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Abstract. Deformation of a spherical shell adhering onto a rigid substrate due to van der Waals attractive
interaction is investigated by means of numerical minimization (conjugate gradient method) of the sum of
the elastic and adhesion energies. The conformation of the deformed shell is governed by two dimensionless
parameters, i.e., Cs/ǫ and Cb/ǫ where Cs and Cb are respectively the stretching and the bending constants,
and ǫ is the depth of the van der Waals potential between the shell and substrate. Four different regimes
of deformation are characterized as these parameters are systematically varied: (i) small deformation
regime, (ii) disk formation regime, (iii) isotropic buckling regime, and (iv) anisotropic buckling regime. By
measuring the various quantities of the deformed shells, we find that both discontinuous and continuous
bucking transitions occur for large and small Cs/ǫ, respectively. This behavior of the buckling transition
is analogous to van der Waals liquids or gels, and we have numerically determined the associated critical
point. Scaling arguments are employed to explain the adhesion induced buckling transition, i.e., from
the disk formation regime to the isotropic buckling regime. We show that the buckling transition takes
place when the indentation length exceeds the effective shell thickness which is determined from the
elastic constants. This prediction is in good agreement with our numerical results. Moreover, the ratio
between the indentation length and its thickness at the transition point provides a constant number (2–3)
independent of the shell size. This universal number is observed in various experimental systems ranging
from nanoscale to macroscale. In particular, our results agree well with the recent compression experiment
using microcapsules.

PACS. 46.32.+x Static buckling and instability – 68.35.Np Adhesion – 81.05.Tp Fullerenes and related
materials

1 Introduction

1.1 Elastic sheets

Investigations of structures and properties of thin elastic
sheets are important for both practical and industrial rea-
sons. Their applications in our daily life are such as cans,
houses, domes, bridges, ships, planes, etc. When elastic
sheets are subjected to a large external force, they loose
their shape and buckle at a critical force as we often ex-
perience. In engineering of safety structures, it is desired
to increase the buckling threshold as large as possible. As
discussed below, one of the characteristic features of thin
elastic sheets is that the energy required for stretching is
very large compared to that for bending. Hence pure bend-
ing deformations without any stretching are preferred in
general.

In recent years, considerable attentions have been paid
to thin materials which exhibit elastic behaviors at ei-
ther microscopic or mesoscopic scales. For example, the
conformation of two-dimensional sheets of graphitic oxide
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was investigated by electron microscopy and other tech-
niques [1,2]. A sheet of graphitic oxide is flat on average
due to its finite in-plane shear elasticity in spite of out-
of-plane thermal fluctuations [3]. For a two-dimensional
polymer network (polymerized silane monolayer) at the
air-water interface, a buckling phenomenon was observed
by X-ray scattering [4]. The other group found a contin-
uous buckling transition for a solid Langmuir monolayer
composed of phospholipid molecules deposited on the sur-
face of formamide [5,6]. A more complex elastic sheet can
be found in a cell membrane skeleton called “cytoskele-
ton” which is a two-dimensional triangulated network con-
sisting mainly of actin and spectrin molecules. Such kind
of biological membranes take locally rough but globally
flat configuration even in the presence of thermal fluctua-
tions [7]. Deflection of a cell membrane under a localized
force or torque was discussed theoretically [8].

From the theoretical point of view, the properties of
stretching ridges in a crumpled elastic sheet has been stud-
ied intensively during the past decade. The crumpling of
a thin sheet can be understood as the condensation of
elastic energy into a network of ridges [9,10]. The prob-
lem of ridges was initiated by Witten and Li who realized
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that the elastic energy of a ridge scales as X1/3, where
X is the length of the ridge [11,12]. Lobkovsky re-derived
the same ridge scaling relation by performing a boundary
layer analysis of the Föpple-von Kármán (FvK) equations
for plates [13,14]. Note that the term “plate” means a
thin sheet of elastic material of constant thickness which
is plane in its rest state. More recently, DiDonna and
Witten investigated the compression and buckling of elas-
tic ridges, and showed that the energy required to buckle
it is nearly a constant fraction (20%) of the total ridge
elastic energy [15,16]. In fact, this explains why crum-
pled sheets are qualitatively stronger than smoothly bent
sheets [17].

In general, the highly nonlinear FvK equations are very
difficult to solve because they involve two types of defor-
mation (stretching and bending) with energies of different
orders of magnitude [18]. Nevertheless, the FvK equations
have been the subject of renewed interest in the context
of developable cone (d-cone) singularities. Surprisingly, a
geometry of a d-cone is one of the solutions to the compli-
cated FvK equations [19]. Some scaling relations for the
core size of the d-cone singularity was obtained in refer-
ences [19,20]. Being inspired by these theoretical predic-
tions, several macroscopic experiments were performed to
investigate the shape, response, and stability of the d-cone
singularities [21–23].

Other than the d-cone geometry, Audoly et al. pre-
dicted various buckling modes of a long rectangular elastic
plate subjected to the applied longitudinal and transverse
compressions [24–26]. Reference [27] reports the case in
which a plate was initially bent in one direction into a
cylindrical arch, and then deformed in the other direc-
tion. Later the core energy of the d-cone singularity was
measured by piercing the plate around the singularity [28].
More recently, wrinkling of an elastic sheet was discussed
by Cerda and Mahadevan [29,30].

1.2 Shells

It should be stressed, however, that most of the above
works are concerned with elastic sheets which are flat in
the undeformed state, while less attention has been paid
for the properties of initially curved elastic sheets, i.e.,
shells. Moreover, the FvK equations are valid only for
a plane geometry, and a covariant generalization for any
curved shell is still lacking. In particular, a shell exhibits a
peculiar elastic feature because the strain tensor is propor-
tional to the first power of the out-of-plane displacement
(see Sect. 2 for the details), and the shell cannot be bent
without being stretched [18]. For a plate, typical stretch-
ing and bending energies per unit area scale as

Es ∼ Y hζ4/ℓ4, Eb ∼ Y h3ζ2/ℓ4, (1)

respectively, where Y is the Young’s modulus, h the thick-
ness of the elastic sheet, ζ the magnitude of the out-of-
plane displacement, and ℓ is a typical length scale. Since
the ratio between the two energies is Es/Eb ∼ (ζ/h)2, the
stretching energy can be neglected in the limit of ζ ≪ h.

Conversely, the stretching energy becomes dominant as
soon as the displacement ζ is larger than the thickness h.
For a spherical shell of radius R, on the other hand, the
respective energies are given by

Es ∼ Y hζ2/R2, Eb ∼ Y h3ζ2/R4. (2)

Then the similar ratio for a shell becomes Es/Eb ∼
(R/h)2, which is typically very large. Hence the bending
deformation inevitably accompanies the stretching defor-
mation for a shell. In contrast to the case of a plate, this
fact does not dependent on the ratio ζ/h of the shell.

As an example of this interplay between the stretching
and bending modes, the shape fluctuations and the stabil-
ity of a cylindrical shell (polymerized vesicle) was studied
before [31]. It was shown that the intrinsic curvature of
the shell leads to an enhanced coupling between the two
elastic modes, and act to suppress the shape fluctuations
on large scales. A similar analysis for a spherical shell re-
vealed that such a suppression effect is more pronounced
when shells are closed [32–34]. The enhanced stability of
shells is crucial for constructing large structures such as
domes or bridges.

There are some experimental works which deal with
the deformation of spherical shells. By using actin-coated
vesicles [35], a buckling instability was observed when
a large localized force is applied [36]. At macroscopic
level, on the other hand, contact and compression prob-
lem of a ping-pong ball was investigated by Pauchard
and Rica [37,38]. The same author reported that buck-
ling instability occurs during the drying of sessile drops
of polymer solution [39]. Similar phenomena were found
also by using droplets of colloidal suspensions [40,41].
Rather recently, elastic properties of polyelectrolyte cap-
sules [42,43] are studied by AFM and reflection interfer-
ence contrast microscopy [44–46]. The details of these ex-
perimental works will be discussed in Section 6 in order
to compare with our results.

1.3 Adhesion

Among various types of deformation, adhesion onto a sub-
strate due to van der Waals interaction plays an important
role especially in the field of nanotechnology. For example,
the electric transport through carbon nanotubes is stud-
ied after their deposition on a substrate with which they
interact each other. Unfortunately, it is known that the
resistivity of the nanotube is affected by its elastic defor-
mation. Since there is little control over the alignment and
the shape of adsorbed nanotubes, it is crucial to know how
they deform on the substrate. The deformations of multi-
walled nanotubes on a rigid substrate was observed and in-
vestigated using atomic force microscopy (AFM) [47] and
molecular-mechanics simulations [48]. Later a collapse of
a nanotube section due to the surface interaction was ob-
served by using AFM [49]. More recently, a systematic nu-
merical study on the deformation of an elastic nanotube
adhering onto a substrate was reported by the present au-
thors [50]. However, we stress here that the adhesion and
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contact problem of a spherically closed shell has not yet
been investigated in detail. One exception is reference [51]
in which some scaling arguments for the deformation and
mechanical stability of fullerene-like hollow nanoparticles
were given by employing the shell theory. It was shown
that van der Waals interactions between a substrate and
adhering nanoparticles can cause considerable deforma-
tions. Such an effect is important for tribological applica-
tions of fullerene-like nanoparticles [52].

1.4 Present work

In this paper, we investigate both numerically and theo-
retically the deformation and the stability of a spherically
closed shell adhering onto a rigid substrate due to van
der Waals attractive interaction. Some of the results have
been published elsewhere [53]. To consider the shell adhe-
sion, we propose a discretized model in which the equi-
librium configuration of the shell is determined according
to the competition among three energies, i.e., stretching,
bending, and van der Waals energies. The total energy
is numerically minimized by using the conjugate gradi-
ent method. The effects of thermal fluctuations are not
taken into account in the present model. One of our main
findings is the fact that the adhesion causes a buckling
transition of a spherical shell as either the elastic prop-
erties and/or the strength of adhesion is varied. More in-
terestingly, our systematic study revealed that the buck-
ling transition can be either continuous or discontinuous
depending on the elastic properties of the shell such as
the stretching or bending constants. We identify a spe-
cial point which is analogous to the critical point for van
der Waals fluids which exhibits liquid-gas coexistence. We
have also performed the scaling analysis to explain the
adhesion induced buckling of spherical shells. Once the
buckling occurs, a polygonal structure consisting of ridges
and d-cones is created when the adhesion is strong enough.

Our work can be regarded in part as a contact prob-
lem of spherical shells. For two elastic bodies, their contact
problem under an applied load was solved by Hertz long
time ago [18,54]. After ninety years, the Hertz’s solution
was extended to take into account the influence of adhe-
sion energy [55,56]. In the presence of the adhesion energy,
the apparent load acting between the two elastic bodies
is larger than the applied load. In contrast to the contact
problem of elastic bodies, there are few works which deal
with the corresponding problem of elastic shells.

This paper is constructed as follows. In the next sec-
tion, we briefly review the framework of the continuum
elasticity theory for shells. In Section 3, we describe our
model for shells adhering onto a rigid substrate. We also
explain the numerical method to calculate the equilibrium
structure. Then we present the obtained results together
with various quantitative analyses of the shell structures
in Section 4. In Section 5, we provide some scaling ar-
guments concerning the deformation of shells, and com-
pare them with our numerical results. Finally, the paper
is closed with discussions in Section 6 where we compare
our results with several previous experiments.

2 Shell theory

In this section, we describe the continuum version of the
shell theory [18]. We collect some formulas from differen-
tial geometry which is the most appropriate formalism for
the classical theory of elastic shells. See reference [57] for
a further treatment.

One can, in general, parameterize a two-dimensional
thin sheet in three-dimensional space by two real inner
coordinates s = (s1, s2). The shape of the sheet is then
described by a three-dimensional vector r = r(s). At each
point on the sheet, there are two tangent vectors ri =
∂r/∂si with i = 1, 2. The outward unit normal vector n̂

is perpendicular to these tangent vectors, i.e.,

n̂ =
r1 × r2

|r1 × r2|
· (3)

All properties related to the intrinsic geometry of the sheet
are expressed in terms of the metric tensor (or the funda-
mental tensor) defined by

gij = ri · rj . (4)

Two important quantities are the determinant and the
inverse of the metric tensor which will be denoted by

g = det(gij), (5)

and
gij = (gij)

−1, (6)

respectively. In addition, one has to consider the (extrin-
sic) curvature tensor (or the second fundamental tensor)
given by

hij = n̂ · ∂jri = −n̂i · rj , (7)

with ∂jri = ∂2
r/∂si∂sj . Note that a surface is uniquely

characterized by its metric tensor gij and the curvature
tensor hij .

Let us define the (undeformed) reference state as r =
R. Here and below, we shall use capital letters in or-
der to distinguish quantities in the reference state from
the corresponding quantities in the deformed state. Thus,
Ri, N̂i, Gij , Hij represent the tangent and normal vec-
tors, the metric and the curvature tensors in the reference
state, respectively. If the sheet is stretched, the distance
between two neighboring points in the sheet is changed.
This change can be expressed in terms of the strain tensor
uij defined by [58]

uij =
1

2
(gij − Gij). (8)

The mixed strain tensor is obtained by raising one of the
indices according to

ui
j = uikgkj . (9)

Here and below, we use Einstein’s summation convention
and sum over all indices which appear twice. Likewise, the
mixed bending tensor

bij = hij − Hij (10)
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is taken as a measure for the bending deformation. Note
that this choice is not unique and alternative definitions
are possible. We will discuss this point later.

Consider a deformation of a shell which can be
parametrized by

r = R + ui
Ri + ζN̂. (11)

The contravariant vector ui (i = 1, 2) represents lateral
(in-plane) displacement field and ζ represents the trans-
verse (out-of-plane) displacement field. Both strain tensor
and bending tensor can be expressed in terms of the com-
ponents of these displacement fields. Up to first order in
the displacement r− R, the strain tensor turns out to be

uij ≈ 1

2
(Diuj + Djui) − ζHij , (12)

where the covariant components of the lateral displace-
ment fields are given by uj = Aigij , and the covariant
derivative Di is defined by

Diuj = ∂iuj − Γ k
ijuk, (13)

with the Christoffel symbol

Γ j
ik =

1

2
Gjl(∂iGkl + ∂kGil − ∂lGik), (14)

and ∂i = ∂/∂si. In a similar manner, the linear approxi-
mation for bij leads to

bij ≈ DiDjζ − ζHi
kHjk + Hik(Dju

k)

+ Hjk(Diu
k) + uk(DjHik). (15)

In the Donnel-Mushtari-Vlasov approximation [57], the
bending tensor is simplified to

bij ≈ DiDjζ. (16)

As mentioned, we have defined the bending tensor bij

in terms of the difference between the covariant com-
ponents of the curvature tensors in the deformed and
the initial state (see Eq. (10)). If we had selected, for
instance, the difference between the mixed components,
b̃i

j = hi
j − Hi

j , or the contravariant components, b̄ij =
hij − Hij , the results would be different. This fact is of
great importance to the shell theory, although the term
DiDjζ in equation (15) is not affected by the different
measures of bending. From a purely formal point of view,
we may take any measure of strain and bending from
which the original measures can be recovered. There is,
in fact, no physical ground for selecting one of the bend-
ing tensors.

Let σ
ij be the components of three-dimensional stress

in normal coordinates and η
ij corresponding components

of three-dimensional strain. For a bulk material that obeys
Hooke’s law, the stress tensor is given in terms of the strain
tensor by [57]

σ
ij =

Y

1 + ν

(

η
ij +

ν

1 − 2ν
gij

ηk
k

)

, (17)

where Y and ν are the (three-dimensional) Young’s mod-
ulus and the Poisson’s ratio, respectively. Then the elastic
energy density is given by

fe =
1

2

∫ h/2

−h/2

σ
ij

ηij

(

A

G

)1/2

dz, (18)

where h is the thickness of the shell and

A =
1

G
[det(Gij − Hijz)]2. (19)

According to the shell theory, fe can be expressed in terms
of uij and bij by constructing the possible invariants with
respect to coordinate transformations. Within the linear
elasticity, the deformation energy of an isotropic shell is
given by [57]

fe =
Y h

2(1 − ν2)
[νui

iuj
j + (1 − ν)ui

juj
i]

+
Y h3

24(1 − ν2)
[νbi

ibj
j + (1 − ν)bi

jbj
i]. (20)

From the principle of virtual work, we have

δW =
∂W

∂uij
δuij +

∂W

∂bij
δbij , (21)

where
∂W

∂uij
= N ij ,

∂W

∂bij
= M ij (22)

are effective membrane stress tensor and effective moment
tensor, respectively. Then we can derive the constitutive
equations for shells:

N ij =
Y h

(1 − ν2)
[νgijuk

k + (1 − ν)uij ], (23)

M ij =
Y h3

24(1 − ν2)
[νgijbk

k + (1 − ν)bij ]. (24)

Using the identity det(bi
j) = 1

2 (bi
ibj

j − bi
jbj

i), one
can rewrite the last two terms in equation (20) as

fe =
Y h

2(1 − ν2)
[νui

iuj
j + (1 − ν)ui

juj
i]

+
κ

2
bi

ibj
j + κ̄det(bi

j), (25)

with

κ =
Y h3

12(1 − ν2)
, (26)

κ̄ = − Y h3

12(1 + ν)
· (27)

Since bij has been defined by the difference between two
curvature tensors, it has to satisfy certain compatibility
conditions in order to be itself a curvature tensor. In such
case, κ and κ̄ are called bending rigidity and Gaussian
curvature modulus, respectively. Hence, in general, the
Gauss-Bonnet theorem will not apply to equation (25).
For a planar reference state, however, the Gauss-Bonnet
theorem applies.



S. Komura et al.: Buckling of spherical shells adhering onto a rigid substrate 347

Fig. 1. Beads and springs model for an elastic spherical shell
adhering onto a substrate. n̂α(β) is the unit normal vector of
the triangle α(β).

3 Model

Consider an elastic spherical shell interacting with a rigid
substrate as shown in Figure 1. The normal directions to
the substrate is taken as the z-axis, whereas the substrate
spans the xy-plane. In the discretized model, the configu-
ration of the shell is represented by a triangular mesh as a
simplest approximation for a two-dimensional elastic ma-
terial. In the absence of adhesion, the initial configuration
of the shell is taken to be spherical. The initial configura-
tion is constructed by the Delaunay triangulation of the
spherical surface [59,60]. Starting from an icosahedron as
the original network, we add new points on each trian-
gle followed by a subsequent rescaling of all bonds to the
desired length [61,62]. Although there are always 12 grid
points which have five neighbors, this procedure ensures
that most of grid points have six neighbors and each bond
has approximately the same length. The singularity asso-
ciated with the fivefold symmetry will be discuss later in
Section 6. In the present work, we studied shells consist-
ing of N = 10× 3k + 2 grid points with k = 1, . . . , 5. The
number of triangles is f = 2N − 4 while the number of
bonds is f = 3N−6. These quantities certainly satisfy the
Euler’s theorem; N + f − e = 2. In the next section, we
mainly present the results for k = 4, i.e., N = 812. The
size effect will be separately discussed there. Hereafter we
associate all the grid points and bonds with beads and
springs, respectively.

To describe the deformation of an elastic shell, both
the stretching and the bending energies should be taken
into account [18,57]. Following the model of membranes
with crystalline order [63], or crushed elastic manifolds [9],
the discretized stretching energy is given by the sum over
Hooke’s law of each spring:

Es =
∑

n

1

2
Cs

(

Ln − L0

L0

)2

· (28)

Here Cs is the stretching (spring) constant, Ln is the
length of spring n, and L0 is the natural length of the
spring (or the lattice constant) taken here as a constant.
On the other hand, the discretized bending energy is taken

into account by using the model of polymerized mem-
branes with a finite bending constant [9,62–65];

Eb =
∑

〈αβ〉

1

2
Cb|n̂α − n̂β |2, (29)

where Cb is the bending constant, n̂α(β) is the unit nor-
mal vector of triangle α(β), and the sum is taken over each
pair of triangles which share a common edge. The bend-
ing constant Cb plays the role of a Heisenberg exchange
coupling between neighboring normals. We note here that
both Cs and Cb have the dimension of energy. The
comparison between the continuum elasticity theory and
these discretized elastic energies will be discussed later in
Section 5.

To calculate the adhesion energy of the shell, we con-
sider a generalized Lennard-Jones type interaction that is
acting between each of the bead and the substrate:

W =
∑

i

28/3

3
ǫ

[

(

σ

zi

)12

−
(

σ

zi

)3
]

, (30)

where zi is the height of bead i from the substrate, and
the sum is taken over all the beads. When the adhesion
energy of bead i is plotted against the distance zi, the
depth of the energy minimum is given by ǫ, and the dis-
tance corresponding to this minimum is 22/9σ. The first
repulsive term in equation (30) is responsible for the ex-
cluded volume interaction which prevents the beads from
penetrating into the substrate. The power of this repulsive
potential should not necessarily be 12, and a lower power
such as 9 can be used as well. For our numerical calcu-
lations, it is more suitable to employ a stronger repulsive
potential.

The second term represents the long-ranged attractive
interaction between the beads and the substrate. The in-
verse cubic dependence of the above potential is briefly
explained below [56,66]. The van der Waals attractive in-
teraction between two atoms is generally given by the form

v(r) = −C

r6
, (31)

where C is a constant depending on the physical origin
of the attraction, and r is the distance between the two
atoms. The simplest approach to obtain the interaction
between an atom and a macroscopic body such as a sub-
strate is to sum up the interactions between all pairs of
atoms [56,66]. We consider a case where a single atom
is placed at a distance D from a semi-infinite medium of
density ρ. Then the total interaction energy is given by

w(D) = −2πρC

12D3
, (32)

which gives rise to the inverse cubic dependence of the
potential.

The total energy

Etot = Es + Eb + W (33)
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Table 1. The numerically obtained values of the critical point (Cs/ǫ)c, (Cb/ǫ)c, (H/R)c for the sizes N = 92, 272, 812, and
2432. We also list the values of the input parameters L0/σ, R/σ, and R/L0. The values of (h/R)c at the critical point are
calculated by using equation (46). (H/h)c is the ratio between (H/R)c and (h/R)c. These numbers are almost independent
of N .

N L0/σ R/σ R/L0 (Cs/ǫ)c (Cb/ǫ)c (H/R)c (h/R)c (H/h)c
92 0.1 0.25 2.5 5 0.35 1 0.29 3.4
272 0.1 0.43 4.3 80 1.5 0.26 0.089 2.9
812 0.1 0.75 7.5 210 6.1 0.18 0.064 2.8
2432 0.1 1.3 13 500 22 0.13 0.046 2.8

is numerically minimized using the conjugate gradient
method [67]. Like most methods of multidimensional min-
imization, it is performed as a series of one-dimensional
minimizations. For this purpose, a series of noninterfering,
conjugate directions are constructed. As a result, mini-
mization along one direction does not disturb the mini-
mization in the other conjugate directions. Hereafter all
the energies and the lengths are respectively scaled by ǫ
and σ which characterize the shape of adhesion interaction
in equation (30). There are three independent dimension-
less parameters in the model, i.e., Cs/ǫ, Cb/ǫ, and L0/σ.
In the present study, we have mainly varied Cs/ǫ and Cb/ǫ,
whereas the other parameters are fixed. The scaled natu-
ral length of each bond L0/σ is chosen such that the ini-
tial spherical configuration of the shell does not store any
stretching energy Es, and its value is roughly L0/σ ≈ 0.1.
(Notice that not all the bonds have exactly the same nat-
ural length because of the singularity associated with the
fivefold symmetry.) For N = 812, the scaled radius of the
undeformed shell is R/σ ≈ 0.75 (see Tab. 1). We note that
the bending energy is inherent even in the undeformed
spherical shell since the spontaneous curvature is not in-
cluded in the present calculation. This assumption is jus-
tified such as for fullerene balls. (See also discussion in
Sect. 6 concerning the spontaneous curvature of shells.)

In our model, the effect of thermal fluctuation is not
included. Hence our calculation corresponds to the zero-
temperature numerical simulation. Since the excluded vol-
ume effect of the surface is not included, we are dealing
with “phantom” shells. As we shall see later, the neglect
of self-avoidance effect is justified for most of the mod-
erate deformations even when the buckling takes place.
Self-avoidance can be crucial such as when the shell col-
lapses due to a large negative pressure [51,62,68].

4 Results

In this section, we collect and present our numerical re-
sults which are analyzed by various quantitative methods.
Some of them have been already published elsewhere [53].
We mainly discuss the results from the size N = 812. The
size dependence is discussed in Section 4.6.

4.1 Configurations

By looking at various equilibrium configurations of the de-
formed shells, we find that there are basically four quali-
tatively distinct types of deformation as the combination

Fig. 2. Top, side and bottom views of the equilibrated config-
urations of adhering spherical shells when the sets of the scaled
elastic constants (Cs/ǫ, Cb/ǫ) are (a) (1000, 1000), (b) (150, 9),
(c) (150, 2), and (d) (100, 1).

of Cs/ǫ and Cb/ǫ is systematically varied. Typical exam-
ples for these cases are shown in Figure 2 from (a) to
(d). For a given parameter set, the deformed shell is seen
from top, side, and bottom with respect to the substrate.
Figure 2a (Cs/ǫ = 1000, Cb/ǫ = 1000) corresponds to the
situation when both of the elastic constants are very large
compared to the adhesion energy. Here the shell hardly
deforms in spite of the adhesion, and keeps its spherical
shape (“small deformation regime”). This means that the
effect of adhesion is practically irrelevant.

When both of the elastic constants are simultaneously
decreased, we observe the case Figure 2b (Cs/ǫ = 150,
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Cb/ǫ = 9). Here a flat contact disk develops at the bottom
of the shell as can be observed from the side view (“disk
formation regime”). The area of the contact disk increases
as the adhesion energy ǫ becomes larger. The formation of
a flat contact disk is reminiscent of the flattening of elastic
tubes along the contact region [50].

Keeping the value of Cs/ǫ while decreasing the bend-
ing constant Cb/ǫ results in the buckling of the shell as
illustrated in Figure 2c (Cs/ǫ = 150, Cb/ǫ = 2). For such
a buckled configuration, both the stretching and the bend-
ing energies are localized at a narrow “bending strip” of
contact. The competition between the two energies deter-
mines its width, which will be discussed later in Section 5
within the scaling argument. The bending strip is formed
in a circular shape, and the whole configuration of the shell
is almost isotropic in the xy-direction (“isotropic buckling
regime”). The buckled region of the shell is bent inward,
but it does not violate the excluded volume effect.

In the case of Figure 2d (Cs/ǫ = 100, Cb/ǫ = 1), it be-
comes energetically favorable for the buckled region to cre-
ate a polygonal structure composed of a number of ridges
jointed by the d-cones. In contrast to the isotropic buck-
ling in Figure 2c, the shell buckles in an anisotropic man-
ner (“anisotropic buckling regime”). To characterize such
a buckled shape is related to the problem of post-buckling.
The number of ridges is dependent on the van der Waals
adhesive energy, which will be argued below. We remind
here that neither isotropic nor anisotropic buckling has
never been observed for elastic tubes [50].

In order to see the sequence of the systematic defor-
mation more clearly, we fixed the stretching constant to
Cs/ǫ = 100 and varied the bending constant Cb/ǫ from 50
to 1.1. The top, side and bottom views of the equilibrium
configurations are arranged in Figure 3. Figure 3a belongs
to the small deformation regime, (b) to the disk formation
regime, (c) and (d) to the isotropic buckling regime, and
(e) and (f) to the anisotropic buckling regime, respectively.
It is remarkable that, in the anisotropic buckling regime,
only a slight change in the value of Cb/ǫ causes a big
difference in the final configuration, namely, pentagonal,
square, or triangular polygonal ridges (see also Fig. 2d).
It is likely that the pentagonal shape appears due to the
presence of the five-handed bead that is first attaching
to the substrate in our simulation. The influence of iso-
lated beads of fivefold symmetry on a sphere [69,70] will
be discussed separately in Section 6.

4.2 Asphericity

Next we characterize the shape of the deformed shells
more quantitatively. For this purpose, we first calculate
the moment of inertia tensor defined by [71,72]

Iαβ =
1

2N2

∑

i

∑

j

(ri,α − rj,α)(ri,β − rj,β), (34)

where ri is the position of bead i, and α, β = x, y, z. The
sum is taken over bead positions in a given configura-
tion. The three eigenvalues of Iαβ are ordered according

Fig. 3. Top, side and bottom views of the equilibrated configu-
rations of adhering spherical shells when the sets of the scaled
elastic constants (Cs/ǫ, Cb/ǫ) are (a) (100, 50), (b) (100, 10),
(c) (100, 5), (d) (100, 2), (e) (100, 1.2), (f) (100, 1.1).

to magnitude λ1 ≤ λ2 ≤ λ3. The directions of the prin-
cipal axes are given by the eigenvectors corresponding to
these eigenvalues.

As a quantitative measure of the asphericity of the de-
formed shell, we have calculated the following three quan-
tities [68]:

Γ1 =
λ1

λ3
, (35)

∆ =
λ2

1 + λ2
2 + λ2

3 − (λ1λ2 + λ2λ3 + λ3λ1)

(λ1 + λ2 + λ3)2
, (36)

and

S =
(λ1 − λ̄)(λ2 − λ̄)(λ3 − λ̄)

2λ̄3
, (37)

where λ̄ = (λ1+λ2+λ3)/3 in S. The range of each value is
0 ≤ Γ1 ≤ 1, 0 ≤ ∆ ≤ 1, or − 1

8 ≤ S ≤ 1. The value of Γ1 is
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Fig. 4. The anisotropic factor Γ1 defined in equation (35)
as a function of the scaled bending constant Cb/ǫ for Cs/ǫ =
100, 300, 500, 700, and 900.

Fig. 5. The anisotropic factor ∆ defined in equation (36)
as a function of the scaled bending constant Cb/ǫ for Cs/ǫ =
100, 300, 500, 700, and 900.

unity when the shell is completely isotropic. Conversely, ∆
vanishes when the shell is isotropic, while it deviates from
zero for an anisotropic configuration. Negative S means
that the shell is oblate, while it is positive when the shell
is prolate. In Figures 4–6, we have respectively plotted
Γ1, ∆, and |S| as a function of Cb/ǫ for various different
values of Cs/ǫ ranging from 100 to 900.

We begin by discussing Figure 4. For Cs/ǫ = 100, Γ1

decreases monotonically as Cb/ǫ becomes smaller. In this
case, the buckling occurs at around Cb/ǫ ≈ 10 when the
slope of the curve changes drastically. A similar buckling
behavior is observed both for Cs/ǫ = 300 and 500. Unless
the shell is buckled strongly as in the anisotropic buckling
region, the largest and the second largest eigenvalues are
almost equal; λ2 ≈ λ3. This means that the deformation
is isotropic in the xy-direction (see Figs. 3a to d).

Fig. 6. The absolute value of the anisotropic factor |S| defined
in equation (37) as a function of the scaled bending constant
Cb/ǫ for Cs/ǫ = 100, 300, 500, 700, and 900.

In Figure 5, the buckling of the shell is manifested
in the sharp increase of ∆ as Cb/ǫ is decreased. There
are jumps of ∆ for larger values of Cs/ǫ, which indicates
the occurrence of a discontinuous buckling transition. For
Cs/ǫ = 100, on the other hand, ∆ changes continuously
and a continuous buckling takes place. It is worthwhile to
mention that ∆ attains its minimum at Cb/ǫ larger than
its threshold value of the buckling. For Cs/ǫ = 300, the
minimum and the discontinuous jump of ∆ occur at differ-
ent Cs/ǫ, whereas they coincide with each other for larger
Cs/ǫ. In the continuum limit, ∆ should vanish for a perfect
spherical shell. However, due to our finite discretization of
the shell, a small asphericity exists even in the initial un-
deformed configuration, i.e., ∆ ≈ 3.1× 10−5 for N = 812.
Since this value is slightly larger than the minimum values
of ∆, the appearance of minima in Figure 5 can partially
be an artifact of the discretization. Although the origin of
the minima in ∆ is not completely clear, we note that it
has nothing to do with the global deformation of the shell.

The measured value of S is always negative, and in
Figure 6, we have plotted the absolute value of S as a
function of Cb/ǫ. Negative S reflects the oblate pancake-
like shape of the deformed shells. We see here that the
behaviors of ∆ (Fig. 5) and |S| (Fig. 6) are quite analo-
gous. From Figures 5 and 6, we conclude that the buckling
can occur both in continuous and discontinuous manners.

4.3 Minimized energy

Here we look at the minimized energy of the deformed
shell. Figure 7 shows all the energies equations (28–30)
and the total energy Etot as a function of Cb/ǫ when
Cs/ǫ = 900. In this case, the shell exhibits a discontin-
uous buckling transition at around (Cb/ǫ)∗ ≈ 3.5 as indi-
cated by the dashed line. When the value of Cb/ǫ crosses
this critical value from above, both the stretching energy
Es and the bending energy Eb increases abruptly. These
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Fig. 7. The minimized total energy Etot/ǫ as a function of
Cb/ǫ for Cs/ǫ = 900. The three energies Es, Eb, and W con-
tributing to Etot are also shown. The discontinuous buckling
transition occurs at (Cb/ǫ)∗ ≈ 3.5 indicated by the dashed line.

losses in the elastic energies are compensated by the gain
in the van der Waals energy W which decreases discon-
tinuously at the transition point. In other words, the shell
buckles at the expense of the elastic energy when the ad-
hesive force is strong enough. Interestingly, however, the
discontinuity in Etot around the transition point is very
small.

For different values of Cs/ǫ, the behaviors of each
energy are qualitatively similar when the discontinuous
buckling occurs. However, the discontinuities in Eb and W
at the transition are smaller when Cs/ǫ becomes smaller.
To see this more clearly, we have plotted in Figure 8 the
bending energy Eb/ǫ as a function of Cb/ǫ for various
Cs/ǫ as before. When the discontinuous buckling occurs
for Cs/ǫ ≥ 300, all the data fall onto a single curve in the
large Cb/ǫ region. Moreover, Eb/ǫ is almost proportional
to Cb/ǫ because the shell deforms only slightly (small de-
formation regime). By contrast, the continuous buckling
takes place when Cs/ǫ = 100 for which the data deviate
from others.

Figure 9 is a similar plot of the adhesion energy W/ǫ
as a function of Cb/ǫ. When Cs/ǫ is larger than 300, W/ǫ
is almost independent of Cb/ǫ in the unbuckled region,
but starts to decreases as the buckling takes place. For
Cs/ǫ = 100, however, W/ǫ decreases continuously as Cb/ǫ
is reduced.

4.4 Indentation length

To investigate the nature of the buckling transition in
more detail, we have measured the indentation lengths
H1 and H2 as defined in Figure 10. In Figure 11, we plot
H1/R as a function of Cb/ǫ for various Cs/ǫ ranging from
100 to 900. Here the radius of the undeformed spheri-
cal shell is R = 0.75σ when N = 812 (see Sect. 4.6 or
Tab. 1). In accordance with the aforementioned discus-
sion, H1 changes discontinuously at the transition point

Fig. 8. The scaled bending energy Eb/ǫ as a function of the
scaled bending constant Cb/ǫ for Cs/ǫ = 100, 300, 500, 700, and
900.

Fig. 9. The scaled adhering energy W/ǫ as a function of the
scaled bending constant Cb/ǫ for Cs/ǫ = 100, 300, 500, 700, and
900.

for larger Cs/ǫ, revealing the first-order nature of the
buckling transition. This discontinuous buckling transi-
tion takes place between the disk formation regime and
the isotropic buckling regime (Figs. 2b and c). Hence the
contact region changes from a disk to a ring at the tran-
sition point.

In the same way, we plot H2/R as a function of Cb/ǫ
in Figure 12. The length H2 deviates from zero only if
the shell buckles for which the behaviors of H1 and H2

are almost identical to each other. This result indicates
that the geometry of the buckled region is represented by
a mirror image of the original undeformed shell.

Figure 13 shows the variation of the total indentation
length H defined by

H = H1 + H2. (38)

The discontinuous jump in H/R becomes smaller as Cs/ǫ
is decreased, and finally vanishes at around Cb/ǫ ≈ 6.1
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Fig. 10. Notation of the indentation lengths H1 and H2 in the
isotropic buckling regime. The total indentation length is given
by H = H1 + H2. R is the radius of the undeformed spherical
shell. r is the radius of the circular bending strip whose width
is denoted by w.

Fig. 11. The scaled indentation length H1/R as a function of
the scaled bending constant Cb/ǫ for Cs/ǫ = 100, 300, 500, 700,
and 900.

(the filled circle). The corresponding critical indentation
length is H1/R ≈ 0.18, and that of the stretching constant
is Cs/ǫ ≈ 210. Below this value of Cs/ǫ, the buckling oc-
curs continuously rater than discontinuously.

We immediately note that Figure 13 is very reminis-
cent of the isotherms of non-ideal gases in the pressure-
volume plane. Analogous to the liquid-gas coexistence re-
gion of van der Waals fluids, the region of discontinuous
transition has been shaded in Figure 13. In the present
model, the parameter Cs/ǫ plays a role similar to the
temperature of van der Waals fluids. Another similar phe-
nomenon is the volume transition of gels which is induced
either by changing the temperature or the ionic strength.

Fig. 12. The scaled indentation length H2/R as a function of
the scaled bending constant Cb/ǫ for Cs/ǫ = 100, 300, 500, 700,
and 900.

Fig. 13. The total indentation length H/R as a func-
tion of the scaled bending constant Cb/ǫ for Cs/ǫ =
100, 300, 500, 700, and 900. The filled circle being located
roughly at (Cb/ǫ, H/R, Cs/ǫ) = (6.1, 0.18, 210) indicates the
point at which the discontinuity vanishes.

4.5 Scaling relation

Here we analyze the geometry of the buckled shell from a
different aspect. In Figure 14, we have plotted the relation
between the scaled ring radius r/R and the total inden-
tation length H/R (see Fig. 10 and Eq. (38)) for various
combinations of Cb/ǫ and Cs/ǫ when N = 812. Differ-
ent points represented by the same symbol correspond to
different Cb/ǫ values having the same Cs/ǫ values. Inter-
estingly, most of the data collapse onto a single line, and
we find that a scaling relation r/R ∼ (H/R)1/2 holds in
this regime. This scaling relation results from a simple
geometrical consideration. As we will discuss in the next
section, the buckled region is almost a mirror image of the
original undeformed shell.
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Fig. 14. Relation between the scaled ring radius r/R defined
in Figure 10 and the scaled total indentation H/R for various
combinations of Cs/ǫ (ranging from 100 to 500) and Cb/ǫ. Most
of the data collapse onto a single line which gives the scaling
relation r/R ∼ (H/R)0.5.

The data deviate from a straight line when H/R is
small because the deformation of the shell cannot be de-
scribed by the geometry in Figure 10. Moreover, the above
scaling relation does not hold in the anisotropic buck-
ling regime in which the polygonal ridges are formed (see
Figs. 3e or f).

4.6 Size dependence

So far, we have discussed only the results when N = 812.
Even the shell size N is varied, the qualitative proper-
ties of the deformation are unchanged from the case of
N = 812. For example, the total indentation length H
behaves similarly to Figure 13 although the location of
the critical point shifts systematically. Table 1 summa-
rizes the values of the critical point for four different sizes
N = 92, 272, 812 and 2432. We have simultaneously listed
the values of L0/σ, R/σ, and R/L0 for each size.

Roughly speaking, the critical values of the elastic con-
stants (Cs/ǫ)c and (Cb/ǫ)c are larger for larger shells. On
the other hand, the values of (H/R)c decreases for larger
shells. This tendency holds true as long as the potential
range satisfies R/σ ≤ 1. When R/σ is much larger than
unity, the buckling does not occur. It is reasonable to think
that larger shells with a small curvature can be easily de-
formed due to the reduced coupling effect.

4.7 Hysteresis

If the initial shape of the shell is far from a sphere, we
sometimes could not find the global minimum within the
conjugate gradient method. For complete spherical shells,
on other hand, we could always obtain reasonable equi-
librium configurations as depicted before. For the initial

Fig. 15. The total indentation length H/R as a function of
the scaled bending constant Cb/ǫ for two different initial con-
figurations. The case (a) is the result when a spherical shell is
used as the initial configuration. In the case of (b), the strongly
buckled finial configuration obtained when Cs/ǫ = 500 and
Cb/ǫ = 1 is used as the initial configuration. There is a small
hysteresis.

spherical configuration, the stretching energy Es is relaxed
in the absence of adhesion although the bending energy
Eb is inherent. We remind that the effect of spontaneous
curvature is not included in our model.

For certain parameter choices, however, the numeri-
cal results seem to depend on the initial configuration. In
Figure 15, we have plotted the equilibrium total indenta-
tion length H/R obtained from the two different initial
configurations but having the same elastic parameters.
The case (a) is the result when a spherical shell is used as
the initial configuration. In the case of (b), the strongly
buckled finial configuration obtained when Cs/ǫ = 500
and Cb/ǫ = 1 is used as the initial configuration. Although
most of the results obtained from these two cases coincide
with each other, there is a slight difference in buckling
transition point, which results in a small hysteresis. The
observed hysteresis becomes more remarkable for smaller
Cs/ǫ and/or Cb/ǫ, but we did not investigate it systemat-
ically since it is impossible to scan all the allowed initial
configurations.

4.8 Multi-buckling

Finally, we show a peculiar type of adhesion-induced
deformation which cannot be classified into the four
regimes as described in Section 4.1. Figure 16 shows
the equilibrium configuration when the parameters are
(Cs/ǫ, Cb/ǫ) = (30, 1) corresponding to a relatively strong
adhesion regime. Interestingly, the buckling transition oc-
curs twice in this case, i.e., a new buckling takes place in-
side the original buckled region. We call this phenomenon
as the multi-buckling transition which is observed when
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Fig. 16. Top, side and bottom views of the equilibrated con-
figurations of an adhering spherical shell when the sets of the
scaled elastic constants are (Cs/ǫ, Cb/ǫ) = (30, 1).

the adhesion is strong enough to induce the second buck-
ling. For much larger shells, one would expect to see
the multi-buckling which exhibits more than triple buck-
lings. Although we are not aware of such an unique shape
in the real life, it would be very interesting to find the
multi-buckled state experimentally. Biological cells adher-
ing onto a rigid substrate may be one of the possible sys-
tems to observe the multi-buckling because the binding
energy between the cell membranes and substrate can be
fairly large. We comment here that a cascade of buckling
was observed by compressing thin plates [73].

5 Scaling theory

Based on the continuum shell theory, as described in
Section 2, we now interpret the deformation of the shell
within the scaling argument [18]. Attention will be paid
to the cases in Figures 2b and c, i.e., the disk formation
regime (case I) and the isotropic buckling regime (case II).

First, we discuss how the parameters in the discretized
model are related to those in the continuum theory such
as the Young’s modulus or the Poisson’s ratio. We remind
again that both Cs and Cb in the discretized model have
the dimension of energy. Then according to equation (25),
we can relate them as

Cs

L2
0

∼ Y h

1 − ν2
, (39)

Cb ∼ Y h3

1 − ν2
, (40)

except the prefactors. Note that the three-dimensional
Young’s modulus Y has the dimension of energy per vol-
ume, and the Poisson’s ratio is dimensionless. From the
above relations, the effective thickness h and the Young’s
modulus are given by

h ∼ (CbL2
0/Cs)

1/2, (41)

Y ∼ C3/2
s /C

1/2
b L3

0. (42)

In order to determine the numerical factors, the geometry
of the network should be specified. For a two-dimensional
triangular lattice, Seung and Nelson showed that the fol-
lowing relations holds [63,74]:

Cs

L2
0

=

√
3

2
Y h, (43)

Fig. 17. Notation of the indentation lengths H in the disk
formation regime. R is the radius of the undeformed spherical
shell. d is the radius of the circular disk.

ν =
1

3
, (44)

Cb =

√
3

16
Y h3. (45)

Combining these three relations, h and Y are given by

h = (8CbL
2
0/Cs)

1/2, (46)

Y =
1√
6

C
3/2
s

C
1/2
b L3

0

· (47)

In the disk formation regime (case I), the effect of ad-
hesion is weak so that the shell deforms only slightly at
the bottom as we have seen in Figure 2b. This situation
is analogous to the case of a shell subjected to a small lo-
calized force [18]. Let d be the dimension of the deformed
region which is caused by the contact between the shell
and the substrate as depicted in Figure 17. The out-of-
plane displacement ζ (see Eq. (11)) in the deformed region
can be identified as the indentation length H , i.e., ζ ∼ H .
Following the continuum treatment, the strain tensor is
of the order of ζ/R ∼ H/R. Hence the total stretching
energy is

Es ∼ Y hH2d2/R2, (48)

where we have multiplied the area of the deformed region
d2. The fact that ζ varies considerably over a distance d
gives the curvature ζ/d2 ∼ H/d2. Then the total bending
energy behaves as

Eb ∼ Y h3H2/d2. (49)

Note that the stretching energy increases and bending en-
ergy decreases with increasing d.

The size d is provided by the condition that these two
energies balance:

d ∼ (hR)1/2 ∼ (CbL2
0/Cs)

1/4R1/2, (50)

where we have used equation (41). Hence the area of the
contact region S(I) for the case I scales as

S(I) ∼ d2 ∼ hR ∼ (CbL2
0/Cs)

1/2R. (51)
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The minimized total elastic energy Ee = Es + Eb scales
as

E(I)
e ∼ Y h2H2/R

∼ (CbCs/L2
0)

1/2H2/R. (52)

Varying this with respect to H gives the force:

f (I) ∼ (CbCs/L2
0)

1/2H/R, (53)

which is proportional to H . This result indicates the linear
Hooke’s law of the deformation.

In the isotropic buckling regime (case II), on the other
hand, the adhesion is strong enough for the shell to un-
dergo the buckling as in Figure 2c. Then most of the elas-
tic energy is concentrated over a narrow bending strip of
width w and radius r as defined in Figure 10. The buckled
region is assumed to be a spherical cap which is a mirror
image of its original shape. We remind that the assump-
tion of vanishing spontaneous curvature plays an impor-
tant role here. Then the following relation holds according
to the simple geometrical reason [18]:

r ∼ H1/2R1/2, (54)

where H is the total indentation length. This explains
the scaling relation which we found in our simulation (see
Fig. 14).

Since the order of magnitude of the displacement of
a point within the bending strip is ζ ∼ wr/R, the strain
is given by ζ/R ∼ wr/R2, and the curvature is ζ/w2 ∼
r/Rw. Then the stretching energy and bending energy
scale as

Es ∼ Y h(wr/R2)2wr ∼ Y hw3r3/R4, (55)

and
Eb ∼ Y h3(r/Rw)2wr ∼ Y h3r3/R2w, (56)

respectively. Here wr is the area of the bending strip. Min-
imizing these two energies with respect to w, we obtain

w ∼ (hR)1/2 ∼ (CbL2
0/Cs)

1/4R1/2. (57)

Note that the scaling of d in equation (50) and that of w
are the same. From equations (54) and (57), the area of
the bending strip that contacts with the substrate as in
Figure 2c is given by

S(II) ∼ wr ∼ (CbL2
0/Cs)

1/4H1/2R. (58)

The minimized total elastic energy is given by

E(II)
e ∼ Y h5/2r3/R5/2

∼ Y h5/2H3/2/R

∼ C
3/4
b (Cs/L2

0)
1/4H3/2/R. (59)

In this case, the required force f is

f (II) ∼ C
3/4
b (Cs/L2

0)
1/4H1/2/R. (60)

In contrast to equation (53), this relation is non-linear.
So far the discussion is valid as long as H is fixed and

given. We now consider how the indentation length H can
be related to the strength of adhesion. Let v be the van der
Waals energy per unit area. It was shown in reference [51]
that v can be approximately given by v ∼ A/(12πδ2),
where A is the Hamaker constant and δ is an atomic cutoff.
Then the total adhesion energy is estimated by

Ea ∼ vS, (61)

where S is the contact area. In the disk formation regime
(case I), we use equation (51) for the contact area. If the
deformations are driven by van der Waals adhesion, the
adhesion energy Ea is expected to balance with the elastic

energy Ee given by equation (52). By setting Ea ∼ E
(I)
e ,

we arrive at the estimate for the indentation length H :

H(I) ∼ v1/2(L2
0/Cs)

1/2R, (62)

for given v and R. In the isotropic buckling regime
(case II), we use equation (58) for the contact area. By

setting Ea ∼ E
(II)
e , we get

H(II) ∼ vC
−1/2
b (L2

0/Cs)
1/2R2, (63)

which is a different scaling.
Comparing equations (51) and (58), we see that the

contact area of the bending strip becomes larger than
that of the disk (S(I) < S(II)) when the relation H >
(CbL2

0/Cs)
1/2 holds. Since the right hand side of this in-

equality scales similarly with the effective thickness h (see
Eqs. (41) or (46)), we see that the transition from the disk
formation regime to the isotropic buckling regime occurs
typically for a deformation H ≥ h. The increase in the
contact area between the shell and the substrate results
in the gain in the van der Waals adhesion energy, and
hence W decreases when the buckling takes place as seen
in Figure 9.

Let us check if this scaling argument holds true in our
numerical simulation. As a rough estimate of the tran-
sition point, we pay attention to the critical point in
Figure 13 which separates the discontinuous and contin-
uous buckling behaviors. We mentioned in the previous
section that the critical point appears when the combi-
nation of the elastic constants are (Cb/ǫ)c ≈ 6.1 and
(Cs/ǫ)c ≈ 210 for N = 812 (see also Tab. 1). By using
equation (46), we can deduce the effective thickness to be
(h/R)c ≈ 0.064. On the other hand, the numerically ob-
tained critical indentation length is (H/R)c ≈ 0.18. By
taking the ratio between H and h, we obtain the relation
H ≈ 2.8h at the critical point. This result indeed confirms
the fact that the buckling transition takes place when the
indentation length exceeds the shell thickness.

We have performed the similar analysis for other shells
which have different sizes N . The results are summarized
again in Table 1. The ratio H/h (the last column) is
roughly 2–3 with the largest uncertainty for N = 92. Re-
markably enough, this value is almost independent of N ,
although the location of the critical point differers signif-
icantly between the different sizes. It is very interesting
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to see that the universal property of the shell manifests
itself at the critical point of the buckling transition. As
we shall discuss in the next section, the general condition
for buckling transitions seems to hold in various systems
ranging from nanoscale to macroscale.

6 Discussion

In order to bridge between our results and real materials,
we first give some typical numbers to the model parame-
ters. In the case of a layered material made of carbon, the
two-dimensional Young’s modulus and the bending rigid-
ity are roughly 1.3 × 105 erg/cm2 and 1.6 × 10−12 erg,
respectively [75]. Assuming that the adhesion energy ǫ
is the order of thermal energy kBT , we can deduce the
model parameters as Cs/ǫ ≈ 480 and Cb/ǫ ≈ 40. Accord-
ing to Figure 13, the adhesion of a single-walled fullerene
(with radius R/σ ≈ 0.75) should correspond to a point
well above the critical point. In this regime, the fullerene
may deform as in Figure 2b, which is consistent with the
previous prediction [51].

Other example of a spherical shell is a polyelectrolyte
multilayer capsule [42–45]. Such a material is produced
using layer-by-layer coating of dissolvable colloids and
subsequent dissolution of the core material. These cap-
sules offer the advantage that they can be prepared
with well-controlled radius and shell thickness. The three-
dimensional Young’s modulus of the capsule was measured
to be 500–750 MPa [42,43] or 1.5–2 GPa [44,45], but its
thickness h tends to be in the 10 nm range. Since this gives
fairly large bending rigidity of the order of Cb/ǫ ≈ 104,
van der Waals adhesion only would not cause a consid-
erable deformation of a microcapsule and belong to the
small deformation regime as in Figure 2a.

However, it was shown in reference [45] that other at-
tractive interaction such as electrostatic interaction leads
to a strong adhesion of microcapsules. In fact, anionic
microcapsules on cationic glass resulted in a truncated
sphere topology with a circular adhesion disk. This situ-
ation obviously corresponds to the disk formation regime
in our simulation. The dependence of the adhesion disk
on the shell thickness is found to be in agreement with
the previous theoretical prediction [18,51]. Furthermore,
microcapsules become unstable and buckle due to the os-
motic pressure difference between inside and outside the
shell [42,43]. The critical osmotic pressure depends on the
capsule radius and the shell thickness.

As briefly mentioned in Introduction, there are sev-
eral controlled mechanical experiments which deal with
the buckling of spherical shells. For example, Dubreuil
et al. compressed the above mentioned polyelectrolyte mi-
crocapsules using AFM [44]. The shape of the deformed
shell was monitored by reflection interference contrast mi-
croscopy. They measured the relation between force and
deformation, and revealed that the capsule first deforms
only weakly. As the deformation becomes larger, an in-
crease in the contact area is observed, which is followed
by the buckling transition. In a more recent investiga-
tion on the same system, both the isotropic buckling and

anisotropic buckling are distinguished [76]. Although a
high hysteresis between the loading and unloading curve
was detected, the capsule stayed elastic. The observed se-
quence of deformation caused by the compression is very
similar to what we see in our simulation.

Pauchard and Rica studied the deformation of a ping-
pong ball which is forced to be in contact with a rigid
plate [37,38]. In their work, the boundary of the half-
sphere was fixed in order to avoid non-axisymmetric defor-
mations. For low applied forces, the shell flattens against
the horizontal plate. For higher compression forces, a dis-
continuous buckling transition occurs when the deforma-
tion is close to twice the thickness of the shell; H/h ≈ 2.4.
This value cannot be directly compared with the cor-
responding ratio at the critical point in our simulation
(H/h ≈ 2.8) since the buckling is discontinuous for a ping-
pong ball. However the fact that the deformation becomes
larger than the shell thickness is the required condition
even for the buckling of a ping-pong ball. Moreover, the
sequence of the deformation is in good agreement with
our simulation results, although their experimental set-up
is not identical to our model of adhesion. Interestingly,
the polygonal structures associated with the anisotropic
buckling as in Figure 2d were also formed when a local-
ized point force was applied to the shell [37,38].

In a smaller scale experiment, the microrheology of
self-assembled actin-coated vesicles was studied using op-
tical tweezers and single-particle tracking [35]. The actin
filaments mimic cytoskeletal networks in cells, and they in-
crease the bending modulus of the membrane up to around
100 kBT . A buckling instability was observed when a large
localized force of the order of 0.5 pN is applied perpen-
dicular to this vesicle [36]. This deformation involves both
the stretching and bending contributions, and has been
interpreted in terms of the shell theory as in the present
paper. The thickness of the actin-coated vesicle is roughly
h ≈ 100 nm, and it buckles when the deformation exceeds
H ≈ 200 nm. Hence the ratio between the two lengths is
H/h ≈ 2 at the threshold of the buckling. We therefore see
that the condition H > h determines the onset of various
types of buckling transitions in different length scales.

As a result of the Delaunay triangulation of the spheri-
cal surface, there are always 12 grid points which have five
neighbors as explained in Section 3. Recently, the faceting
of spherical shells associated with 12 isolated points of
fivefold symmetry was argued by Lidmar et al. [70]. They
introduced the so called Föpple-von Kármán number of a
spherical shell defined by

τ =
Ŷ R2

κ
, (64)

where Ŷ is the two-dimensional Young’s modulus [74].

From the relation Ŷ = Y h and equation (26), we note
that τ is proportional to the square of the ratio between
the radius R and thickness h of the shell; τ ∼ (R/h)2. It is
reported in reference [70] that, in the absence of adhesion,
a significant deviation from a perfect spherical shape takes
place when τ becomes of the order of 103. This instability
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results in the faceting of the shell, which is manifested in
sufficiently large viruses composed of protein capsomers.

As a rough comparison with this prediction, we es-
timate the Föpple-von Kármán number τ at the criti-
cal point for each size N . Using the numbers of (h/R)c
listed in Table 1, we can estimate τ to be less than 103 for
N = 92, 272, 812, but becomes roughly 103 for N = 2432.
Hence the faceting of the shell may be irrelevant for most
of the cases as long as the buckling is concerned. One dif-
ference between our model and that used in reference [70]
is that not all the springs have the equal natural length
in the present case. More precisely, the springs which are
connected to the five-handed beads have slightly smaller
natural length than those connected to the six-handed
beads. Hence the spherical shape is more stable in our
numerical simulation and the defect-induced buckling is
suppressed. However, it is possible that the anisotropic
buckling is triggered by the singular disclinations as men-
tioned in Section 4. This can be important when the buck-
led region creates a polygonal structure.

In a recent experiment by Pauchard and Couder, the
buckling of shell-shaped membranes was observed using
droplets of suspension [40]. As evaporation goes on, a
spherical droplet on a super-hydrophobic substrate first
flattens at the top. Then the buckling starts at the top of
the droplet, and the inverted region grows into an invagi-
nation. Although this behavior is dynamic in its nature,
the sequence of deformation is similar to what we have
described in the present paper. In the last stage, a transi-
tion to a toroidal shape was observed, which is interesting
in the context of gastrulation of embryos. This phenom-
ena is attributed to the inhomogeneity of the shell, i.e.,
the elastic constants of the flattened part is smaller than
the rest of the shell. The inhomogeneity in the elastic con-
stants can play an important role such as in the domain
formation in lipid bilayers [77]. Generalization to take into
account the inhomogeneous elastic constants is straight-
forward, and will be examined in the future.

For red blood cells, it is reported that a strong adhe-
sion produces a finite membrane tension [78,79]. Such a
spreading-induced tension can cause the rupture of cells.
We have not included the effect of tension in our simu-
lation, but can make the following argument. Since the
presence of a positive tension tends to shrink the total
area of the shell, we expect that it will effectively reduce
the natural length of each spring. Since this results in a
smaller shell thickness (see Eq. (41)), it it possible that a
shell with a tension can buckle easier than a tensionless
shell. In reality, buckling may induce rupture since the
elastic energies will be localized in a small region.

As a final remark, we note that the notion of spon-
taneous curvature of shells is different from that of fluid
membranes. For elastic shells, one needs to introduce de-
fects to produce a preferred curvature, which depends on
how the shell is prepared. Hence the spontaneous cur-
vature of shells is induced by a kinetic effect. For fluid
membranes, on the other hand, spontaneous curvature is
indeed a material constant.

7 Conclusion

We have investigated the deformation of the elastic shell
adhering onto the substrate both numerically and theo-
retically. The sum of the stretching, bending, and adhe-
sion energies is minimized using the conjugate gradient
method. The deformation of the shell is characterized by
the dimensionless parameters Cs/ǫ and Cb/ǫ. There are
four different regimes of deformation: (i) small deforma-
tion regime, (ii) disk formation regime, (iii) isotropic buck-
ling regime, and (iv) anisotropic buckling regime. As for
the buckling transition, there are both discontinuous and
continuous cases for large and small Cs/ǫ, respectively.
These different cases are separated by the critical point.
According to the scaling arguments, the buckling tran-
sition takes place when the indentation length exceeds
the effective shell thickness, which is in good agreement
with our numerical results. Moreover, the ratio between
the indentation length and its thickness close to the crit-
ical point is roughly 2 even for different shell sizes. This
general condition seems to hold in various experimental
systems ranging from nanoscale to macroscale.
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