams was studied [38]. Material properties
were changed throughout the height and length of the microbeam according to the power
law. The free vibrational response of non-prismatic AFG Timoshenko beams were subjected
to thermal variation in humid environments and examined via the harmonic differential
quadrature method [39].

Size-dependent stability analysis of homogeneous microbeams with varying cross-
sections was carried out based on the Bernoulli–Euler beam theory and modified strain
gradient theory [40]. Moreover, the buckling response of Bernoulli–Euler AFG-tapered
microstructures was examined using a modified couple stress theory for different boundary
conditions [41]. Nonlocal strain gradient theory was used to model the buckling response
of AFG nanobeams lying on a variable elastic foundation [42]. An analytical solution for the
static and dynamic responses of functionally graded tapered microbridges was introduced
on the basis of modified couple stresses and three-dimensional beam theories [43]. Stability
and free vibration responses of tapered functionally graded composite microbeams rein-
forced by carbon nanotube were subjected to a magnetic field and investigated using the
finite element method [44]. The free vibration of viscoelastic tapered microbars embedded
in a visco-Pasternak foundation was studied based on strain gradient theory and the Kelvin–
Voigt model [45]. Size-dependent nonlinear vibrations of functionally graded microbeams
with porosities was carried out based on modified couple stress and Bernoulli–Euler beam
theories. The numerical results were obtained by utilizing generalized differential quadra-
ture and direct iterative methods [46]. A buckling analysis of bi-directional functionally
graded tapered Bernoulli–Euler porous nanobeams was performed via nonlocal elasticity
theory [47]. Moreover, the thermo-mechanical vibrational response of rotary function-
ally graded tapered Bernoulli–Euler nanobeams was perused for cantilever and propped
cantilever beams on the basis of nonlocal elasticity theory [48].
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From this literature survey, it can be seen that there are many studies on the linear
and nonlinear mechanical behaviors of functionally graded tapered micro and nanobeams
based on nonlocal elasticity, modified couple stress, and nonlocal strain gradient theories in
particular. To the best of the authors’ knowledge, there is no study on the size-dependent
buckling analysis of axially functionally graded tapered microstructures based on the
modified strain gradient theory by considering higher-order boundary conditions and by
possessing variable length scale parameters. In this work, microstructure-dependent buck-
ling of AFG-tapered microbeams is examined. Euler-Bernoulli beam and modified strain
gradient theories are utilized to formulate the AFG-tapered microbeams. The Rayleigh–Ritz
method is applied to obtain the critical buckling loads of cantilever and propped cantilever
microbeams at various taper ratios and gradient indices. Effects of taper ratios, material
property gradient indices, length scale parameters, and nonclassical boundary conditions
are investigated in detail.

2. Theory and Formulation

Modified strain gradient theory (SGT) is introduced by Lam et al. [5]. This nonclassical
elasticity theory includes three additional material length scale parameters to take into
consideration when investigating size effect. According to this theory, the strain energy U
in a linear elastic isotropic material can be expressed as

U =
1
2

∫ L

0

∫
A

(
σijεij + piγi + τ

(1)
ijk η

(1)
ijk + ms

ijχ
s
ij

)
dAdx (1)

εij =
1
2
(
ui,j + uj,i

)
(2)

εmm,i = γi (3)

η
(1)
ijk = 1

3

(
ε jk,i + εki,j + εij,k

)
− 1

15
[(

δij(εmm,k + 2εmk,m)

+δjk(εmm,i + 2εmi,m) + δki
(
εmm,j + 2εmj,m

))] (4)

χ
(s)
ij =

1
2
(
θi,j + θj,i

)
(5)

θi =
1
2

eijkuk,j (6)

where ui, θi, εij, γi, η
(1)
ijk , and χs

ij represent the components of the displacement and rotation
vectors, the classical strain tensor, the dilatation gradient vector, the deviatoric stretch
gradient, and the symmetric rotation gradient tensors, respectively. δ is Kronecker delta
and eijk is an alternate symbol. Furthermore, the components of the classical stress tensor
and the higher-order stress tensors can be defined as [5]

σij = λεmmδij + 2Gεij (7)

pi = 2Gl2
0γi (8)

τ
(1)
ijk = 2Gl2

1η
(1)
ijk (9)

ms
ij = 2Gl2

2χs
ij (10)

where l0, l1, l2 are the additional material length scale parameters. λ and G are the Lamé
constants and can be defined in terms of Young’s modulus and Poisson’s ratio as

λ =
Ev

(1 + v)(1 − 2v)
(11)

G =
E

2(1 + v)
(12)
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The displacement components of an initially straight Bernoulli–Euler beam can be
defined as

u(x, z) = −z
dw(x)

dx
(13)

v(x, z) = 0 (14)

w(x, z) = w(x) (15)

where u, v, and w are the components of the displacement vector in x−, y−, and z− axes,
respectively. Using Equations (13)–(15) in Equations (2)–(5) yields the following nonzero
components of the classical and higher-order strains as

εxx = −z
d2w
dx2 (16)

γx = −z
d3w
dx3 (17)

γz = −d2w
dx2 (18)

η
(1)
xxx = −2

5

(
z

d3w
dx3

)
(19)

η
(1)
xxz = η

(1)
xzx = η

(1)
zxx = − 4

15

(
d2w
dx2

)
(20)

η
(1)
xyy = η

(1)
xzz = η

(1)
yxy = η

(1)
yyx = η

(1)
zxz = η

(1)
zzx =

1
5

(
z

d3w
dx3

)
(21)

η
(1)
yyz = η

(1)
yzy = η

(1)
zyy =

1
15

(
d2w
dx2

)
(22)

η
(1)
zzz =

1
5

(
d2w
dx2

)
(23)

χs
xy = χs

yx = −1
2

(
d2w
dx2

)
(24)

By substituting Equations (16)–(24) into Equations (7)–(10), the nonzero components
of macro and micro stresses can be obtained as (by neglecting Poisson effect [29])

σxx = −Ez
d2w
dx2 (25)

px = −2Gl2
0z

d3w
dx3 (26)

pz = −2Gl2
0

d2w
dx2 (27)

τ
(1)
xxx = −4

5
Gl2

1z
d3w
dx3 (28)

τ
(1)
xxz = τ

(1)
xzx = τ

(1)
zxx = − 8

15
Gl2

1
d2w
dx2 (29)

τ
(1)
xyy = τ

(1)
xzz = τ

(1)
yxy = τ

(1)
yyx = τ

(1)
zxz = τ

(1)
zzx =

2
5

Gl2
1z

d3w
dx3 (30)

τ
(1)
yyz = τ

(1)
yzy = τ

(1)
zyy =

2
15

Gl2
1

d2w
dx2 (31)
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τ
(1)
zzz =

2
5

Gl2
1

d2w
dx2 (32)

ms
xy = ms

yx = −Gl2
2

d2w
dx2 (33)

Using above equations into Equation (1) yields an expression for the strain energy
U as

U =
1
2

∫ L

0

[(
EI + GA

(
2l2

0 +
8
15

l2
1 + l2

2

))(
d2w
dx2

)2

+

(
GI
(

2l2
0 +

4
5

l2
1

))(
d3w
dx3

)2]
dx (34)

where A and I are the cross-section and second moment of area, respectively.

3. Buckling of an AFG-Tapered Microcolumn

In the present study, it is considered that the cross-section A(x) and second moment of
area I(x) are linearly varied along the longitudinal direction. Moreover, the material proper-
ties of Young’s modulus E(x), the shear modulus G(x), and the length scale parameters li(x)

change gradually in this direction. They can be described as

A(x) = AL

(
1 − α

x
L

)
(35)

I(x) = IL

(
1 − α

x
L

)
(36)

E(x) = EL + (ER − EL)VR (37)

G(x) = GL + (GR − GL)VR (38)

li(x)
= liL +

(
liR − liL

)
VR (i = 0, 1, 2) (39)

where α represents the taper ratio, and the subscripts L and R denote left and right sides
of the microbeam, respectively. VR defines the volume fraction of the right side’s material
equals

( x
L
)n in which n is the non-negative material property gradient index. It is notable

that if α = 0, the microbeam will have a uniform section. On the other hand, if n = 0 or ∞,
the microbeam will be homogeneous. Variation of the volume fraction of right side’s
material throughout the longitudinal direction for various gradient indices is depicted
in Figure 1. It is seen from this figure that VR becomes bigger for lower values of the
material property gradient index and approaches to zero by increasing the material property
gradient index.
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The strain energy U in Equation (34) can be rewritten for AFG-tapered microbeams
as following

U∗ = 1
2

∫ L
0

[(
E(x) I(x) + G(x)A(x)

(
2l2

0(x) +
8
15 l2

1(x) + l2
2(x)

))(
d2w
dx2

)2

+
(

G(x) I(x)

(
2l2

0(x) +
4
5 l2

1(x)

))(
d3w
dx3

)2
]

dx
(40)

4. Application of Rayleigh–Ritz Method

The total potential energy of the AFG-tapered microbeam can be expressed as

Π = U∗ − W (41)

where U∗ is the strain energy of the AFG-tapered microbeam and W is the work done by
axial compressive load as

W =
P
2

∫ L

0

(
dw
dx

)2
dx (42)

where P is the axial compressive load. The total potential energy of the AFG-tapered
microbeam is written by using Equations (40) and (42) in Equation (41) as

Π = 1
2

∫ L
0

[(
E(x) I(x) + G(x)A(x)

(
2l2

0(x) +
8

15 l2
1(x) + l2

2(x)

))(
d2w
dx2

)2

+
(

G(x) I(x)

(
2l2

0(x) +
4
5 l2

1(x)

))(
d3w
dx3

)2
]

dx − P
2

∫ L
0

(
dw
dx

)2
dx

(43)

Utilizing Rayleigh–Ritz method with assumed trial function, w(x) can be defined as

w(x) =
N

∑
i=1

ai ϕi(x) (44)

where ai are the constants and ϕi(x) is the admissible function which is necessary to satisfy
only the geometric (essential) boundary conditions. The geometric boundary conditions of
clamped and pinned ends for classical case are

Clamped (C) : w = 0,
dw
dx

= 0 (45)

Pinned (P) : w = 0 (46)

For nonclassical boundary conditions, two enable boundary conditions are possible at
fixed ends as [5,15]

Mnc =
d3w
dx3 = 0 (47)

d2w
dx2 = 0 (48)

In the present study, two admissible functions are chosen to be dependent on cantilever
(clamped-free) and propped cantilever (clamped-pinned) microbeams as following

Cantilever (BC1) : ϕ1
i (x) = (x)i+1, i = 1, 2, . . . , 10 (49)

Cantilever (BC2) : ϕ2
i (x) = (x)i+2, i = 1, 2, . . . , 10 (50)

Propped cantilever (BC1) : ϕ1
i (x) = (x)i+1(L − x), i = 1, 2, . . . , 10 (51)

Propped cantilever (BC2) : ϕ2
i (x) = (x)i+2(L − x), i = 1, 2, . . . , 10 (52)
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The stationary points of the total potential energy are the solutions which satisfy
equilibrium as

∂Π
∂ai

= 0, i = 1, 2, . . . , 10 (53)

For a non-trivial solution, the determinant of the coefficient matrix must be equal to
zero. Consequently, ten roots of this eigenvalue problem can be assessed and the smallest
of them indicates the critical buckling load.

For illustration purposes, the solution of Equation (53) is presented for homogeneous
uniform cantilever beams with i = 2. In this case, w(x) can be written according to
Equations (44) and (49) as

w(x) = a1x2 + a2x3 (54)

The total potential energy of a homogeneous uniform beam can be expressed as

Π =
1
2

∫ L

0

[
EI
(

d2w
dx2

)2

− P
(

dw
dx

)2
]

dx (55)

Substituting Equation (54) in Equation (55) yields

Π = 1
2

∫ L
0

[
EI(2a1 + 6a2x)2 − P

(
2a1x + 3a2x2)2

]
dx

= 2EIL
(
a2

1 + 3a1a2L + 3a2
2L2)− PL3

30
(
20a2

1 + 45a1a2L + 27a2
2L2) (56)

Use of Equation (56) in Equation (53) gives the following relations

∂Π
∂a1

= EIL(4a1 + 6a2L)− PL3
(

4
3

a1 +
3
2

a2L
)
= 0 (57)

∂Π
∂a2

= EIL
(

6a1L + 12a2L2
)
− PL3

(
3
2

a1L +
9
5

a2L2
)
= 0 (58)

Equations (57) and (58) can be written in matrix form as[
K11 K12
K21 K22

]{
a1
a2

}
= 0 (59)

where

K11 = 4L
(

EI − PL2

3

)
, K12 = K21 = 3L2

(
2EI − PL2

2

)
, K22 = 3L3

(
4EI − 3PL2

5

)
(60)

Two dimensionless roots are obtained by equaling to zero the determinant of the
coefficient matrix in Equation (59) and multiplying L2

EI as

λ1 = 2.4860 and λ2 = 32.1807 (61)

The smallest root (λ1) indicates the critical buckling load. It is notable that Equation (56)
is written for i = 10 as  K11 · · · K_110

...
. . .

...
K101 · · · K1010




a1
...

a10

 = 0 (62)

Similarly, ten roots can be assessed and the smallest of them indicates the critical
buckling load.

5. Results and Discussion

First, in order to prove the validity and accuracy of the current results, comparisons
and convergences for the dimensionless classical critical buckling loads of tapered homoge-
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neous columns are presented in Tables 1 and 2 for various taper ratios and cantilever and
propped cantilever microbeams, respectively. It is revealed from the table that the exact
and present results agree very well for two boundary conditions and all taper ratios.

Table 1. Comparison and convergence of dimensionless critical buckling loads for homogeneous
tapered cantilever microbeams (l0 = l1 = l2 = 0).

Taper Ratio, α
Present Exact

N = 2 N = 4 N = 6 N = 8 N = 10 [49]

0 2.4860 2.4674 2.4674 2.4674 2.4674 2.467
0.1 2.4165 2.3928 2.3928 2.3928 2.3928 2.393
0.3 2.2702 2.2351 2.2351 2.2351 2.2351 2.235
0.5 2.1078 2.0621 2.0621 2.0621 2.0621 2.062
0.7 1.9140 1.8655 1.8653 1.8653 1.8653 1.865
0.9 1.6462 1.6229 1.6212 1.6211 1.6211 1.621

Table 2. Comparison and convergence of dimensionless critical buckling loads for homogeneous
tapered propped cantilever microbeams (l0 = l1 = l2 = 0).

Taper Ratio, α
Present Exact

N = 2 N = 4 N = 6 N = 8 N = 10 [49]

0 20.9187 20.1943 20.1907 20.1907 20.1907 20.1907
0.1 19.9908 19.1736 19.1686 19.1686 19.1686 19.17
0.3 18.0621 17.0426 17.0354 17.0353 17.0353 17.03
0.5 15.9584 14.7452 14.7394 14.7394 14.7394 14.74
0.7 13.4459 12.1775 12.1773 12.1772 12.1772 12.18
0.9 9.7113 9.0608 9.0307 9.0295 9.0294 9.029

Because the comparative results above are based on classical theory, another compar-
ison of size-dependent dimensionless critical buckling loads for homogeneous tapered
cantilever microbeams made of epoxy is given in Table 3. For the purpose of comparison,
the material and geometric properties are used as indicated in Ref. [40] for this table only.
It is observed that there is an excellent agreement between the compared results.

Table 3. Comparison of size-dependent dimensionless critical buckling loads for tapered cantilever
epoxy microbeams (l0 = l1 = l2 = h1).

Taper Ratio, α
BC1 BC2

Present [40] Present [40]

0 40.38752 40.3875 41.52736 41.5274
0.2 35.20555 35.2055 36.04467 36.0447
0.4 29.81004 29.8100 30.38676 30.3868
0.6 24.04835 24.0483 24.40082 24.4008
0.8 17.51253 17.5125 17.67871 17.6787

Tables 4 and 5 show the variation of dimensionless critical buckling loads for AFG-
tapered microbeams for various gradient indices. It is assumed in the analysis that
EL = 2ER, lL = 2lR and vL = vR = 0.3. The tables demonstrate that an increase in
the material property gradient index gives rise to an increment in the critical buckling
loads. Furthermore, it can be said that the critical buckling loads obtained based on SGT
are always bigger than those evaluated by CT. In addition, it is seen from these two tables
that the critical buckling loads for α = 0.25 are greater than those for α = 0.75. Moreover, it
is notable that the critical buckling loads obtained for BC2 are larger than those for BC1
and that this situation is more prominent for propped cantilever microbeams.
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Table 4. Dimensionless buckling loads for nonhomogeneous tapered microbeams for various gradient
indices (α = 0.25, lL = h1).

n
Cantilever Propped Cantilever

CT SGT-BC1 SGT-BC2 CT SGT-BC1 SGT-BC2

0 2.2757 11.5570 11.8369 17.5814 89.5126 91.6124
0.5 3.2955 29.7361 30.0206 22.8377 175.9789 178.2837
1 3.7659 43.0086 43.5267 25.4402 232.7055 236.3154
2 4.1851 59.4975 60.5222 28.5113 314.3887 319.9357

10 4.5350 77.8720 79.8187 34.3698 564.3991 577.0945

Table 5. Dimensionless buckling loads for nonhomogeneous tapered microbeams for various gradient
indices (α = 0.75, lL = h1).

n
Cantilever Propped Cantilever

CT SGT-BC1 SGT-BC2 CT SGT-BC1 SGT-BC2

0 1.8104 9.1937 9.3599 11.4694 58.3994 59.4905
0.5 2.5358 21.4730 21.6085 14.5021 107.0497 108.1194
1 2.8923 30.5769 30.8118 16.0267 138.5213 140.1774
2 3.2404 43.0156 43.4926 17.8791 183.6129 186.1580

10 3.5961 62.2555 62.3944 22.0821 348.4897 354.3562

Variations of dimensionless buckling loads for cantilever and propped cantilever
AFG-tapered microbeams with respect to h1/l for different taper ratios are illustrated in
Figures 2 and 3, respectively. It can be seen from these figures that size-dependent buckling
loads decrease by increasing h1/lL, approaching classical results. Moreover, it is observed
that the critical buckling loads for α = 0.3 are greater than those for α = 0.6.
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Influences of nonclassical boundary conditions on the size-dependent dimensionless
buckling loads with respect to various taper ratios for cantilever and propped cantilever
microbeams are depicted in Figures 4 and 5, respectively. It can be found from the figures
that a decrement occurs in the buckling loads when increasing the taper ratio. Furthermore,
the difference between the critical buckling loads evaluated for BC1 and BC2 is more
evident for smaller taper ratios, especially for a uniform cross-section when α = 0. This
difference diminishes by increasing the taper ratio.
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6. Conclusions

In this study, buckling behavior of axially functionally graded non-prismatic mi-
crobeams is examined via modified strain gradient theory. The Rayleigh–Ritz method is
implemented to solve the problem with cantilever and propped cantilever microbeams
for various taper ratios and gradient indices. A detailed parametric study is performed to
investigate the influences of taper ratio, material gradient index, length scale parameter,
and boundary conditions on the critical buckling loads. It can be concluded that size effect
is more important for smaller h1/lL. Futhermore, non-classical boundary conditions are
more effective for propped cantilever microbeams than cantilever ones.
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