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Synopsis

Approximations are derived for the section pro­

perties required for the calculation of the elastic

critical loads of monosymmetric I - b e a m s ~ and are found to

be related to the ratio of compression flange and section

minor axis second moments of area. A p p r o ~ i m a t i o n s are

obtained which are applicable to I-sections with unequal

and lipped f l a n g e s ~ and which are in close agreement with

accurate calculations of the monosymmetry section pro­

perties made for a wide range of cross-sections. An

improved design rule is proposed for the elastic critical

stress of a monosymmetric I-beam. A comparison is made

of the results obtained using the proposed rule and the

present rules of the AS 1 2 5 0 ~ BS 449 and AISC Specification.
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1. INTRODUCTION

The elastic flexural-torsional buckling of beams of

doubly symmetric cross-section has been extensively studied,

both theoretically and ~ x p e r i m e n t a l l y (5,6,7,9,17). However,

there have been relatively few studies made of the elastic

buckling of beams of monosymmetric cross-section. Early studies

of monosymmetric beams were made by ~ v i n t e r (18); Petterson (15);

Hill (8); Kerensky, Flint and Brown (12) and O'Connor (14). The

work of Kerensky, Flint and Brown (12) formed the basis for the

design of monosymmetric I-beams in the current British Code

BS 449 (3) as well as the current Australian Code AS 1250 ( 1 6 ) ~

More recently, Anderson and Trahair (2) tabulated

theoretical results for simply supported monosyrnrnetric I-beams

and cantilevers with concentrated loads or uniformly distributed

loads. Their study included the effect of the load height above

the shear centre of the section.

For a simply supported monosymrnetric I-beam under uniform

moment, the dimensionless elastic critical moment, Yc' can be

expressed in the form (17)

where K is the beam parameter,

(1)

K (2)

and Ely is the minor axis flexural rigidity, GJ is the torsional

rigidity, El
w

is the warping rigidity, L is the length of the

beam, and 0 is the monosymmetry parameter,

S r:JIx y
L GJ

in which Sx is the cross-section property

f3 x
1

[fA x
2
y dA + fA y3 dA] - 2yoI

x

in which Yo is the coordinate of the shear centre.

(3)

(4)
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The property, Sx' arises from the bending compressive

and tensile stresses which may form a resultant torque when the

beam twists during buckling. This is sometimes referred to as

the "Wagner Effect" (2). For doubly symmetric I-beams, the

torque component due to the compressive stresses exactly balances

that due to the_tensile stresses, and Sx is zero. However, in

a monosymmetric beam, there is an imbalance and the resultant

torque causes a change in the effective torsional stiffness.

When the smaller flange is in compression, there is a reduction

in the effective torsional stiffness (Sx is negative), while the

reverse is true when the smaller flange is in tension (Sx is

positive) .

One of the difficulties associated with the calculation

of the elastic critical loads for monosymmetric beams is in the

determination of the shear centre position Yo' of the warping

section constant I
w

' and of the monosymmetry property, Sx. The

evaluation of these is not straight forward and the effort

required is prohibitive in routine design. Because of this, a

number of approximate design methods have been developed, which

either avoid these calculations, or replace them by gross

simplifications.

The present rules of the AISC Specification (1) for the

design of slender monosymmetric I-beams are based on the very

simple approximation of compression flange buckling. Thus the

section properties used to determine the maximum permissible

stresses are those of the compression flange, and the presence

of a tension flange is completely ignored.

A more complete basis is used for the rules of the BS 449

(3), and the AS 1250 (16), in which some account is taken of the

tension flange. This method was developed by Kerensky, Flint and

Brown (12), who started from an approximate theoretical solution

of Winter (18) for the elastic buckling of a monosymmetric beam.

They showed that Winter's solution tends to overestimate the

critical stress when the larger flange is in compression, and

introduced a compensating empirical reduction.

More recently, Nethercot and Taylor (13) further developed

the approximate formulation of Kerensky, Flint and Brown. They

concluded, however, that in view of the degree of approximation



3

of the existing design rules, it would be desirable to permit

designers the alternative of basing their designs on the accurate

theoretical solution of Equation 1.

It can be seen that a dilemma has arisen in the design

of slender monosymmetric beams. On the one hand, the present

simple rules, which are based on very crude approximations, lead

to significant errors in the predictions of elastic buckling.

On the other hand, however, the use of the accurate elastic

buckling solutions requires considerable effort to be expended

in the evaluation of the section properties.

The purpose of this paper is to present a simple method

of determining these section properties, and to develop a more

accurate design formula for elastic buckling than those of

existing codes (1, 3, 16). The method presented can be used for

a wide range of monosymmetric I-sections, including sections

with lipped flanges.

2. DERIVATION OF SECTION PROPERTIES

2.1 General

The section properties required for the calculation of

the elastic critical moment, Me' of a monosymmetric I-beam are

I
y

' J, I
w

and B
x

. The values of I
y

and J can be calculated from

I
Y

(5)

and J (6)

in which Band T are the width and thickness of a typical rect­

angular element of the section. However, the values of Yo' I
w

and B
x

are not so easily calculated.

2.2 Shear Centre Position

(7)p

It has been suggested (13, 17) that an easily calculated

measure of the monosyrnmetry of the cross-section is given by

I
yc

I
yc

I
yC

+ I
YT

I
y



4

where I
yc

' I
YT

are the section minor axis second moments of area

of the compression and tension flanges, respectively. The values

of p thus range from 0 for a tee-beam with the flange in the

tension to 1 for_a tee-beam with the flange in compression. For

an equal flanged beam, p 0.5.

The shear centre S of a monosymmetric I-section (see Figs

1 and 2) lies on the web centre line at distances a and b from

the compression and tension flange shear centres which are given

by (11)

a
I

YT h (1 - p)h (8)-I-
Y

I
and b ~h ph (9)

I
Y

in which h is the distance between flange shear centres. The shear

centre coordinate Yo is

y - a (10)

in which y is the distance of the centroid C from the compression

flange shear centre.

D

T

Be T
t...-..-.-=.------....., c

T
I

a
y

C
\l~x

Yo
5

b ~ ...-t

f
lyT

..-- ~ - L
I ~ tT

8
T

h

Y

FIGURE 1 Monosymmetric I-Section
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Monosymmetric I-sections with lipped compression flanges

(see Fig. 2) are commonly used for crane runway girders. The

Be
+~/pIy

e

D
La

y

...j J-T Yo
of c

-II-r
h h

L t S L
D

b

TT
--l

~ I I
Br .. '- (1-p) Iy

FIGURE 2 : Monosymmetric I-Section with lipped flange

(11)e

addition of rectangular section lips to a flange increases the

minor axis second moment of area and moves the shear centre

position towards the flange. The distance between the shear

centre of the lipped flange and the centreline of the unlipped

flange is given by (12)

Dt B~ TL
4p I

y

where D
L

and T
L

are the depth and thickness of the lips respect­

ively. The position of the shear centre for the entire section

is then defined by

a (1 - p) h - ep (1 - p)h (12)

in which h is the distance between flange centre lines (see Fig.

2), that is

h h + e (13)
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2.3 Warping Section Constant

The warping section constant, I
w

' of a section can be

evaluated from (111

I
w

(14)

which is exact for an unlipped section, and approximate for a

lipped section. If Equations 7, 8 and 9 are substituted, then

the warping section constant can be simply expressed as (7, 12)

I
w

(15)

For a doubly symmetric I-section, I
w

section, I
w

= o.
I h 2 /4, while for a tee-

y .

The beam parameter, K, defined in Equation 2 is zero

for tee-beams, which leads to computational difficulties in

some situations. A more useful parameter is

(16)

If Equation 15 is substituted into Equation 2 for the warping

constant, I
w

' then it can be shown that

K 14p(1 - p) K (17)

If Ar 2 is substituted for I , and 2.5 used for the ratio
y y

of the moduli E/G, then Equation 16 becomes

4.47
h

IJ/0.3085A

r
y

L
(18)

It has been found (10) that for a wide range of as-rolled doubly

symmetric I-sections (4),

(19)

in which D is the section depth and T is the flange thickness.

The accuracy of Equation 19 is shown in Fig. 3, for which values

of (D/h) IJ/O.3085A for as-rolled DB and DC sections (4) are
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FIGURE 3 Flange thickness for doubly
symmetric as-rolled sections (4)

calculated and plotted against the actual flange thicknesses.

It can be seen that the calculated values are slightly lower

than the actual values for UB sections, and higher for UC sect­

ions, and are within ± 10% of the actual values. Thus, in this

case K can be approximated by

K 4.47
D/T

L/r
y

(20)

It can be seen that large values of K imply short beams

and/or deep thin-walled sections for which warping effects are

important, whereas small values of Kare associated with long

beams and/or shallow sections for which warping effects are of

less importance than those of uniform torsion. The relationships

between D/T and L/r for various values of K are shown in Fig. 4.
y
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The approximation for K given by Equation 20 can also

be used for monosymmetric I-sections, provided an effective

flange thickness T
e

defined by

is substituted for'T.

(21)



2.4

2.4.1

Monosymmetry Property Sx

General

9

For an unlipped section (see Fig. 1), the monosymmetry

section property, Sx' can be expressed in terms of the section

dimensions and the coordinate of the shear centre Yo (2,7,11)

as

Sx II {(h-y) [ B ~ T T / 1 2 + BTTT(h-y)
2 + (h-y) 3t/4]

x

2.4.2 Webless I-Beams

(22)

The special case of a monosymrnetric webless I-section

(t = 0) is shown in Fig. 5. The position of the centroid C can

be defined in terms of the ratio ~

(23)

where A
FC

and ~ T are the areas of the compression and tension

flanges, respectively. Hence, the position of the centroid C

is given by

and

y

h - y

(1 - ~)h

~h

(24)

(25)

h-y
h

-t-r-
I

Ya IC

Yo t ts
I
I

b I
I

IYT) AFT

Compression

flange

Tension

flange

FIGURE 5 Webless I-Section
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Equation 22 can now be rearranged in terms of the flange areas

A
pC

' ApT and the flange second moments of area I
yc

' I
yT

' whence

Sx i {(h - y) [IyT + ~T (h - y)2]
x

- Y [I
yc

+ A
FC

y2]} - 2yo (26)

Now (27)

and a - y (11 - p)h (28)

Substituting Equations 27, 28 into 26, leads to

Sx I
(2p - 1) +J (11 p)

11 I
-

x

When I is much less than I
x'

then
y

Sx
~ (2p - 1)

11"

(29)

(30)

which is simple straight line equation varying from - 1 for

p = a to + 1 for p = 1 (see Pig. 6).

2.4.3 Approximations for Real I-Beams

It is not sufficient to neglect the contribution of web

in a real I-bearn, especially when calculating the major axis

second moment of area Ix. To examine the accuracy of the Sx/h

approximations given in Equations 29 and 30 for real beams, a

full range of as-rolled DB and DC Sections (4) with reduced

flange widths or flange thicknesses were investigated. The

values of Sx/h calculated by using the accurate formulae

(Equation 22) are compared with the straight line approximation

(Equation 30) in Fig. 6. It can be seen that Equation 30 provides

a reasonable approximation for values of p near 0.5 is conserv­

ative for p less than 0.5, but overestimates Sx/h for p greater

than 0.5.

To obtain a better approxination for Sx/h, it is

necessary to include the effect of the ratio Iy/I
x

of the cross-
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Flange width
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Flange thickness
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0.8
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"-
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Q)

::J

~-O.2 .

FIGURE 6 Values of Sx/h for monosymmetric beams
~ a d e from as-rolled UB and UC sections
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section (see Equation 29). - Several forms of approximation were

tried for a wide range of plate girder dimensions. The combin­

ation of cross-sectional dimensions included beams with flange

width to thickness ratios in the range 4 ~ BIT ~ 64, and flange

thickness to web thickness in the range 10 ~ D/t < 290. A total

of over 3000 beam cross-sections were studied and the errors of

each approximation were evaluated. Neglecting those beams for

which I II exceeds 0.5, the following approximation,
y x

0.9(2p - 1)

I
[1 - (-Y) 2]

I
x

(31)

was found to give zero mean error with a standard deviation of

0.037 for the range of beams considered. This approximation is

shown in Fig. 7.

The monosymmetry parameter, 0, of Equation 3 can now be

approximated by using Equations 16 and 31, whence

009(2p - 1) [1 _ (Iy ) 2] 2K
I 'IT

x
(32)

A modified approximate expression for Bx/h for sections

with lipped flanges can be obtained by using a similar approach

to that above. A total of over 2000 beams with lip depth to

section depth ratios in the range 0 < DL/D ~ 1.0 and flange

width ratios in the range 0 ~ BT/B
C

< 1.0 were considered. It

was found that

0.9 (2p - 1) ( 33)

gave good approximation with a mean error of 0.036 and a stand­

ard deviation of 0.017 for the range of beams considered.
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3. ELASTIC CRITICAL STRESS RULES

3.1 Present Design Rules

For design purposes, the AS 1250 (16), the BS 449 (3),

and the AISC Specification (l) based their maximum permissible

stresses on the elastic critical stress

M
c

-Z--.-
xmln

either explicitly or implicitly.

(34)

For the AS 1250 (16), an approximation for the elastic

critical stress, Fob for monosymmetric I-beams is given by

F = 2,650,000 [J 1 + ~ [-!:.. !12 + K J c 2 MPa
ob (L/r )2 20 r DJ 2 c

ly y
(35)

in which 0.5 (2p - 1) for p > 0.5 (36)

(2p - 1) for p < 0.5 (37)

.'"

and c
l

and c
2

are the lesser and greater distances from the

neutral axis to the extreme fibres. The values of T in Equation

36 is defined as the thickness of the flange which has the greater

second moment of area about the minor axis.

An equivalent expression is used for BS 449 (3), except

that the factor 2,650,000 is replaced by 2,800,000, and the

value of T is defined as the thickness of the compression flange.

The BS 449 rules are applicable only to I-beams when the thick­

ness of one flange does not exceed three times the thickness of

the other flange. For tee-beams with p = 0, the value of T is

taken as the thickness of the web.

In the AISC Specification (l), no procedures are used

for monosymmetric I-beams which are specifically different to

those for double symmetric I-beams. It is shown in Ref. 17 that

the elastic critical stress, Fob' on which the permissible stress

is based is approximated by
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Fob
= [ [130','4:00] 2 [1,975,000.] 2] .C 2 (.38)

LD/BT + (L/r
T

) 2 c
l

MPa

in which r
T

is the radius of gyration about the minor axis of

the compression flange plus one sixth of the web, and is given

by

1 + (D - 2T) t/6BT
(39)

The values of Band T in Equatiorn38 and 39 are those of the

compression flange. No special procedures for tee-beams are

given.

3.2 Proposed Design Rules

In this section, a new method of calculating the elastic

critical stresses of monosymmetric beams is proposed which is

more accurate and consistent than the present design rules

discussed above. This new method is based on the calculation

of the dimensionless buckling moment

M L
c

I
fn (p,i<, -Y)

I
x

(40)

by substituting Equations 17 and 32 into Equation 1, or

alternatively, on the use of Fig. 8, which shows values of Yc

for various values of p and Kwhen 0.1 < I II < 0.3. The
- y x-

elastic critical stress Fob can be calculated directly from the

dimensionless buckling moment Yc of Equation 40 or Fig. 8 by

using Equation 34.

Calculations have been made to assess the errors involved

in the approximate dimensionless buckling moments, Yc' which

result from errors of ± 8% in the approximation of Equation 31

for Bx/h. The results of these calculations are shown in Fig. 9

for the case when IylIX = 0.1. It can be seen that the errors

in the approximate dimensionless buckling moments Yc are quite

small, even when i< is large and the sections are highly mono­

symmetric.
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As an alternative to this method of calculating the

elastic critical stress Fob' Equations 1, 16, 17, 20 and 32

can be substituted into Equation 34, whence

T
(~~)2
r D

y

(41)

in which

B
4p (1 - p) + (~) 2

h

(42)

(43)

and
Tf2 EAh

-2-Z--,­
xmln

(44)

~ .

Equation 41 thus retains the familiar form of the present AS 1250

(16) and BS 449 (3) rules (see Equation 35). Approximate values

of K
2

and K
3

are shown in Table 1 (for Iy/l
x

= 0.1) and are

compared with values in BS 449 and AS 1250 in Fig. 10.

The factor K
4

may be rewritten as

,

(45)

where c
2

is the maximum distance from neutral axis to the extreme

fibre. The second moment of area about the major axis, Ix' in

Equation 27 for webless I-beams can be modified to include the

effect of the web, whence

in which A
F

and Aware cross-sectional area of flanges and web

respectively,

and A (47)

For ~ < 0.5, c
2

may be approximated by

y

11
AF + ! AW}

{(I - ~) Ii: 2 A (48)

When Equations 46, 47 and 48 are substituted into Equation 45,

K
4

can be expressed in terms of the ratios ~ and Aw/A,
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TABLE 1

Values of K
2

and K
3

for Beams with Unequal Flanges

(I /1 = 0.1)
Y x

p 0 0.1 0 02 0.3 004 0.5 0.6 0.7 0.8 0.9 100

K
2

-0.89 -0071 -0.59 -0.36 -0.18 0 +0.18 +0.36 +0.59 +0.71 +0.89

K
3

0.79 0.86 0.93 0.97 0.99 1.0 0099 0097 0.93 0.86 0.79

Iy/lx= 0.1

- 0.4 0.3

1.0

0.8

0.6

0.4

M

~ 0.2
ClO

N
~

Vl 0
L..

o....
u
If -0.2

0.2

Factor K2
Factor K3

8S 449 &
AS1250
K3=1.0

0.6 0.8 1.0

-1.0

- 0.6 ~ 85 449 & AS 1250
, K2= 29-1 or (2p-1)/2

- 0.8

FIGURE 10 Factors R
2

and K
3



i.e.

20

A
w

fn (lJ 'A) (49)

The variations of the factor K
4

with lJ for various values

of the ratio Aw/A are shown in Table 2 and Fig. 11. Also shown

in Fig. 11 is the AS 1250 approximation (see Equation 37)

K
4

2,650,000 x (50)

It can be seen that while this approximation is of reasonable

accuracy when Aw/A ~ 0.5, it may lead to serious errors otherwise,

especially for monosymmetric beams with low values of Aw/A.

Because of this, it is suggested that K
4

should be determined

either directly from Equations 44 or 45 or from Table 2 or

Fig. 11.

TABLE 2

Ratio of flange areas lJ
A

w
0 0.1 0.2 0.3 0.4 0.5

A
1.0 0.9 0.8 0.7 0.6 0.5

0 00 9.87 4.93 3.29 2.47 1.97

0.1 30.3 8.18 4.74 3.34 2.59 2.11

0.2 15.7 7.08 4.59 3.41 2.72 2.28

0.3 10.8 6.33 4.49 3.50 2.88 2.47

0.4 8.46 5.81 4.45 3.62 3.08 2.69

0.5 7.10 5.45 4.45 3.78 3.31 2.96

0.6 6.28 5.24 4.51 3.99 3.59 3.29

0.7 5.79 5.15 4.65 4.26 3.95 3.70

0.8 5.55 5.19 4.89 4.63 4.41 4.23

1-----
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5

4

L

.8 3
u

~ 2.65 __ ~ ! A =-19 _

2
o

This paper

AS 1250 (16)

0.5
0.5

0.4
0.6

0.3

0.7
0.2

0.8
0.1

0.9

o----'----~----+-------&...------'
a

1.0

Ratio of flange areas ~ (=AFC/AF)

FIGURE 11 : Factor K
4
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3.3 Comparison of Present and Proposed Design Rules

Calculations have been made for a number of monosymmetric

beams using the present and proposed design rules. The elastic

critical stresses of a doubly symmetric I-beam for which BIT = 14,

Tit = 2 and DIT = 36 have been calculated and are shown in Fig.

12. The values calculated using the proposed rule virtually

coincide with the accurate curve based on Equation I and the

actual section properties. This is as expected, since the

factor K
4

and the effective flange thickness, T
e

, were accurately

calculated for the proposed rule. The values obtained by using

the present design rules are all slightly higher than the

accurate curve, the highest being those using BS 449 (because

of its high factor 2,800,000), and the lowest (and most accurate)

being those of the AISC Specification.

200

P:;«= 0.5
"......

I0
0...

'''1 Z 150 BIT 14=
.:i .n Tit = 2
'1\ LLo O/T = 36
:1

I I~
V) Eqution 1 0

\ (j)
QJ

100
A This paper

\-
........

"V AS 1250Ul

BS 449
0

d
0

u
0 AISC Specification

~
\-

U 50
. ~ Aw/A = 0.38
~

Ul
g
W

00 100 200 300

Slenderness ratio L/ry

FIGURE 12 Comparison of elastic critical stresses for

doubly symmetric I-beams (p = 0.5)
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The calculated elastic critical stresses for t e e - b e a ~ s

(p = 0 and 1.0) made by removing one flange of the S f u ~ e doubly

symmetric beam are shown in Fig. 13. When the flange is in

compression (p = 1.0), the proposed rule gives results which

are slightly higher than the accurate curve due to errors in

the Sx/h approximation. Of the present rules, the BS 449 again

gives the highest values, and the AISC Specification the most

accurate. However, when the flange is in tension (p= 0), there

are considerable differences in the calculated elastic critical

stresses, as can be seen in Fig. 13. The proposed rule gives

estimates which are slightly lower than the accurate curve,

while the results using AS 1250 are approximately 20% higher.

Values obtained using the BS 449 rules are considerably lower

because the web thickness is used for the flange thickness T

in the expression equivalent to Equation 35. The AISC

Specification can be interpreted as predicting zero elastic

critical stresses because the values of Band T for the

compression flange are zero.

600
....-..

cf Equation 1
z • This paper
.0

~ AS 1250LLo

400
0 BS 449

Ul 0 AlSC Specification ~(J)
Q)
L..

+-'
(J)

Aw/A = 0.56
-0
u
+-' 200 T.L p =)-,=0. ~

u

u v
,

'V
+-' v
(J) v
0

W

0
0 100 200 300

Slenderness ratio L/ry

FIGURE 13 Comparison of elastic critical stresses for
tee-beams (p = 1.0 and 0)
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The elastic critical stresses have also been calculated

for beams with unequal flanges, made from the same doubly

symmetric I-beam as before. The results shown in Fig. 14 are

for beams with equal flange thickness (i.e. the flange width is

reduced), while those in Fig. 15 are for beams with equal flange

widths (i.e. the flange thickness is reduced). It can be seen

that the elastic critical s ~ r e c s e s predicted by the proposed

rule are very close to the accurate curve. There is, however,

considerable disagreement in the values calculated by using the

present rules, particularly for monosymmetric I-beams of unequal

flange thickness (see Fig. 15). The values using the AS 1250,

the BS 449 and the AISC Specification are all higher than the

accurate curves, except when the thickness of the compression

flange is the lesser, when the predictions using ~ S 449 are

lower than the accurate curves.

~ 300

:2 Aw//\= 0.48
'-1J /'
L.L.<' C

1 T C

Vl 200 /P=~= 0.75
Vl
OJ p=~ =0.25
~

+-'
V)

d Equation 1
u

100
.& This paper

.~

u v AS 1250
u 0 85 449....

0 AISC SpecificationVl

.£
w

00 100 200 300

Slenderness ratio L/ry

FIGURE 14 Comparison of elastic critical stresses
for m o n o s y ~ m e t r i c I-beams with equal
flange thicknesses (p = 0.75 and 0.25)

It should be pointed out that the comparisons shown in

Figs. 12 to 15 are for beams with Aw/A ranging from 0.38 to

0.56. For such beams, the AS 1250 and BS 449 approximation for

K
4

are reasonably accurate (see Fig. 11). However, this will
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not be the case for beams with more extreme values of Aw/A , and

it can be expected that the errors for such beams may be greatly

increased.

400

~
~ Ie
..0 300
u:'

P=0.75P =0.25
Ul }! =0.41 ;t =0.59
V)

OJ
\-

-+-oJ

200V)

-0 Equation 1u
:;:: .. This paper'C
u v AS 1250 0

.~ 100 0 BS 449......
Ul

0 AISC Specificationd

W

00 100 200 300

Slenderness ratio L/ry

FIGURE 15 Comparison of elastic critical stresses
for monosymmetric I-beams with equal
flange widths (p = 0.75 and 0.25)
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4. CONCLUSIONS

The determination of the section properties required

for calculating the elastic critical moment of a monosymmetric

I-beam is not straightforward, 'and the effort required is

prohibitive in routine design. Existing design methods either

avoid these calculations or replace them by gross simplifications.

In this paper it is shown that these properties are related to

the easily calculated ratio p = I ell of the compression flange
y y

second moments of area to that of the whole section.

Approximate formulae for the monosymmetry section

property, ~ x ' were derived by first considering webless I­

sections, and compared with accurate calculations of B
x

made for

a wide range of monosyrnmetric cross-sections. The approximate

formulae were found to have mean errors of 0 to 0.036 and

standard deviations of 0.017 to 0.037. The errors in the

elastic critical moments, calculated by using these approximate

formulae, were found to be quite small, even when sections were

highly monosymmetric.

An improved design rule for determining the elastic

critical stresses, Fob' of monosymmetric I-beams has been pro­

posed. The proposed rule retains the familiar form of the

existing AS 1250 and BS 449 rules, and is easy to use. While

there is at present considerable disagreement on the definition

of the flange thickness, T, it is suggested that the effective

flange thickness, Te' should be approximated by (D/h)/J/0.3085A

for both doubly symmetric and m o n o s y ~ ~ e t r i c I-sections, including

tee-sections. Comparisons have been made of the calculated

elastic critical stresses of doubly symmetric and monosymmetric

I-beams using the proposed rule and the present rules of the

AS 1250, the BS 449 and the Alse Specification. The values

obtained using the proposed rule have been shown to be more

accurate than those of the present rules, and are within a few

per cent of the accurate values.
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APPENDIX A

Symbol

A

A
F

~c' AFT

~~

a

B

BC' B
T

b

C

c l ' c
2

D

D
L

E

e

Fob

G

h

h

I
x

I
Y

lyc' lyT

I
()J

J
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NOTATION

Meaning

cross-sectional area

area of flanges

areas of compression and tension flanges

area of web

distance of section shear centre from compression
flange centre line

flange width

widths of compression and tension flanges

distance of section shear centre from tension
flange centre line

centroid position

lesser and greater distances from extreme
fibres to neutral axis

depth of beam

depth of lip

Young's Modulus of elasticity

distance between flange centre line and shear
centre of lipped flange

elastic critical stress

shear modulus of elasticity

distance between flange shear centres

distance between flange centre lines

major axis second moment of area

minor axis second moment of area

compression and tension flange second moment
of area apout minor axis

warping section constant

section torsion constant



K

K

K·
2

K
3

K
4

L

M
c

r
y

r
T

S

T

T
C' TT

T
e

T
L

t

X, Y

Yo

Y

Z
xmin

f3 x

Yc

cS

11

P
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In 2 EI
W

/GJL 2

In 2 EI h 2 /4GJL 2

y

f3
x
/h

4 p (I - p) + (f3 /h) 2
X

n 2 EAh/2Z
xmin

length of beam

elastic critical moment

minor axis radius of gyration

radius of gyration about the section minor
axis of the compression flange plus one
sixth of the web

shear centre position

flange thickness

thicknesses of compression and tension flanges

effective flange thickness

thickness of lip

web thickness

major and minor principal axes

coordinate of shear centre

distance from compression flange centre line
to centroid

minimum elastic section modulus

monosymmetry section property

~ " 1 L/lEI GJ
c Y

(f3 /L) lEI /GJ
x Y

AFC/A

IYC/Iy
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