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Abstract 

Buckling analysis of thin-walled functionally graded (FG) sandwich box beams is investigated. Material 

properties of the beam are assumed to be graded through the wall thickness. The Euler-Bernoully beam 

theory for bending and the Vlasov theory for torsion are applied. The non-linear stability analysis is 

performed in framework of updated Lagrangian formulation. In order to insure the geometric potential of 

semitangental type for internal bending and torsion moments, the non-linear displacement field of thin-

walled cross-section is adopted. Numerical results are obtained for FG sandwich box beams with simply-

supported, clamped-free and clamped-clamped boundary conditions to investigate effects of the power-law 

index and skin-core-skin thickness ratios on the critical buckling loads and post-buckling respones. 

Numerical results show that the above-mentioned effects play very important role on the buckling analysis 

of sandwich box beams. 
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1. Introduction 

In recent years, there is a rapid increase in the use of functionally graded (FG) structures. Thin-walled FG 

beams have practical interest and future potential particularly in aerospace and mechanical applications due 

to high strength-to-weight ratio. Many papers have been devoted to study bending, vibration and buckling 

of FG and FG sandwich beams and only some of them are cited here [1-13]. In these papers, different 

theories (classical beam theory, first-order beam theory and higher-order beam theory) and various material 

distribution laws of FG beams have been introduced. However, there are quite a few papers which mainly 
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studied dynamics of FG thin-walled box beams. Librescu et al. [14] studied instability, vibration analysis 

along with the effects of temperature gradients and volume fraction of FG thin-walled beams. Piovan and 

Machado [15] adopted a second-order nonlinear displacement field in order to study the dynamic stability 

of simply-supported FG box beams under an axial external force. Based on the first-order shear 

deformation theory, Ziane et al. [16] investigated the free vibration of FG box beams by using 

theformulation of an exact dynamic stiffness matrix. Carvalho et al. [17] studied the nonlinear nonplanar 

vibration of a clamped-free slender FG box beam. Mashat et al. [18] used Carrera Unified Formulation to 

perform vibration of thin- and thick-walled FG box beams. 

In this paper, which is an extension of previous work [19], buckling analysis of FG sandwich box beams is 

presented. Material properties of the beam are assumed to be graded across the wall thickness.  

The model is based on assumptions of large displacements but small strains, the Euler-Bernoully beam 

theory for bending and the Vlasov theory for torsion. The thin-walled beam members are supposed to be 

straight and prismatic. External loads are assumed to be static and conservative. In order to perform non-

linear stability analysis in load deflection manner, the updated Lagrangian  (UL) incremental descriptions is 

applied. The non-linear cross section displacement field which accounts for the second order displacement 

terms due to large rotations is implemented. The generalized displacement control method is employed in 

terms of the incremental-iterative solution scheme. Updating of nodal orientations at the end of the each 

iteration is performed using the transformation rule which applies for semitangental incremental rotations, 

while the force recovering is performed according to the conventional approach (CA).  

Numerical results are obtained for sandwich box beams with simply-supported, clamped free and clamped-

clamped boundary conditions to investigate effects of the power-law index and skin-core-skin thickness 

ratios on the critical buckling loads and post-buckling respones. Numerical results show that the 

abovementioned effects play very important role on the buckling analysis of sandwich box beams. 

2. Basic consideration 

To derive the finite element model of a thin-walled FG box beam, the following assumptions are made: 

1. The contour of the thin wall does not deform in its own plane. 

2. The linear shear strain zs of the middle surface is to have the same distribution in the contour direction 

as it does in the St. Venant torsion in each element. 

3. The bending shear deformation are neglected. 



3 

 

4. The local buckling as well as the distortional buckling are not considered. 

2.1. Beam kinematics 

In this paper, two sets of coordinate systems, which are mutually interrelated, are used. The first coordinate 

system is Cartesian coordinate system (z, x, y), for which z-axis coincides with the beam axis passing 

through the centroid O of each cross-section, while the x- and y-axes are the principal inertial axes of the 

cross-section taken along the width and height of the beam. The second coordinate system is  contour 

coordinate (z, n, s) as shown in Fig. 1, wherein coordinate z coincident with beam z-axis, the coordinate s is 

measured along the tangent of the middle surface in a counter-clockwise direction, while n is the coordinate 

perpendicular to s. Incremental displacement measures of a cross-section are defined as 

       
     

, , , ,

, ,

o o o o o o z z

x o x y o z z

w w z u u z v v z z

v z u z z

 

      

   

         
                                   (1) 

where wo, uo and vo are the rigid-body translations of the cross-section associated with the centroid in the z-

, x- and y-directions, respectively; φz, φx and φy are the rigid-body rotations about the z-, x- and y-axis, 

respectively; θ is a parameter defining the warping of the cross-section. The superscript „prime‟ indicates 

the derivative with respect to z. 

If rotations are small, the incremental displacement field of a thin-walled cross-section contains only the 

first-order displacement terms [20]: 
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in which zu , xu  and yu  are the linear or first-order displacement increments of an arbitrary point on the 

cross-section defined by the position coordinates x and y and the warping function ω(x, y). If the 

assumption of small rotations is not invalid, then the second-order displacement increments: 
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due to large rotations should be added to those from Eq. (2).  

The strain tensor components, corresponding to nonlinear displacement field, are: 

http://www.sciencedirect.com/science/article/pii/S0263823111000838#bib39
http://www.sciencedirect.com/science/article/pii/S0263823111000838#eq0010
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The last term 
ij

e  contains the second-order displacements due to the large rotations. 

2.2. Contour displacements 

The contour mid-line displacements are , ,w u v , while the out of mid-line displacement components are 

defined as: 

                , , ; , , ; , ,
u u
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  .                                              (6) 

Beam to contour displacement relation can be given as: 
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where indexes L and NL indicates linear and nonlinear parts respectively. 

Out of mid-line displacements can also be separate into linear and non-linear components: 
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The only non-zero strain components, according to Bernoulli hypothesis, are: 
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where ije  and ij  are linear  and non-linear strains with respect to linear displacements components, while 

ije  are linear strains with respect to nonlinear displacements. 

By putting Eq. (8) into Eq. (10) follows: 
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The middle surface shear strain L
zs , in accordance with second assumption, will be: 

L L
L s z
zs

F dw v

s z t dz


  

   
 

, 

Where, t is the thickness of the box section contour and sF is the St.Venant circuit flow. It should be noted 

that sF is the section property independent of the choice of the coordinate system, pole and origin. 

The explicit forms of sF for box section are given in Ref. [21]. 

The appropriate strains and curvatures can be expressed in the following form: 
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so Eqs. (13) and (14) become: 
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The axial strain and the biaxial curvatures in x and y direction, the warping curvature and the twisting 

curvature, are defined as: 

   
0 , , , , 2 .z o y o x o z sz zw u v                        (20) 

Analogously, the nonlinear strain components from Eqs.  (11) and (12) can be expressed in terms of the 

relevant components of the beam displacement.  

In Eqs. (16) and (18), q presents the distance of the contour radius from an arbitrary point P called pole, 

Fig. 1: 

              ( )cos ( )sinP Pq x x y y         (21)       

The warping function   with respect to contour coordinate system, is given by [22, 23]: 
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Where r  is height of triangle with the base ds ; Ai is the area circumscribed by the contour of i-th circuit.   

The cross-section internal beam forces can be defined as: 
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where zF represents the axial force, xM and yM are bending moments with respect to x- and y-axis, 

respectively, zM is the torsion moment, while M is the bimoment. 

2.3. Constitutive equations 

The material properties of FG box beams are assumed to vary continuously through the wall thickness by a 

power law according to [24]: 

    out in c inP n P P V P         (24) 

where P represents the effective material property such as Young‟s modulus E and Poisson‟s ratio ν; 

subscripts in and out represent the inner and outer surface constituents, and Vc is the volume fraction of the 

ceramic phase, respectively. Three different types of FG box beams are considered as shown in Fig. 2: 

1) Type A: the wall composed of FG material for which material varies from a metal-rich inner 

surface (n = t0 = -0.5t) to a ceramic-rich outer surface (n = t3 = +0.5t). The volume fraction of 

ceramic phase is defined as:  

0 3

1
,

2

p

c

n
V t n t

t

     
 

     (25) 

2) Type B: the sandwich wall with fully ceramic core and FG skins [25, 26]. The inner skin varies 

from a metal-rich surface (n = t0 = -0.5t) to a ceramic-rich surface (n = t1) while the outer skin 

varies from a ceramic-rich surface (n = t2) to a metal-rich surface (n = t3 = +0.5t). The volume 

fraction of ceramic phase is defined as:  
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3) Type C: the sandwich wall with fully metal inner and fully ceramic outer skin, while the core is 

graded from metal to ceramic [27]. The volume fraction of ceramic phase is defined as:  

1
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     (27) 

In expressions above Eqs. (25)-(27), p is the power-law index.  

The stress-strain relation for elastic FGM box beam can be written as: 

 z zE n   ,      
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Using Eqs. (18), (19) and (28), the beam components can be expressed in a matrix form as: 
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where ijR are FG box beam stiffnesses defined as: 
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3. Finite element formulation 

Fig. 3 shows the 14 degree of freedom beam finite element with two nodes A and B.  The appropriate 

displacement and force components are defined for centroid O. The nodal displacement and nodal force 

vectors are: 

             T
e

A A A zA xA yA B B B zB xB yB A B       u w u v w u v ,  (31) 

    T
e

zA xA yA zA xA yA zB xB yB zB xB yB ωA ωBF F F M M M F F F M M M M Mf . (32) 

Where the superscript ”e“ denotes the e-th finite element. 

According to the incremental description, it is necessary to subdivide a load–deformation path of a finite 

element into a number of steps or increments where three equilibrium configurations can be recognized: the 

initial configuration C0, the last calculated equilibrium configuration C1 and current unknown configuration 

C2. By the UL formulation adopted in this paper, each system quantity occurring in C2 can be expressed 

with reference to C1. Hereafter, a left superscript denotes the configuration in which a quantity occurs, and 

a left subscript the configuration in which the quantity is measured. If the superscript and subscript of a 

quantity are same, the latter may be dropped. The absence of the superscript indicates that the quantity is an 

increment between C1 and C2 [28].  

Applying the virtual work principle, the linearized incremental equilibrium equations of an elastic beam 

element can be written as: 

 
2 1

E Gδ δ δ δ  U U W W  (33) 

where the left-hand side represents the internal work composed of the virtual incremental elastic strain 

energy: 

 
1

1

E 1 1 1δ δ dijkl kl ij

V
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and the virtual geometric incremental potential: 

 
1 1

1 1 1 1 1 1

G 1 1δ δ d δ d δ dij ij ij ij i i

VV A
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     uU  (35) 

while the terms on the right-hand side represent the virtual work done by the external forces at the end and 

beginning of the current increment, respectively, 

 
1 1 1

2 2 1 1 1 1 1 1

1δ δ d , δ δ d δ di i ij ij i i

A V A

t A S e V t A

 

     u uW W  (36) 

In the preceding equations Sij and ti are, respectively, the second Piola-Kirchhoff stress tensor and surface 

tractions, Cijkl  is the constitutive or stress-strain tensor, while the symbol „„δ‟‟ denotes the virtual 

quantities. Adopting a linear interpolation for ow  displacement and cubic interpolation for 0 0 z, ,u v one 

can derive: 

  T
e e e

E ij ij Eδ δ d δ ,
V

S e V  u k uU         (37) 

    
σ

T
e e e

G ij ij ij i i σ Gδ δ δ d δ d δ ,
V A

S e V t A     u k uuU       (38) 

  T
e e

ij ijδ δ d δ .
V

S e V  u fW      (39) 

where e

Ek  and e

Gk  are (14×14) elastic and geometric stiffness matrices of beam element while ef is a nodal 

force vector respectively. The explicit forms of the terms arising from nonlinear components are given in 

Ref. [29]. The set of non-linear equilibrium equations of a structure must be attempted by incremental 

iterative approach. This procedure is described in Ref. [28]. 

4. Results 

4.1 Thin-walled FG sandwich box beam 

A thin-walled FG sandwich box beam with length L = 8 m, width b = 0.2 m, height h = 0.1 m and wall 

thickness t = 0.005 m is considered to investigate the effects of power-law index, skin-core-skin thickness 

ratios and boundary conditions on the critical buckling loads and post-buckling responses. FG material 

properties are assumed to be [16]: Aluminum (Al: Em = Ein = 70 GPa, νm = 0.3) and Alumina (Al2O3: Ec = 

Eout = 380 GPa, νc = 0.3). The beam is modeled using the eight beam finite elements.  

As the first example, the critical buckling loads of FG box beams (Type A) with different value of power 

law index p for three types of boundary conditions, clamped-clamped (C-C), clamped-free (C-F) and 
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simply-supported (S-S) are given in Table 1. Since all the coupling stiffnesses vanish in this case, the 

present results are in good agreement with the solutions in theoretical formula:  22 , 2,3z iiF R kL i   

with k is effective-length factor, depends on boundary conditions; thus accuracy of the present model is 

established. As expected, an increase of the power-law index results in a decrease of elasticity modulus and 

bending rigidity, which leads to reduction in critical buckling loads. This reduction is recognizable for all 

three considered boundaries. It should be noted that for zero value of power-law index, the FG material is 

the full ceramic, while as the power-law index increases, the FG material tends towards the full metal.  

In the next example, FG sandwich box beams of Types B and C are analysed. Three different skin-core-

skin ratios (1-1-1, 1-2-1 and 2-2-1) for both types are considered. The obtained critical buckling loads are 

given in Tables 2 and 3. It can be observed that as power-law index increases, the critical buckling loads 

decreases in all cases. However the rate of decrease is directly dependent on skin-core-skin ratios in box 

beam wall. The material distribution has a significant effect on critical buckling load of box beam for all 

boundary conditions and for both buckling modes. It can be observed from Figs. 4-6 representing the 

critical buckling loads vs power-law index. In six cases considered, the smallest and largest critical 

buckling loads for both Types B and C correspond to (1-2-1) and (2-2-1), since they has the highest and 

lowest portion of ceramic phase comparing with others. 

In order to demonstrate the stability and robustness of the algorithm, the responses of FG box beams are 

additionally monitored in nonlinear manner. To initiate buckling, a lateral perturbation force F = 0.001 F 

is applied at free end in C-F case and at the mid-span point in the S-S and C-C cases. The curves obtained 

in nonlinear manner representing the displacements of perturbation force point vs axial force are presented 

in Figs. 7-9 for Type A with power-law index p = 0.5 and p = 5 , while in Figs. 10-12 for Types B and C 

with p = 5. As can be seen, the load-deflection curves correspond well to previously obtained critical 

buckling loads in terms of the rapid increase of lateral displacements when approaching the level of forces 

that correspond to the critical values calculated in eigenvalue manner.  

4.2 Thin-walled FG sandwich box frame 

The L-shaped frame of the same material types and box section 200 mm × 100 mm × 5 mm is considered, 

Fig. 13.  The frame is cantilevered at point A and loaded by a single concentrated load at free end C in X 

direction. The warping at junction point B is supposed to be fully restrained. Obtained critical buckling 
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loads are given in Table 4. For validation purposes, the critical loads for full ceramic
)

cr 385305 NF 
2 3(Al O

 

and full metal cr 70977 NF 
(Al)

sections are calculated by MASTAN2 structural analysis program [30]. 

Since for power-law index p = 0 the A and B-types correspond to full ceramic as well as for p = 1000 the 

A-type tends to full metal, the good agreement of results are evident. Fig. 14 represents the critical buckling 

loads versus power-law index for all 7 cross section types. The lowest critical buckling modes correspond 

to lateral, Fig. 15., for all cases. In order to perform post-buckling responses, a small perturbation force of 

0.001 F acting in Z-axis direction at point C is simultaneously introduced to initiate lateral buckling. The 

results obtained for Type A for various values of power-law index are shown in Fig. 16. As can be seen, 

both limit cases, full metal p = 1000 as well as full ceramic p = 0 correspond well to linearised buckling 

loads. Load versus lateral displacement of point C for power-law index value p = 5 for all Types A, B and 

C are also plotted on Fig. 17.  

 

 5. Conclusion 

The paper has presented an effective numerical beam model capable to analyze the global buckling 

behaviour of thin-walled functionally graded box beams whose material properties are assumed to vary in 

the thickness direction according to power law. Three different types of box beam wall are considered: FG 

wall, sandwich wall with FG skin-homogeneous core and sandwich wall with homogeneous skin-FG core. 

Effects of power law index, skin-core-skin thickness ratios and boundary conditions on the critical buckling 

loads and post-buckling responses are observed. Since the previous works in this area [16] are engaged in 

simulations of free vibration analysis, this paper as novel aspect simulate the buckling behaviour of subject 

beams. The present model is appropriate and efficient in analyzing buckling problem of FGM box beam 

type structures. 
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Table 1: Buckling loads (MN) of FG box beam (Type A) with various values of power-law index for 

different boundary conditions. 

Table 2: Buckling loads (MN)of FG sandwich box beam of Type B with various values of power-law index 

for different boundary conditions. 

Table 3: Buckling loads (MN) of FG sandwich box beam of Type C with various values of power-law 

index for different boundary conditions.  

Table 4: Buckling loads (MN) of L-frame (Types A, B and C) for various values of power-law index. 
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Table 1: Buckling loads (MN) of FG box beam (Type A) with various values of power-law index for 

different boundary conditions. 
 

BC Mode Method 
Power-law index p 

0 0.2 0.5 1 2 5 10 1000 

C-F Y Present 0.08552 0.07435 0.06306 0.05163 0.04001 0.02810 0.02255 0.01583 

Formula 0.08561 0.07435 0.06306 0.05163 0.04001 0.02810 0.02255 0.01583 

X Present 0.24420 0.21146 0.17859 0.14559 0.11239 0.07890 0.06355 0.04519 

Formula 0.24438 0.21146 0.17859 0.14559 0.11239 0.07890 0.06355 0.04519 

S-S Y Present 0.34209 0.29740 0.25225 0.20654 0.16004 0.11240 0.09022 0.06332 

Formula 0.34245 0.29737 0.25224 0.20653 0.16003 0.11242 0.09022 0.06332 

X Present 0.97683 0.84587 0.71439 0.58237 0.44956 0.31562 0.25421 0.18076 

Formula 0.97753 0.84585 0.71436 0.58235 0.44955 0.31613 0.25420 0.18076 

C-C Y Present 1.36903 1.19017 1.00947 0.82655 0.64047 0.44982 0.36105 0.25340 

Formula 1.36979 1.18956 1.00896 0.82613 0.64014 0.44958 0.36087 0.25327 

X Present 3.90921 3.38512 2.85891 2.33061 1.79912 1.26307 1.01732 0.72340 

Formula 3.91014 3.38338 2.85744 2.32941 1.79820 1.26242 1.01680 0.72303 
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Table 2: Buckling loads (MN) of FG sandwich box beam of Type B with various values of power-law 

index for different boundary conditions. 

Type B BC Mode 
Power-law index p 

0 0.2 0.5 1 2 5 10 1000 

1-1-1 C-F Y 0.08552 0.07776 0.07001 0.06225 0.05450 0.04674 0.04322 0.03899 

X 0.24420 0.22206 0.19993 0.17779 0.15565 0.13352 0.12346 0.11138 

S-S Y 0.34209 0.31106 0.28003 0.24901 0.21799 0.18698 0.17289 0.15598 

X 0.97683 0.88828 0.79973 0.71117 0.62263 0.53408 0.49384 0.44554 

C-C Y 1.36903 1.24484 1.12067 0.99651 0.87238 0.74829 0.69189 0.62423 

X 3.90921 3.55482 3.20043 2.84606 2.49170 2.13735 1.97629 1.78303 

1-2-1 C-F Y 0.08552 0.07970 0.07388 0.06807 0.06225 0.05643 0.05379 0.05062 

X 0.24420 0.22760 0.21099 0.19439 0.17779 0.16119 0.15364 0.14458 

S-S Y 0.34209 0.31882 0.29554 0.27227 0.24900 0.22574 0.21517 0.20248 

X 0.97683 0.91042 0.84400 0.77758 0.71117 0.64476 0.61457 0.57835 

C-C Y 1.36903 1.27587 1.18273 1.08959 0.99648 0.90338 0.86107 0.81031 

X 3.90921 3.64341 3.37761 3.11182 2.84604 2.58027 2.45947 2.31451 

2-2-1 C-F Y 0.08552 0.07867 0.07181 0.06494 0.05804 0.05110 0.04794 0.04412 

X 0.24420 0.22441 0.20461 0.18479 0.16495 0.14507 0.13602 0.12514 

S-S Y 0.34209 0.31470 0.28726 0.25975 0.23215 0.20443 0.19176 0.17650 

X 0.97683 0.89767 0.81846 0.73917 0.65980 0.58029 0.54409 0.50058 

C-C Y 1.36903 1.25940 1.14958 1.03950 0.92906 0.81810 0.76742 0.70635 

X 3.90921 3.59240 3.27539 2.95811 2.64046 2.32228 2.17741 2.00329 
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Table 3: Buckling loads (MN) of FG sandwich box beam of Type C with various values of power-law 

index for different boundary conditions.  

 
 

Type C BC Mode 
Power-law index p 

0 0.2 0.5 1 2 5 10 1000 

1-1-1 C-F Y 0.06359 0.05976 0.05593 0.05208 0.04820 0.04430 0.04251 0.04037 

X 0.17912 0.16810 0.15708 0.14603 0.13497 0.12387 0.11881 0.11279 

S-S Y 0.25435 0.23906 0.22372 0.20831 0.19282 0.17720 0.17004 0.16148 

X 0.71650 0.67244 0.62832 0.58414 0.53988 0.49548 0.47525 0.45117 

C-C Y 1.01789 0.95669 0.89529 0.83364 0.77163 0.70912 0.68048 0.64623 

X 2.86738 2.69103 2.51449 2.33769 2.16054 1.98288 1.90190 1.80554 

1-2-1 C-F Y 0.06919 0.06349 0.05777 0.05201 0.04620 0.04031 0.03761 0.03436 

X 0.19551 0.17903 0.16251 0.14596 0.12936 0.11269 0.10508 0.09601 

S-S Y 0.27677 0.25398 0.23108 0.20803 0.18479 0.16126 0.15044 0.13745 

X 0.78207 0.71613 0.65007 0.58387 0.51747 0.45078 0.42034 0.38407 

C-C Y 1.10761 1.01639 0.92475 0.83253 0.73952 0.64536 0.60205 0.55007 

X 3.12980 2.86587 2.60152 2.33658 2.07086 1.80399 1.68216 1.53702 

2-2-1 C-F Y 0.05904 0.05439 0.04972 0.04502 0.04029 0.03552 0.03333 0.03070 

X 0.16595 0.15266 0.13936 0.12603 0.11267 0.09926 0.09315 0.08587 

S-S Y 0.23618 0.21756 0.19887 0.18008 0.16117 0.14207 0.13331 0.12281 

X 0.66381 0.61066 0.55744 0.50413 0.45069 0.39706 0.37261 0.34349 

C-C Y 1.93657 1.78388 1.63062 1.47659 1.32151 1.16492 1.09305 1.00701 

X 2.65649 2.44379 2.23082 2.01747 1.80361 1.58901 1.49114 1.37461 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



19 

 

 

Table 4: Buckling loads (MN) of L-frame (Types A, B and C) for various values of power-law index. 

 

Type 
Power-law index p 

0 0.2 0.5 1 2 5 10 1000 

A 0.386528 0.335173 0.283525 0.231504 0.178960 0.125661 0.101086 0.072059 

B 1-1-1 0.386528 0.351471 0.316418 0.281368 0.246325 0.211288 0.195365 0.176260 

B 1-2-1 0.386528 0.360233 0.333939 0.307648 0.281361 0.255078 0.243133 0.228801 

B 2-2-1 0.386528 0.355332 0.324105 0.292835 0.261506 0.230093 0.215775 0.198551 

C 1-1-1 0.284912 0.267535 0.250125 0.232674 0.215164 0.197570 0.189535 0.179957 

C 1-2-1 0.310634 0.284666 0.258626 0.232491 0.206225 0.179771 0.167660 0.153192 

C 2-2-1 0.264179 0.243148 0.222071 0.200931 0.179707 0.158361 0.148603 0.136961 
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CAPTIONS OF FIGURES 
 

Figure 1: Contour displacements with respect to beam displacements. 

Figure 2: Cross-section of thin-walled FG sandwich box beams (Types A, B and C). 

Figure 3: Beam element: nodal displacements and nodal forces. 

Figure 4: Critical buckling loads vs. power-law index for clamped-free boundary conditions 

(Types A, B and C). 

Figure 5: Critical buckling loads vs. power-law index for simply-supported  boundary conditions 

(Types A, B and C). 

Figure 6: Critical buckling loads vs. power-law index for clamped-clamped boundary conditions. 

Figure 7: Load vs. displacement with the power-law index values p = 0.5 and p = 5 for clamped-

free boundary conditions (Type A). 

Figure 8: Load vs. displacement with the power-law index values p = 0.5 and p = 5 for simply 

supported boundary conditions (Type A). 

Figure 9: Load vs. displacement with the power-law index values p = 0.5 and p = 5 for clamped-

clamped boundary conditions (Type A). 

Figure 10: Load vs. displacement with the power-law index value p = 5 for clamped-free boundary 

conditions (Types B and C). 

Figure 11: Load vs. displacement with the power-law index value p = 5 for simply supported 

boundary conditions (Types B and C). 

Figure 12: Load vs. displacement with the power-law index value p = 5 for clamped-clamped 

boundary conditions (Types B and C). 

Figure 13: L-frame. 

Figure 14: Critical buckling loads vs. power-law index for L-frame (Types A, B and C). 

Figure 15: L-frame lateral buckling mode. 

Figure 16: Load vs. displacement for L-frame (Type A) for various values of power-law index. 

Figure 17: Load vs. displacement with the power-law index value p = 5 for L-frame (Types A, B and C). 
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Figure 1: Contour displacements with respect to beam displacements 
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Figure 2: Cross-section of thin-walled FG sandwich box beams (Types A, B and C). 
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Figure 3: Beam element: nodal displacements and nodal forces. 
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Figure 4: Critical buckling loads vs. power-law index for clamped-free boundary conditions (Types A, B 

and C). 
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Figure 5: Critical buckling loads vs. power-law index for simply-supported  boundary conditions (Types A, 

B and C). 
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Figure 6: Critical buckling loads vs. power-law index for clamped-clamped boundary conditions  

(Types A, B and C). 
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Figure 7: Load vs. displacement with the power-law index values p = 0.5 and p = 5 for clamped-free 

boundary conditions (Type A). 
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Figure 8: Load vs. displacement with the power-law index values p = 0.5 and p = 5 for simply supported 

boundary conditions (Type A). 
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Figure 9: Load vs. displacement with the power-law index values p = 0.5 and p = 5 for clamped-clamped 

boundary conditions (Type A). 
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Figure 10: Load vs. displacement with the power-law index value p = 5 for clamped-free boundary 

conditions (Types B and C). 
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Figure 11: Load vs. displacement with the power-law index value p = 5 for simply supported boundary 

conditions (Types B and C). 
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Figure 12: Load vs. displacement with the power-law index value p = 5 for clamped-clamped 

boundary conditions (Types B and C). 
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Figure 13: L-frame. 
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Figure 14: Critical buckling loads vs. power-law index for L-frame (Types A, B and C) 
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Figure 15: L-frame lateral buckling mode. 
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Figure 16: Load vs. displacement for L-frame (Type A) for various values of power-law index. 
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Figure 17: Load vs. displacement with the power-law index value p = 5 for L-frame (Types A, B and C). 

 


