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ABSTRACT 

The present paper examines the thermal buckling of nonlocal magneto-electro-thermo-elastic function-
ally graded (METE-FG) beams under various types of thermal loading namely uniform, linear and sinus-
oidal temperature rise and also heat conduction.  The material properties of nanobeam are graded in the 
thickness direction according to the power-law distribution.  Based on a higher order beam theory as 
well as Hamilton’s principle, nonlocal governing equations for METE-FG nanobeam are derived and are 
solved using Navier type method.  The small size effect is captured using Eringen’s nonlocal elasticity 
theory.  The most beneficial feature of the present beam model is to provide a parabolic variation of the 
transverse shear strains across the thickness direction and satisfies the zero traction boundary conditions 
on the top and bottom surfaces of the beam without using shear correction factors.  Various numerical 
examples are presented investigating the influences of thermo-mechanical loadings, magnetic potential, 
external electric voltage, power-law index, nonlocal parameter and slenderness ratio on thermal buckling 
behavior of nanobeams made of METE-FG materials. 

Keywords: Magneto-electro-thermo-elastic FG nanobeam, Buckling, Nonlocal elasticity theory, Higher 
order beam theory. 

1.  INTRODUCTION 

The theory of magneto-electro-thermo-elasticity has 
aroused much interest in many industrial applications, 
particularly in nuclear device, where there exists a pri-
mary magnetic field.  In magneto-electro-thermo- 
elastic (METE) materials, applying heat or a magnet-
ic/electric field results in mechanical deformation due 
to their unique capability to convert energy among three 
different forms: Magnetic, electric and mechanical.  
Several investigations have been performed by consid-
ering the interaction between magnetic, thermal and 
strain fields.  Among them, Jiang and Ding [1] pre-
sented analytical solutions to study magneto-electro- 
elastic responses of beams.  Chen et al. [2] investi-
gated vibrational charactristics of non-homogeneous 
transversely isotropic magneto-electro-elastic plates.  
Free vibration of multiphase and layered magneto- 
electro-elastic beam for BaTiO3-CoFe2O4 composite is 
carried out by Annigeri et al. [3].  Kumaravel et al. [4] 
researched linear buckling and free vibration behavior 
of layered and multiphase magneto‐electro‐elastic 

(MEE) beam under thermal environment.  Applying 
finite element method, transient dynamic response of 
multiphase magneto-electro-elastic cantilever beam is 
presented by Daga et al. [5].  Also, Liu and Chang [6] 
presented a closed form expression for the vibration 
problem of a transversely isotropic magneto-electro- 
elastic plate.  Razavi and Shooshtari [7] studied non-
linear free vibration of symmetric magneto-electro- 
elastic laminated rectangular plates.  Most recently, 
Xin and Hu [8] presented semi-analytical solutions for 
free vibration of layered magneto-electro-elastic beams 
via three-dimensional elasticity theory. 

Recently, various studies in solid mechanics are be-
ing performed where the elastic coefficients of materi-
als are no longer constant but they are position-    
dependent.  Therefore, new structural materials such 
as functionally graded materials (FGMs) as a novel 
class of advanced composite materials have a non-  
homogeneous character wherein the composition of 
each material constituent varies gradually with respect 
to spatial coordinates.  Initially, FGMs were designed 
as thermal barrier materials for aerospace application 
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and fusion reactors, later on, FGMs are developed for 
military, automotive, biomedical application, semicon-
ductor industry, manufacturing industry and general 
structural element in thermal environments.  These 
materials are created to provide desirable properties of 
their individual constituent.  For instance, thermal 
protection structures made of a ceramic/metal function-
ally graded material show heat and corrosion resistance 
on the pure ceramic side while maintaining the struc-
tural strength and stiffness by the pure metal surface.  
Magneto-electro-elastic composites are exploited for 
the construction of magnetic field probes, electric 
packaging, hydrophones, medical ultrasonic imaging, 
sensors and actuators [9].  Until now, several investi-
gations are carried out on mechanical responses of 
structures made from a contribution of magneto-electro- 
elastic and compositionally graded materials. Pan and 
Han [9] presented an exact solution for the multilayered 
rectangular plate made of functionally graded, aniso-
tropic, and linear magneto-electro-elastic materials.  
Also, Huang et al. [10] studied the plane stress problem 
of generally anisotropic magneto-electro-elastic beams.  
In another study, three-dimensional static behavior of 
doubly curved functionally graded (FG) magneto-  
electro-elastic shells under mechanical load, electric 
displacement and magnetic flux using an asymptotic 
approach is investigated by Wu and Tsai [11].  Li et al. 
[12] investigated the problem of a functionally graded, 
transversely isotropic, magneto-electro-elastic circular 
plate acted on by a uniform load.  Kattimani and Ray 
[13] investigated active control of geometrically non-
linear vibrations of functionally graded magneto-  
electro-elastic (FGMEE) plates.  Bending of circular 
magnetoelectroelastic plates with functionally graded 
material properties using a meshless method is analyzed 
by Sladek et al. [14]. 

To understand the mechanical behavior of nano- 
structural elements applied as components NEMS, two 
kinds of nonlocal models are proposed, i.e. nonlocal 
strengthening model and nonlocal weakening model.  
Nonlocal strengthening model [15] states that nano- 
structural stiffness is enhancement with stronger non-
local effects, while nonlocal weakening model [16-18] 
asserts an opposite conclusion.  These theories are 
introduced to overcome the defects of classical contin-
uum theory which is unable to describe the size-   
dependency of structures at nano scales.  Therefore, 
some researchers have studied static and dynamic 
charactristics of nanobeams by using nonlocal elasticity 
theories.  Li et al. [19] showed that both two nonlocal 
models are correct and are applicable in analysis of 
nanoscale structures.  Based on nonlocal strengthening 
model, Li et al. [20] studied static behavior of ultra-thin 
beams with nanoscale thickness.  Also, Li et al. [21] 
analyzed longitudinal dynamic behaviors of nano- 
rods/nanotubes using the hardening nonlocal approach.  
Based on the nonlocal weakening model, Şimşek and 
Yurtcu [22] provided analytical solutions for bending 
and buckling of FG nanobeams based on the nonlocal 
Timoshenko beam theory.  Rahmani and Jandaghian 
[23] studied buckling of functionally graded nanobeams 
based on a nonlocal third-order shear deformation the-

ory.  Zemri et al. [24] analyzed mechanical responses 
of FG nanobeams using a refined shear deformation 
theory.  Ebrahimi and Barati [25] studied vibration 
aalaysis of third-order FG nanobeams.  Also, Ebrahimi 
and Salari [26] conducted thermo-mechanical analysis 
of FG nanobeams subjected to various thermal loads.  
It is clear that the effects of magnetic and electric fields 
are neglected in these works.  Free vibration behavior 
of magneto-electro-elastic (MEE) nanobeams using 
nonlocal theory and Timoshenko beam theory is studied 
by Ke and Wang [27].  In this article, it is supposed 
that the MEE nanobeam is subjected to the external 
electric potential, magnetic potential and uniform tem-
perature rise.  In another study, Ke et al. [28] investi-
gated the free vibration behavior of magnetoelectro- 
elastic (MEE) nanoplates based on the nonlocal theory 
and Kirchho ff plate theory.  Li et al. [29]analyzed 
buckling and free vibration of magnetoelectroelastic 
nanoplate resting on Pasternak foundation based on 
nonlocal Mindlin theory.  Ansari et al. [30] studied 
forced vibration behavior of higher order shear de-
formable magneto-electro-thermo elastic (METE) 
nanobeams based on the nonlocal elasticity theory in 
conjunction with the von Kármán geometric nonlinear-
ity.  Wu et al. [31] researched surface effects on anti- 
plane shear waves propogating in nanoplates made from 
magneto-electro-elastic materials.  According to the 
literature, there is no work investigating the effects of 
thermal loading on buckling responses of size-     
dependent METE-FG nanobeams.  Since thermal 
buckling is an undesirable phenomena [32] which 
causes instability of structures, there is a strong need to 
analyze the buckling of METE-FG nanobeams in ther-
mal environments.   

This paper investigates thermal buckling of nonlocal 
magneto-electro-thermo-elastic FG beams by using 
Eringen’s nonlocal elasticity theory.  The governing 
differential equations are derived by implementing 
Hamilton’s principle and also the Navier solution 
method is adopted solve these stability equations.  
Magneto-electro-thermo-elastic properties of the FG 
nanobeams are supposed to be variable through thick-
ness based on power-law model.  In the present article, 
the mentioned task is accomplished, including the fol-
lowing novelties: 

1. A higher order parabolic beam theory is used to 
capture the effect of shear deformation which pro-
vides more accurate results than classical beam the-
ory. 

2. Four types of thermal loading including uniform, linear 
and sinusoidal temperature rise as well as heat conduc-
tion through the beam thickness are considered. 

3. The influences of both magnetic and electric fields 
are investigated on the stability of smart nanobeams 
in thermal environments for the first time. 

2.  THEORETICAL FORMULATIONS 

2.1 The Material Properties of METE-FG 
Nanobeams 

Assume a magneto-electro-thermo-elastic function-
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ally graded nanobeam exposed to a magnetic potential 
( , , )x z t  and electric potential ( , , )x z t , with length 

L and uniform thickness h, as shown in Fig. 1 [33].  
The effective material properties of the METE-FG nano- 
beam based on the power-law model can be stated in the 
following form: 

 2 2 1 1V VP P P   (1) 

In which P1 and P2 denote the material properties of 
the bottom and higher surfaces, respectively.  Also V1 
and V2 are the corresponding volume fractions related 
by: 

 2 1 2

1

2
, 1

p
z

V V
h

V
 
 





   (2) 

Therefore, according to Eqs. (1) and (2), the effective 
magneto-electro-elastic material properties of the FG 
beam is defined as: 
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p
z

z
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It must be noted that, the top surface at z h/2 of 
FG nanobeam is assumed CoFe2O4 rich, whereas the 
bottom surface (z h/2) is BaTiO3 rich.  

2.2 Nonlocal Elasticity Theory for the 
Magneto-Electro-Thermo-Elastic Materials 

Contrary to the constitutive equation of classical 
elasticity theory, Eringen’s nonlocal theory notes that 
the stress state at a point inside a body is regarded to be 
function of strains of all points in the neighbor regions.  
For a nonlocal magneto-electro-thermo-elastic solid the 
basic equations with zero body force may be defined as: 
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Fig. 1  Configuration of a METE-FG nanobeam. 

where ij, ij, Di, Ei, Bi and Hi denote the stress, strain, 
electric displacement, electric field components, mag-
netic induction and magnetic field and displacement 
components, respectively; kl and T are thermal ex-
pansion coefficient and temperature change; Cijkl, emij, 
sim, qnij, dij, ij, pi and i are the elastic, piezoelectric, 
dielectric constants, piezomagnetic, magnetoelectric, 
magnetic, pyroelectric and pyromagnetic constants, 
respectively and  e0a/l is defined as scale coefficient, 
where e0 is an experimentally determined material con-
stant and a and l are the internal and external character-
istic length of the nanostructures, respectively.  Finally 
it is possible to represent the integral constitutive rela-
tions given by Eq. (4) in an equivalent differential form 
as: 

2 2
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2.3 Nonlocal Magneto-Electro-Thermo-Elastic FG 
Nanobeam Model 

Based on third order beam theory, the displacement 
field at any point of the beam are supposed to be in the 
form: 

3( , ) ( ) ( )xu x z u
w

z
x

x x z   


  


 


 (6a) 

( , ) ( )zu x z w x   (6b) 

in which  4/3h2 and u and w are displacement com-
ponents in the mid-plane along the coordinates x and z, 
respectively, while  denotes the total bending rotation 
of the cross-section.  To satisfy Maxwell’s equation, 
the distribution of electric and magnetic potential along 
the thickness direction is supposed to change as a com-
bination of a cosine and linear variation as follows: 

 
2

Φ ( , , ) cos ( ) ( , )
z

x z t z x t V
h

     (7a) 

 
2

( , , ) cos ( ) ( , ) Ω
z

x z t z x t
h

      (7b) 

where  /h.  Also, V and  are the initial external 
electric voltage and magnetic potential applied to the 
FG nanobeam.  The non-zero strains can be stated as: 

 (0) (1) (3)
xx

3
xx xx xxz z      (8a) 

 (0) 2)2 (
x xz xz zz     (8b) 
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where 

(0) (1) (3)
2
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u w

x x x x
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And 24 / h  .  Also, the components of electric 

and magnetic field (Ex, Ez, Hx, Hz) can be obtained as: 
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The Hamilton’s principle can be stated in the fol-
lowing form to obtain the governing equations: 

 0
(Π Π ) 0

t

S W dt  
 (11) 

where S is strain energy and W is work done by ex-
ternal applied forces.  The first variation of strain en-
ergy S can be calculated as: 
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Substituting Eqs. (8) and (9) into Eq. (12) yields: 
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in which N, M and Q are the axial force, bending mo-
ment and shear force resultants, respectively.  Rela-
tions between the stress resultants and stress component 
used in Eq. (13) are defined as: 
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The work done due to external electric voltage, W, 
can be written in the form: 

xx
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where ˆˆ ,M M P Q Q R      and ( )q x  and 
( )f x  are the transverse and axial distributed loads and 

also NT, NH and NE are the normal forces induced by 
temperature changes, magnetic potential and electric 
voltage, respectively which are defined as: 
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For a magneto-electro-thermo-elastic FGM nano- 
beam in the one dimensional case, the nonlocal consti-
tutive relations (5a) ~ (5c) may be rewritten as: 
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Inserting Eqs. (13) and (15) in Eq. (11) and integrat-
ing by parts, and gathering the coefficients of u, w, 
,  and  the following governing equations are 
obtained: 
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By integrating Eqs. (17) ~ (22), over the beam’s 
cross-section area, the force-strain and the moment- 
strain of the nonlocal third order beam theory can be 
obtained as follows: 

2
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where  (e0a)2 and quantities used in above equations 
are defined as: 
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The explicit relation of the nonlocal normal force, 
bending moment and shear force can be derived by 
substituting for their second derivative from Eqs. (23) ~ 
(25) into Eqs. (28) ~ (31) as follows: 
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Finally, based on third-order beam theory, the non-
local equations of motion for a magneto-electro-elastic 
FG nanobeam can be obtained by substituting for N, 
M̂  and Q̂  from Eqs. (46) ~ (48) into Eqs. (23) ~ (25) 
as follows: 
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3.  SOLUTION PROCEDURE 

Here, on the basis of the Navier method, an analyti-
cal solution of the governing equations for buckling of 
a simply supported magneto-electro-elastic FG nano- 
beam is presented.  To satisfy governing equations of 
motion, the displacement variables are adopted to be of 
the form: 
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where Un, Wn, n, n and n are the unknown Fourier 
coefficients.  Using Eqs. (56) ~ (57) the analytical 
solution can be obtained from the following equations: 

 5*5[ ] { } 0K d   (58) 
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4.  TYPES OF THERMAL LOADING 

4.1  Uniform Temperature Rise (UTR) 

For a FG nanobeam at reference temperature T0 the 
temperature is uniformly raised to a final value T which 
the temperature change is T = T  T0. 

4.2  Linear Temperature Rise (LTR) 

For a FG nanobeam for which the beam thickness is 
thin enough, the temperature distribution is assumed to 
be varied linearly through the thickness as follows [25]: 

 1

1

2

z
T T T

h
     
 

 (59) 

where the buckling temperature difference is T = T2  
T1 and T2 and T1 are the temperature of the top surface 
and the bottom surface, respectively. 

(52) 
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4.3  Heat Conduction (HC) 

The one-dimensional temperature distribution through- 
the-thickness can be obtained by solving the steady-state 
heat conduction equation with the boundary conditions on 
bottom and top surfaces of the beam across the thickness 
[25]: 
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where  is heat conductivity coefficient.  The solution 
of above equation is: 
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4.4  Sinusoidal Temperature Rise (STR) 

The temperature field when METE-FG nanobeam is 
subjected to sinusoidal temperature rise across the 
thickness can be defined as [34]: 

 1

1
1 cos

2 2
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T T T
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 (62) 

5.  RESULTS AND DISCUSSION 

The influences of different thermal environments, 
magnetic and electric fields on the buckling of 
METE-FG nanobeams with material properties listed in 
Table 1 are evaluated in the present study.   

Due to the reason that the present results are the first 
published results for the METE-FG nanobeams, the 
present results are verified by results of nonlocal FG 
Reddy beams presented by Rahmani and Jandaghian 
[23] and the results are presented in Table 2.  The 
beam geometry has the following dimensions: L (length) 

 10000nm and h (thickness)  varied.  Also, it is 
supposed that the temperature rise in lower surface to 
reference temperature T0 of the beam is T1  T0  5K. 

The influences of different parameters such as vari-
ous temperature rise (UTR, LTR, HC, and STR), mag-
netic potential (), external electric voltage (V), non-
local parameter () and gradient index on critical buck-
ling temperature are tabulated in Table 3.  For all 
magnetic potentials and external voltages due to the 
softening influence of nonlocal parameter and gradient 
index on the beam structure increasing the their values 
leads to reduction in Tcr.  Also, positive/negative 
values of magnetic potential/electric voltage produce 
larger buckling temperature (Tcr) than nega-
tive/positive ones.  Moreover, it is obsevable that pos-
itive values of magnetic potential show an increasing 
influence on critical buckling temperatures, whereas the 
negative ones have a reducing impact.  This is due to 
the reason that compressive and tensile in-plane forces 
are generated in the nanobeam when positive and nega-
tive magnetic potentials are applied, respectively. 

Table 1 Magneto-electro-thermo-elastic coefficients 
[33,35]. 

Properties BaTiO3 CoFe2O4 

c11 (GPa)  166 286 

c55 43 45.3 

e31 (Cm2)  4.4 0 

e15 11.6 0 

q31 (N/Am)  0 580.3 

q15 0 550 

s11 (109C2m2N1) 11.2 0.08 

s33 12.6 0.093 

11 (106Ns2C2/2) 5 590 

33 10 157 

d11 = q33 0 0 

1 (1061/K)  15.7 10 

 (W/mK)  3.2 2.5 

Table 2 Comparison of the non-dimensional buckling load for a S-S FG nanobeam with 
various power-law index (L/h  20). 

p 

Nonlocal parameter 

  1   2   3   4 

RBT [23] Present RBT [23] Present RBT [23] Present RBT [23] Present 

0 8.9258 8.925759 8.1900 8.190046 7.5663 7.566381 7.0309 7.030978 

0.1 9.7778 9.777865 8.9719 8.971916 8.2887 8.288712 7.7021 7.702196 

0.2 10.3898 10.389845 9.5334 9.533453 8.8074 8.807489 8.1842 8.184264 

0.5 11.4944 11.494448 10.5470 10.547009 9.7438 9.743863 9.0543 9.054379 

1 12.3709 12.370918 11.3512 11.351234 10.4869 10.486847 9.7447 9.744790 

2 13.1748 13.174885 12.0889 12.088934 11.1683 11.168372 10.3781 10.378089 

5 14.2363 14.236343 13.0629 13.062900 12.0682 12.068171 11.2142 11.214218 
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Table 3 Variation of the critical buckling temperature of S-S FG nanobeam under various temperature rise for 
various nonlocal parameter, magnetic potential and electric voltage (L/h 10). 

 (nm2) 
 0.05  0  0.05 

p 0.2 p 1 p 5 p 0.2 p 1 p 5 p 0.2 p 1 p 5 

0 

V 5 

UTR 689.586 610.029 589.889 706.266 620.220 593.471 722.946 630.411 597.052

LTR 1374.09 1192.34 1144.42 1407.57 1212.43 1151.43 1441.05 1232.51 1158.44

HC 1350.18 1145.61 1112.08 1383.08 1164.91 1118.89 1415.97 1184.20 1125.70

STR 1894.62 1635.13 1555.60 1940.78 1662.67 1565.12 1986.94 1690.21 1574.65

V 0 

UTR 687.056 602.302 576.310 703.736 612.493 579.892 720.417 622.684 583.474

LTR 1369.02 1177.11 1117.86 1402.50 1197.20 1124.86 1435.98 1217.28 1131.87

HC 1345.19 1130.98 1086.26 1378.09 1150.27 1093.07 1410.99 1169.57 1099.88

STR 1887.62 1614.24 1519.48 1933.78 1641.79 1529.01 1979.94 1669.33 1538.54

V 5 

UTR 684.527 594.574 562.732 701.207 604.766 566.314 717.887 614.957 569.895

LTR 1363.94 1161.89 1091.29 1397.42 1181.97 1098.29 1430.90 1202.05 1105.30

HC 1340.20 1116.35 1060.45 1373.10 1135.64 1067.26 1406.00 1154.94 1074.07

STR 1880.62 1593.36 1483.37 1926.78 1620.90 1492.90 1972.94 1648.44 1502.42

2 

V 5 

UTR 509.058 494.293 590.254 519.249 497.875 606.934 529.440 501.456 509.058

LTR 1141.23 993.358 957.376 1174.71 1013.44 964.384 1208.20 1033.53 971.392

HC 954.424 930.319 1154.27 973.720 937.129 1187.17 993.017 943.939 954.424

STR 1573.55 1362.25 1301.35 1619.71 1389.79 1310.87 1665.88 1417.33 1320.40

V 0 

UTR 501.331 480.714 587.724 511.522 484.296 604.405 21.7130 487.878 501.331

LTR 1136.16 978.130 930.807 1169.64 998.214 937.815 1203.12 1018.30 944.823

HC 1116.38 939.792 904.501 1149.28 959.089 911.311 1182.18 978.386 918.121

STR 1566.55 1341.36 1265.23 1612.71 1368.91 1274.76 1658.88 1396.45 1284.28

V 5 

UTR 493.604 467.136 585.195 503.795 470.717 601.875 513.986 474.299 493.604

LTR 1131.08 962.902 904.238 1164.56 982.986 911.246 1198.04 1003.07 918.254

HC 1111.40 925.161 878.683 1144.29 944.458 885.493 1177.19 963.754 892.303

STR 1559.55 1320.48 1229.12 1605.71 1348.02 1238.64 1651.88 1375.57 1248.17

 

The influence of thermal loading type on the varia-
tions of the critical temperature of METE-FG nano- 
beams versus power-law index at L/h  10,   2,     
V 5 and  0.1 is plotted in Fig. 2.  As one can 
see for all kind of thermal loads the critical buckling 
temperature decreases when the gradient index rises, 
especially for lower values of graient index.  Also, 
comparing the results of these four temperature fields 
reveals that sinusoidal temperature rise (STR) provides 
larger values of Tcr than UTR, LTR and HC, while 
UTR presents the lower values for critical temperature.  
Also, the results predicted according to linear tempera-
ture rise and heat conduction are close together, but 
more exactly the HC results are a little less than those 
of LTR.   

To illustrate the influence of the small scale parame-
ter on the thermal buckling responses, Fig. 3 presents 
the variations of the critical temperature difference of 
METE-FG nanobeams for various magnetic potentials 
at slenderness ratio L/h  10, p  1 and V 5.  It is 
clearly observable that, for all kinds of thermal loadings 
the nonlocal parameter diminishes the rigidity of 
nanostructures so that it reduces the critical buckling 
temperatures.  

 
 

 

Fig. 2 Effect of thermal loading on the critical buck-
ling temperature of the S-S FG nanobeam with 
respect to gradient index (L/h  10,   2,    
V  +5,  0.1). 
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Fig. 3 Effect of nonlocal parameter on the critical 

buckling temperature of the METE-FG nano- 
beam (L/h  10, V  +5, p 1). 

Hence, the nonlocal beam model estimates lower 
values of critical buckling temperature than local beam 
model.  Therefore, nonlocality has a major role on the 
stability of nanostructures in thermal loads. 

Figures 4 and 5 present the variation of critical buck-
ling temperature versus electric voltage and magnetic 
potential, respectively for different gradient index at  
L/h  10 and   2.  It is observable that for all gradi-
ent indexes by increasing magnetic potential/electric 
voltage from its negative values to its positive values 
the critical buckling temperature increase/decrease.  
Also, the impact of magnetic field on the lower values 
of gradient index is more significant.  But, an opposite 
behavior is observed for electric field.   

 

 

 

Fig. 4 Effect of material composition and electric 
voltage on the critical buckling temperature of 
the S-S FG nanobeam under LTR (L/h  10,  
  2,  0.05). 

 

Fig. 5 Effect of material composition on the critical 
buckling temperature of the S-S FG nanobeam 
under STR versus magnetic potential      
(L/h  10,  2, V 5). 

Moreover, when the gradient index is set to zero   
(p  0) the electric field has no influence on the Tcr 
due to the reason that piezoelectric coefficient (e31) of  
CoFe2O4 is equal to zero.   

Finally, Fig. 6 shows the influence of slenderness ra-
tio (L/h) on the critical buckling temperature for various 
types of thermal loading when   2(nm)2, V 5 and 
 0.1.  It is found that slenderness ratio has a re-
markable influence on the thermal buckling responses 
of METE-FG nanobeams.  Therefore, an increase in 
beam thickness (lower slenderness ratios) results in 
increment in the critical buckling temperature.  The 
reason is that when the beam becomes thicker, its buck-
ling is postponed and it can endure higher temperatures. 
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Fig. 6 Effect of slenderness ratio on the critical buck-

ling temperature of the S-S FG nanobeam with 
respect to gradient index (  2, V  +5,     
 0.1). 

6.  CONCLUSIONS 

Thermal buckling of magneto-electro-thermo-elastic 
FG nanobeam is investigated using a higher order beam 
theory.  Material properties of METE-FG nanobeam 
change gradually in thickness direction based on power- 
law model.  To consider the influences of small sizes, 
Eringen’s nonlocal elasticity theory is adopted.  The 
notability of different parameters such as thermal load-
ings, magnetic and electric fileds, power-law index, 
nonlocal parameter and slenderness ratio on the critical 
buckling temperatures of METE-FG nanobeams is ex-
plored. 

It is observed that for all kinds of thermal loadings 
an increase in the gradient index and nonlocal parame-
ter leads to reduction in critical buckling temperatures 
due to their softening effect on the beam structure.  
Moreover, depending on the sign and magnitude of 
magnetic potential and electric voltage the critical 
buckling temperatures of METE-FG nanobeam experi-
ence both increasing and decreasing trends. 
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