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Abstract. The present work analyses the buckling and vibration behaviour of non-homogeneous rectangular plates of uniform

thickness on the basis of classical plate theory when the two opposite edges are simply supported and are subjected to linearly

varying in-plane force. For non-homogeneity of the plate material it is assumed that young’s modulus and density of the plate

material vary exponentially along axial direction. The governing partial differential equation of motion of such plates has been

reduced to an ordinary differential equation using the sine function for mode shapes between the simply supported edges. This

resulting equation has been solved numerically employing differential quadrature method for three different combinations of

clamped, simply supported and free boundary conditions at the other two edges. The effect of various parameters has been

studied on the natural frequencies for the first three modes of vibration. Critical buckling loads have been computed. Three

dimensional mode shapes have been presented. Comparison has been made with the known results.
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1. Introduction

Plates of various geometries are the important components in many engineering applications. Of these, rectangu-

lar plates with different combinations of boundary conditions are commonly encountered in aerospace, mechanical,

nuclear and off-shore structures. In many practical situations, particularly in the ship buildings and automotive in-

dustry these plates may be subjected to in-plane dynamic loads of different types, which may induce buckling, a

phenomenon which is highly undesirable. In this regard, efforts have been made by researchers to analyses the ef-

fect of uniformly/non-uniformly distributed in-plane loads on the vibration characteristics of rectangular plates and

prominent ones are reported in references [1–17]. Out of these, Leissa and Kang [6] employed the power series

method to obtain the exact solutions for vibration and buckling of rectangular plates having two opposite edges

simply supported and these are subjected to linearly varying in-plane stresses while the other two are clamped.

Hu et al. [8] investigated the buckling behaviour of a symmetrically laminated composite rectangular plate under

parabolic variation of axial loads using Rayleigh-Ritz method. Devarakonda and Bert [14] used Galerkin method

to study the buckling of rectangular plate with non-linearly distributed compressive loading on two opposite sides.

Kang and Leissa [10] obtained the exact solution for buckling of rectangular plates having linearly varying in-plane
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loading on two opposite simply supported edges, for all combinations of clamped, simply supported or free at the
other two edges. Wang et al. [11] obtained the numerical results for the buckling and vibration of isotropic rect-
angular plate subjected to linearly varying in-plane stresses along two opposite simply supported edges while the
other two are clamped using differential quadrature method. Jana and Bhaskar [12] used Galerkin’s approach to
present the analytical solutions for buckling of rectangular plates under non-uniform biaxial compression. Wang et
al. [13] analyzed the buckling of thin rectangular plates with cosine-distributed compressive loads on two opposite
sides using differential quadrature method. Recently, Civalek et al. [15] used discrete singular convolution approach
for buckling analysis of rectangular Kirchhoff plates subjected to compressive loads on two-opposite edges. Tang
and Wang [16] studied the buckling of symmetrically laminated rectangular plates under parabolic edge compres-
sion using Rayleigh-Ritz method. Very recently, Eftekhari and Jafari [17] employed the mixed finite element and
differential quadrature method for free and forced vibration and buckling analysis of rectangular plates.

Beside the above considerations, in many practical applications, particularly in aerospace industry, modern missile
technology and microelectronics, plate type structural elements have to work under high temperature environment
which causes non-homogeneity in the material i.e. mechanical properties of the material vary with space variables.
However, many structural components possess initial non-homogeneity due to the inclusion of foreign materials
or imperfection or being composite materials. Plywood, timber and fibre-reinforced plastic etc. form an important
class of non-homogeneous materials. These materials are of considerable interest to design engineers in various
technological situations [18–21]. Thus, their design requires an accurate analysis for their vibration characteristics.
Up till now, several studies have been devoted to the dynamic behaviour of non-homogeneous plates of various
geometries and reported in references [22–30], to mention a few. In these references various model such as linear,
quadratic, exponential etc. for the Young modulus and density of the plate material have been considered. Recently,
in two papers, namely Lal and Dhanpati [31] and Kumar and Lal [32] studied the combined effect of constant
biaxial/uniaxial in-plane forces and non-homogeneity of the plate material on the transverse vibrations of rectangular
plates of unidirectional/bidirectional varying thickness using quintic spline technique and Rayleigh-Ritz method,
respectively.

The present paper analyzes the effect of linearly varying in-plane force together with non-homogeneity of the
plate material on the transverse vibration of rectangular plates on the basis of classical plate theory. The two opposite
edges y = 0 and y = b are taken simply supported and these are subjected to linearly varying in-plane force. Non-
homogeneity of the plate material is assumed to arise due to exponential variation in Young’s modulus and density of
the plate along axial direction. The Poisson ratio ν is assumed to remain constant. The governing partial differential
equation of motion for such plates has been reduced to an ordinary differential equation using the sine function for
mode shapes between the simply supported edges. This resulting equation has been solved numerically employing
differential quadrature method for three different combinations of clamped, simply supported and free boundary
conditions at the other two edges. The effect of non-homogeneity parameter, density parameter, aspect ratio, in-
plane force parameter and loading parameter on the natural frequencies has been illustrated for the first three modes
of vibration. Three dimensional mode shapes have been presented for specified plates.

2. Mathematical formulation

Consider a non-homogeneous isotropic rectangular plate of length a, breadth b, thickness h and density ρ. The
plate is referred to a system of rectangular Cartesian co-ordinates (x, y, z), the middle surface being z = 0 and
origin is at the one of the corners of the plate. The x- and y-axes are taken along the edges of the plate, the axis
of z is perpendicular to the xy-plane and a linearly varying compressive in-plane force Ny is applied along the
two opposite simply supported edges y = 0 and y = b as shown in Fig. 1. Following Leissa and Kang [6] with
the incorporation of non-homogeneity and assuming q = Nxy = Nx = 0, the differential equation governing the
transverse vibration of such plates is given by
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Fig. 1. Rectangular plate under compressive force Ny = −N0(1− γx/a), γ = 1.

Fig. 2. Example of varying in-plane force Ny along the edge y = b.

where D = Eh3/12(1 − ν2), Ny = −N0(1 − γx/a), w(x, y, t) is the transverse deflection, t the time, D the

flexural rigidity, E Young’s modulus, ν Poisson ratio, N0 the intensity of compressive force at the edge x = 0 and

γ is the loading parameter.

For different values of loading parameter γ, one can obtain various particular cases e.g. γ = 0 gives the case of

uniformly distributed compressive force while for γ = 1, the compressive force varies linearly from −N0 at x = 0
to zero at x = a. Except these values of γ in the range 0 < γ � 2, various combinations of bending and compression

are obtained as shown in Fig. 2.

For a harmonic solution, the deflection w is assumed to be

w(x, y, t) = w(x) sin(pπy/b)eiωt, (2)

where p is a positive integer and ω is the frequency in rad/s.

Further, for elastically non-homogeneous material, it is assumed that the Young’s modulus E and density ρ are

the functions of space variable x only.

Introducing the non-dimensional variables X = x/a, Y = y/b, h̄ = h/a,W = w̄/a, Eq. (1) reduces to

Eh̄3W iv + 2E′h̄3W
′′′

+ (E
′′

h̄3 − 2λ2Eh̄3)W
′′

− 2E′h̄3λ2W ′

+ (Eh̄3λ4 − νE
′′

λ2h̄3 − 12h̄ρω2a2(1− ν2)−N0(1 − γX)(1− ν2)12λ2)W = 0
(3)
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where λ2 = π2p2a2/b2 and prime denotes differentiation with respect to X . Following references [24,29] for

exponential variation in Young’s modulus E and density ρ of the plate material in X direction as follows:

E = E0e
µX , ρ = ρ0e

βX (4)

where E0 and ρ0 are the Young’s modulus and density of the plate material at X = 0, respectively, µ is non-

homogeneity parameter and β is the density parameter.

Equation (3) now, reduces to

A0W
iv +A1W

′′′ +A2W
′′ +A3W

′ +A4W = 0 (5)

where

A0 = 1, A1 = 2µ,A2 = µ2 − 2λ2, A3 = −2µλ2

A4 = λ4 − νµ2λ2 − Ω2e(β−µ)X − λ2N∗
0 (1 − γX)e−µX

Ω2 = 12ρ0(1− ν2)a2ω2/E0h̄
3, N∗

0 = 12N0(1− ν2)/aEh̄3

The solution of Eq. (5) together with the boundary conditions at the edges X = 0 and X = 1 constitutes a two-

point boundary value problem. Due to the presence of variable coefficients in Eq. (5) its closed form solution is not

possible. Hence, an approximate solution is obtained by employing the differential quadrature method.

3. Method of solution: Differential quadrature method

Let X1, X2, . . . , XN be the N grid points in the applicability range [0, 1] of the plate. According to the DQM,

the nth order derivative of W (X) with respect to X can be expressed discretely at the points Xi as

dnW (Xi)

dXn
=

N
∑

j=1

c
(n)
ij W (Xj), i = 1, 2 . . . , N (6)

where c
(n)
ij are the weighting coefficients at discrete point Xi and given by

c
(1)
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M (1)(Xi)

(Xi −Xj)M (1)(Xj)
, i, j = 1, 2, . . . , N ; i �= j (7)
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for i, j = 1, 2 . . . , N, j �= i and n = 2, 3, 4 (9)

c
(n)
ii = −

N
∑

j=1
j �=i

c
(n)
ij i = 1, 2, . . . , N and n = 1, 2, 3, 4 (10)

Discretizing Eq. (5) at the grid points Xi, i = 3, 4, . . . , N − 2, it reduces to,

A0W
iv(Xi) +A1W

′′′(Xi) +A2W
′′(Xi) +A3W

′(Xi) +A4,iW (Xi) = 0 (11)
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Substitution for W (X) and its derivatives into Eq. (11) at the ith grid point, gives

N
∑

j=1

(

A0c
(4)
ij +A1c

(3)
ij +A2c

(2)
ij +A3c

(1)
ij

)

W (Xj) +A4,iW (Xi) = 0 (12)

For i = 3, 4, . . . , (N − 2), one obtains a set of (N − 4) equations in terms of unknowns Wj (≡ W (Xj)) , j =
1, 2, . . . , N, which can be written in the matrix form as

[A][W ∗] = [0], (13)

where A and W ∗ are matrices of order (N − 4)×N and (N × 1) respectively.
Here, the (N − 2) internal grid points chosen for collocation are the zeroes of shifted Chebyshev polynomial of

order (N − 2) with orthogonality range [0, 1] given by

Xk+1 =
1

2

[

1 + cos

(

2k − 1

N − 2

π

2

)]

, k = 1, 2, . . . , N − 2 (14)

4. Boundary conditions and frequency equations

The three different combinations of boundary condition namely, C-C, C-S, and C-F have been considered in which
first symbol represents the condition at the edge X = 0 and the second symbol at the edge X = 1 and C, S, F stand

for clamped, simply supported and free edge, respectively. The relations that should be satisfied at clamped, simply
supported and free edges are

W =
dW

dX
= 0; W =

d2W

dX2
− νλ2W = 0; and (15)

W =
d2W

dX2
− νλ2W =

d3W

dX3
− (2− ν)λ2 dW

dX
= 0, respectively. (16)

Applying the boundary conditions for C-C plate, one can obtains a set of four homogeneous equations, which can
be written as

[BCC ][W ∗] = [0], (17)

Equation (13) together with the Eq. (17) gives a complete set of N equations in N unknowns that can be denoted as

[

A
BCC

]

[W ∗] = [0] , (18)

For a non-trivial solution of Eq. (18), the frequency determinant must vanish and hence,
∣
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Similarly for C-S and C-F plates, frequency determinants can be written as
∣

∣
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respectively.
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Fig. 3. Convergence of normalized frequency parameter Ω/Ω∗ (a) C-C (b) C-S (c) C-F, with grid refinement for a/b = 1, N∗

0
= 20, γ = 1. �,

first mode; △, second mode; +, third mode. Ω∗ – the DQ result using 20 grid points.

5. Numerical results and discussions

Frequency Eqs (19)–(21) have been solved to obtain the numerical values of frequency parameter Ω for var-

ious values of plate and other parameters taken here. Following references [6,28–32], numerical results have

been computed to investigate the effect of in-plane force parameter N∗
0 (= −70,−50,−30, 0, 30, 50, 70), load-

ing parameter γ(= 0.0, 0.5, 1.0, 1.5, 2.0), aspect ratio a/b(= 0.5, 1.0, 1.5, 2.0), non-homogeneity parameter µ(=
−0.5,−0.3,−0.1, 0.0, 0.1, 0.3, 0.5) and density parameter β(= −0.5,−0.3,−0.1, 0.0, 0.1, 0.3, 0.5), on natural fre-

quencies for the first three modes of vibration for p = 1.

To choose an appropriate number of grid points N , convergence studies have been carried out for various set of

plate parameters. The normalized frequency parameter Ω/Ω∗ for the first three modes of vibration for a specified

plate i.e. a/b = 1, N∗
0 = 20, γ = 1, µ = β = −0.5 is shown in Fig. 3. For this data the maximum deviations

were observed. The frequency parameter Ω converges with the increasing number of grid points and the nature of

convergence is oscillatory for all the three boundary conditions. The value of N has been fixed as 17, since there

was no further improvement in the values of Ω even at the fourth place of decimal for all three plates.

The results have been reported to six significant digits in Tables 1 and 2 and Figs 4–12. It is observed that the

frequency parameter Ω decreases in the order of boundary conditions C-C, C-S, and C-F for the same set of values

of other parameters.

Figure 4(a) shows the plots for frequency parameter Ω versus in-plane force parameter N∗
0 for aspect ratio a/b =

1, non-homogeneity parameter µ = 0.5, density parameter β = 0.5 and loading parameter γ = 0, 1, 2 for the first

mode of vibration. It is observed that the frequency parameter Ω decrease with the increasing values of in-plane

force parameter N∗
0 for γ = 0 and γ = 1 for all the three plates. The rate of decrease of Ω with increasing values

of N∗
0 for a C-F plate is higher than that for a C-S and C-C plates when γ = 0 and it is higher for C-S plate than

that for C-F and C-C when γ = 1. But, for γ = 2 the frequency parameter Ω increases with the increasing values of

N∗
0 for C-S and C-F plates and remains almost same for C-C plate. The rate of increase of frequency parameter Ω

with N∗
0 is in the order of boundary conditions C-F > C-S. In case of second and third modes of vibration the rate

of decrease of Ω with decreases with the increase in the number of modes in the order of boundary conditions C-F

> C-S > C-C, Figs 4(b) and (c).
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Fig. 4. Frequency parameter Ω for (a) first mode (b) second mode (c) third mode. _____, C-C; - - - - -, C-S; . . . . . . , C-F; a/b = 1, µ = β = 0.5;
�, γ = 0; +, γ = 1; △, γ = 2.

Fig. 5. Frequency parameter Ω for (a) first mode (b) second mode (c) third mode. _____, C-C; - - - - -, C-S; . . . . . . , C-F; N∗

0
= 30, a/b = 1; �,

µ = 0.5, β = 0.5; �, µ = 0.5, β = −0.5; △, µ = −0.5, β = 0.5; �, µ = −0.5, β = −0.5.
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Table 1

Values of lowest critical buckling loads N∗

cr
for C-C, C-S, and C-F plates

Boundary conditions γ 0.0 0.5 1.0 1.5 2.0

µ a/b = 0.5
C-C −0.5 178.890 240.479 363.108 690.683 1797.39

−0.3 197.799 264.857 396.839 741.166 1879.81

0.0 229.871 306.006 453.312 824.632 2012.26

0.3 267.000 353.370 517.693 918.421 2156.51

0.5 294.940 388.845 565.540 987.317 2260.02

C-S −0.5 96.6013 135.681 225.025 551.639 1794.94

−0.3 106.002 148.360 244.102 584.845 1875.29

0.0 121.743 169.500 275.646 638.949 2002.67
0.3 139.682 193.466 311.066 698.683 2138.65

0.5 153.000 211.186 337.050 741.921 2234.30

C-F −0.5 10.4609 17.4672 51.3814 547.997 1767.45

−0.3 11.4614 19.0965 55.5814 579.687 1843.16

0.0 13.1856 21.8973 62.7265 630.801 1962.95

0.3 15.2300 25.2083 71.0635 686.533 2090.74

0.5 16.8055 27.7530 77.3985 726.444 2180.71

a/b = 1.0
C-C −0.5 66.0304 88.8009 133.780 248.635 581.822

−0.3 73.0507 97.8211 146.139 266.621 609.811

0.0 84.9225 112.992 166.738 296.213 654.752

0.3 98.6082 130.368 190.086 329.261 703.601

0.5 108.866 143.324 207.348 353.407 738.559

C-S −0.5 43.9425 61.4897 100.463 223.056 581.521
−0.3 48.6598 67.8000 109.728 237.970 609.222

0.0 56.6536 78.4334 125.180 262.420 653.439

0.3 65.8938 90.6433 142.707 289.622 701.089

0.5 72.8365 99.7673 155.676 309.444 734.907

C-F −0.5 11.7789 19.4580 51.6029 221.883 578.063

−0.3 13.4111 22.0653 57.3747 236.329 605.274

0.0 16.3096 26.6648 67.2763 259.863 648.764
0.3 19.8554 32.2440 78.8859 285.850 695.741

0.5 22.6487 36.6065 87.7078 304.669 729.170

Figure 5(a) shows the behaviour of frequency parameter Ω with the increasing values of loading parameter γ
for a fixed value of in-plane force parameter N∗

0 = 30, aspect ratio a/b = 1.0, two values of non-homogeneity

parameter µ = ±0.5 and density parameter β = ±0.5 for the first mode of vibration. It is found that the effect
of non-homogeneity parameter µ is more pronounced for smaller values of loading parameter γ(< 1) while for

density parameter β it is more pronounced for larger values of γ(> 1) keeping other parameters fixed, for all the
three plates. The frequency parameter Ω increases with the increasing values of loading parameter γ. The rate of
increase of frequency parameter Ω with loading parameter γ is in the order of boundary conditions C-F > C-S >
C-C. A similar inference can be drawn from Figs 5(b) and (c) when the plate is vibrating in the second and third
modes, respectively except that the effect of loading parameter γ and the rate of increase of Ω with γ decrease with

the increase in number of modes.
Figure 6(a) depicts the behaviour of frequency parameter Ω with increasing values of aspect ratio a/b for in-plane

force parameter N∗
0 = 30, loading parameter γ = 1.0, two values of non-homogeneity parameter µ = ±0.5 and

density parameter β = ±0.5 for the first mode of vibration. It is observed that the frequency parameter Ω increases

with the increasing values of aspect ratio a/b for the same set of values of plate parameters for all the three plates.
The rate of increase of frequency parameter Ω with increasing values of aspect ratio a/b for C-F plate is higher

than that for C-S and C-C plates when µ = 0.5 and for C-S plate is higher than that for C-C and C-F plates when
µ = −0.5 for both the values of β = ±0.5. This rate is higher for µ = 0.5 as compared to µ = −0.5 for all the

three plates. However, in case of second and third modes of vibration i.e. Figures 6(b) and (c), the rate of increase Ω
with a/b for C-F plate is higher than that for C-S and C-C plates whatever be the values of other parameter.

The effect of non-homogeneity parameter µ on the frequency parameter Ω for in-plane force parameter N∗
0 = 30,

aspect ratio a/b = 1.0, two values of density parameter β = ±0.5 and loading parameter γ = 0, 1 has been shown
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Fig. 6. Frequency parameter Ω for (a) first mode (b) second mode (c) third mode. _____, C-C; - - - - -, C-S; . . . . . . , C-F; N∗

0
= 30, γ = 1; �,

µ = 0.5, β = 0.5; �, µ = 0.5, β = −0.5; △, µ = −0.5, β = 0.5; �, µ = −0.5, β = −0.5.

Fig. 7. Frequency parameter Ω for (a) first mode (b) second mode (c) third mode. _____, C-C; - - - - -, C-S; . . . . . . , C-F; N∗

0
= 30, a/b = 1; �,

β = −0.5, γ = 0; �, β = 0.5, γ = 0; △, β = −0.5, γ = 1; �, β = 0.5, γ = 1.
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Table 2

Values of lowest critical buckling loads N∗

cr
for C-C, C-S, and C-F plates

Boundary conditions C-C C-S C-F

µ γ a/b = 0.5
−0.5 1.5 −12648.1 −3627.85 −47.9969

2.0 −1370.77 −452.646 −17.0050

−0.3 1.5 −14989.5 −4240.25 −53.4283

2.0 −1597.58 −515.897 −18.7818

0.0 1.5 −19344.3 −5358.23 −62.9721

2.0 −2012.26 −628.192 −21.8737

0.3 1.5 −24972.4 −6771.17 −74.5623

2.0 −2537.48 −765.610 −25.5844

0.5 1.5 −29612.4 −7914.61 −83.6780
2.0 −2963.39 −873.968 −28.4737

a/b = 1.0
−0.5 1.5 −3563.18 −1216.68 −52.4509

2.0 −447.959 −192.307 −19.2732

−0.3 1.5 −4219.87 −1426.22 −60.8963

2.0 −521.240 −221.192 −22.2149

0.0 1.5 −5440.13 −1810.38 −76.3502
2.0 −654.752 −273.071 −27.5458

0.3 1.5 −7015.42 −2298.44 −95.9753

2.0 −823.159 −337.435 −34.2372

0.5 1.5 −8312.96 −2695.16 −111.945

2.0 −959.261 −388.766 −39.6298

in Fig. 7. From the Fig. 7(a), when the plate is vibrating in the first mode of vibration it is found that the frequency
parameter Ω increases with the increasing values of non-homogeneity parameter µ for both values of β = ±0.5 and

for all the three plates. The rate of increase of frequency parameter Ω with increasing value of non-homogeneity
parameter µ is in the order of boundary conditions C-C > C-S > C-F. It is higher for β = −0.5 as compared to

β = 0.5 for all the three plates. For the density parameter β = ±0.5 and loading parameter γ = 0, the frequency
parameter Ω increases with the increasing values of non-homogeneity parameter µ for both the C-C and C-S plates.

Here, no frequencies for C-F plate are obtained as the values of critical buckling loads N∗
cr(= N∗

0 ) are less than
30. In case of second and third modes of vibration, the behaviour of frequency parameter Ω is observed to increases

continuously with the increasing values of non-homogeneity parameter µ for the both values of density parameter

β = ±0.5 and loading parameter γ = 0, 1. The rate of increase of frequency parameter Ω with µ for β = 0.5 is
smaller than that for β = −0.5 for all the three plates shown in Figs 7(b) and (c).

Figure 8(a) shows the behaviour of frequency parameter Ω with increasing values of density parameter β for
in-plane force parameter N∗

0 = 30, aspect ratio a/b = 1.0, two values of density parameter µ = ±0.5 and loading

parameter γ = 0, 1 for the first mode of vibration. It is found that the frequency parameter Ω decreases with the
increasing values of density parameter β for the both values of µ = ±0.5 and γ = 1 for all the three plates. The

rate of decrease of frequency parameter Ω with increasing value of density parameter β for C-C plate is higher
than that for C-S and C-F plates. For non-homogeneity parameter µ = ±0.5 and loading parameter γ = 0, the

frequency parameter Ω decreases with increasing values of density parameter β for both the C-C and C-S plates and
no frequencies are found for C-F plate due to occurrence of critical buckling loads N∗

cr(= N∗
0 ) < 30. Figures 8(b)

and (c) showing the behaviour of frequency parameter Ω with β for second and third modes of vibration, it is found
that the frequency parameter Ω decreases with the increasing values of density parameter β for both values of non-

homogeneity parameter µ = ±0.5 and loading parameter γ = 0, 1. The rate of decrease of frequency parameter Ω
with β is higher for µ = 0.5 as compared to µ = −0.5 for all the three plates.

By allowing the frequency approaches to zero, the values of lowest critical buckling loads N∗
cr for different

values of aspect ratio a/b = 0.5, 1.0, non-homogeneity parameter µ = −0.5, 0.0, 0.5 and loading parameter γ =
0.0, 0.5, 1.0, 1.5, 2.0 are reported in Tables 1 and 2. The analysis shows that the value of N∗

cr does not depend

upon the density parameter β. From Table 1, it is clear that the values of critical buckling loads increase with the
increasing value of loading parameter γ and non-homogeneity parameter µ for all the three plates. For C-C and

C-S plates the values of critical buckling loads decrease with the increasing values of aspect ratio a/b. However, in
case of C-F plate the values of critical buckling loads increase when γ � 1 and decrease when γ > 1 for the same
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Fig. 8. Frequency parameter Ω for (a) first mode (b) second mode (c) third mode. _____, C-C; - - - - -, C-S; . . . . . . , C-F; N∗

0
= 30, a/b = 1; �,

µ = −0.5, γ = 0; �, µ = 0.5, γ = 0; △, µ = −0.5, γ = 1; �, µ = 0.5, γ = 1.

Fig. 9. Critical buckling loads N∗

cr for (a) γ = 0 (b) γ = 1 (c) γ = 2. _____, C-C; - - - - -, C-S; . . . . . . , C-F; a/b = 1, β = 0.5; �, µ = 0.5;
△, µ = −0.5.
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Table 3

Convergence of frequency parameter Ω for homogeneous (µ = β = 0) isotropic C-C plate; for b/a = 1, N∗

0
= 0, p = 1

Ref. N I mode N II mode N III mode

Present 10 28.9509 12 69.327 14 129.096

33 40 28.9499 40 69.3796 – –
11 13 28.9509 14 69.327 17 129.09

6 22 28.95 29 69.33 36 129.1

Fig. 10. Vibration modes of C-C plate (a) first mode (b) second mode (c) third mode; for a/b = 1, µ = β = 0.5, γ = 1, N∗

0
= 30.

non-homogeneity parameter µ. For γ = 1.5, 2, (Fig. 2), as the plate undergoes to compressive and tensile forces
simultaneously, one obtains two values of N∗

cr (one positive and other negative). The negative values are reported
in Table 2. It is observed that for γ = 1.5, the positive values of N∗

cr are smaller in magnitude as compared to the
negative values of N∗

cr for C-C and C-S plates while for C-F plate the behaviour is just the reverse. In case of γ = 2,
the positive values of N∗

cr are greater in magnitude as compared to negative values of N∗
cr for all three plates. The

graphs for critical buckling loads N∗
cr for γ = 0, 1, 2 are shown in Fig. 9.

For the specified plate i.e. µ = β = 0.5, a/b = 1, γ = 1, N∗
0 = 30, three dimensional mode shapes for all the

three plates are shown in Figs 10–12.
A comparison for the convergence study of the frequency parameter Ω with N for an unloaded (N∗

0 = 0),
homogeneous (µ = β = 0), C-C square plate (a/b = 1) with quintic spline technique Lal et al. [33], differential
quadrature method Wang et al. [11], power series method Leissa and Kang [6] for p = 1 has been shown in
Table 3. The result shows that the present approach has faster rate of convergence. A comparison of critical buckling
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Table 4

Comparison of critical buckling loads N∗

cr
for homogeneous (µ = β = 0) isotropic C-C plate, p = 1

γ = 0 γ = 1 γ = 2

Ref. b/a 0.4 0.5 0.6 0.4 0.5 0.6 0.4 0.5 0.6

Present 93.247 75.910 69.632 174.4 145.20 134.76 400.39 391.55 411.79

31 93.209 75.887 69.604 – – – – – –

11 93.247 75.910 69.632 174.4 145.2 134.8 400.4 391.5 411.8

6 93.25 75.91 69.63 174.4 145.2 134.8 400.4 391.5 411.8

Fig. 11. Vibration modes of C-S plate (a) first mode (b) second mode (c) third mode; for a/b = 1, µ = β = 0.5, γ = 1, N∗

0
= 30.

loads N∗
cr for homogeneous (µ = 0, β = 0) C-C plate for the values of loading parameter γ = 0, 1, 2, aspect

ratio b/a = 0.4, 0.5, 0.6 and p = 1 with Lal and Dhanpati [31] obtained by quintic spline technique, differential

quadrature method Wang et al. [11], and power series method Leissa and Kang [6] has been presented in Table 4.

An excellent agreement of the results shows the versatility of the technique.

On the suggestion of one of the learned reviewers, the practical situation arising due to µ �= 0 and β = 0
has been analyzed. Physically, this consideration gives rise a type of non-homogeneity arising due to the change

in Young’s modulus of the material only. It is found that the values of frequency parameter Ω increases with the

increasing values of non-homogeneity parameter µ for all the three boundary conditions for the same set of values of

other parameters. It also increases with the increasing values of aspect ratio a/b. However, the values of frequency

parameter Ω decreases with the increasing values of loading parameter γ for all the three boundary conditions
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Fig. 12. Vibration modes of C-F plate (a) first mode (b) second mode (c) third mode; for a/b = 1, µ = β = 0.5, γ = 1, N∗

0
= 30.

whatever be the set of values of other parameter. Similarly, it is noticed that the frequency parameter Ω decreases

with the increasing value of in-plane force parameter N∗
0 , keeping other parameters fixed for all the three plates. The

percentage change in the values of lowest frequency parameter Ω increases with the increasing values of loading

parameter γ as well as in-plane force parameter N∗
0 , whatever be the set of values of plate parameters in the order

of boundary conditions C-C > C-S > C-F.

6. Conclusions

Differential quadrature method has been used to study the combine effect of linearly varying in-plane force and

non-homogeneity of the plate material on the transverse vibration of thin rectangular plates of uniform thickness.

The non-homogeneity is assumed to arise due to exponential variation in young modulus and density of the plate

material along axial direction. It is observed that the values of frequency parameter Ω increases with the increasing

values of in-plane force parameter N∗
0 as the plate become more and more stiff towards the edge x = 0 to x = a,

keeping other plate parameters fixed. However, the values of frequency parameter Ω decreases as the plate becomes

more and more dense towards the edge x = a for fixed values of other plate parameters and this further decreases

with the increasing values of in-plane force parameter N∗
0 . The frequency parameter Ω also increases with the
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increasing value of aspect ratio a/b and decreases with the increasing value of loading parameter γ for the same

set of values of other parameters. A case of pure in-plane bending has been arisen for homogeneous (µ = β = 0)
C-C plate when γ = 2. The value of critical buckling loads N∗

cr increases with the increasing value of loading

parameter γ. It is found that for γ > 1.5 there exist two values of critical buckling loads N∗
cr (one positive and

another negative), as the plate undergoes to compressive and tensile forces simultaneously for all the three boundary

conditions. The percentage variation in the value of lowest frequency parameter Ω are −11.8 to 13.3, −10.9 to 12.1,

−10.9 to 13.0 for C-C, C-S and C-F boundary conditions, respectively, when the non-homogeneity arises due to

the change in only µ (i.e. β = 0) from −0.5 to 0.5 with respect to µ = 0 for γ = 0, N∗
0 = 0, a/b = 0.5. This

effect increases with the increasing values of aspect ratio a/b in the order of boundary conditions C-C < C-S <
C-F. These variations are 13.1 to −11.9, 15.0 to −13.4, 21.9 to −18.1 for C-C, C-S and C-F boundary conditions,

respectively, when the non-homogeneity arises due to the change in only density parameter β (i.e. µ = 0) from

−0.5 to 0.5 with respect to β = 0 for the increasing values of aspect ratio a/b. This effect remains almost same for

all the three boundary condition. In case of critical buckling loads N∗
cr, the percentage variation are −22.2 to 28.2,

−22.4 to 28.6 and −27.8 to 38.9 for C-C, C-S and C-F plates, respectively, when µ changes from −0.5 to 0.5 with

respect to µ = 0 for γ = 0 and a/b = 1. These variations remain unchanged due to variation in density parameter

β. The corresponding changes become −19.8 to 24.4, −19.9 to 24.6 and −23.3 to 30.4 for γ = 1. Almost similar

percentage variations were obtained for second and third modes of vibration. The present analysis will be of great

use to the design engineers in obtaining the desired frequency by varying one or more plate parameters considered

here.
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