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BUDGET CONSTRAINED MINIMUM COST CONNECTED MEDIANS

GORAN KONJEVOD!?, SVEN O. KRUMKE 2, AND MADHAV MARATHE 3

ABSTRACT. Several practical instances of network design problems require the net-
work to satisfy multiple constraints. In this paper, we addresBtltget Constrained
Connected Median ProblerkiVe are given an undirected gragh= (V, E') with two
different edge-weight functions(modeling the construction or communication cost)
andd (modeling the service distance), and a bodhdn the total service distance.
The goal is to find a subtreE of G with minimum c-costc(T') subject to the con-
straint that the sum of the service distances of all the remaining node¥ \ 7" to

their closest neighbor i does not exceed the specified budgefThis problem has
applications in optical network design and the efficient maintenance of distributed
databases.

We formulate this problem as bicriteria network design problem, and present bi-
criteria approximation algorithms. We also prove lower bounds on the approxima-
bility of the problem that demonstrate that our performance ratios are close to best
possible.

1. INTRODUCTION AND OVERVIEW

The problem of interfacing optic and electronic networks has become an important
problem in telecommunication network design [20, 21]. As an example, consider the
following problem: Given a set of sites in a network, we wish to select a subset of the
sites at which to place optoelectronic switches and routers. The backbone sites should
be connected together using fiber-optic links in a minimum cost tree, while the end
users are connected to the backbone via direct links. The major requirement is that the
total access cost for the users be within a specified bound, whereas the construction
cost of the backbone network should be minimized.

Problems of similar nature arise in the efficient maintenance of distributed databases
[3,4,7,15,22]. Other applications of tHgudget Constrained Connected Median
Problem studied in this paper include location theory and manufacturing logistics
(see [20,21] and the references cited therein).

The above problems can be cast in a graph theoretic framework as follows: Given
an undirected grapi’ = (V, E') with two different edge-weight functiong(modeling
the construction cost of the backbone/inter-database linksj @mddeling the service
distance), the goal is to find a subtfBef G' with minimumc-costc(T') subject to the

'Email: konjevod@andrew.cmu.edu  Dept. of Mathematical Sciences, Carnegie Mellon Uni-
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REER grant CCR-9625297 and DOE Contract W-7405-ENG-36.

2Email: krumke@zib.de Konrad-Zuse-Zentrunif Informationstechnik Berlin Department Opti-
mization Takustr. 7 14195 Berlin-Dahlem Germany. Research supported by the German Science Foun-
dation (DFG, grant Gr 883/5-3)
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2 GORAN KONJEVOD, SVEN O. KRUMKE, AND MADHAV MARATHE

constraint that the sum of the service distances of all the remaining modds \ T
to their closest neighbor i does not exceed a specified budfet

We study the approximability of thBudget Constrained Connected Median Prob-
lem This paper is organized as follows. In Section 2 we formally define the problem
under study and the notion of bicriteria approximation. Section 3 contains a brief sum-
mary of the main results in the paper and a discussion of related work. In Section 4 we
prove hardness results. Section 5 contains a fully polynomial approximation scheme
on trees. An approximation algorithm for the general case is presented in Section 6.

2. PROBLEM DEFINITION AND PRELIMINARIES

Throughout the paper = (V, E') denotes a finite undirected graph with= |V/|
vertices andn := |E| edges. ThaBudget Constrained Connected Median Problem
(BccMED) problem considered in this paper is defined as follows:

Definition 1 (Budget Constrained Connected Median ProbleAr) instance consists
of an undirected grapi’ = (V, E') with two different edge-cost functiongmodeling
the construction or communication cost) afh@dmodeling the service distance), and
a boundB on the total service distance. The problem is to find a sulifred G
of minimum coste(T) := >__ ., c(e) subject to the constraint that the total service
distance of each of the vertices frdrhis at mostB, that is,

mediany(7) := mind(v,u) < B.

ueT
veV

The problemBccMED can be formulated within the framework developed in [13,
18]. A generic bicriteria network design problefal, B, S), is defined by identifying
two minimization objectives, A and B, — from a set of possible objectives, and spec-
ifying a membership requirement in a class of subgrapltts, Fhe problem specifies
a budget value on the first objectivé, and seeks to find a network having minimum
possible value for the second objectivg, such that this network is within the budget
on the first objectived. The solution network must belong to the subgraph-ctads
this frameworkBCcCMED is stated as (total-service distance, totatedge cost, sub-
tree). : the budgeted objectiveis the total service distance medj@#') with respect
to the edge weights specified Bythe cost-minimization objectivB is the total-cost
of the edges in the solution subgraph which is required to be a subtree of the original
network.

Definition 2 (Bicriteria Approximation Algorithm) A polynomial time algorithm for
abicriteria problenfA, B, S) is said to havperformancé «, 3), if it has the following
property: For any instance @f4, B, S), the algorithm produces a solution from the
subgraph class for which the value of objectivel is at mosta times the specified
budget and the value of objecti¥eis at most3 times the minimum value of a solution
from S that satisfies the budget constraint.

Notice that a “standard*-approximation algorithm is @1, c)-bicriteria approxima-
tion algorithm. A family{A.}. of approximation algorithms, is calledfally poly-
nomial approximation schenw FPAS if algorithm A, is a(1, 1 + €)-approximation
algorithm and its running time is polynomial in the size of the input ahd



BUDGET CONSTRAINED MINIMUM COST CONNECTED MEDIANS 3

3. SUMMARY OF RESULTS AND RELATED WORK

In this paper, we study the complexity and approximability of the probBana
CMED. Our main results include the following:

1. BccMED is weaklyNP-hard even on trees. This result continues to hold even
if the edge-weight functions andd are identical. We strengthen this hardness
result to obtain stricNP-hardness results for bipartite graphs.

2. We strengthen the above hardness results for general graphs further and show
that unles\P C DTIME(N'°&l°¢ V) 'there can be no polynomial time approxi-
mation algorithm foBccMED with a performancél, (1/10 — ¢) lnn).

Our hardness results are complemented by the following approximation results:

1. There exists a FPAS f@CcCMED on trees.
2. Forany fixed > 0 there exists &1+¢, (141/¢)O(log® n log log n))-approximation
algorithm forBccMED on general graphs.

3.1. Relationship to the Traveling Purchaser problem. The BccMED problem is
closely related to a well studied variant of the classical traveling salesperson problem
called theTraveling Purchaser Problerfsee [20] and the references therein). In this
problem we are given a bipartite graph= (M U P, E'), whereM denotes a set of
markets and® denotes the set of products. There is a (metric) egdb travel from
market: to marketj. An edge between markétnd producp with costd;, denotes

the cost of purchasing produgtat market;. A tour consists of starting at a specified
market visiting a subset of market nodes, thereby purchasirte products and re-
turning to the starting location. The cost of the tour is the sum of the travel costs used
between markets and the cost of buying each of the products. The budgeted version of
this problem as formulated by Ravi and Salman [20] aims at finding a minimum cost
tour subject to a budget constraint on the purchasing costs.

It is easy to see that @, 3)-approximation algorithm for the budgeted traveling
purchaser problem implies @, 23)-approximation forBCCMED: just delete one
edge of the tour to obtain a tree. Using ttie+ ¢, (1 + 1/¢)O(log® mloglogm))-
approximation algorithm from [20] we get(a + ¢, 2(1 + 1/€)O(log® m log log m))-
approximation forBccMeED. Our algorithm given in Section 6 uses the techniques
from [20] directly and improves this result.

3.2. Related Work. Other service-constrained minimum cost network problems have
been considered in [1,6, 12,16, 17]. These papers consider the variant that prescribes
a budget on the service distance for each node not in the tree. The goal is to find a
minimum length salesperson tour (or a tree as may be the case) so that all the (cus-
tomer) nodes are strictly serviced. Restrictions of the problems to geometric instances
were considered in [1,12,19]. Finally, the probl&oacMED can be seen as a general-
ization of the classicat-Median Problemwhere we require the set of medians to be
connected.

4. HARDNESSRESULTS

Theorem 3. The problenBccMED is weaklyNP-hard even on trees. This result con-
tinues to hold even if we require the two cost functioasdd to coincide.



4 GORAN KONJEVOD, SVEN O. KRUMKE, AND MADHAV MARATHE

Proof. We use a reduction from thBARTITION problem, which is well known to

be NP-complete [10, Problem SP12]. Given a multiset of (not necessarily distinct)
positive integers{aq, ... ,a,}, the question is whether there exists a suliset
{1,....n}suchthad_, ;;a; = >, a;.

Given any instance dPARTITION we construct a star-shaped graglinavingn + 1
nodes{x,zi,... ,z,} andn edges(z,z;), i = 1,...,n. We definec(x,z;) :=
d(z,x;) == a;. LetD := 3" | a;. We set the budget for the median cost of the tree
to be B := D/2. Itis easy to see that there exists a feasible Tresf costc(T) at
mostD /2 if and only if the instance oPARTITION has a solution. O

Next, we prove our inapproximability results for general graphs. Before stating the
hardness result we recall the definition of tien SET COVER problem [10, Problem
SP5] and cite the hardness results from [2, 9] about the hardness of approximating
MIN SET COVER. An instancgU, S) of MIN SET COVER consists of a finite séf of
ground elements and a famiiyof subsets of/. The objective is to find a subcollection
C C S of minimum size|S| which contains all the ground elements.

Theorem 4 (Feige [9]) UnlessNP C DTIME(N©(oglog N)) “for anye > 0 there is
no approximation algorithm foM N SET CovERwith a performance ofl —¢) In |U],
whereU is the set of ground elements. O

Theorem 5(Arora and Sudan [2]) There exists a constamt > 0 such that, unless
P = NP, there is no approximation algorithm fdvliN SET CoVER with a perfor-
mance ofyIn |U|, whereU is the set of ground elements. O

We are now ready to prove the result about the inapproximabilitg@EMED on
general graphs.

Theorem 6. The problenBccMED is stronglyNP-hard even on bipartite graphs. If
there exists an approximation algorithm f&CCMED on bipartite graphs with per-
formancex(|V|) € O(In|V]), then there exists an approximation algorithm fdrN
SET CoVvER with performancex(2|U| + 2|S|). All results continue to hold even if we
require the two cost functionsandd to coincide.

Proof. Let (U,S) be an instance oMIN SET COVER. We assume without loss of
generality that the minimum size set cover for this instance contains at least two sets
(implying also thatU| > 2).

For eachk € {2,... ,n} we construct an instandg of BCCMED as follows: First
construct the natural bipartite graph with node Bet/ S. We add an edge between
an element node € U and a set nodé& < S if and only ifu € S. We now add a
root noder which is connected via edges to all the set nodes {forf&inally, we add
asetly, of |U| +|S| — k + 1 nodes which are connected to the root node via the edges
(I,r),l € Li. Let X := k[a(|Vk|)] + 1. The edges between element nodes and set
nodes have weighk’, all other edges have weigit The budget on the median cost
for instancel}, is settoBy, := |Ly| + X|U| + |S| — k. The construction is illustrated
in Figure 1.

The bipartite graph constructed for instadgehas|Vy| = 2|U| + 2|S| +2 — k <
2(|U| + |S]) sets. Thuse(|Vi|) < a(2]U| + 2|S)).

The main goal of the proof is to show that (i) if there exists a set cover oftsize
then instance;, of BCCMED has a solution with value at mo#ét (ii) any feasible
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FIGURE 1. Construction used in the proof of Theorem 6. Solid edges
are of weightl, dashed edges have weighit= k[a(|V%])] + 1.

solution for instancd}, of BCcCMED with costC < «(|Vi|)k can be used to obtain

a set cover of size at most. Using these two properties of the reduction, we can
show that anyx(|V'|)-approximation toBCCMED transforms into ax(2|U| + 2|S])-
approximation foMIN SET CovER: Find the minimum valug* € {1,...,n} such
that the hypotheticak-approximation algorithrnA for BCCMED outputs a solution of
cost at mosi(|Vy|)k* for instancel-. By property (i) and the performance &f

it follows that k* is no greater than the optimum size set cover. By property (ii) we
get a set cover of size at mast|Vj«|)k* which is at most(2|U| + 2|S|) times the
optimum size cover.

We first prove (i). Any set cove? of sizek can be used to obtain a tree by choosing
the subgraph induced by the set nodes corresponding to the s@tarid the root
noder. Clearly, the cost of the tree ks Since the sets i@l form a cover, each element
node is within distance oX from a vertex in the tree. Thus, the total median-co4t of
is no more thaX |U| + |S| — k + |Ly| = B.

We now address (ii). Assume conversely, tihas a solution forl; with valueC,

i.e., a tree with medigil’) < By, andc(T) = C < a(|Vi|)k. We first show that the
root noder must be contained in the tree.
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In fact, if this were not the case, then at legst| — 1 nodes fromL; can not be
in T either. Moreover, these at leddt;| — 1 nodes are at distance at least two from
any node in the tree. Moreover, singe> C + 1, the tre€l’ can not contain any edge
between set nodes and element nodes. Thgsnsists either of a single element node
or T' does not contain any element nodes. In the first case, the median dost af
least

2X(|U| = 1) +3|Lg| = B+ (JU| —2)X + |U| + |S| — k +2 > By,

which contradicts thaf is feasible. In the second casd, {loes not contain ele-
ment nodes) eithef consists of a single node froily, or does not contain any node
from L. Thus, we get that the median costlofs at least

X|U| +2(|Ly| = 1) + 142 = X|U| + |Lg| + |U| +|S| =k +1 = By + 1 > By,

which is again a contradiction. (The additive terms in the above calculation stem from
the fact thatr is not in the tree and a set node or the remaining node ftgrs at
distance at least two from the tree).

We now show that the collectiaf of set nodes spanned by the new ti&gorms
a valid set cover. Note that the size®fcan not exceed’ since the cost(T") of T
is bounded by andT' contains the root node Suppose that € U is not covered
by the sets or€. As noted above, the tréE can not contain edges connecting set
nodes and element nodes. Thus, the distaneefadm any node il is at least X,
whereas for all other element nodes the distance is at ladthe median cost of’
thus satisfies:

(1) mediaT’) > |Ly| + X|U|+ X +|S| = |T' N (L US)].

Since the tre€" has cost at most and contains the roetit follows that7 can contain
at mostC' vertices fromL; U S. Thus from (1) we get that

media(T) > |Ly| + X|U| +|S| — C + X > |Ly| + X|U| +|S] + 1 > By.

which contradicts once more the fact tHatvas a feasible solution of median cost at
mostBy. ]

The instances oMIN SET COVER used in [9] have the property that the number
of sets is at most/|?, whereU is the ground set (see [8] for an explicit computation
of the number of sets used). Thus from Theorem 6 we get a lower bouriicfor
CMED(1/10 — €) In |V| (assuming thallP ¢ DTIME(N'°8l°e V)), Since the number
of sets in any instance &fliIN SET COVER is bounded by?, we can use the result
from [2] to obtain a result under the weaker assumptionhgt NP:

Theorem 7. (i) UnlessNP C DTIME(N'°glos V) ‘for anye > 0 there can be no
polynomial time approximation algorithm f&ccMeD with a performancél /10—
€)Inn.

(i) UnlessP = NP, for anye > 0 there is no approximation algorithm f@ccMEeED
with a performance of1 /4 — ¢) InInn. O
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5. APPROXIMATION SCHEME ON TREES

We first consider the problelBccMED when restricted to trees. We present an
FPAS for a slightly more general problem tHAocmED, calledgeneralizedBCCMED
in the following: We are additionally given a subgétC V' of the vertex set and the
budget constraint requires that the total service distance of all verti¢éginstead of
V) does not exceef.

Theorem 8. There is a FPAS for the generalizéeicCMED on trees with running
time O(log(nC)n?/e?), whereC denotes the maximueaweight of an edge in a given
instance.

Proof. LetT" = (V, E) be the tree given in the instanéeof BCCMED. We root the

tree at an arbitrary vertex € V. In the sequel we denote 3}, the subtree ofl’

rooted at vertex € V. SoT, = T. Without loss of generality we can assume that

is contained in some optimal solutidn(we can run our algorithm for all vertices as

the root vertex). We can also assume without loss of generality that the rootéd tree

is binary (since we can add zero cost edges and dummy nodes to turn it into a binary
tree).

Let 7" = (V*,E*) be an optimal solution fof which containsr. Denote by
OPT = ¢(T™) its cost. DefineC' := max.cp c(e) and letK € [0,nC] be an inte-
gral value. The valud< will act as “guess value” for the optimum cost in the final
algorithm. Notice that the optimum cost is an integer betweandnC.

For a vertexo € V and an integek € [0, K| we denote byD|[v, k] the minimum
service cost of a tre€’, servicing all nodes it/ contained in the subtreg, rooted
atv and which has following properties: (I}, containsv, and (2)c(T; ;) < k. If
no such tree exists, then we 4@, k] := +o0o. Notice that

o(T*) =min{ k : D[r,k] < B}.

Letv € V be arbitrary and lety, v5 be its children in the rooted tré&. We show
how to compute all the value3[v, k], 1 < k < B given the valueD]v;, ], i = 1, 2.
Fori =1,21etS; := > cr, v c(w,v). If v; is not in the treel’;, then none of

the vertices iril’,, can be contained iy . Let
X, =51+ 5
and
Yy, := min{ D[vy, k'] + D[va, k"] : k' + k" = k — c(v,v1) — (v, v2) }.
Then we have that
Dlv, k] = min{Ss + Dv1, k — ¢(v,v1)], S1 + D[va, k — c(v,v1)], Xg, Y}

The first term in the last equation corresponds to the casethain 77y, but notvs.
The second term is the symmetric case wheis in the tree but not;. The third term
concerns the case that nonevpfanduvs is in the tree. Finally, the fourth term models
the case that both children are contained’jn..

It is straightforward to see that this way all the value®, k], 0 < k¥ < K can be
computed inO(K?) time given the values for the children andwv,. Since the table
values for each leaf df' can be computed in tim@(K), the dynamic programming
algorithm correctly finds an optimal solution within tindnK?).
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Lete > 0 be a given accuracy requirement. Now consider the following test for a
parametei! € [0, (n—1)C]: First we scale all edge costé&) in the graph by setting

(2) Me) = W_Ml):(ﬂ .

We then run the dynamic programming algorithm from above with the scaled edge
costs ands := (1+1/€)(n — 1). We call the tessuccessfuf the algorithm gives the
information thatD[r, K| < B. Observe that the running time for one tesﬂs’;—s).

We now prove that the test is successfulif > OPT. To this end we have to
show that there exists a tree of cost at missuch that its service cost is at mdst
Recall thatr™ denotes an optimum solution. Since we have only scaledtheights,
it follows thatT™ is also a feasible solution for the scaled instance with service cost at
mostB. If M > OPT we have

> Mey< > ((n —A;Zc(e) + 1) < nT_l +T*| < <1 + 1) (n—1).

ecT™ ecT*

Hence forM > OPT, the test will be successful. We now use a binary search to find
the minimum integed/’ € [0, (n — 1)C] such that the test described above succeeds.
Our arguments from above show that the valué found this way satisfied/’ <
OPT. LetT" be the corresponding tree found which has service cost no mordsthan
Then

@) Y ele) < MY e < Me <1+1) (n—1) < (1+ €)OPT.

n—1

Thus, the tred” found by our algorithm has cost at mdst e times the optimum cost.
The running time of the algorithm can be bounded as follows: Wediog(nC))
tests on scaled instances, each of which needs @fme'/¢?) time. Thus, the total
running time isO (log(nC)n?/€2), which is bounded by a polynomial in the input size
andl1/e. O

6. APPROXIMATION ALGORITHM ON GENERAL GRAPHS

In this section we use a Linear Programming relaxation in conjunction with filtering
techniques (cf. [14]) to design an approximation algorithm. The techniques used in this
section are similar to those given in [20] for theveling Purchaser Problem

In the following we assume again that there is one nodhe root) that must be
included in the tree. This assumption is without loss of generality. Consider the fol-
lowing Integer Linear Program (IP) which we will show to be a relaxatioBOEMED.

The meaning of the binary decision variables is as follows= 1 if and only if edgee

is included in the tree; furthermore,,, = 1 if and only if vertexw is serviced byv.

The constraints (4) ensure that every vertex is serviced, constraint (5) enforces the
budget-constraint on the service distance. Inequalities (6) are a relaxation of the con-
nectivity and service requirements: For each vefteand each subsét which does

not contain the root eitherw is serviced by a node iV \ S (this is expressed by

the first term) or there must be a an edgelofrossing the cut induced by (this is
expressed by the second term).
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(IP) min Z cle)ze

ecl
(4) > o =1 (weV)
veV
(5) SN dw,w)zw <D
veV weV
(6) vaw"' Z Zyy = 1 (ZUEV:SCVY,T‘¢S)
vgS veS,ugsS
(7) ze € {0,1} (e€ E)
(8) ZTyw € {0,1} (veViweV)

Lemma 9. The relaxation (LP) of (ILP) can be solved in polynomial time.

Proof. We show that there is a polynomial time separation oracle for the constraints
(6). Using the result from [11] implies the claim.

Suppose thafz, z) is a solution to be tested for satisfying the constraints (6) for a
fixed w. We set up a complete graph with edge capaciigs(u,v € U). We then
add a new nodev and edgegw, v) of capacityx,,, for all v € V. Itis now easy to
see that there exists a cut separatirendw of capacity less than one if and only if
constraints (6) are violated far. O

Lete > 0. Denote by(z, 2) the optimal fractional solution of (LP). For each ver-
texw € V define the value

D, = Z A(V, W) Ty
veV
and the subset

Gu(e) :={v eV :dv,w) < (1+€)Dy}.

The valueD,, is the contribution of vertexw to the total service cost in the optimum
fractional solution of the Linear Program. The 6&1(¢) consists of all those vertices
that are “sufficiently close” tav.

Lemma 10. For eachw € V- we have} . () Tow = €/(1 + €).

Proof. If the claim is false forv € V thenwe have_ . (o Tvw > 1 —€/(1+€) =
1/(1+¢). Thus

Dy =) dv,w)iv > > dv,w)iw > 146Dy Y &ww > Du.
veV vEGo (€) VEG oy (€)
This is a contradiction. Hence the claim must hold. O

The Group Steiner Tree ProblefGST) is defined as follows: Given a complete
undirected grapliy = (V, E') with edge weights(e) (e € E) and acollectiort7y, ... , G,
of (not necessarily disjoint) subsets 6f find a subtree oy of minimum cost such
that this tree contains at least one vertex from each of the g@ups. , G. Charikar
et al. [5] gave an approximation algorithm for GST with polylogarithmic performance
guarantee. We will use this algorithm as a subroutine.
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Consider the instance of GST on the graglgiven in the instance oBCCMED
where the groups are the sétg (¢) (w € V'), and the edge weights are theveights.
This problem is formulated as an Integer Linear Program as follows:

(GST) min Z c(e)ze

eclk
Y zw>1 (S CV,r¢V,Gyu(e) C S for somew)
veES,WES
2 € {0,1} (e € E)

The algorithm from [5] finds a group Steiner tree of cost at nid@bg® m log log m)
times) .. c(e)z;, wherez} denotes the optimal fractional solution of the LP-relaxation
LP-GST.

Lemma 11. Denote byZ, p.gstthe optimal value of the LP-relaxation of the Integer
Linear Program (GST). Thef p.gst< (1 + 1/€)Z_p.

Proof. We show that the vector defined byz,,, := (1 + 1/¢)2,,, is feasible for the
LP-relaxation of (GST). This implies the claim of the lemma. To this end le¢ an ar-
bitrary subset such that¢ V', G,,(¢) C S for somew andZUeS’w%S Zow < 1. Since
(2, 2) is feasible for (LP), it satisfies constraint (6), i.B.,,¢ s Zow + 2 yeswes fow =
1. Hence we get that

Z ivwzl_zivw

veESWES vgS

>1-— Z Fow (sinceG,(e) C S)

0@ Gl (€)
€

>1—(1-

> ( T 6) (by Lemma 10)

_ €

1+e

Multiplying the above chain of inequalities ly+ 1/¢ yields the claim. O

Hence we know thaf p.gst < (1+ 1) Zp < (14 %) OPT. We can now use
the algorithm from [5] to obtain a group Steiner tree. By the last chain of inequalities
this tree is within a factofl 4 1/¢)O(log® mloglog m) of the optimal solution value
for the instance oBccMED while the budget constraint on the service distance is
violated by a factor of at modt+ e:

Theorem 12. For any fixede > 0 there is a(1 + ¢, (1 + 1/€)O(log® m loglog m))-
approximation algorithm foBCCMED. O
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