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Abstract. We consider the bifurcation buckling of a rectangular plate with an imper-
fection of magnitude a under an applied lateral force of magnitude X. The analysis allows
the parameters (X, a) to vary independently in a neighborhood of some (X0, 0), and
describes all buckled states of small magnitude. If the plate is represented by the domain
(0, J2) X (0, 1) in R2, then the lateral force is applied to the edges x = 0, fi, and the
imperfection is a small vertical displacement of the form z = (a/2)y2{rrx + t), where a and
r are fixed. Roughly, then, the plate has a small curvature in they-direction, of magnitude
a(ax + r).

The two cases a = 0, r = 1 and 0 < | a\ « 1, r = 1 are fully analyzed. In the first case,
the plate has the form of a cylinder and possesses a high degree of symmetry. This results
in a rather nongeneric bifurcation diagram. In the second case the symmetry has been
broken, and a generic picture results.

1. The von Karman equations. The von Karman equations describe the buckling of
a plate or shell under external forces. Consider, in fact, a rectangular plate described by
the domain

U = (0, /) X (0, 1) C R2

in the (x, _y)-plane. Assume that in the absence of external forces the plate is not perfectly
flat, so it has a small imperfection which can be given as z = aw0(x, y). Here z is the
displacement of the plate, R is a small parameter and w0 : Q —> R a known function. If
now a lateral force of magnitude X is applied to the edges of the plate, the interaction of
the resulting stress and the imperfection gives rise to a normal force, thus causing buckling
of the plate. This is described by the equations

in £2, (1.1)
A2/ = - z [w, w] - a[w, w0]

A2W = [W + QVCj , f + X/7]

where

[w, v] — UxxVyy UyyVxX 2.UxyVXy .

For a simply supported plate, the boundary conditions are

/ = 0, A/ = 0, w = 0, Aw = 0 on 8Q. (1.2)
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Here F is the known Airy stress function of the applied forces and / and w are unknowns
representing the additional stress and deflection caused by buckling. The final shape of the
plate is thus

z = aw0(x, y) + w(x, y).

See [14] for more details.
This and related problems have been studied by many people. A common choice for

the applied force, which we shall take, is

F(x, y) = -If,
representing a compressive force applied to the edges x = 0, / acting in the j-direction.
Knightly and Sather [12] and Matkowsky and Putnick [16] study the case wherea = 0 and
X is near an eigenvalue X0 of the linearized problem. Moreover, they set / = v:2, which gives
rise to a two-dimensional kernel for the linearized equations. There are also results in [11]
where a is allowed to vary in a manner depending on X. In [6], Chow, Hale and Mallet-
Paret considered a generic w0, with (w, X, a) varying independently in a full neighborhood
of (0, X0, 0), and List [15] studies the effect of letting also / vary near J2. In [13], Knightly
and Sather study the buckling of a section of a cylinder curved in the j-direction; in our
context this refers to a ^ 0 fixed, w0(x, y) = Jj2, and X varying near X0 .

Here we study the buckling of a cylindrical section as the curvature a approaches zero;
that is, a and X vary independently near 0 and X0 . In view of the very specific choice of vv„,
and the resulting high degree of symmetry, it turns out that the nature of the bifurcation is
very nongeneric. We therefore also study the effect of superimposing an addition imperfec-
tion which destroys some of the symmetry and leads to a more generic picture. Physically,
this corresponds to a cylinder with curvature in the j-direction, but varying slightly as a
linear function of x.

As in [12], we may write (1.1), (1.2) as an operator equation in the Hilbert space

X = {u E H\Q.) | u = 0 on <9S2}, (u, v) = f (Au)(Av).
J 11

Letting A"1 denote the inverse of the Laplacian, with zero Dirichlet data, set for u, v (E X

Lu = A~2[«, F] = —A~2uxx , Au = A~2[u, w0],

B(u, v) = A_2[u, i>], Q(u) = B{u, Am) + |AB(u, u),

C(u) = \B(u, B(u, m)), p = -A'2woxx .

Then (1.1), (1.2) are equivalent to

(I — XL + a2A2)w + aQ(w) + C(w) = aXp. (1-3)

The first eigenvalue X0 of the compact self-adjoint operator L is [12] X„ = 97t2/2, and the
kernel of / — X0L is two-dimensional, with orthonormal eigenfunctions

, . 27/4 . jirx .
<t>Ax<y) = ^-2 + 2) sin ~2 sm 7ry' J = '

2. Plate with small cylindrical imperfection. In this section we consider the above
problem with / = J2 and a small cylindrical imperfection given by

w<£x, y) = i>>2. (2.1)
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Thus (1.3) becomes

(I - XL + a2L2)w + aQ(w) + C{w) = 0. (2.2)

As described above, we shall study the local bifurcation of (2.2) for (w, X, a) in a full
neighborhood of (0, X0, 0). The Lyapunov-Schmidt method (see [5] for details) immedi-
ately reduces (2.2) to a finite-dimensional system of equations. First, decompose w as
follows:

w = Pw + (/ — P)w,
def

Pw = (w, 0,)0, + <W, 02)02
def

= + «202 G ker (/ - X0L), (2.3)
(/ - P)w = v G [ker (/ — Xd)]1

where u = («i , u^) G ^2- Applying the projection I — P to Eq. (2.2) gives rise to the
auxiliary equation, which can be solved (by the implicit function theorem) for v in terms of
(m, X, a) £ R2 X /?2; thus

i> = £>*(«! , m2 , X, a) = 0(| u|3 + |a| |«|2)

in a neighborhood of (0, X0 , 0). Now by substituting v = v* into (2.2) and applying the
projection P, the bifurcation equations are obtained. Clearly they have the form

/(«, X, a) = 0, / = (/, , j2) G R2 (2.4)

where

fj(u, X, a) = (l - ^ Uj + a(4>j , 2(1^0! + w202))

+ (0;, C(Wj0 j + w202)> + 0(1 u| 5 + Of21 w | 3)

is analytic. The cubic polynomial in (2.5) was calculated in [6, 12, 16] and it was found that

(0! , C(Mi0j + W202)) = flWi3 + />Ul«22,

(02 , C(Ui0! + 1^202)) = ^«12"2 + CMj'-

a =* 3.945001 X 10"4, ft =* 5.007428 X 10'4, c =* 1.623543 X 10~4.

The quadratic term in (2.5) is given by Knightly and Sather [13] as

(0! , Qiurf, + w202)> = -Sk^i2 - 3klu22, (02 , g(w,0i + w202)> = -6A:1w,u2,

*■- (1215) (2)-,- * 1842922 Xl»-

We shall defer a detailed analysis of the bifurcation equation (2.4) to Sees. 5-7.
Remark. The von Karman equations here ((1.1), (1.2)) are invariant under certain

symmetries, and this is reflected in the bifurcation equation. Let T: X -> X by (Tu)(x, y) =
u(j2 - x, y). Then if we let F(w, X, a) denote the left-hand side of the operator equation
(2.2), clearly

F(Tw, X, a) = TF(w, X, a).
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Since 7 also commutes with the eigenprojection P, it is easy to see that the bifurcation
equations respect this symmetry in the sense that

/(7m, X, a) = 7/(m, X, a).

Here 7: R2 —> R2 is the induced transformation on the eigenspace and is given by T(ui , u2)
= (mj , — m2). Thus / is an even function and /2 an odd function of m2 . For a more general
discussion of symmetries in bifurcation, see Sattinger [17, 18].

3. Cylindrical imperfection with varying curvature. Consider a modification of the
problem in Sec. 2. Specifically, assume the imperfection in the plate has the form

w0(x, y) = hy2t(x) (3-0

where \p is a sufficiently smooth function of x. Thus the initial shape of the plate is curved
in the ^-direction, but this curvature a\{/(x) depends on x. In particular, this imperfection
may exhibit less symmetry than (2.1) and one may expect that (3.1) will lead to a more
generic bifurcation, as will be seen.

Certainly two differences between the equations involving the modified imperfection
(3.1) and those of the previous section are clear:

1. In general A ^ — L for the modified imperfection.
2. Also, in general p = —A~*woxx / 0.

The situation in which the projection of p onto ker (/ - X0L) is non-zero (and satisfies
some other generic conditions) was essentially treated in [6]. We shall therefore assume
here that these projections vanish, and in fact, that p itself is zero. Thus \p"(x) = 0 and we
have for constants a, t,

w0(x, y) = \y2(ax + r), p = 0;

that is, the curvature of the plate in the y direction varies linearly in x.
The effect of point 1 above is pronounced. Basically, for small | a\, there is still a double

eigenvalue at X = X0 + (a2/X0) for the operator I — XL + a2L2. However, for small | a| i- 0,
the double eigenvalue at X = X0 in general splits into two nearby simple eigenvalues of the
operator / - XL + a2A2. Although some symmetry-destroying phenomena also occur
when the modified imperfection is considered, perhaps the most significant is this splitting
of the eigenvalues.

One can place the problems considered here and that considered in [6] in the following
perspective. The imperfection considered in [6] was essentially arbitrary, hence this
situation is the most generic. The imperfection (2.1) of the previous section exhibits, as will
be seen, a great deal of symmetry and is therefore the least generic. For the imperfection
(3.1) some of this symmetry has been broken, and consequently this problem is inter-
mediate between the other two. Of course here we are restricting our consideration to
plates of length I = J2. The analysis of List [15], for example, does not fall into this
classification.

Let us now derive the bifurcation equations for (1.3) with the modified imperfection
(3.1). With the same decomposition (2.3) as before, the auxiliary variable v satisfies the
estimate v* = 0(\ u\3 + a2 \ u\). The bifurcation equations are then seen to be /(m, X, a) = 0
where

fj(u, X, a) = (l - y)Uj + a2(<t>j, MiA20j + m2A202)

+ a((t>j, Q" (m^! + m202)) + (c,bj, C(mj0! + m202)) + 0(|m|5 + a"| m| ).
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The sharp on the quadratic term denotes that this term is different from the corresponding
one in Sec. 2. The cubic terms are, however, the same. Note also the slight difference in the
higher-order terms. The numerical calculation of the above terms, outlined in Sec. 8, yields

((/h , MiA2^ + u2A2</>2) = /c2«i + k3u2 ,

(<£2, WiA20! + «2A202) = k3ui + k4u2 ,

(0! , Q'iu^i + w202)) = -(5&!«i2 + 3/c,m22)^t + + (2k1u1u2)(r,

(02, Q'iu^i + m202)) = —(6kiulu2) ^r + + (k7u2 + ksu22)a (3.2)

where

k

k* = (trn) t2 + (irzr) ™ + keo\

( 160
V 729tt6

kb ̂  3.440729 X 10"\ k6 =* 3.675239 X 10\

k-, =* 1.939866 X 10"4, ka ̂  2.288281 X 10~4.

4. Analysis of the abstract bifurcation equations. Recall the form of the bifurcation
equations derived above:

/*(«, X, a) = (! - y + fl)" + <xQ*(u) + C(u) + 0(\u\5 + a2|«|3), (4.1)

/'(«, X, a) = (l - y + + a2Mu + aQ* (u) + C(u) + 0(|w|5 + a4 |w|). (4.2)

An asterisk generally denotes terms arising from the equations considered in Sec. 2, while
a sharp denotes those of Sec. 3. Here u £ R2, M is a symmetric 2X2 matrix, Q* and Q*
are homogeneous quadratic polynomials and C is a homogeneous cubic polynomial. For
the remainder of this section these will be the only standing assumptions about /* and /",
besides of course their smoothness. Using the approach of [6], we shall study zeros of Eqs.
(4.1) and (4.2) near u = 0, for parameter values (X, a) varying independently in a full
neighborhood of (0, 0). Then in Sec. 5 the particular bifurcation equations arising from
the von Karman problem will be analyzed in this framework.

First, to simplify notation, introduce a new parameter to replace X:

- _u7 X„ X2'

The following a priori estimate will justify the choice of scalings of the bifurcation
equation.

Lemma 4.1. Assume C satisfies the non-degeneracy

C(w) = 0 implies u = 0. (4.3)
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Then all solutions (u, X, a) near (0, 0, 0) of /* = 0, or /* = 0, satisfy the estimate

|u| < const. (I711/2 + |a|). (4.4)

The easy proof this lemma follows that of Lemma 4.1 of [6],
Now restrict (7, a) to one of the regions

/?! ±: ±7 > Ka2

for a fixed K > 0, and scale (u, 7, a) by making the replacements

u —► | *y| V2u, a —» 17I1/2 a.

The estimate (4.4) ensures no solutions will be lost in scaling. The bifurcation equations
/* = 0, /" = 0 now become (after cancelling H372)

Tu + aQ*(u) + C(u) + 0(|7I) = 0,

(T 1 + a2M)u + aQ*(u) + C(u) + 0(\y\ ) = 0.

When a = 7 = 0, if the resulting polynomial equations

Tu + C(u) = 0 (4.5)

have only simple zeros in the sense that the Jacobian determinant of (4.5) is non-zero
there, then for large K, no bifurcation near u = 0 occurs for parameters (7, a) in the
interior of R^. This is immediate from the implicit function theorem and implies that the
number of small solutions remains constant in Rt~ and in Ri+. The linearized stability of
these solutions is determined by the Jacobian matrix of (4.5).

We now restrict the parameters to the region

rt2: N < Ka2

and analyze the solutions by means of the different scaling

u -> au, 7 -» a27.

The bifurcation equations now become

—7u + Q*(u) + C(u) + 0(a2 | «|3) = 0 (4.6)

(-7/ + M)u + Q"{u) + C(u) + 0(az | u\) = 0. (4.7)

Again this scaling is justified by Lemma 4.1. The scaled variables u and 7 take values in
some bounded set in R2 and in the interval [-AT, K] respectively, while a lies in a small
neighborhood of zero. By considering these values of (w, 7, a) together with the analysis
for the regions Rr, the solutions in a full neighborhood of (u, 7, a) = (0, 0, 0) will have
been described.

Define the Jacobian determinants

Al*(u,y)= det(-T/+ + ~
\ ou cu

Ai'(«, 7) = det (-7/ + M +\ 8u 8u

of the bifurcation equations at a = 0. (Below, the notation Aj J = 1 or 2, always refers to
either A/ or A/.) If u° is a solution of (4.6) or (4.7) when 7 = 70, a = 0 and if Aj 7^ 0 there.
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then for (7, a) near (y°, 0) there is a unique solution u near u" varying smoothly in (7, a).
Bifurcations in Eqs. (4.6), (4.7) thus occur near solutions («, 7, a) = («°, 70, 0) at which A,
= 0. If at that point the second-order determinant A2 described below is non-zero, then the
bifurcation is particularly nice. More precisely, let

A2*(m,7) =

r,8Q* 8C-7/  f- b — U8u 8u

8A,* 8A,*

A2»{u, 7) =

8u 8 7

-yI + M + !£+<£
8u du

8A,' 8 A*
8u 8 7

Theorem 4.2. Assume (4.3) and let u = u°, 7 = 7° satisfy Eq. (4.6) or (4.7) when a =
0. Suppose also A,(m°, 70) = 0 but A2(m°, 70) ^ 0. Then there is a curve in the parameter
space

7 = g(a), g( 0) = 7°

across which the number of solutions of (4.6) or (4.7) changes by two. These two solutions
branch from a point u = 0(a) where 0(0) = w°, and exist in the region 7 > g(a) or 7 < g(a)
according to whether A2(w°, 70) > 0 or A2(«°, 70) < 0 respectively.

Proof. The proof of this result is similar to that of Theorem 4.1 of [6]. In particular,
since A2 ± 0, one of the four entries of the Jacobian matrix at (w°, 70) is non-zero, say the
(1, l)-entry. One may thus solve the first component of the bifurcation equation (4.6), or
(4.7) for Ui as a function of u2, 7 and a. This function is substituted into the second com-
ponent, which thus reduces the problem to one equation with one unknown u2. The con-
dition A2 4= 0 also implies that this one-dimensional equation has the form

h(u2 , 7, a) = 0

where

h{u2 , 7, a) = (const.)(w2 - w20)2 + (const.X7 - 70) + h.o.t.

with non-zero constants and appropriate higher-order terms. One may then solve simulta-
neously

h(u2, 7, a) = 0, -r~(w2 , 7, a) = 0
O U2

as functions u2 = 0(a), 7 = g(a). Analysis as in [6] shows these functions have the required
properties.

Remark. The trace of the Jacobian matrix at (u°, 70, 0) equals the (nonzero) eigen-
value of the linearization around this solution. Degree theory forces the other eigenvalue
to be positive along one branch and negative along the other emanating from u°. Thus the
linearized stability of these solutions can be determined.

Remark. In unsealed coordinates the point from which the two solutions emanate
has the form u ~ au°. The corresponding curve in the parameter space has the form 7 ~
a27°.
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Note that the point («, 7) = (0, 0) in (4.6) or (u, 7) = (0, 70) where 70 is an eigenvalue
of M in (4.7) can never satisfy the conditions of Theorem 4.2, since at such points A2
vanishes. To study this situation one needs another a priori estimate, as well as another
scaling; that is, the bifurcations of (4.6), (4.7) from u = 0 must be analyzed. The results are
given in the following theorems.

Theorem 4.3. Suppose (4.3) holds and Q* satisfies

Q*(u) = 0 implies u = 0. (4.8)

Assume also that

— u + Q*(u) = 0 implies det (^ — 1 + 4 0- (4.9)

Then corresponding to each solution w° of (4.9) there is a solution

u ~ yu°

of (4.6) existing for (7, a) near (0, 0). These are the only solutions in this neighborhood.

Theorem 4.4. Suppose M has distinct eigenvalues; let 70 be one of these, with u° the
corresponding eigenvector. Then for (7, a) near (70, 0), all the solutions of (4.7) near zero
are the zero solution itself and a non-zero branch of the form

u = eu° + 0(e2), | e| « 1,

V, o^n
<k°, m°) + 0(a2).7 = 7„ + 0(a2) +

In particular, if (m°, Q*(u0)) / 0 the branch may be written as

<«°, M°>

€ + 0(e2).

u ~ (7 - 7° + 0{a2)) ,(u°, Q\u°)) + 0(a2)

Theorem 4.3 is due essentially to Knightly and Sather [13], The proof involves
obtaining an a priori estimate | u\ < (const.) 17I from (4.8), scaling u —> 7u, and applying
the implicit function theorem to solve for u. Because the eigenvalues of M are distinct,
Theorem 4.4 is concerned with bifurcation from a simple eigenvalue. This situation is well
known; see for example Crandall and Rabinowitz [7], or Chow, Hale and Mallet-Paret [5].
Note, incidentally, that the higher-order terms of (4.7) contain terms linear in u. Thus, the
bifurcation occurs not necessarily exactly at an eigenvalue 70 of M, but rather at 70 +
0(a2).

The stability of these solutions is easily obtained. For (4.6), to the right (7 > 0) of the
bifurcation, the eigenvalues of —I + {8Q*/8u)\u« have the same signs as for the line-
arization of (4.6) around the solution, and the opposite signs for 7 < 0. For (4.7), there is
one non-zero eigenvalue corresponding to the non-zero eigenvalue of —y°I + M, and
another eigenvalue near zero. As is well known, the sign of this second eigenvalue along
the non-zero solution is opposite to its sign on the zero solution.

5. Details of results for the von Karman equations. In the previous section, various
hypotheses were imposed on the terms of the bifurcation equations (4.1), (4.2), and several
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conclusions were drawn about the solutions of these equations as the parameters were
varied. Here we shall apply these conclusions to the specific problems considered in Sees. 2
and 3. Let us first list the hypotheses mentioned above.

C(u) = 0 implies u = 0, (HI)

±u + C(u) = 0 implies det ^±/ + =(= 0, (H2)

— 7 U + Q*(u) + C(u) = 0 . .. . . , - /rro* \' ^ v implies A2*(m, 7) =)= 0, (H3*)
Ai*(u, 7) = 0, u 4= 0

(-7/ + M)u +Q*(u) 4- C(u) = 0 .. . . 1 _v ' ' * v ' ' implies A2'(«, 7) f 0, (H3*)
A,'(«, 7) = 0, m/0

Q*{u) = 0 implies u = 0, (H4*)

— u + Q*(u) = 0 implies det ^ — 4 0, (H5*)

M has distinct eigenvalues. If u° is of the eigenvectors then («°, Q*{u0)) =)= 0. (H5*)
Below are given the numerical values of the terms in the bifurcation equations:

" (3.945001 W + (5.007428 )Wim22
C(«) =

Q*(u) =

, 2

X 10"4

X 10 4,

(5.007428)w12w2 + (1.623543)m23

(9.214610K2 - (5.528766)w22

—(1 1.057532)m1m2

Q\u) = tQ*(u) + <7 -6-515713»i2 + 3.879732u,u2 - 3.909428«22
1.939866m,2 - 7.818856m1m2 + 2.288281w22

M = Mxto + M2o2:

X 10"

Mx =

M2 =

7.169527 -3.228555
-3.228555 7.169527

3.440729 2.282933 '

2.282933 3.675239

xio-

X 10-4.

It was observed in [6] that (H1) and (H2) hold. The unique solution u = 0 of u + C(«)
= 0 thus corresponds to the unique solution of (4.1) or (4.2) in the parameter region /?r.
Because of the way in which f* and f* were defined, the two positive eigenvalues of the
Jacobian (5/8u){u + C(w)) = I imply this solution is stable (linearized stability). There are
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Table 1. Solutions of -u + C(u) = 0 and signs of the eigenvalues of - (-/ + dC/du).

ui u2 eigenvalues and stability

0 0 + + unstable node
0 ±78.482  stable node

±50.347 0  stable node
±42.574 ±23.855 - + saddle (unstable)

nine solutions of —u + C(u) = 0, and hence nine corresponding solutions of the bifurca-
tion equations for (7, a) in . Their stability is given in Table 1; see also [6, 12, 16].

Calculations reveal that (H3*) does not hold. Table 2 lists the values (u, 7) at which the
scaled bifurcation equation (4.6) with a = 0 and its Jacobian determinant A!* vanish.
Because of the symmetry noted in Sec. 2, there is a point (u, 7) =)= (0, 0) at which A2* also
vanishes, so a special argument describing the behavior of solutions near this point is
necessary and is given in Sec. 6. Briefly, for small a this point persists. As 7 increases past
the critical value

7 =* -4.1136 X 10-4 + 0(a),

two (saddle-point) solutions with u2 -1= 0 branch off the central solution with w2 = 0, while
this central solution changes from a saddle to a stable node. The form of the branching
solutions is

u, ~ 1.7346 X 10 4,

w2 - (65.978 + O(a))(7 + 4.1136 X 10"4 + 0(a))1/2. (5.1)

Near the other non-zero values in Table 2, A2* 7^ 0, so the form of the bifurcation is that
described in Theorem 4.2.

It is easily seen that (H4*) holds. Also, (H5*), noted in Knightly and Sather [13], and
the solutions of —u + Q*(u) = 0 along with their stability are given in Table 3. Note that
this stability is given by the eigenvalues of / — (8Q*/8u) and is valid to the right (7 > 0) of
the bifurcation from u = 0. To the left, the eigenvalues are of the opposite sign.

This analysis thus describes the number and form of the bifurcating solutions of (4.1)
for (7, a) in a full neighborhood of (0, 0). For small a ^ 0, the bifurcation diagram in the
(A, w) space is then similar to that given in Fig. 1. Moreover, by returning to the original
unsealed parameters (A, a), one is able to describe completely the number of solutions
near w = 0, as in Fig. 2. The number of solutions changes for parameter values on a curve
of the form (A/A0) _ 1 ~ Jot2 for various constants J. Note that along the curve for J =

Table 2. Solutions of —yu + Q* (") + C(u) = 0, A,* (u, 7) = 0, and trace of -(—yl + SQ*/Su + dC/du).

(7+ 1/X02)X 104
1/1 u2 y X 104 trace X 104 A,* X 10" =7X104

1.1679 0 -33.630 .70322 .53218 -28.560
1.7346 0 -4.1136 -7.7567 0 .9560
.97788 .58852 -5.4623 -1.6169 2.8386 -.2926
.97788 -.58852 -5.4623 -1.6169 2.8386 -.2926

0 0 0 0 0 5.0696
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Table 3. Solutions of — u + Q* (u) = 0 and signs of eigenvalues of —(—/ + 8Q*/du).

eigenvalues and stability to right
u, Ui of bifurcation

0 0 + + unstable node
-1085.2 0  stable node
— 904.36 522.13 —I-saddle (unstable)
— 904.36 -522.13 —I-saddle (unstable)

The signs of the eigenvalues are reversed to the left of the bifurcation.

-.2926 X 10~4 the number of solutions changes by four; this corresponds to two distinct
bifurcations which are symmetrically situated about the ux axis in the w-plane. Also, we
have included as a broken line the curve 1 - (X/X0) + (a2/X02) = 0 for J = (1/X02) = 5.0696
X 10 \ corresponding to the four curves of solutions branching from u = 0.

Let us now compare the above analysis of (4.1) with that for the modified problem
(4.2). In particular, we shall consider t = 1 and a ^ 0 fixed and near zero. We claim that in
this case hypotheses (H3*) and (H5") hold. Thus by using Theorems 4.2 and 4.4 the
bifurcation diagram and in particular the number of solutions can be obtained for (X, a) in
a full neighborhood of (0, 0).

One sees easily that M has eigenvalues

Xj = a/d j + 0(ff2), j = 1,2

where /u, , /x2 are the distinct eigenvalues of M, ,

Mi - 3.9410 X 10"4, n2 =* 10.398 X 10-".
The corresponding eigenvectors Vj of M are

v, = col (1, 1) + O(a), v2 = col (1, -1) + O(a).

- +

- +

Fig. 1. Bifurcation diagram with w0(x,y) = iy2.
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a

(m,n) means m stable and
n unstable conditions

Fig. 2. Number of solutions with w0(Ar,_y) = iy2.

Thus to check hypothesis (H5'), observe that

<u\ Q'(v1)) = -25.801 X 10-4 + 0(a), (v\ Q'(v2)) = -25.801 X 10-4 + 0(a).

Theorem 4.4 now applies, with the quantity

(v\ vJ)
(v\ Q"(v>)) -775.17 + 0(a).

Checking (H3*) is more involved. It is clear from the implicit function theorem that,
since (H3") reduces to (H3*) when a = 0, those (u, y) in Table 2 for which A2* 7^ 0 can be
continued smoothly for small |<r| as solutions to (H3*). As will be shown in Sec. 6, the
point (ux , u2 , y) = (1.7346, 0, —4.1136 X 10"4) can also be continued for small | a\, since
we may regard the effect of the a terms in (H3*) as that of a forcing term in a one-
dimensional bifurcation problem.

Near (u, 7) = (0, 0), however, there appear several new solutions, basically due to the
fact that the double eigenvalue y - 0 of (H3*) splits into two simple ones in (H3*). The
analysis near this point depends on a scaling which is justified by the following lemma.

Lemma 5.1. With (H4*) holding, and M = Mxa + 0(a2), there is a neighborhood 31
of (w, 7) = (0, 0) such that any solution of (H3*) in 31 for |<r| sufficiently small in fact
satisfies for some constant

\u\ < const. | a\, | -y| < const. |<r|.

As with Lemma 4.1, the proof of Lemma 5.1 follows the corresponding one in [6] and
so will not be given. By scaling u = av, 7 = af one sees that
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(-7 / + M)U + Q\u) + C(u) = [(-f / + M,)v + Q*(v)]a> + 0(cr3),

A.(«, 7) = f) + 0(<73), A2(m, 7) = <r3A2>, n + 0(<x4),

where

At°(v, n = det (-f/ + My + ^)'

A2°(i>, f) =
-r/ + M1 + ^- -b

sa/
01)

Thus in order to verify (H3*) in the neighborhood 31, it is sufficient to find all solutions (v,
f) with v =f 0 of

(-f/ + M,)v + Q*(v) = 0, V(i;, f) = 0 (5.2)
and verify that A2°(u, f) 4= 0 at each. Since A2°([;, f) is the appropriate Jacobian with
respect to (v, £), by the implicit function theorem such solutions can be continued for
small a ^ 0 as solutions of (H3*). The solutions of (5.2), as well as other relevant data,
have been calculated and incorporated into Table 4 as the solutions for which u = 0(a).

6. Details of results (continued). Here we shall examine more closely the behavior of
solutions near the point (Ui , u2, y) = (1.7346, 0, -4.1136 X 10"4) where hypothesis (H3*)
fails. It was noted in Sec. 2 that /,* is an even function and f2* an odd function of u2 . Thus
the scaled bifurcation equation (4.6) can be written in the form

F(wi , w22, 7, a) = 0, G{Ui , u22, 7, a)u2 = 0 (6.1, 2)

where

F(u, , w, 7, a) = -7U1 - 5/ci«!2 - 3/:iW + at/i3 + buxw + 0(a2 |ui|3 + a2 \ u^w\ + a2w2),

G(ui , w, 7, a) = -7 - 6k1u1 + bu 2 + cw + 0(a2u2 + a2 |w|).

The solution ih = kj{b - a), u22 = w = 0, 7 = (6a - 5b)k2/(b - a)2 noted above is a
simple zero of F when w = a = 0; hence locally we can solve (6.1) uniquely for

"1 = m("22 , 7> «)■

In particular, Ui = /u(0, 7, a), u2 = 0 represents a solution of both equations (6.1), (6.2). To
obtain branches from this solution where u2 = 0, let

H{w, 7, a) = G(n(w, 7, a), w, 7, a).

One may calculate that
OIT O TT

H(0, 7, 0) = 0, ~ (0, 7, 0) * 0, (0, 7, 0) = 0,
o w a 7

and, in fact, at (0, 7, 0),

dH (SHY1 _ i-a
\8w /87 \dw / 2(3a - 26)2 + (56 - 7a)c

^4353.2.
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Thus one may solve H = 0 for w as a function of 7 and a to obtain

w ~ (4353.2 + 0{a))(7 - 7 + 0(a))
which immediately yields (5.1) as required. Although further calculations reveal that the
two branches (5.1) are saddles while the central solution Ui = ^(0, 7, a) changes from a
saddle to a stable node as 7 increases, these facts can also be deduced from arguments of
Sec. 7.

To verify (H3*) consider again the scaled bifurcation equations but at a = 0 and 0 <
| cr\ « 1:

F(ui , w22, 7< 0) + , w2, 7) + 0(<r2) = 0,

G{, w22, 7, 0)w2 + (jGi{ux , m2 , 7) + 0((j2) = 0.

These equations are generally no longer symmetric. Since as before we may solve the first
equation for m, and substitute this into the second, we may regard these equations as a
one-dimensional bifurcation problem with a forcing parameter a. The projection of this
forcing term into the eigenspace (the w2-axis) is

5(21n/2
G^U! , 0, 7) = —729^6 U\ + Mi2 1 0.

Arguments in [5] show that since this term is non-zero, there is for small a a locally unique
solution of the bifurcation equations at which the Jacobian vanishes but the second-order
Jacobian A2* does not. Hence (H3*) holds for 0 < | <r| « 1.

7. The bifurcation diagram. The bifurcation diagram shows schematically how solu-
tions u behave as A is varied, and a = 0 is fixed and sufficiently small. To describe the
diagram of the first problem, /* = 0, let us observe that the symmetry of /* implies the
diagram must be symmetric with respect to reflection through the (uj , A)-plane. This
imposes certain restrictions on how the solutions emanating from the various branches

Fig. 3. Incorrect bifurcation diagram with wa(x, y) = ly2.
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may join together; for example, the pair of solutions branching to the right of y = —33.630
X 10 4 (see Table 2) must both lie in the plane u2 = 0 until they encounter another
bifurcation. The stability of the various branches of course also imposes restrictions on
how the solutions connect. Nevertheless, there are a priori two possible bifurcation
diagrams (Figs. 1 and 3) consistent with Tables 1-3 and the above restrictions. The
following argument shows, in fact, Fig. 1 is the correct one. If Fig. 3 were the case, there
would be a p = (w, , u2) such that

(a) p would be a simple solution for some y,
(b) u2 = 0 would reach a maximum as y is varied.

This point would occur on one of the branches connecting the bifurcation at y = -4.1136
X 10 4 with that at y = 0. Write the (scaled) bifurcation equations at a = 0 as

—yiti — SkiUx2 — 3ktu22 + au* + buxu22 = 0, (7.1)

— yu2 — 6&i«1m2 + bu2u2 + cu2 = 0. (7.2)

By regarding and u2 as functions of y and differentiating du2/dy = 0 we obtain at p

—Ui + (—y - 1 OkyUi + 3 au2 + bu22) = 0, -1 + (-6 + 2 bui) = 0ay ay

and hence

y = (3a - 2b)u2 + bu2 - AkiUi . (7.3)

However, one sees from (7.2) that also y = bu 2 + cu2 — 6k1ul ; thus

(3a — 3 b)u2 + (b — c)u22 + 2 kxux = 0.

Finally, substitute the formula (7.3) for y into the first bifurcation equation (7.1), solve for
u22, and substitute this into Eq. (7.2) to yield

- +

— X

Fig. 4. Bifurcation diagram with w0(x,y) = iy2(\ + ax), 0 < |cr| « 1.
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a

(m,n) means m stable
and n unstable solutions

Fig. 5. Number of solutions with wa(x,y) = iy2(\ , ax), 0 < |<r| « 1.

2(a - b)(b - cW + (10ft - c - 9a)klUl - 6k,2 = 0. (7.4)

Calculation of the discriminant of (7.4) shows there are no real solutions. Thus, Fig. 1
represents the correct bifurcation diagram.

Fig. 4 illustrates the bifurcation diagram for the problem /' = 0. Note that in Table 4
there are two occurrences of y = —5.4623 X 10~4 + 0(c). One would expect that these
values would be different for 0 < | <r| « 1; however, we have not calculated this here. The
relative position of these two branches is thus not clear. Fig. 5 gives the number of
solutions of f* = 0 as a function of the parameters (X, a).

8. Remarks on the calculation of coefficients. We make some observations on the
numerical calculation of the coefficients of the bifurcation equations. Note first that the
operator equation (1.3) is equivalent [11] to the variational problem of finding critical
points of

J{w) = i(w, (I — XL + a2A2)w) + j (w, Q{w)) + \{w, C(w)) — a\(w,p).

In particular, this implies that the functions f* and f are actually gradients of a scalar-
valued function; thus M is a symmetric matrix, and restrictions are placed on the
coefficients of Q* in (4.2).

Note also that when a = -21/2r, the imperfection w0 obeys the symmetry Tw0 = -w0.
Since we also have T<t>t = <(>i and T<t>2 = -02, it follows that k3 = 0, and the only terms left
to determine are k5 , ke , k7 and kB of (3.2). A lengthy calculation yields
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1 = -J- , J28 y p2(p2+fY
Ki+J 8 lx4 + 9tt* P+^0M (p2 -/)V + 2)2

p>i

+ ̂ 3 t z  jflt-
9tt8 ^ p+J,odd (/>2 - ff{p2 + 2q2)2(q2 -l)2

P> 1

for j = 1,2, and

te+J 27tt
y />(l2 + 4) / p 1

P^dd (p2 " 4)V + 2)2 \4f ~p2^ 3p
pi i

= 512(2)1/4

27tt8 LP~dd \jr-*Y
p> i

4/7?+ y y  — —- hL-J Z-j (r,2 _ /I \( si2   1 W„2 I 0„2\2 \ (A /2 _ „2\^, 1q = odd
<?>3 p> 1

2048(2)1/4

27tt8

pf^dd (/>2 - 4X?2 - l)(/>2 + 2^2)2 V (4/ - p2)q ' (4 - q2)p J J

z />2(/>2 + j2)(p2 +y2 + 4)

Lp+yTodd 3(/>2 -/)2(/>2 + 2 f[p2 -(j- 2)2][(J + 2)2 - p2]

+ y y P 4p2q{2p2 - p2q2 + fq2 + 4<?2) 

®=odd p+^oaaip2 - f)(q2 - l)(/>2 + 2q2fq(4 - q2)\p2 - (j - 2)2][(j + 2)2 - /?2]_
Q>3 p>l

for j =1,2.
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