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Introduction. Imperfection-sensitivity and post-buckling theory have been the
subject of extensive studies in recent years [4], [6], In these studies (see for example
[2], [7]) the critical buckling load is defined to be the maximum load attainable on the
pre-buckling portion of the load-displacement curve of an imperfect structure. This
definition leads to various approximations of the load-displacement curve, from which
the buckling load can then be estimated.

In this paper we present a very general iteration procedure for calculating the
buckling load of imperfect structures. The method does not require very special knowl-
edge about the form of the imperfections, and the iterates can be rigorously shown to
converge for small imperfections and to give asymptotically valid estimates of the
buckling load as a function of the imperfection amplitude. The method employs an
alternate definition of the buckling load which for imperfection-sensitive structures
gives the same buckling load as the more standard approach. The method is also valid
for problems which are imperfection-"insensitive," even though the prebuckling curve
does not have a maximum attainable load. In this case, the method determines the
imperfection sensitivity of certain "unbuckling" loads. For a treatment of a problem
of this type, see [10].

In the following sections we show how these techniques are easily applied to two
specific problems. In Sec. I we calculate the buckling load of an imperfect column on
a nonlinearly elastic foundation. In Section II we discuss the buckling of a spherical
cap under a number of conditions. Convergence proofs and other theoretical aspects
of the method are given elsewhere [8], [9].

I. Buckling of a uniform column on a nonlinearly elastic foundation. Consider a
pinned uniform column with an initial imperfection resting on a "softening" nonlinear
elastic foundation and subjected to an axial load. For small deflections, the governing
nondimensional equation is taken to be [2]

d*w ox d2w . 3 _ d2wo
—, + 21—, + n-v, - " dp" '

w(0) = w(tt) = 0, w" (0) = w"(t) = 0, (1.1)

where w(x) represents the lateral displacement and X represents the axial loading, with
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X > 0 for compressive loads. The initial imperfection has shape w0(x) and amplitude r.
This problem has been considered in [2] for columns of infinite length and for some
special imperfection shapes w0(x). The treatment given here requires only very modest
assumptions on w0(x) and allows us to study finite columns.

When r = 0, w(x) = 0 is a solution of (1.1) for all values of X. The buckling load
for such perfect columns is the lowest bifurcation point of (1.1). This is the lowest value
of X0 for which solutions of (1.1) with arbitrarily small amplitude exist in every neighbor-
hood of X0 . A necessary condition for bifurcation to occur is that (1.1) linearized about
X = X0, w(x) =0 has nontrivial solutions. Thus, bifurcation can occur for X = X0 only if

£5 + 2X° + * = °> *<°) = = °> «"(°) = = 0 (L2)
has nontrivial solutions. Clearly, (1.2) has nontrivial solutions only for

Xo = x» = \(k2 + , k= 1,2,..., (1.3)

in which case

4>k(x) = a sin kx. (1.4)

Thus the lowest possible bifurcation point is X = X[ = 1.
For r ^ 0, there is no "trivial" solution of (1.1) for all values of X, so that, strictly

speaking, bifurcation cannot occur. Instead we define the buckling point to be the
lowest point X0 for which, in every neighborhood of X0 , two solutions of (1.1) with
arbitrarily small difference exist for the same value of X. If w(x) is a solution of (1.1)
for X = X0 , a necessary condition that X = X0 is a buckling load is that (1.1) linearized
about w(x) have nontrivial solutions. Therefore, the buckling load is defined to be the
smallest value of X for which

+ <t> = 3w2<t> + 2(1 - X) g , *(0) = <*>« = 0, 4>"(0) = = 0 (1.5)

has nontrivial solutions, where iv(x) and X simultaneously satisfy (1.1).
We solve (1.1) and (1.5) simultaneously for (w(x), 4>(x), X, r) in a neighborhood of

(0, 0i , 1, 0) to give us the buckling load as a function of r. We write (1.1) in the form

d*w _ d2w 3 , . d2w d2wn
d? + 2s, + "-" +2<1"x)d?-2x'd?-'

w{ 0) = w(t) = 0, w"(0) = w"(ir) = 0, (1.6)

and note that (1.5) and (1.6) are both of the form

d'y/dx* + 2 (d2y/dx2) + y = h(x), 2/(0) = y{ir) = 0, y"{0) = y"( tt) = 0. (1.7)

Since (1.2) has the nontrivial solution <t>i = a sin x, we know, according to the Fredholm
alternative theorem, that solutions of (1.7) exist only if h(x) satisfies

f" 0
h(x) sin x dx = 0. (1.8)

If h(x) satisfies (1.8), then all solutions of (1.7) can be expressed as
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y{x) = A sin x + f 9(x, f)ft(f) d{, (1.9)
Jo

where 2/ir J0' y(x) sin x dx = A. Here Q(x, f) is the generalized Green's function [5,
pp. 354-358], which in the present case is

9(z, f) = ~ (x2 + (f — x)2 - \ir2 — |) sin f sin x + J^sin f cos x

— jx cos f cos x + cos f sin x, 0 < x < f < ir, (1.10)

= -j- (x — 7r)2 + f2 — W2 — f) sin t sin x + J- cos f sin x
4t 2w

— ^ (x — ir) cos f cos a; + 2T *) s'n ^ cos x' 0 < f < x < tt.

Our method consists of solving (1.5) and (1.6) by iterations in a neighborhood of
the known "trivial" solution (w(x), <t>(x), X, r) = (0, sin x, 1, 0). To do this we let the
initial iterates be

w°(x, e) = e sin x, <£°(€, x) = sin x, (1-11)

and define the v + 1st iterates by

X"+1(«) = 1 — - f (w"(x, e))2<t>*(x, e) sin x dx, (1.12a)
7T J o

r'+\e) = U f (w\x, e))3 sin x dx + e(\> + \e) - 1)1 , (1.12b)
X(e)Wi Lw Jo J

f* S(x, f)[3(w'(f, 8))V(f, 0 + 2(1 - X,+I(e)) C)]<f)v+ (x, e) = sin x +

u>"+1(x, e) = esin x + ^ g(x, f)^(w'(f, <0)3 + 2(1 - X'+1(«))

- 2X' + 1(e)/ + 1(e) df.

Here we have assumed that f0" (d2w0(x)/dx2) sin x dx = — (W,ir/'2) ^ 0. Clearly,
(1.12a, b) specify X"+1(e) and r"+1(e) so that the orthogonality condition (1.8) is satisfied
at each iteration. The form of the Green's function Q(x, f) insures us that <£"+1(x, e)
and w"+I(x, e) are four times continuously differentiable whenever <t>"(x, e) and w"{x, t)
are also four times continuously differentiable. Therefore, the iteration scheme (1.12)
is well defined.

It is easily shown [8] using the contraction mapping principle that this iteration
procedure is convergent for all e in 0 < |«| < e0 provided e0 is sufficiently small. Further-
more, the limit is the unique solution of (1.5) and (1.6) of the form

w(x, t) = e sin x + tWt(x, e), <f>(x, e) = sin x + i4>i(x, e), ^ ^

X(f) = 1 + t2Xi(e), r(e) =

dw'tt, t)
(1.12c)

dx2
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where

/ w^x, e) sin x dx = 0, / <t>i{x, e) sin x dx = 0, (1-14)
J o «m>

and where w^x, e), (j>i(x, e), X,(e), are uniformly bounded on 0 < |e| < e0 . The
errors in the »th iterate are of the form

\\w\x, e) - W(x, e)|U = 0(t'+3), \\<t>y(x, e) - *(s, e)||„ = 0(e2' + 2), (J ^

|X'(e) - X(t)| = 0(e' + 2), |r'(e) - r(e)| = 0(e2'+3).

Note that (1.15) implies that the j»th iterate is asymptotic to the exact solution. Thus
we can eliminate t between X"(t) and r'(«) to get an asymptotic representation of the
buckling load X = X(t) (valid for t —> 0). Furthermore, by using higher-order iterates,
we can determine X = X(r) as accurately as we wish for some sufficiently small range of r.

To explicitly evaluate the iterates, we write w0(x) in the form

w0(x) = ^ Wk sin kx, (1.16)
k= 1

and require that Wt ^ 0. (Note that if Wi = 0, then the iteration scheme (1.11)—(1.12)
is not well defined.) The first two iterations now become

X\e) = 1 — | e2,

= 2 *3
T w 4 Wt( 1 - 9/8«2) '

3
<t>\x, e) = sin x — e2 sin dx,

Zot)

(1.17)

i/ x • ,r 3 f k2wk . , i . „iw (x, f) = e sin x — t [J^T f-f2 (j.1 _ 1)2 sln kx ~ 256 Sm J '

and

X2(«) = 1 — | f2 + £ (M27 w, -1]+°<<*>'
r (f) W,X"(<) [l f + * (lojl27 W, 2)]+°<')-

(1.18)

Eliminating e in (1.18), we find

XM - 1 - If,,)'" + ^ + f )(HV)<» + 0(A. (1.19)
The term in (1.19) involving r2/3 is the same as that given in [1] for the special case
Wi = 1 and Wk = 0 for k ^ 1. In addition, (1.19) gives us the t4/3 correction term and
shows the effect of the third harmonic W3 . Additional harmonics appear in higher-order
terms which are easily obtained by continuing the iteration procedure.

If we know the distribution of the imperfections for some ensemble of imperfect
columns, we can compute ensemble averages of the load-imperfection relation. That is,
since (1.19) is valid for each member of the ensemble, we find the expected value of
the buckling load to be
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(X(r)> = 1 - r/3[^j'\w 2/3> + Q (f)1/3(81<tW/3> + (T*V/3>) + • ■ • .

(1.20)
This can be compared with other approaches for random imperfections as in [1] or [2].

Through each of the solutions (1.13) of (1.5) and (1.6) with « fixed in 0 < |«| < «0
we can determine a unique solution of (1.1) on which r is a nonzero constant. We write
(1.1) as

^ + 2X(«) § + (1 - ^\x, = Sw(x, e)t2 + i3

\( \\( M^0 I d2w(x' e) | d* A- 2(X - XW)^r(e) ,

m = 4>m = o, ^"(o) = rw = o, (i.2i)
where \p = w — w(x, e) and where w(x, e), X(«) and r(e) are the solutions of (1.1) given
by (1.13). Eq. (1.21) is of the form

g + 2X(«) 0 + (1 - 3w\x, e))y = h(x), 2/(0) = yfr) = 0, y"(ir) = y"(?) = 0.
(1.21)

Since (1.6) has the nontrivial solution <f>(x, e) given in (1.13), we know that solutions
of (1.21) exist only if

f h(x)<f>(x, t) dx = 0. (1.22)

If h(x) satisfies (1.22), and e0 is chosen sufficiently small that e) is the only eigen-
function of (1.5), then all solutions of (1.21) can be expressed as

y(x) = A<t>(x, e) + [ Q.(x, f)A(f) df (1.23)
»'0

where j0' (y(x) — A(j>(x, t))4>(x, e) dx = 0. Here Q,(x, f) is the appropriate generalized
Green's function for (1.21) which can be calculated in principal.

We find solutions of (1.21) by iterations in a neighborhood of the known solution
(1.13). To do this we let the initial iterate be

w°(x, t, 8) = w(x, e) + i°(x, t, 8), i\x, «, 5) = 84>(x, e) (1.24)

and define the v + 1st iterate by

X'+I(6, 5) = X(e) + —7— f [3w(x, e)(f(x, «, 8))2 + (*'(*, e, 8))3]<t>(x, «) dx,
2$ (e, 6) Jo

CT d?
$'(«, S)= <f>(x, e) j-2 (r(e)w0(x) + w(x, e) + f(x, t, 8)) dx,

Jo ax (1 25)

i"*\x, 6, 5) = 8<t>(x, e) + ^ 8<(x, f)|^3w(f, e)(^"(f, t, 5))2 + (^'(f, «, ^))3

- 2(X'+1 - X(e)) (T(e)iflo(f) + w(t, e) + *'(f, *)) \ K.r, e, 5))]
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It is easily shown that the iteration scheme (1.25) is well defined and is convergent
for all 8 in 0 < |o| < 50(«) provided <5„(e) is sufficiently small. Furthermore, the limit is
the unique solution of (1.1) of the form

w(x, e, 5) = u>(x, e) + 8<f>(x, e) + 52w2(x, e, 5), X(e, 8) = X(«) + 82n(e, 8), (1.26)

where w2(x, t, 8) and n(e, 8) are uniformly bounded on 0 < 151 < o0(c). The errors in
the vth iterate are of the form

|\w'(x, e, 8) - w(x, e, 5)|joo = 0(5'+2), |X'(e> 8) - X(e, «)| = 0(8'+2). (1.27)

Since this implies that the i>th iterate is asymptotic to the exact solution, we find the
form of the solution by examining X'(«, 8). Applying (1.24) and (1.25), we find

.(frvi) + 0«]' <L28>X'(e, 8) = X(e) - | &'

Combining this with (1.18), we see that

X(e, 5) = X0 — | (e2 + 32(j + ^j) + • • • , (1.29)

which is a representation of the load-displacement curve when r = r(e) in a neighborhood
of X0 . Clearly, X(«, 8) is maximized when 8 = 0, so that X = X(e, 0) is the buckling load
in the sense of other authors [2, 7] as well. A plot of (1.29) is shown in Fig. 1.

II. Buckling of a spherical cap. In a given physical problem, the buckling load may
be sensitive to a number of different parameters which are either naturally occurring
or artifically introduced as, for example, in [11], In this section we will consider the
effect of general axisymmetric imperfections on the buckling load of a spherical cap,
and we will also investigate the change in buckling load resulting from a change of the
boundary constraints of the cap.

Suppose the surface of a shallow, thin elastic spherical cap is subjected to a uniform

\ PERFECT COLUMN (r = 0)

Fig. 1. Plot of load-displacement, curve for column (Eq. (1.29)).
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pressure directed toward the cap's center of curvature. The nondimensional equations
for axisymmetric deformations of this initially imperfect cap are [3]

LW = p(WV + Px2 + tVW0), LV = p(x2 — W2 — 2tW0(W - x)). (2.1)

Here W(x) is proportional to the slope of the tangent plane of the deformed surface,
V{x) is a stress function, and Lu = x(d/dx)(l/x(d/dx) (xu)). The other dimensionless
quantities are

x = r/a, 0 < r < a, W0{x) = (R/a)(dwjr)/dr),

' = 1(7X1)' p'Mfh c' = wh)- <2'2)
where a, R and t are the radius of the base, the radius of curvature and shell thickness,
respectively, and w0(r) is the initial slope of the imperfection with amplitude r. The
uniform pressure is p. Requiring regularity and symmetry at x = 0 and allowing no
rotation at x = 1 gives the edge constraints

TT(0) = F(0) = 0, W{\) = 1. (2.3)

An additional edge constraint must be imposed at x = 1. We will consider two
possibilities:

F'(l) — vV{\) = (£«i — 1)(1 — v)P, t = £a2 , <*i2 + a2 = 1, (2.4a)

V(l) = -P, (2.4b)
Physically, these conditions imply that the meridional displacement in (2.4a) or the
meridional stress in (2.4b) is proportional to the external pressure. When £a, = 1, (2.4a)
implies that the edge of the shell is clamped, while when Ja, = 0, the edge is allowed
to move freely in radial directions. For between 0 and 1 there are certain elastic
restoring forces applied at the edge. Finally, by appropriate choices of ax and a2 , we
can examine the effects of combinations of imperfections and changing boundary con-
straints on the buckling load. The bifurcation problem (r = £ = 0) for (2.1), (2.3) and
(2.4a, b) has been treated in [13]. It is also possible to treat the bifurcation problem
using an iteration procedure similar to the method used here, as, for instance, in [10]
and [12].

We first consider (2.1) subject to the edge constraints (2.3) and (2.4a). A uniform
compression, W(x) = x, V(x) = (£a, — \)Px, satisfies the edge constraints, and satisfies
the equation for £ = 0. With the transformation

W(x) = x + w(x), V(x) = (£«i — 1 )Px + v{x), (2.5)

the problem becomes

L 0
0 L

+ px Po -1

. 2 0

w = P (P0 - P)xw + wv + £ff(P, w, v) + £2/i(JP)

-w2 - tf(P, w, v) (2.6a)

R,{P, £, w, v) + £2h(P)

R2(P, £, w, v)

w( 0) = i>(0) = w( 1) = f'(l) — w{\) = 0 (2.6b)
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where

g(P, w, v) = aiPx(w(x) + x) + a.2Wn(x)(v(x) - Px), ^

h(P) = a,a2PxW,t(x), j(P,w,v) = 2a2W0(x)w(x),

and P0 is arbitrary.
As in Sec. I, if w(x) and v(x) are a solution of (2.6) at the "buckling" load, then (2.6)

linearized about this solution must possess nontrivial solutions. Therefore, we seek
nontrivial solutions of

L 0
0 L,

<P

i.

= p

+ px Po -1

, 2 0. ...
(P0 - P)x + V + £gw(P, W, v) w + tg.(P, W, v)

-2w - £jw(P, w, v) -Zf.(P, w, v)

R3(P, f, w, v, <p,

(2.7)

Rt{P, £, w, v, <p, \f)
<p(0) = *(0) = v(l) = *'(1) - ^(1) = 0.

to*

(2.8)

When £ = w(x) = v(x) = 0, (2.7) is an eigenvalue problem which determines the possible
bifurcation values of P. The eigenvalues and eigenvectors are

Po„ = (X.7 p) + (2p/x„2),

x)

x)

Jl{^K )J^Kx) " \p /l(X")Jl(^x7 *).

where the numbers X„ are roots of the transcendental equation

0" f5 - '•'.<« - ■>■{"¥)" ■
(2.9)

and where (J°^)„ is the solution of corresponding adjoint equation. Since we are interested
in the smallest value of P for which nontrivial solutions of (2.7) exist, the bifurcation
point P0 of interest is that value of P0n which minimizes P0„ = (X„2/p) + (2p/X„2).

As in Sec. I, the Fredholm alternative theorem is applicable for finding solutions of
(2.6) and (2.7). Specifically, since the problem (2.7) is not selfadjoint when £ = w(x) =
v(x) = 0, Eqs. (2.6) and (2.7) have solutions only if their right-hand sides, say (?,!*!),
satisfy

f (<p0*(x)Q(x) + >pn*(x)R(x)) dx = 0, (2.10),
J n
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where <p0*(x) and ^0*(z) are the components of the adjoint eigenfunction corresponding
to P0 ■ If (2.9) is satisfied, then solutions of (2.6) and (2.7) are given in terms of the
generalized Green's matrix G(x, if) as

w(x)

. v(x).
= A V>o(z)

+ f G(x, f) (Q(f)
m

dr. (2.11)

The Green's matrix for this problem is given in the Appendix.
As in Sec. I, we propose an iteration scheme with initial iterate

W°(x, f) = e<p0(x), v\x, t) = t\j/o(x),

<p°(x, e) = <p0(x), ^°(x, «)' = ^0(x), (2.12a)

P°(€) = P„ , £°(e) = 0.

The c + 1st iterate is defined by

f [^•(®)fl1(P'+1(e)> r+1(e), »'(x, e), v\x, e)) + <p0*(xW(e))2h(P>(e))
Jo

+ ^„*(x)P2(P'+,(t), r+1(e), u>'(x, «), *>"(*, 0)1 <*x = 0, (2.12b)

f [Vo*(x)R3(P'+\e), r\<), W\x, «), v'(x, e), /(as, e), *'(x, e))
Jo

+ ^0*(x)Ri(P' + \e), r + 1(e), uf(x, e), iT(®, «), /(x, e), f (x, e))] dx = 0 (2.12c)

w"4,(x, e)

v"+1(%, «)

+

/(x, 6)

«)

f G(X, f)
^0

VoW

M*)
r+1«, «'(r, o, »'(r, 0) + (rwww

R2(p,+\t), r+l(e), w"(r^), »'(r,<))
df, (2.12d)

<Po(z)

+ f g(x, r)
Jo

df. (2.12e)R;XP"+\e), r'(e), w'U, e), »'(f, e), /(f, e), «))
A(P'+1(e), r+1(e), w'(r,«), v(r, 4, v-(s,«), /(r, «)).

The iteration scheme (2.12) is well-defined, and it can be shown that for all e in
0 < |e| < €0 , with e0 sufficiently small, the iteration procedure is convergent to a unique
solution of (2.6) and (2.7) of the form

w(x, e) _ <p0(x)

. K*, «)J lAo(z)
<p(x, e) = <£>0(z)

■ <A(z, «)J k»(x)
P(e) = P0 + eP^e),

+ e2

+ e

Wi(x, e)

. !>i(x, e).

<Pi(x, e)

lAi(z, e)
(2.13a)
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Here

f x(<p0*(x)wl(x, e) + \p0*(x)v1(x, e)) dx = 0,
Jo

[ x(<po*(x)<p<(x, e) + \j/0*(x)i1{x, «)) dx = 0,
Jo

(2.13b)

and 1»!(x, e), v^x, e), <py{x, t), i,{x, e), Pi(t), £t(e) are uniformly bounded on 0 < |«| < e0.
The error in the vth iterate satisfies

\\w\x, e) — w(x, e) | |o> = 0(e" + 2), | \v"(x, e) — v{x, e)||co = 0(t+2),

\\<p'(x, e) - <p(x, e) 11» = 0(e" + 1), \\p(x, «) ~ *(x, *)||„ = 0(e' + 1), (2-14)

Ip\e) - p(e)i = o(e'+i), irw - m = o(r2).
The first iterate yields

P\e) = P0 + 2tPi + e2 ^ + «20(e3),

tV.a = —^ -£ W Dl

(2.15a)

PW« '
where

(2.15b)

Q = [ (p02(x)(\l/0(x) - yf>a*(x)) dx,
J 0

Pi = Q/ x<p02(x) dx,

Wi = «i / x2<p0*(x) dx — a2 / a:T70(x)(p0*(x) cfe,
Jo ^0

TF2 = [ Wu(x)vo(x)(Mx) - 2io*(x)) dx.
Jo

In Table I we present some values of P0 , Q and P, for various values of the physical
parameter which were determined with Young's modulus chosen as v = 0.3 by numerical
evaluation of the appropriate integrals.

TABLE I
Values of the coefficients of (2.15) for the boundary-value problem (2.1), (2.3), (2.4a). P2 = JVzVo*(x) dx.

VP Po Pi Q Pi

1.0 3.882 15.21 0.119 0.000318 0.0190
2.0 4.591 5.65 1.47 0.0392 0.0551
3.0 6.111 4.63 2.05 0.0413 0.0206
4.0 6.780 3.49 0.696 0.00159 0.000697
5.0 7.628 3.19 -1.36 -0.00686 0.000901
6.0 9.037 3.15 -2.16 -0.0143 0.00107
7.0 10.078 3.04 -0.222 -0.000018 0.00000804
8.0 11.164 2.97 1.59 0.00542 0.000249
9.0 12.497 2.96 1.48 0.00309 0.000142

10.0 13.538 2.94 - 0.390 - 0.0000667 0.00000795
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Eliminating e in (2.15) gives

P±© = Po ± 2F1(^^i)1/2 + 0®. (2.16)

Here P_(£) is the imperfection-sensitive buckling load and P+(£) corresponds to an
"unbuckling" load. Of course, we must require that £P„WJQ < 0. For each value of
the physical parameter p, this places a restriction on the sign of the "imperfection"
Wi for which (2.16) is valid. Problems for which £ is of the opposite sign give rise to
buckling-load solutions which do not have nontrivial solutions of (2.7), and therefore
are not locally maximal solutions on the load-deflection curve. Instead, the buckling
load must be defined in some other way.

We recall that this did not occur in Sec. I. For the buckling load of a column, t(«)
in (1.18) is an odd function of e, and X(e) is an even function of e. Thus, changing the
sign of the imperfection does not affect the buckling load. Physically this is clear because
of the symmetry of the column. However, one does not expect this to be the case for
the spherical cap, since symmetry is lost due to the initial curvature of the perfect cap.

Through each of the solutions (2.13) of (2.6) and (2.7) with e fixed in 0 < |«| < e0
we can again determine a unique solution branch of (2.1) on which £ is a nonzero con-
stant. Following the procedure given in section I we write (2.1) as

L 0

0 L L@J
+ p

= p

P{t)x — v(x, t) — ^(t)aiP(t)x —x — w(x, e) — £(e)ct2W0 $

2x + 2w(x, e) + 2£(e)a2W0(x) 0 . .0.

$0— q[xw(x, e)-{-x$—£(e)(a1x(w(x, t)-\-$-\-x)—a2xWa(x))—l?{t)ala2xW0(x)]

_$2

$(0) = $(1) = 0(0) = 0'(1) - i»0(l) = 0, (2.17)
where w = iv(x, e) + $, v = v(x, e) + 0, P = P(e) + q and w(x, e), v(x, e), P(e), £(«)
are solutions of (2.6), (2.7) as given by (2.13).

Using (2.6b) and (2.7), it is easy to see that the left-hand side of (2.17) has the
nontrivial solution as given in (2.13). Therefore, we can use the Fredholm
alternative theorem to solve (2.17) by iterations. Let the initial iterate be

w\x, e, 8) = w(x, e) + $°(x, e, 8), 3>°(x, e, <5) = 8<p(x, e), ^ ^

v°(x, e, 8) = v(x, e) + ©°(z, e, 8), &"(x, e, 8) = 8\p(x, e),

and define the v + 1st iterate by

Q"(x, e, 8) = xw(x, e) + x$"(x, e, 8)

— ^(i)(aix{w{x, t) + &(x, e, 8) + x) — ct2xW0(x)) — ^(e)aia„xWo(x),

f [<p*(x, €)$'(a:> 5)®"(x, t, 8) — \p*(x, e)(S'(x, e, 5))2] dx
q+\t, 8) = ^    , (2.18b)

<£'+\x, e, 8)

@'+i(x, e, 8)

f <p*(x, e)Q"(x, e, 8) dx
Jo

ft,= P [1 g,(x, f) r (r>swa>e-5) ~ q"+1(e's)Qy(f'e-8)
0 ' -mt,e,8)y
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where Gt{x, f) is the appropriate generalized Green's matrix for (2.17), and <p*(x, e),
e) are components of the solution of the adjoint of (2.7).

It is easily shown that the iteration scheme (2.18) is well defined and is convergent
for all 5 in 0 < |5| < 50(e) provided 50(e) is sufficiently small. The limit is the unique
solution of (2.1) of the form

w(x, t, 5) = w(x, e) + 8<p(x, e) + 82W2(x, t, 5),

v(x, e, 5) = v(x, e) + d\p(x, e) + 82v2(x, e, d), (2.19)

P(t, 8) = P(e) + 82q(e, 8),

where w2(x, e, 8), v2(x, e, 8) and /u(e, 8) are uniformly bounded on 0 < |5| < 50(e), and
J x(ip*(x, e)iv2(x, e, 8) + \p*(x, t)v2(x, t, 8)) dx = 0. The errors in the yth iterate are of
the form

||w"(x, e, 8) - w(x, e, 5)11a, = 0(5*+2), \\v\x, e, 8) — v(x, e, 5)||„ = 0(5*+2), ^ ^

|P\e, 8) - P(e, 5)| = 0(5*+2).

We find the asymptotic form of P(e, 8) by examining P'(e, 8). Applying (2.18), we find

P\f, 8) = P(e) + 52(^ + 0(1)) for \S\ < |e|. (2.21)

Combining this with (2.15), we see that

P(e, 8) = Fo + ePi(l + | r^) + ■ " ■ , £(«) = + 0(e3), (2.22)

which is a representation of the load-displacement curve when £ = £(e) in a neighborhood
of P0 . Clearly, setting 5 = 0 gives extremal values of P(t, 5). A plot of (2.22) is given
in Fig. 2. This can be related to the load-displacement curve in the original variables
by (2.19) and (2.5).

+ s

„ FIXED N \\ J
\ PERFECT SHELL (t = 0)

\

^=o   P0 V-

\ \\ X \
\\\\\

\

Fig. 2. Plot of load-displacement curve for spherical shell given by (2.22).
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One reason for studying this problem was to study the buckling of a clamped spherical
cap. The solution (2.13) is valid only for small t and hence for small £. However, one
might try to find a valid extension of (2.16) so that we may allow £a, = 1. Our method
gives results pertinent to this problem when £(e) in (2.13) is positive. Examination of
Table I shows that this is the case for some values of the physical parameter p and not
for others.

Now that we have determined the solution of (2.1), (2.3) with boundary condition
(2.4a) it is a simple matter to find the corresponding solutions for any other boundary
condition. In order to treat (2.1), (2.3) with (2.4b) we set t = J in (2.11) and set a: = 0,
oil = 1. Then we apply the transformation (2.5) to find Eq. (2.6) with the new boundary
condition (2.4b). Apparently, the possible bifurcation values of P are determined by
the eigenvalue problem (2.7) with £ = v(x) = w(x) = 0 and (2.4b) replacing w'(l) —
vv(l) = 0. The resulting eigenvalues and eigenfunctions are

Po„ = (A„7p) + (2p/X„2),

<Po

"An

<Po*

to*

~2 UKx)
(2.23)

JiM

~ Ji(Kx)

Here X„ = jln is the nth zero of the Bessel function ./, (x), and (£"*)„ is the solution of
the corresponding adjoint equation. We let P0 be that value of P0„ which is minimized
over X„ . With the generalized Green's function corresponding to boundary condition
(2.4b) the results (2.13)-(2.22) are valid when the eigenfunctions (2.23) are appropriately
substituted for the eigenfunctions (2.8). The generalized Green's function is given in
the Appendix. In Table II we present some values of P0 , Q and Pi for various values
of p, which were determined with Young's modulus chosen as v = 0.3 by numerical
evaluation of the integrals given in (2.15b).

TABLE II
Values of the coefficients of (2.15) for the boundary-value problem (2.1), (2.3) and (2.46). P3 = (Po/Q)l/2-

vV P o Pi Q P 3

1.0 14.82 0.207 0.0167 6.15
2.0 4.21 0.827 0.067 6.56
3.0 2.86 1.86 0.151 8.10
4.0 3.10 3.31 0.268 11.24
5.0 2.98 1.25 0.056 9.09
6.0 2.83 1.79 0.081 10.62
7.0 2.99 2.44 0.110 12.75
8.0 2.85 1.67 0.052 12.49
9.0 2.84 2.12 0.066 13.89

10.0 2.90 1.43 0.034 13.19



186 J. P. KEENER

Appendix. The Green's functions used in Sec. II are the solutions of the equation

L 0

0 L
G + x

^ 4- 2pX +-^ -p

2 p 0.

G = S(x — £)/ — Ax (p0(x) <P*(Q

to*®

(A.l)

with appropriate boundary conditions as given in (2.3) and (2.4). Straightforward
calculation shows that with boundary conditions (2.4a), we have

G(x, £)

where

Gu(x, £) G12(x, £)

G2\(x, £) G22(x, £)

Gn(x, £) = oc<po(x) +

G2i(x, £) = a\po(x) +

Gi2(x,£) = @<Po(x) +

G22(x, £) = Pia(x) +

-C,® ̂ efr, a +1
0 < x < £ < 1,

-c,(0 ̂ *) + f «*({)»,«,
0 < £ < s < 1,

^ Cl® + (X^V) $(*' £) + Aw*®**®'

0 < a; < £ < 1,

ir Ci® + x) +
0 < £ < z < 1,

~c>® T^w " 20^-2, ■) 0 + A ̂  Wl>'

o < X < £ < 1,

"C*® w - 201?) i((' X) + -1 ̂  "'«■
0 < £ < x < 1,

z2pe(rtiM +  9k(^*-x
X2 /t(X) + 2(X4 - 2p2) UV X2 ' X2 V

+ Apt0*(Qh2(x), 0 < x < £ < 1,

~2P r /A ji(Xx) tt£X2 „ / V2p -y/2p \
X2 °2® Jt(X) + 2(X4 - 2p2) V X2 X2 /

+ Ap\pn*(£)h2(x), 0 < £ < x < 1,

(A.2)

where
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hl(x) = x Jl(M)f°(Xa;) - x Jl(X)Jo(MX) , n = V2p/X
A fJL

h ~ i(m)o(M   Ji(S) Jo(m^)
fl>2\p^) — •£ x3 3 >

A /i

$(*,£) = F^X^/^Xx) - Y^nQJ^x),

©(£, £) = X'F^XQJ^Xx) - pY^QJ^nx), (A.3)

Clft) = 2(/-2P2) 0(1' ^

c2© = $(1, {) + A ^ ^(1),

j[ = f x(<po(x)<po*(x) + \p0(x)\l/0*(x)) dx,

and the constants a and (3 are chosen so that

[ x(<t>o*(x)G11(x, £) + ^0*(x)G21{x, 0) dx = 0,
J 0

[ x(<p0*(x)G12(x, £) + io*(x)G22(x, £)) dx = 0,
Jo

respectively. The eigenfunctions <p0(x), $a(x) and <p0*(x), ^0*(x) are found in (2.8).
The Green's function associated with the boundary condition (2.4b) is easier to

calculate, since a simple transformation diagonalizes the system (A.l). In this case

G(x, Q = -X-2p
2p - X4

1 1

2p V
X2 PJ

Gi(x, $) 0

. 0 G2(x, £)

=* 1

X2 1

(A .4)

where

Gi(x, 0-f Fj(X^)/ i(Xx) - + | -^)./,(XQ./1(Xx)u7o (x) 2 j0(x)y

+ \j7§) JAx) + ulxJt>(Xa;)' 0 < * < £ < i,

-1 •'.oai'.M - (j?77W +1 (Xx)

, £Jr0(X|)./1(Xx) Jt(X|) ,
+ x2j02(x) + xj02(x) *Jo(Xa:)> <><£<x<i,

<?2(x, 0-| (J,(M) YM) ~ JM) YM) J-fff , 0 < x < ? < 1,
(A. 5)

= | (Ji(M)Yr(px) - Yi(n)J lilix)), 0<*<x<l,
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where p. = \/'2p/\ and

/'*Jo

<fo*(x)

i*(x).

T

G(x, £) dx = 0.
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