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This paper provides a review of recent research advances and trends in the area of thin shell 

buckling. Only the more important and interesting aspects of recent research, judged from a per- 

sonal view point, are discussed. In particular, the following topics are given emphasis: (a) imper- 

fections in real structures and their influence; (b) buckling of shells under local/non-uniform 

loads and localized compressive stresses; and (c) the use of computer buckling analysis in the 

stability design of complex thin shell structures. 

I INTRODUCTION 

Thin-shell structures find wide applications in many 

branches of engineering. Examples include aircraft, space- 

craft, cooling towers, nuclear reactors, steel silos and tanks 

for bulk solid and liquid storage, pressure vessels, pipelines 

and offshore platforms. Because of the thinness of these 

structures, buckling is often the controlling failure mode. It 

is therefore essential that their buckling behavior be properly 

understood so that suitable design methods can be estab- 

lished. 

This paper provides a review of recent research advances 

and trends in the area of thin shell buckling. The paper is not 

intended to be an exhaustive review of the field, nor is it 

possible to do so in a single paper of limited length. Instead, 

only the more important and interesting aspects of recent re- 

search, judged from a personal viewpoint, will be discussed. 

In particular, the following topics are given emphasis: (a) 

imperfections in real structures and their influence; (b) buck- 

ling of shells under local/non-uniform loads and localized 

compressive stresses; and (c) the use of computer buckling 

analysis in the stability design of complex thin shell struc- 

tures. The author wishes to apologize in advance for any in- 

advertent omission of relevant publications. 

2 BRIEF HISTORICAL NOTES 

2.1 General 

Shell structures are widely used in many fields and have 

been studied actively for more than one hundred years 

(Calladine, 1988). The first shell buckling problem solved 

was cylindrical shells under axial compression (Lorenz, 

1908; Timoshenko, 1910; Southwell, 1914). Early tests 

(Robertson, 1929; Flugge, 1932; Lundquist, 1933; Wilson 

and Newmark, 1933) indicated that real cylinders buckle at 

loads much lower than the classical buckling load, which is 

the linear bifurcation load based on the assumptions of sim- 

ple supports and a membrane state of prebuckling stress dis- 

tribution. Experimental buckling loads as low as 30% of the 

classical load are not uncommon. The search for reasons re- 

sponsible for this discrepancy led to an enormous amount of 

research in the subsequent decades. Researchers have chiefly 

attributed this discrepancy to the effects of (a) boundary con- 

ditions, (b) prebuckling deformations, (c) geometric imper- 

fections, and (d) load eccentricities. The effects of these 

factors have thus been investigated for many shell buckling 

problems, in the following, their effects are discussed briefly 

for axially compressed isotropic and stringer-stiffened cylin- 

ders respectively. This discussion not only illustrates the dif- 

ferent roles these factors play in the two problems, but also 

constitutes a brief historical glimpse of thin shell buckling 

research, as it is fair to state that the foundations of shell 

stability theory were almost all laid in studying axially com- 

pressed cylinders. 

2.2 Axially compressed isotropic cylinders 

The effect of various boundary conditions, especially the in- 

plane ones, on the buckling strength of cylindrical shells has 

been explored in detail using the membrane prebuckling 

stress assumption (Ohira, 1961, 1963; Stein, 1962; Hoff, 

1965; Hoffand Rehfield, 1965; Holland Soong, 1965; Hoff, 

1966; Almroth, 1966;). Although isotropic cylindrical shells 

with ends permitted to move in the circumferential direction 

have been found to buckle at a stress one half that of the 

classical prediction, it cannot explain the difference between 

the classical prediction and experiment because such bound- 

ary conditions rarely exist in actual shells. 

The classical linear buckling theory assumes a membrane 

state of stress before buckling. In the case of a cylindrical 

shell under axial compression, this implies that the com- 

pressed cylinder is free to expand laterally. A free expansion 

is usually not possible in experiments or in real structures, so 

bending stresses and deformations are expected near the 

ends which can reduce the buckling load of the axially com- 

pressed cylinder. The effect of bending stresses and pre- 

buckling deformations was first investigated by Fischer 
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(1962, 1963). Stein (1962, 1964) also considered the pre- 

buckling bending stresses and deformations and reported 

buckling strengths of the order of half the classical value. 

However, subsequent studies by Hoff and his co-workers 

(Hoff, 1966) revealed that these were due to the relaxed 

boundary conditions of freedom to displace circumferen- 

tinily, and that similar reductions could be found using the 

membrane stress assumption. Later studies (Fischer, 1965; 

Almroth, 1966; Gorman and Evan-lwanowski, 1970; 

Yamaki and Kodama, 1972) showed that the effect of pre- 

buckling deformations is small and is not a primary reason 

for the difference between the classical prediction and ex- 

perimental results and the great scatter of experimental re- 

sults. 

For axially compressed isotropic cylinders, small load ec- 

centricities do not have a major influence on the buckling 

strength (Simitses, 1985 et al). The single dominant factor 

contributing to the discrepancy between theory and experi- 

ment for axially compressed isotropie cylinders is initial 

geometric imperfections. An enormous amount of research 

has therefore been carried out on the imperfection sensitivity 

of  shell buckling. The most notable contributors in this re- 

search include von Kfirm~in and Tsien (1941), Donnell and 

Wan (1950), Koiter (1945), Budiansky and Hutchinson 

(1966). For a thorough description of the buckling behavior 

of  cylinders under various uniform loads, the book by 

Yamaki (1984) should be consulted. A recent review on im- 

perfect cylinder buckling is that by Simitses (1986). 

2.3 Axially compressed stringer stiffened cylinders 

While the effect of initial geometric imperfections is the 

dominant factor responsible for the discrepancy between the 

classical theory and experiment, this effect is less pro- 

nounced in cylindrical shells with a significant amount of 

stringer stiffening. The imperfection sensitivity of stringer- 

stiffened cylinders depends on the geometry of stiffeners, 

particularly the ratio A~/(bt), where A~, is the cross-section 

area of the stringer, b is the circumferential distance between 

stringers and t is the thickness of the shell skin (Weller and 

Singer, 1977). The effect of boundary conditions now be- 

comes predominant (Weller, 1978). For example, axial re- 

straint may raise the buckling load of a shell by 50% or 

more. Singer and his coworkers (Weller et al, 1974; Singer 

and Rosen, 1976; Weller and Singer, 1977; Weller, 1978; 

Singer and Abramovich, 1979; Singer, 1982a; 1982b; 1983) 

have contributed greatly to our knowledge of buckling of 

stiffened cylinders under axial compression, with special 

emphasis on the effects of boundary conditions and load ec- 

centricities. The effect of load eccentricities for stringer- 

stiffened cylinders was first addressed by Stuhlman et al 

(1966), followed by extensive studies by Singer and his co- 

workers (Weller et al, 1974; Singer, 1983). These studies 

have shown that differences in buckling loads due to the ef- 

fect of load eccentricities can be up to 50% for some practi- 

cal configurations. Prebuckling deformations are only 

important when the shell is short enough for the non-uni- 

formity caused by them to occur over most of the shell 

length (Weller et al, 1974). 
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The many studies by Singer and his co-workers have 

demonstrated conclusively that the influence of geometric 

imperfections should be introduced after effects of boundary 

conditions and load eccentricities have been determined to 

produce accurate buckling predictions. They have developed 

a non-destructive vibration correlation technique which can 

be used to define the boundary conditions and load eccen- 

tricities as well as to determine buckling loads directly 

(Singer and Abramovich, 1979; Singer, 1982a; Singer, 

1982b; 1983). 

2.4 Books and reviews on buckling of thin shells 

Many other shell buckling problems have been studied in the 

past decades, and quite a number of books and review arti- 

cles have been written on the subject. A recent article (Noor, 

1990) provides an extensive list of books, conference pro- 

ceedings and survey articles on shell structures. A number of 

books were published around ten years ago (Calladine, 

1983a; Kollar and Dulacska, 1984; Yamaki, 1984; Bushnell, 

1985) which provide a wealth of information on the buckling 

behavior and strength of thin shells. A handbook for shell 

stability design has recently been produced by Samuelson 

and Eggwertz (1992) which can be particularly useful to de- 

signers. Conference proceedings (Fung and Sechler, 1974; 

Koiter and Mikhailov, 1980; Ramm, 1982; Thompson and 

Hunt, 1983; Jullien, 1991 ) and paper collections (Zamrik and 

Dietrich, 1982; Harding et al, 1982; Narayanan, 1985; 

Galletly, 1995) are also sources of very useful information. 

Many review articles on thin shell buckling have also 

been written. Nash (1960) summarized early achievements 

in shell buckling research. Hoff (1966) discussed the buck- 

ling behavior of cylinders with various boundary conditions. 

Work on elastic postbuckling and imperfection sensitivity 

has been reviewed in Hutchinson and Koiter (1970), 

Budiansky and Hutchinson (1966, 1979), Tvergaard (1976) 

and Citerley (1982). Babcock (1983) addressed the aspects 

of imperfection sensitivity, dynamic buckling, plastic buck- 

ling, experiments and computer buckling analysis in his re- 

view of shell buckling research in general. Babcock (1974) 

and Singer (1980, 1982b) surveyed experimental research on 

shell buckling. Bushnell (1982) examined many plastic 

buckling problems and the computer analysis of plastic 

buckling. The most recent review article is that of Simitses 

(1986) published almost a decade ago, in which the buckling 

and postbuckling behavior of imperfect cylinders was dis- 

cussed in detail. 

The past decade has seen further major advances in thin 

shell buckling research. This review, is therefore prepared to 

provide a brief survey of the developments in the past dec- 

ade and a more detailed discussion of several areas of inten- 

sive recent interest outlined earlier. Both tasks have not been 

undertaken in any previous review articles. 

3 CURRENT STATUS 

Despite extensive research over many decades, our knowl- 

edge of many shell buckling problems is still very limited. 

Consequently, shell stability design criteria contained in de- 
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sign codes for various structures such as tanks (eg, API 620, 

1982), silos (eg, Trahair et al, 1983), pressure vessels (eg, 

ASME, 1986; BS 5500, 1988; AS 1210, 1989) and offshore 

platforms (eg, API RP2A, 1989) generally cover only the 

basic geometries of cylinders, cones, and spheres, and simple 

loading conditions such as uniform axial compression, uni- 

form normal pressure, uniform torsion and bending, or a 

combination of  some of them. This limitation also applies to 

the general code for steel shell buckling developed by the 

European Convention for Constructional Steelwork (ECCS, 

1988). 

This lack of knowledge has been due to the two main dif- 

ficulties encountered in shell buckling research in the previ- 

ous decades. First, the buckling phenomenon in shells is a 

highly complex one, described by nonlinear partial differen- 

tial equations too difficult to solve except for a few simple 

cases before the computer era. Second, unlike beams and 

plates, buckling of shells is generally sensitive to small geo- 

metric imperfections induced in the fabrication process. 

Theoretical buckling loads obtained assuming a perfect ge- 

ometry often greatly overestimate the actual strength of a 

shell, so design methods have relied heavily on extensive 

experimental data which are available only for a limited 

number of cases. Indeed, in the second edition of Stability o f  

Metal  Structures." Worm View (Beedle, 1991), it was pointed 

out that there was the greatest need for more experimental 

data in the area of shell buckling. 

The availability of powerful computers and development 

of sophisticated finite element and other numerical tech- 

niques in recent years have changed the situation drastically 

(Bushnell, 1985; Yang et al, 1990). No longer is it impossi- 

ble to numerically solve a specific complicated nonlinear 

buckling problem: indeed there are scores of proprietary and 

commercial codes based on the finite element method as 

well as other numerical methods (eg, Bushnell, 1976; 

Almroth and Brogan, 1978; Esslinger et al, 1984; 

Wunderlich et al, 1985; Combescure et al, 1987; Teng and 

Rotter, 1989a; 1989b; Ravichandran et al, 1994; Hibbit, 

Karlsson and Sorensen Inc., 1993) which can perform the 

task. Thus, the first difficulty seems to have disappeared. 

This does not imply that there is now no need of research on 

shell buckling, instead great strides can now be made in un- 

derstanding the buckling behavior of shells for a much wider 

range of  problems. The second difficulty remains and re- 

quires more urgent attention if numerical buckling analyses 

are to be applied directly in design or to replace much of the 

experimental work previously required in the development 

of  design methods. The establishment of a reliable procedure 

to convert a numerically obtained buckling load to the de- 

sign strength of a shell is one of the most important chal- 

lenges facing the shell buckling research community 

(Samuelson, 1991 a). 

4 UNIFORM LOADING AND 

REAL IMPERFECTIONS 

Simple uniform loads including axial compression, external 

pressure, torsion and their combinations have received the 
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most attention in the past. Indeed, much of our understand- 

ing of shell buckling has come from research on unstiffened 

and stiffened cylindrical shells under various uniform loads. 

For perfect shells of revolution under uniform loading, their 

buckling loads can now be readily obtained from finite ele- 

ment analyses employing an axisymmetric shell element (eg, 

Teng and Rotter, 1989b) or other similar numerical analyses 

(eg, Bushnell, 1976). However, because of their sensitivity 

to initial imperfections, the central theme of current research 

is how real imperfections affect their buckling strengths. 

Buckling of imperfect cylindrical shells thus remains a 

subject of active research, with special emphasis on the ef- 

fect of real imperfections as well as of  boundary conditions 

and load eccentricity. Most early research on imperfection 

sensitivity was concerned with idealized imperfection forms 

and imperfections in small scale laboratory models, but it has 

now been well recognized that these are generally not repre- 

sentative of real imperfections in full scale structures. 

Babcock, Arbocz, Singer and their colleagues (Arbocz, 

1982; 1991 ; Arbocz and Babcock, 1981 ; Arbocz and Hol, 

1991; Elishakoff et al, 1987; Singer, 1982b; Singer and 

Abramovich, 1995; Weller et al, 1986) have pioneered in the 

precise measurement of imperfections in laboratory and full 

scale aeronautical shells, and the development of statisti- 

cally-based design methods using measured imperfections in 

the last fifteen years. An International Imperfection Data 

Bank was established with branches in Delft and Haifa for 

the evaluation of imperfection measurements and correlation 

studies (Arbocz, 1982; Singer, 1982b). Their work also de- 

monstrated that the form and amplitude of imperfections are 

dependent on the fabrication process and quality. This work 

has recently been extended to offshore shells (Chryssantho- 

poulos et al, 1991a; 1991b; Chryssanthopoulos and Poggi, 

1995) and silos and tanks (Ding et al, 1991; Coleman et al, 

1992; Rotter et al, 1992). The development of shell imper- 

fection measurement techniques has been reviewed in a 

recent article by Singer and Abramovich (1995). 

Calladine (1995) recently added a new dimension to im- 

perfection sensitivity research by suggesting that in addition 

to the assumed-to-be-stress-free geometric imperfections, 

locked-in stresses likely to occur in shells with fixed bounda- 

ries may also be important in reducing the load carrying 

capacity of shell structures. He also presented a thought- 

provoking review of the ideas deployed in understanding im- 

perfection sensitivity of axially compressed cylindrical shells 

in the same article. 

Many other interesting works have been or are being con- 

ducted on shells under uniform loads. Examples include 

buckling of unstiffened cylinders (eg, Galletly et al, 1987; 

Shen and Chen, 1991) and stiffened cylinders (eg, Agelidis 

et al, 1982; Miller and Vojta, 1984; Croll, 1985; Abramo- 

vich et al, 1991; Dowling, 1991) under combined loading; 

effect of lap joints (Rotter and Teng, 1989a; Teng, 1994a), 

an axisymmetric weld depression (Rotter and Teng, 1989b), 

residual stresses (Ravn-Jensen and Tvergaard, 1990) and 

thickness variations (Koiter et al, 1994) on the buckling of  

axially compressed cylinders; buckling of liquid filled coni- 

cal shells (eg, Vandepitte et al, 1982), paraboloidal shells 
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(eg, Chen and Xu, 1992; lshakov, 1993), corrugated shells 

(eg, Yeh et al 1992; Ross and Humphries, 1993), externally- 

pressurized steel domes (eg, Blachut et al, 1991; Galletly 

and Blachut, 1991 ; Blachut and Galletly, 1995), externally- 

pressurized toriconical heads (eg, Wunderlich et al, 1987) 

and torispherical heads (eg, Lu et al, 1995), toroidal shells 

(eg, Panagiotopoulos, 1985; Wang and Zhang, 1991; Bielski, 

1992; Galletly and Blachut, 1995) and cooling towers (eg, 

Combescure et al 1987; Aflak and Jullien, 1991; Kaluza and 

Gigiel, 1995; Radwanska and Waszczszyn, 1995); the effect 

of internal pressure and an elastic core on cylinder strength 

(eg, Knoedel and Schulz, 1988; Rotter and Zhang, 1990; 

Zhang and Ansourian, 1991; Limam et al, 1991; Teng and 

Rotter, 1992a; Knoedel et al, 1995;  Knebel and 

Schweizerhof, 1995); the optimization of shell form to resist 

various loads (eg, Blachut, 1987; Jullien and Araar, 1991; 

Reitinger and Ramm, 1995); buckle propagation in subma- 

rine pipelines (eg, Kyriakides and Babcock, 1981; Winter et 

al, 1985; Kamalarasa and Calladine, 1988; Hahn et al, 1992; 

Lin, et a! 1993); lower bound buckling loads (eg, Croll, 

1985; Yamada and Croll, 1993; Croll, 1995); buckling of 

buried pipelines (eg, Yun and Kyriakides, 1990; Moore and 

Selig, 1990); thermal buckling (eg, Combescure and 

Brochard, 1991); creep buckling (eg, Arnold et al, 1989; 

Miyazaki, ! 988, 1992; Sammari and Jullien, 1995); dynamic 

buckling (eg, Saigal et al, 1987; Birch and Jones, 1990; 

Florence et al, 1991; Lindberg, 1991; Wang et al, 1993a; 

1993b; Pedron and Combescure, 1995); non-destructive 

testing (eg, Singer, 1982b; Nicholls and Karbhari, 1989; 

Souza and Assaid, 199 I) and development of design codes 

and guidelines (eg, Odland, 1991; Samuelson, 1991a; 

Schmidt, 1991; Akiyama et al, 1991; Dulacska and Kollar, 

1995). 

5 CYLINDRICAL SHELLS SUBJECT TO 
WIND AND EARTHQUAKE LOADS 

Steel silos and tanks, when empty or partially filled, are sus- 

ceptible to buckling failure under wind pressure. Several 

such buckling failures have occurred in the past (Ansourian, 

1992), leading to a substantial research effort in this area (eg, 

Resigner and Greiner, 1982; Jerath and Sadid, 1985; 

Uchiyama, 1987; Blackler and Ansourian, 1988; Ansourian, 

1992; Greiner and Derler, 1995). Simple design methods 

have also been developed and included in some codes (eg, 

BS 2654, 1989). Some interesting aspects considered include 

the effect of a rectangular cutout on the buckling strength of 

wind loaded cylinders (-Jerath, 1987), the buckling of tanks 

with unrestrained upper edge which occurs during the con- 

struction stage (Saal and Schrufer, 1991), buckling of cylin- 

ders under combined wind and snow loads (Kapania, 1990) 

and buckling of long cylinders for which axial and shear 

stresses become important (Greiner and Derler, 1995). 

Buckling of liquid-filled storage tanks due to seismic 

excitations has received a great deal of research in recent 

years (eg, Niwa and CIough, 1982; Fischer, et al, 1985; Shih, 

1987; Uras and Liu, 1990, 1991; Chiba et al, 1987a, 1987b; 

Peek, 1989; Fujita et al, 1990; Haroun and Mourad, 1990; 
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Peek and EI-Bkaily, 1991 ; Zhou et al, 1992; Manos, 1994). 

Rammerstorfer and Scharf (1990) presented a comprehen- 

sive survey of research on storage tanks subject to earth- 

quake loading, while Liu et al (I 991) reviewed research ad- 

vances in dynamic buckling analysis of liquid-filled shells. 

6 CYLINDRICAL SHELLS SUBJECT 
TO HORIZONTAL SHEAR 

OR NON-UNIFORM TORSION 

Short cylindrical shells are susceptible to buckling in shear 

when subject to lateral loads. Shear buckling was first exam- 

ined by Lundquist (1935). A solution for the elastic buckling 

of a perfect cantilever cylinder subject to transverse shear 

was presented by Schroeder (1972). Yamaki et al (1979) 

conducted experiments on polyester cylinders subject to 

transverse shear and internal pressure. Galletly and Blachut 

(1985a) performed plastic shear buckling experiments on 

steel cylinders and proposed a simple design equation. 

Further plastic shear buckling tests were conducted by 

Dostal et al (1987). The plastic shear buckling problem has 

been investigated further recently by Kulak, EIwi and their 

associates for large diameter fabricated tubes in a number of 

experimental (Bailey and Kulak, 1984; Obaia et al, 1992a) 

and finite element (Mok and Elwi, 1986; Roman and Eiwi, 

1989) studies, and an improved design equation has been 

established (Obaia et al, 1992b). The effect of imperfections 

was examined both numerically (Mok and Elwi, 1986; 

Roman and Elwi, 1989; Kokubo et al, 1993; Murakami and 

Yoguchi, 1991) and experimentally (Murakami and 

Yoguchi, 1991) and was found to be moderate. Roman and 

Elwi (1989) demonstrated that residual stresses due to a 

cold-bending fabrication process can lead to a large reduc- 

tion in the ultimate load, but the effect of the residual 

stresses due to a longitudinal seam-weld is insignificant. The 

postbuckling load carrying mechanism for a cylindrical shell 

with end ring stiffeners may be regarded as a tension field 

anchored in the ring stiffeners (Bailey and Kulak, 1984) and 

modeled as an equivalent truss mechanism (Roman and 

Elwi, 1988). Plastic buckling of cylindrical shells under 

transverse shear in combination with other loads has also 

been considered (eg, Akiyama et al, 1987; Kokubo et al, 

1993). 

Ground-supported silos subject to unbalanced horizontal 

loads are usually subject to membrane shear stresses which 

vary approximately linearly in the axial direction (eg, Rotter 

and Hull, 1989). The elastic buckling of cylinders subject to 

shear stresses of linear longitudinal variation (non-uniform 

torsion) was examined by Jumikis and Rotter (1986) who 

also developed a design equation. 

7 LOCALIZED CIRCUMFERENTIAL 

COMPRESSION 

There is a class of shell structures in which localized circum- 

ferential compressive stresses arise under loads which are 

apparently tensile. Consequently, buckling failure is possible 

in these shells. Examples include pressure vessel heads, cir- 
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cular plates under a transverse load, and hemispheres under 

axial tension. These problems are normally not very sensi- 

tive to initial imperfections because the circumferential com- 

pression is localized and apart from this localized compres- 

sion, both membrane stresses are tensile throughout the shell. 

Torispherical shells have been studied extensively (eg. 

Adachi and Benicek, 1964; Galletly, 1985; Galletly and 

Blachut, 1985b; Roche and Autrusson, 1986; Galletly et al, 

1990; Soric, 1990; 1995) and a design method has been de- 

veloped and included into several codes including the ECCS 

(I 988) code. Hagihara et al  (I 991) analyzed the bifurcation 

buckling of torispherical heads dynamically loaded by inter- 

nal pressure. Studies into the collapse and buckling of cone- 

cylinder intersections under internal pressure have recently 

been undertaken and simple strength equations have been 

established (Teng, 1994b, 1995a, 1995b). Other problems al- 

ready studied include truncated hemispheres under axial ten- 

sion (Yao, 1963), spherical cargo tanks for liquid natural gas 

(Pedersen and Jensen, 1976; 1995), spherical caps with a 

movable edge under internal pressure (Shilkrut, 1983), circu- 

lar plates under a central point load (Adams, 1993) and 

plate-end pressure vessels (Teng and Rotter, 1989c). 

8 CYLINDRICAL SHELLS SUBJECT 
TO LOCAL AXIAL COMPRESSION 

A cylinder in a column-supported silo or tank is a common 

example where buckling under local axial compression is 

important. Despite the extensive research efforts into shell 

buckling of the last few decades, only a few studies (Abir 

and Nardo, 1958; Bijlaard and Gallagher, 1959; Hoff et al, 

1964; Johns, 1966; Libai and Durban, 1973, 1977; Peter, 

1974) examined the linear bifurcation buckling of perfect 

cylinders under circumferentially varying axial loads before 

a recent resurgence of interest. A simple conclusion from 

this work might be that buckling of a perfect shell occurs 

under a circumferentially non-uniform distribution of axial 

stress when the maximum stress is slightly higher than the 

classical elastic critical value for uniform axial compression. 

Libai and Durban (1977) gave simple expressions which de- 

scribe the increase in buckling stress above this simple rule, 

but the strength gains are generally small for thin shells. Li 

(1990) studied the linear bifurcation buckling of simply sup- 

ported cylinders under many equally-spaced discrete axial 

forces as an imperfect realization of uniform axial compres- 

sion. 

The above studies are entirely restricted to linear bifurca- 

tion in perfect cylinders, and thus do not address the practi- 

cal buckling strength question. The loading and boundary 

conditions considered also do not represent discrete column 

forces on shells. In order to develop stability design criteria 

for cylinders under local axial compression, particularly for 

metal column-supported tanks and silos, many intensive 

studies have been carried out recently. Teng and Rotter 

(1991a) appears to be the first to investigate the nonlinear 

buckling behavior of column-supported cylinders numeri- 

cally, followed by several other studies (Ramm and Butcher, 

1991; Rotter et al, 1991; Teng and Rotter, 1992b; 
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Guggenberger, 1991; Dhanens et al, 1993; She and Rotter, 

1993). A summary of this work has been given in Rotter 

(1993) and a design proposal was submitted for inclusion in 

the ECCS (1988) code (Rotter et al, 1993). The nonlinear 

buckling of column-supported imperfect cylinders has also 

been analyzed by Gould et al  (1994, 1995) recently using 

their local-global method (Gould and Ravichandran, 1993; 

Harintho and Gould, 1994; Ravichandran et al, 1992, 1994) 

which can also deal with other local effects efficiently. So 

far, the problem treated is that of a cylinder directly sup- 

ported on columns or under local axial edge loads. Many 

other questions remain to be answered and these include the 

strength of shells with more complicated arrangements of lo- 

cal supports (Gorenc, 1985). 

9 CYLINDERS SUBJECT TO OTHER 
LOCAL/NON-UNIFORM LOADS OR 
WITH LOCAL GEOMETRIC DISTURBANCES 

The effect of local disturbances and loads on axially com- 

pressed cylinders has been the topic of several recent studies. 

Research has been carried out on axially compressed cylin- 

drical shells with cutouts (Tennyson, 1968; Almroth and 

Holmes, 1972; Almroth et al 1973; Starnes, 1974; Montague 

and Home, 1981; Miller, 1982; Toda, 1983; Knoedel and 

Schulz, 1985; Allen et al, 1990), and design procedures have 

been formulated (Eggwertz and Samuelson, 1991a; 

Samuelson and Eggwertz, 1992). The effect of a local verti- 

cal stiffener (Eggwertz and Samuelson, 1991b), additional 

local loads (Samuelson, 1985, 1991b) and a single or multi- 

ple localized deep dents as may be caused by collision dam- 

age (Krishnakumar and Foster, 1991 a, 1991b) has also been 

addressed. 

The effect of a single deep longitudinal dent on the buck- 

ling of externally pressurized cylinders has been studied by 

Schmidt (1986) and Guggenberger (1995) which showed 

that the effect of a single longitudinal dent on buckling 

strength is small and tends to vanish with increasing dent 

amplitude. 

Early studies on the buckling of cylinders subject to non- 

uniform external pressure were carried out by Almroth 

(1962), Weingarten (1962) and Uemura and Morita (197 ! ). 

Recent investigations into the buckling of cylinders subject 

to non-uniform or partial external pressure have been under- 

taken by Wei and Shun (1988), Chiba et a! (1989), Ramm 

and Butcher (1991), and Sengupta and Ansourian (1994). 

Sengupta and Ansourian (1994) considered the case of ex- 

ternal pressures which are non-uniform around the circum- 

ference but uniform longitudinally and derived a simple de- 

sign formula from finite element results. 

A significant number of studies have examined stability 

problems in horizontal storage vessels and some simple de- 

sign methods have been developed (Saal, 1982; Tooth and 

Susatijo, 1983; Krupka, 1987, 1991a, 1991b, 1991c, 1992; 

Ansourian and Sengupta, 1993). 

Plastic buckling of cylinders in bending has received 

much attention in recent years (Bushnell, 1981; Calladine, 

1983b; Kyriakides and Shaw, 1987; Ju and Kyriakides, 
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1991a, 1991b, 1992; Kyriakides and Ju, 1992; Murray and 

Bilston, 1992; Li and Molyneaux, 1994). Many other local 

or non-uniform load problems need further research, includ- 

ing silos and tanks subject to uneven foundation settlement 

(Palmer, 1992) and silos under eccentric discharge (Rotter, 

1986; Bucklin et al, 1990; Rotter, 1993). 

10 PLASTICITY MODELS IN PLASTIC 
BIFURCATION ANALYSIS 

The problems discussed in previous sections include both 

elastic and plastic buckling, so a separate discussion of the 

latter is not given here. The review paper by Bushnell (1982) 

on plastic buckling may be consulted for more information. 

However, it is interesting to mention several recent studies 

that attempt to resolve the difference between flow theory 

and deformation theory of plasticity in predicting plastic bi- 

furcation buckling loads. 

For plastic bifurcation buckling of plates and shells, the 

paradox remains that the analytically less satisfactory defor- 

mation theory of plasticity gives results in closer agreement 

with experimental results than the more rigorous and well 

accepted flow theory. The many available explanations are 

still inconclusive, and recent results once again confirm the 

better agreement between deformation theory and experi- 

ment (Ore and Durban, 1989, 1992; Galletly et al, 1990; 

Giezen et al, 1991). As bifurcation analyses using the defor- 

mation theory usually also predict lower buckling loads than 

those from a flow theory analysis, the deformation theory 

option has been included in some computer codes (eg, 

Bushnell, 1976; Teng and Rotter, 1989b). A third alternative 

is to use the shear modulus for deformation theory in the 

flow theory (eg, Bushnell, 1976; Teng and Rotter, 1989b), as 

it has been shown that the difference in shear modulus in the 

inelastic range for the two theories is solely responsible for 

the difference in the obtained torsional buckling load of a 

cruciform column. Roche and Autrusson (1986), Bodner and 

Naveh (1988) and Combescure (1991) have also discussed 

some other possible stress-strain relations. 

I 1 R I N G  S T I F F E N E R S  

Ring stiffeners are often an integral part of shell structures. 

One common mode of failure is the out-of-plane buckling of 

rings (Bushnell, 1977), especially when they are attached to 

a shell intersection. Several recent studies have been con- 

ducted on rings at shell intersections (Jumikis and Rotter, 

1983; Rotter and Jumikis, 1985; Rotter, 1987; Sharma et al, 

1987; Teng and Rotter, 1988, 1989d, 1991b, 1992c; Greiner, 

1991; Teng and Lucas, 1994). Esslinger and Geier (1993) 

and Louca and Harding (1994) investigated the torsional 

buckling strength of ring stiffeners on externally pressurized 

cylinders. 

In the finite element modeling of ring-stiffened shells, 

rings can be modeled either as shell branches using shell 

theory or as discrete rings (Bushnell, 1985). Among the ex- 

isting nonlinear shell theories, that due to Sanders' (1963) is 

the most widely used. The accuracy of Sanders' (1963) the- 

ory has been generally accepted as being satisfactory for thin 

shells for all practical purposes. However, Rotter and 
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Jumikis (1988) recently pointed out that while Sanders' the- 

ory works well when buckling is dominated by normal dis- 

placements of the shell surface which is the case for most 

problems, it can lead to erroneous results when applied in a 

conventional manner to problems where buckling is domi- 

nated by in-plane displacements. This is because nonlinear 

strains arising from in-plane displacements are not properly 

accounted in Sanders' theory. One example is the buckling of 

ring-stiffened shells of revolution in which the ring buckles 

in its own plane. Rotter and Jumikis (1988) derived a new 

nonlinear theory for thin shells of revolution which includes 

nonlinear strain terms arising from in-plane displacements. 

They demonstrated that their theory is the only one which 

gives the correct classical ring buckling load for the in-plane 

buckling of an annular plate if the annular plate is modeled 

using axisymmetric shell elements (Rotter and Jumikis, 

1988). 

12 SHELL STABILITY DESIGN BY 
NUMERICAL BUCKLING ANALYSIS 

The obvious difficulty an engineer faces in directly using 

numerical shell buckling analysis in design is how to convert 

his numerical buckling load based on any of the several 

types of buckling analysis to the design strength of his par- 

ticular structure. Until this problem is satisfactorily solved, 

direct use of computer buckling analysis in design is diffi- 

cult. Several approaches have been considered by various re- 

searchers and code writing committees (Schmidt and Krysik, 

1991; Speieher and Saal, 1991; Samuelson and Eggwertz, 

1992; Teng and Rotter, 1995). 

In the first approach, a linear elastic bifurcation buckling 

analysis is carried out to determine the bifurcation load of 

the perfect structure. Reduction factors can then be applied 

to account for geometric imperfections and plasticity. This 

approach has perhaps the greatest appeal to the designer as it 

is similar to current code rules for simple load cases, and a 

linear bifurcation analysis is relatively easy to perform. The 

difficulty lies in deriving appropriate reductions factors for 

different loading and support conditions (Schmidt and 

Krysik, 1991 ; Samuelson and Eggwertz, 1992). 

On the other hand, a fully nonlinear analysis can be car- 

ried out with large deflections, geometric imperfections and 

plasticity properly modeled. Here, the difficulty is in estab- 

lishing the form and amplitude of imperfections to be used in 

the nonlinear analysis. Speicher and Saal (1991) have pro- 

posed that an equivalent imperfection of the same form as 

the first bifurcation mode be used and have also deduced the 

required magnitude of this equivalent imperfection to pro- 

duce a safe design, based on existing test results for cylindri- 

cal shells. This method of determining the amplitude and 

form of imperfection is perhaps the best possible if no in- 

formation is available on the amplitude or form of real im- 

perfections in the structure under consideration. The most 

rational approach, however, will be the establishment of a 

statistically based imperfection model for a particular class 

of shell structures fabricated by the same process, based on 

extensive measurements of real geometric imperfections on 

full scale structures (Arbocz, 1991; Rotter et al, 1992). Such 
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an imperfection model distinguishes between high quality 

and low quality shells, and defines strength in terms o f  reli- 

ability. While  this approach is rational, its establishment re- 

lies on extensive measurement data which are currently not 

available (Rotter et al, 1992). 

Intermediate approaches where one o f  the two factors (ie 

imperfections and plasticity) is included in the numerical 

analysis have also been discussed, but the two approaches 

described above seem to be the most promising. However, 

for axisymmetric  problems, a nonlinear bifurcation analysis, 

considering prebuckling large deflections and plastic mate- 

rial behavior, may be used as a compromise between a linear 

bifurcation and a fully nonlinear analysis if  axisymmetric 

imperfections are dominant or effective axisymmetric imper- 

fections can lead to good results (Almroth et al, 1970; Teng 

and Rotter, 1995). For example,  the simple axisymmetric 

weld depression proposed by Rotter and Teng (1989b) has 

been shown to represent the dominant components o f  imper- 

fections in full scale steel silos and to produce buckling 

strengths comparable to those from current design criteria 

when its amplitude is o f  the order of  shell wall thickness. It 

is expected that this weld depression (or its extension) may 

be used to obtain a good approximation in other shells o f  

revolution under predominantly meridional compression of  

uniform or non-uniform distribution. This approach, includ- 

ing both plasticity and imperfection, can lead to a close esti- 

mate o f  the ultimate strength directly. The amplitude o f  weld 

depression in any analysis still needs to be carefully chosen 

based on past measurements or engineering judgment,  or de- 

duced from existing experimental results or design criteria. 

Accurate model ing o f  boundary conditions does not seem 

to have been addressed in the context o f  stability design by 

numerical buckling analysis, although this is also important 

(Singer and Rosen, 1976). As pointed out by Bushnell 

(1985), the difficulty in defining accurately the boundary 

conditions can be largely avoided i f  all parts o f  the structure, 

or all parts between stations at which there is no doubt about 

the actual boundary conditions, are included in the model, so 

assumptions are not made about boundary conditions and 

load eccentricities. When some assumptions have to be made 

about uncertain boundary conditions, a conservative model 

should be used to ensure safety. 

13 C O N C L U S I O N  

A review of  recent research on thin shell buckling has been 

presented. Research on buckling of  thin shell is still very ac- 

tive, and will remain so for a long time to come because o f  

the many unsolved practical problems. In particular, buck- 

ling o f  shells under local or non-uniform loads, the effect o f  

real imperfections, the direct application o f  numerical buck- 

l i n g  analysis in design, and the development o f  simple de- 

sign methods for commonly  encountered engineering prob- 

lems will be some of  the most important themes of  future in- 

vestigations. 
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