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GORAN KONJEVOD1, SVEN O. KRUMKE2, AND MADHAV MARATHE 3

ABSTRACT. Several practical instances of network design problems require the net-
work to satisfy multiple constraints. In this paper, we address theBudget Constrained
Connected Median Problem: We are given an undirected graphG = (V, E) with two
different edge-weight functionsc (modeling the construction or communication cost)
andd (modeling the service distance), and a boundB on the total service distance.
The goal is to find a subtreeT of G with minimumc-costc(T ) subject to the con-
straint that the sum of the service distances of all the remaining nodesv ∈ V \ T to
their closest neighbor inT does not exceed the specified budgetB. This problem has
applications in optical network design and the efficient maintenance of distributed
databases.

We formulate this problem as bicriteria network design problem, and present bi-
criteria approximation algorithms. We also prove lower bounds on the approxima-
bility of the problem that demonstrate that our performance ratios are close to best
possible.

1. INTRODUCTION AND OVERVIEW

The problem of interfacing optic and electronic networks has become an important
problem in telecommunication network design [20, 21]. As an example, consider the
following problem: Given a set of sites in a network, we wish to select a subset of the
sites at which to place optoelectronic switches and routers. The backbone sites should
be connected together using fiber-optic links in a minimum cost tree, while the end
users are connected to the backbone via direct links. The major requirement is that the
total access cost for the users be within a specified bound, whereas the construction
cost of the backbone network should be minimized.

Problems of similar nature arise in the efficient maintenance of distributed databases
[3, 4, 7, 15, 22]. Other applications of theBudget Constrained Connected Median
Problem studied in this paper include location theory and manufacturing logistics
(see [20,21] and the references cited therein).

The above problems can be cast in a graph theoretic framework as follows: Given
an undirected graphG = (V,E) with two different edge-weight functionsc (modeling
the construction cost of the backbone/inter-database links) andd (modeling the service
distance), the goal is to find a subtreeT of G with minimumc-costc(T ) subject to the
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constraint that the sum of the service distances of all the remaining nodesv ∈ V \ T
to their closest neighbor inT does not exceed a specified budgetB.

We study the approximability of theBudget Constrained Connected Median Prob-
lem. This paper is organized as follows. In Section 2 we formally define the problem
under study and the notion of bicriteria approximation. Section 3 contains a brief sum-
mary of the main results in the paper and a discussion of related work. In Section 4 we
prove hardness results. Section 5 contains a fully polynomial approximation scheme
on trees. An approximation algorithm for the general case is presented in Section 6.

2. PROBLEM DEFINITION AND PRELIMINARIES

Throughout the paperG = (V, E) denotes a finite undirected graph withn := |V |
vertices andm := |E| edges. TheBudget Constrained Connected Median Problem
(BCCMED) problem considered in this paper is defined as follows:

Definition 1 (Budget Constrained Connected Median Problem). An instance consists
of an undirected graphG = (V, E) with two different edge-cost functionsc (modeling
the construction or communication cost) andd (modeling the service distance), and
a boundB on the total service distance. The problem is to find a subtreeT of G
of minimum costc(T ) :=

∑

e∈T c(e) subject to the constraint that the total service
distance of each of the vertices fromV is at mostB, that is,

mediand(T ) :=
∑

v∈V

min
u∈T

d(v, u) ≤ B.

The problemBCCMED can be formulated within the framework developed in [13,
18]. A generic bicriteria network design problem,(A,B, S), is defined by identifying
two minimization objectives, –A andB, – from a set of possible objectives, and spec-
ifying a membership requirement in a class of subgraphs, –S. The problem specifies
a budget value on the first objective,A, and seeks to find a network having minimum
possible value for the second objective,B, such that this network is within the budget
on the first objectiveA. The solution network must belong to the subgraph-classS. In
this frameworkBCCMED is stated as (totald-service distance, totalc-edge cost, sub-
tree). : the budgeted objectiveA is the total service distance mediand(T ) with respect
to the edge weights specified byd, the cost-minimization objectiveB is the totalc-cost
of the edges in the solution subgraph which is required to be a subtree of the original
network.

Definition 2 (Bicriteria Approximation Algorithm). A polynomial time algorithm for
a bicriteria problem(A,B, S) is said to haveperformance(α, β), if it has the following
property: For any instance of(A,B, S), the algorithm produces a solution from the
subgraph classS for which the value of objectiveA is at mostα times the specified
budget and the value of objectiveB is at mostβ times the minimum value of a solution
from S that satisfies the budget constraint.

Notice that a “standard”c-approximation algorithm is a(1, c)-bicriteria approxima-
tion algorithm. A family{Aε}ε of approximation algorithms, is called afully poly-
nomial approximation schemeor FPAS, if algorithmAε is a(1, 1 + ε)-approximation
algorithm and its running time is polynomial in the size of the input and1/ε.
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3. SUMMARY OF RESULTS AND RELATED WORK

In this paper, we study the complexity and approximability of the problemBC-
CMED. Our main results include the following:

1. BCCMED is weaklyNP-hard even on trees. This result continues to hold even
if the edge-weight functionsc andd are identical. We strengthen this hardness
result to obtain strictNP-hardness results for bipartite graphs.

2. We strengthen the above hardness results for general graphs further and show
that unlessNP ⊆ DTIME(N log log N ), there can be no polynomial time approxi-
mation algorithm forBCCMED with a performance(1, (1/10− ε) ln n).

Our hardness results are complemented by the following approximation results:

1. There exists a FPAS forBCCMED on trees.
2. For any fixedε > 0 there exists a(1+ε, (1+1/ε)O(log3 n log log n))-approximation

algorithm forBCCMED on general graphs.

3.1. Relationship to the Traveling Purchaser problem. The BCCMED problem is
closely related to a well studied variant of the classical traveling salesperson problem
called theTraveling Purchaser Problem(see [20] and the references therein). In this
problem we are given a bipartite graphG = (M ∪ P, E), whereM denotes a set of
markets andP denotes the set of products. There is a (metric) costcij to travel from
marketi to marketj. An edge between marketi and productp with costdip denotes
the cost of purchasing productp at marketi. A tour consists of starting at a specified
market visiting a subset of market nodes, thereby purchasingall the products and re-
turning to the starting location. The cost of the tour is the sum of the travel costs used
between markets and the cost of buying each of the products. The budgeted version of
this problem as formulated by Ravi and Salman [20] aims at finding a minimum cost
tour subject to a budget constraint on the purchasing costs.

It is easy to see that a(α, β)-approximation algorithm for the budgeted traveling
purchaser problem implies a(α, 2β)-approximation forBCCMED: just delete one
edge of the tour to obtain a tree. Using the(1 + ε, (1 + 1/ε)O(log3 m log log m))-
approximation algorithm from [20] we get a(1 + ε, 2(1 + 1/ε)O(log3 m log log m))-
approximation forBCCMED. Our algorithm given in Section 6 uses the techniques
from [20] directly and improves this result.

3.2. Related Work. Other service-constrained minimum cost network problems have
been considered in [1, 6, 12, 16, 17]. These papers consider the variant that prescribes
a budget on the service distance for each node not in the tree. The goal is to find a
minimum length salesperson tour (or a tree as may be the case) so that all the (cus-
tomer) nodes are strictly serviced. Restrictions of the problems to geometric instances
were considered in [1,12,19]. Finally, the problemBCCMED can be seen as a general-
ization of the classicalk-Median Problem, where we require the set of medians to be
connected.

4. HARDNESSRESULTS

Theorem 3. The problemBCCMED is weaklyNP-hard even on trees. This result con-
tinues to hold even if we require the two cost functionsc andd to coincide.
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Proof. We use a reduction from thePARTITION problem, which is well known to
be NP-complete [10, Problem SP12]. Given a multiset of (not necessarily distinct)
positive integers{a1, . . . , an}, the question is whether there exists a subsetU ⊆
{1, . . . , n} such that

∑

i∈U ai =
∑

i6∈U ai.
Given any instance ofPARTITION we construct a star-shaped graphG havingn + 1

nodes{x, x1, . . . , xn} and n edges(x, xi), i = 1, . . . , n. We definec(x, xi) :=
d(x, xi) := ai. Let D :=

∑n
i=1 ai. We set the budget for the median cost of the tree

to beB := D/2. It is easy to see that there exists a feasible treeT of costc(T ) at
mostD/2 if and only if the instance ofPARTITION has a solution.

Next, we prove our inapproximability results for general graphs. Before stating the
hardness result we recall the definition of theM IN SET COVER problem [10, Problem
SP5] and cite the hardness results from [2, 9] about the hardness of approximating
M IN SET COVER. An instance(U,S) of M IN SET COVER consists of a finite setU of
ground elements and a familyS of subsets ofU . The objective is to find a subcollection
C ⊆ S of minimum size|S| which contains all the ground elements.

Theorem 4(Feige [9]). UnlessNP ⊆ DTIME(NO(log log N)), for anyε > 0 there is
no approximation algorithm forM IN SET COVER with a performance of(1−ε) ln |U |,
whereU is the set of ground elements.

Theorem 5(Arora and Sudan [2]). There exists a constantη > 0 such that, unless
P = NP, there is no approximation algorithm forM IN SET COVER with a perfor-
mance ofη ln |U |, whereU is the set of ground elements.

We are now ready to prove the result about the inapproximability ofBCCMED on
general graphs.

Theorem 6. The problemBCCMED is stronglyNP-hard even on bipartite graphs. If
there exists an approximation algorithm forBCCMED on bipartite graphs with per-
formanceα(|V |) ∈ O(ln |V |), then there exists an approximation algorithm forM IN

SET COVER with performanceα(2|U |+ 2|S|). All results continue to hold even if we
require the two cost functionsc andd to coincide.

Proof. Let (U,S) be an instance ofM IN SET COVER. We assume without loss of
generality that the minimum size set cover for this instance contains at least two sets
(implying also that|U | ≥ 2).

For eachk ∈ {2, . . . , n} we construct an instanceIk of BCCMED as follows: First
construct the natural bipartite graph with node setU ∪ S. We add an edge between
an element nodeu ∈ U and a set nodeS ∈ S if and only if u ∈ S. We now add a
root noder which is connected via edges to all the set nodes fromS. Finally, we add
a setLk of |U |+ |S|− k +1 nodes which are connected to the root node via the edges
(l, r), l ∈ Lk. Let X := kdα(|Vk|)e + 1. The edges between element nodes and set
nodes have weightX, all other edges have weight1. The budget on the median cost
for instanceIk is set toBk := |Lk|+ X|U |+ |S| − k. The construction is illustrated
in Figure 1.

The bipartite graph constructed for instanceIk has|Vk| = 2|U | + 2|S| + 2 − k ≤
2(|U |+ |S|) sets. Thus,α(|Vk|) ≤ α(2|U |+ 2|S|).

The main goal of the proof is to show that (i) if there exists a set cover of sizek,
then instanceIk of BCCMED has a solution with value at mostk; (ii) any feasible
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elementsU

setsS

Lk

c(e) = d(e) = 1

r

c(e) = d(e) = X

FIGURE 1. Construction used in the proof of Theorem 6. Solid edges
are of weight1, dashed edges have weightX = kdα(|Vk|)e+ 1.

solution for instanceIk of BCCMED with costC ≤ α(|Vk|)k can be used to obtain
a set cover of size at mostC. Using these two properties of the reduction, we can
show that anyα(|V |)-approximation toBCCMED transforms into aα(2|U | + 2|S|)-
approximation forM IN SET COVER: Find the minimum valuek∗ ∈ {1, . . . , n} such
that the hypotheticalα-approximation algorithmA for BCCMED outputs a solution of
cost at mostα(|Vk|)k∗ for instanceIk∗ . By property (i) and the performance ofA
it follows thatk∗ is no greater than the optimum size set cover. By property (ii) we
get a set cover of size at mostα(|Vk∗ |)k∗ which is at mostα(2|U | + 2|S|) times the
optimum size cover.

We first prove (i). Any set coverC of sizek can be used to obtain a tree by choosing
the subgraph induced by the set nodes corresponding to the sets inC and the root
noder. Clearly, the cost of the tree isk. Since the sets inC form a cover, each element
node is within distance ofX from a vertex in the tree. Thus, the total median-cost ofT
is no more thanX|U |+ |S| − k + |Lk| = Bk.

We now address (ii). Assume conversely, thatT is a solution forIk with valueC,
i.e., a tree with median(T ) ≤ Bk andc(T ) = C ≤ α(|Vk|)k. We first show that the
root noder must be contained in the tree.
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In fact, if this were not the case, then at least|Lk| − 1 nodes fromLk can not be
in T either. Moreover, these at least|Lk| − 1 nodes are at distance at least two from
any node in the tree. Moreover, sinceX ≥ C + 1, the treeT can not contain any edge
between set nodes and element nodes. Thus,T consists either of a single element node
or T does not contain any element nodes. In the first case, the median cost ofT is at
least

2X(|U | − 1) + 3|Lk| = Bk + (|U | − 2)X + |U |+ |S| − k + 2 > Bk,

which contradicts thatT is feasible. In the second case, (T does not contain ele-
ment nodes) eitherT consists of a single node fromLk or does not contain any node
from Lk. Thus, we get that the median cost ofT is at least

X|U |+ 2(|Lk| − 1) + 1 + 2 = X|U |+ |Lk|+ |U |+ |S| − k + 1 = Bk + 1 > Bk,

which is again a contradiction. (The additive terms in the above calculation stem from
the fact thatr is not in the tree and a set node or the remaining node fromLk is at
distance at least two from the tree).

We now show that the collectionC of set nodes spanned by the new treeT ′ forms
a valid set cover. Note that the size ofC can not exceedC since the costc(T ) of T
is bounded byC andT contains the root noder. Suppose thatu ∈ U is not covered
by the sets onC. As noted above, the treeT can not contain edges connecting set
nodes and element nodes. Thus, the distance ofu from any node inT is at least2X,
whereas for all other element nodes the distance is at leastX. The median cost ofT
thus satisfies:

median(T ) ≥ |Lk|+ X|U |+ X + |S| − |T ∩ (Lk ∪ S)|.(1)

Since the treeT has cost at mostC and contains the rootr it follows thatT can contain
at mostC vertices fromLk ∪ S. Thus from (1) we get that

median(T ) ≥ |Lk|+ X|U |+ |S| − C + X ≥ |Lk|+ X|U |+ |S|+ 1 > Bk.

which contradicts once more the fact thatT was a feasible solution of median cost at
mostBk.

The instances ofM IN SET COVER used in [9] have the property that the number
of sets is at most|U |5, whereU is the ground set (see [8] for an explicit computation
of the number of sets used). Thus from Theorem 6 we get a lower bound forBC-
CMED(1/10− ε) ln |V | (assuming thatNP 6⊆ DTIME(N log log N )). Since the number
of sets in any instance ofM IN SET COVER is bounded by2U , we can use the result
from [2] to obtain a result under the weaker assumption thatP 6= NP:

Theorem 7. (i) UnlessNP ⊆ DTIME(N log log N ), for anyε > 0 there can be no
polynomial time approximation algorithm forBCCMEDwith a performance(1/10−
ε) lnn.

(ii) UnlessP = NP, for anyε > 0 there is no approximation algorithm forBCCMED

with a performance of(1/4− ε) ln ln n.
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5. APPROXIMATION SCHEME ON TREES

We first consider the problemBCCMED when restricted to trees. We present an
FPAS for a slightly more general problem thanBCCMED, calledgeneralizedBCCMED

in the following: We are additionally given a subsetU ⊆ V of the vertex set and the
budget constraint requires that the total service distance of all vertices inU (instead of
V ) does not exceedB.

Theorem 8. There is a FPAS for the generalizedBCCMED on trees with running
timeO(log(nC)n3/ε2), whereC denotes the maximumc-weight of an edge in a given
instance.

Proof. Let T = (V, E) be the tree given in the instanceI of BCCMED. We root the
tree at an arbitrary vertexr ∈ V . In the sequel we denote byTv the subtree ofT
rooted at vertexv ∈ V . SoTr = T . Without loss of generality we can assume thatr
is contained in some optimal solutionI (we can run our algorithm for all vertices as
the root vertex). We can also assume without loss of generality that the rooted treeT
is binary (since we can add zero cost edges and dummy nodes to turn it into a binary
tree).

Let T ∗ = (V ∗, E∗) be an optimal solution forI which containsr. Denote by
OPT = c(T ∗) its cost. DefineC := maxe∈E c(e) and letK ∈ [0, nC] be an inte-
gral value. The valueK will act as “guess value” for the optimum cost in the final
algorithm. Notice that the optimum cost is an integer between0 andnC.

For a vertexv ∈ V and an integerk ∈ [0,K] we denote byD[v, k] the minimum
service cost of a treeT ∗v,k servicing all nodes inU contained in the subtreeTv rooted
at v and which has following properties: (1)T ∗v,k containsv, and (2)c(T ∗v,k) ≤ k. If
no such tree exists, then we setD[v, k] := +∞. Notice that

c(T ∗) = min{ k : D[r, k] ≤ B }.
Let v ∈ V be arbitrary and letv1, v2 be its children in the rooted treeT . We show

how to compute all the valuesD[v, k], 1 ≤ k ≤ B given the valuesD[vi, ·], i = 1, 2.
For i = 1, 2 let Si :=

∑

w∈Tvi∩U c(w, v). If vi is not in the treeT ∗v,k then none of
the vertices inTvi can be contained inT ∗v,k. Let

Xk := S1 + S2

and

Yk := min{D[v1, k′] + D[v2, k′′] : k′ + k′′ = k − c(v, v1)− c(v, v2) }.
Then we have that

D[v, k] = min{S2 + D[v1, k − c(v, v1)], S1 + D[v2, k − c(v, v1)], Xk, Yk}.
The first term in the last equation corresponds to the case thatv1 is in T ∗v,k but notv2.
The second term is the symmetric case whenv2 is in the tree but notv1. The third term
concerns the case that none ofv1 andv2 is in the tree. Finally, the fourth term models
the case that both children are contained inT ∗v,k.

It is straightforward to see that this way all the valuesD[v, k], 0 ≤ k ≤ K can be
computed inO(K2) time given the values for the childrenv1 andv2. Since the table
values for each leaf ofT can be computed in timeO(K), the dynamic programming
algorithm correctly finds an optimal solution within timeO(nK2).
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Let ε > 0 be a given accuracy requirement. Now consider the following test for a
parameterM ∈ [0, (n−1)C]: First we scale all edge costsc(e) in the graph by setting

cM (e) :=
⌈

(n− 1)c(e)
Mε

⌉

.(2)

We then run the dynamic programming algorithm from above with the scaled edge
costs andK := (1+1/ε)(n− 1). We call the testsuccessfulif the algorithm gives the
information thatD[r,K] ≤ B. Observe that the running time for one test isO(n3

ε2 ).
We now prove that the test is successful ifM ≥ OPT. To this end we have to

show that there exists a tree of cost at mostK such that its service cost is at mostB.
Recall thatT ∗ denotes an optimum solution. Since we have only scaled thec-weights,
it follows thatT ∗ is also a feasible solution for the scaled instance with service cost at
mostB. If M ≥ OPT we have

∑

e∈T ∗
cM (e) ≤

∑

e∈T ∗

(

(n− 1)c(e)
Mε

+ 1
)

≤ n− 1
ε

+ |T ∗| ≤
(

1 +
1
ε

)

(n− 1).

Hence forM ≥ OPT, the test will be successful. We now use a binary search to find
the minimum integerM ′ ∈ [0, (n− 1)C] such that the test described above succeeds.
Our arguments from above show that the valueM ′ found this way satisfiesM ′ ≤
OPT. Let T ′ be the corresponding tree found which has service cost no more thanB.
Then

∑

e∈T ′
c(e) ≤ M ′ε

n− 1

∑

e∈T ′
cM ′

(e) ≤ M ′ε
n− 1

(

1 +
1
ε

)

(n− 1) ≤ (1 + ε)OPT.(3)

Thus, the treeT ′ found by our algorithm has cost at most1+ε times the optimum cost.
The running time of the algorithm can be bounded as follows: We runO(log(nC))
tests on scaled instances, each of which needs timeO(n3/ε2) time. Thus, the total
running time isO(log(nC)n3/ε2), which is bounded by a polynomial in the input size
and1/ε.

6. APPROXIMATION ALGORITHM ON GENERAL GRAPHS

In this section we use a Linear Programming relaxation in conjunction with filtering
techniques (cf. [14]) to design an approximation algorithm. The techniques used in this
section are similar to those given in [20] for theTraveling Purchaser Problem.

In the following we assume again that there is one noder (the root) that must be
included in the tree. This assumption is without loss of generality. Consider the fol-
lowing Integer Linear Program (IP) which we will show to be a relaxation ofBCCMED.
The meaning of the binary decision variables is as follows:ze = 1 if and only if edgee
is included in the tree; furthermorexvw = 1 if and only if vertexw is serviced byv.
The constraints (4) ensure that every vertex is serviced, constraint (5) enforces the
budget-constraint on the service distance. Inequalities (6) are a relaxation of the con-
nectivity and service requirements: For each vertexw and each subsetS which does
not contain the rootr eitherw is serviced by a node inV \ S (this is expressed by
the first term) or there must be a an edge ofT crossing the cut induced byS (this is
expressed by the second term).
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(IP) min
∑

e∈E

c(e)ze

∑

v∈V

xvw = 1 (w ∈ V )(4)

∑

v∈V

∑

w∈V

d(v, w)xvw ≤ D(5)

∑

v/∈S

xvw +
∑

v∈S,u/∈S

zvu ≥ 1 (w ∈ V, S ⊂ V, r /∈ S)(6)

ze ∈ {0, 1} (e ∈ E)(7)

xvw ∈ {0, 1} (v ∈ V,w ∈ V )(8)

Lemma 9. The relaxation (LP) of (ILP) can be solved in polynomial time.

Proof. We show that there is a polynomial time separation oracle for the constraints
(6). Using the result from [11] implies the claim.

Suppose that(x, z) is a solution to be tested for satisfying the constraints (6) for a
fixed w. We set up a complete graph with edge capacitieszvu (u, v ∈ U ). We then
add a new nodẽw and edges(w̃, v) of capacityxwv for all v ∈ V . It is now easy to
see that there exists a cut separatingr andw̃ of capacity less than one if and only if
constraints (6) are violated forw.

Let ε > 0. Denote by(x̂, ẑ) the optimal fractional solution of (LP). For each ver-
texw ∈ V define the value

Dw :=
∑

v∈V

d(v, w)x̂vw

and the subset

Gw(ε) := { v ∈ V : d(v, w) ≤ (1 + ε)Dw }.
The valueDw is the contribution of vertexw to the total service cost in the optimum
fractional solution of the Linear Program. The setGw(ε) consists of all those vertices
that are “sufficiently close” tow.

Lemma 10. For eachw ∈ V we have
∑

v∈Gw(ε) x̂vw ≥ ε/(1 + ε).

Proof. If the claim is false forw ∈ V then we have
∑

v/∈Gw(ε) x̂vw > 1− ε/(1 + ε) =
1/(1 + ε). Thus

Dw =
∑

v∈V

d(v, w)x̂vw ≥
∑

v/∈Gw(ε)

d(v, w)x̂vw ≥ (1 + ε)Dw

∑

v/∈Gw(ε)

x̂vw > Dw.

This is a contradiction. Hence the claim must hold.

The Group Steiner Tree Problem(GST) is defined as follows: Given a complete
undirected graphG = (V, E) with edge weightsc(e) (e ∈ E) and a collectionG1, . . . , Gk
of (not necessarily disjoint) subsets ofV , find a subtree ofG of minimum cost such
that this tree contains at least one vertex from each of the groupsG1, . . . , Gk. Charikar
et al. [5] gave an approximation algorithm for GST with polylogarithmic performance
guarantee. We will use this algorithm as a subroutine.
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Consider the instance of GST on the graphG given in the instance ofBCCMED

where the groups are the setsGw(ε) (w ∈ V ), and the edge weights are thec-weights.
This problem is formulated as an Integer Linear Program as follows:

(GST) min
∑

e∈E

c(e)ze

∑

v∈S,w/∈S

zvw ≥ 1 (S ⊂ V, r /∈ V, Gw(ε) ⊆ S for somew)

ze ∈ {0, 1} (e ∈ E)

The algorithm from [5] finds a group Steiner tree of cost at mostO(log3 m log log m)
times

∑

e∈E c(e)z∗e , wherez∗e denotes the optimal fractional solution of the LP-relaxation
LP-GST.

Lemma 11. Denote byZLP-GST the optimal value of the LP-relaxation of the Integer
Linear Program (GST). ThenZLP-GST≤ (1 + 1/ε)ZLP.

Proof. We show that the vector̄z defined byz̄vw := (1 + 1/ε)ẑvw is feasible for the
LP-relaxation of (GST). This implies the claim of the lemma. To this end letS be an ar-
bitrary subset such thatr /∈ V , Gw(ε) ⊆ S for somew and

∑

v∈S,w/∈S zvw < 1. Since
(x̂, ẑ) is feasible for (LP), it satisfies constraint (6), i.e.,

∑

v/∈S x̂vw +
∑

v∈S,w/∈S ẑvw ≥
1. Hence we get that

∑

v∈S,w/∈S

ẑvw ≥ 1−
∑

v/∈S

x̂vw

≥ 1−
∑

v/∈Gw(ε)

x̂vw (sinceGw(ε) ⊂ S)

≥ 1−
(

1− ε
1 + ε

)

(by Lemma 10)

=
ε

1 + ε
.

Multiplying the above chain of inequalities by1 + 1/ε yields the claim.

Hence we know thatZLP-GST ≤
(

1 + 1
ε

)

ZLP ≤
(

1 + 1
ε

)

OPT. We can now use
the algorithm from [5] to obtain a group Steiner tree. By the last chain of inequalities
this tree is within a factor(1 + 1/ε)O(log3 m log log m) of the optimal solution value
for the instance ofBCCMED while the budget constraint on the service distance is
violated by a factor of at most1 + ε:

Theorem 12. For any fixedε > 0 there is a(1 + ε, (1 + 1/ε)O(log3 m log log m))-
approximation algorithm forBCCMED.

AcknowledgementsWe thank Professor R. Ravi (Carnegie Mellon University) for his
collaboration in early stages of this work.

REFERENCES

[1] E. M. Arkin and R. Hassin,Approximation algorithms for the geometric covering salesman problem,
Discrete Applied Mathematics55 (1994), 197–218.



BUDGET CONSTRAINED MINIMUM COST CONNECTED MEDIANS 11

[2] S. Arora and M. Sudan,Improved low-degree testing and its applications, Proceedings of the 29th
Annual ACM Symposium on the Theory of Computing, 1997, pp. 485–496.

[3] B. Awerbuch, Y. Bartal, and A. Fiat,Competitve distributed file allocation, Proceedings of the 25th
Annual ACM Symposium on the Theory of Computing, 1993, pp. 164–173.

[4] Y. Bartal, A. Fiat, and Y. Rabani,Competitive algorithms for distributed data management, Journal
of Computer and System Sciences51 (1995), no. 3, 341–358.

[5] M. Charikar, C. Chekuri, A. Goel, and S. Guha,Rounding via tree: Deterministic approximation
algorithms for group Steiner trees andk-median, Proceedings of the 30th Annual ACM Symposium
on the Theory of Computing, 1998, pp. 114–123.

[6] J. T. Current and D. A. Schilling,The covering salesman problem, Transportation Science23(1989),
208–213.

[7] L. W. Dowdy and D. V. Foster,Comparative models of the file assignment problem, ACM Comput-
ing Surveys14 (1982), no. 2, 287–313.

[8] S. Eidenbenz, Ch. Stamm, and P. Widmayer,Positioning guards at fixed height above a terrain
– an optimum inapproximability result, Proceedings of the 6th Annual European Symposium on
Algorithms, Lecture Notes in Computer Science, vol. 1461, Springer, 1998, pp. 187–198.

[9] U. Feige,A threshold ofln n for approximating set cover, Proceedings of the 28th Annual ACM
Symposium on the Theory of Computing, 1996, pp. 314–318.

[10] M. R. Garey and D. S. Johnson,Computers and intractability (a guide to the theory ofNP-
completeness), W.H. Freeman and Company, New York, 1979.

[11] M. Grötschel, L. Lov́asz, and A. Schrijver,Geometric algorithms and combinatorial optimization,
Springer-Verlag, Berlin Heidelberg, 1988.

[12] K. Iwano, P. Raghavan, and H. Tamaki,The traveling cameraman problem, with applications to
automatic optical inspection, Proceedings of the 5th International Symposium on Algorithms and
Computation, Lecture Notes in Computer Science, vol. 834, Springer, 1994, pp. 29–37.

[13] S. O. Krumke,On the approximability of location and network design problems, Ph.D. thesis,
Lehrstuhl f̈ur Informatik I, Universiẗat Würzburg, December 1996.
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