Budgeted Learning
 of Naïve Bayes Classifiers

Russ Greiner

w/ Omid Madani, Dan Lizotte, Aloak Kapoor Alberta Ingenuity Centre for Machine Learning Computing Science Department University of Alberta

Challenge

- Machine Learning Challenge
- Build CLASSIFIER:

Will patient respond well to Herceptin?

- based on training data
- But...
- Start of study... no data!
- Instead...
have \$\$ to gather relevant info

Temp	Press.	Sore- Throat	\ldots	color		
32	90	N	\ldots	Pale	\rightarrow Classifier \rightarrow	hercept
:---:						
No						

Need Training Data!

- ... that learner can use to build good classifier
- Run Clinical Trials

Typical Supervised Learning

How to Gather Data?

- Why run EVERY test on each training patient?
- Unnecessary, if test results are correlated
- Inefficient, as tests are EXPENSIVE! ... especially given FI XED BUDGET

Blood- Factors	Gender	Pulse- Rate	Age	Blood Pressure	Height	Weight	Micro- Array
$\$ 5$	0.00	0.02	0.01	0.50	0.05	0.05	$\$ 95$

- General problem
- Given Costs of tests, Total fixed budget:
- Decide which tests to run on which patients to obtain info needed to produce effective classifier

Budgeted Learning

Person 1	,		8雨		esponse
	?	?	?	?	1
Person 2	$?$?	$?$?	0
	?	?	?	$?$	0
	?	$?$	$?$	$?$	0
	?	?	?	?	1

Costs	
-	$\$ 5.00$
-	$\$ 50.00$
-	$\$ 0.50$
-	$\$ 19.75$

Total Budget: \$100

Budgeted Learning

Remaining Budget: $\$ 100$ \$95 \$90 ... \$0

Person 1	\%			\%	Response	
	b	0	0		1	Costs
Person 2	d			a	0	- \$50.00
				C	0	- \$19.75
					0	Budget:
					1	$\$ 100$

Budgeted Learning

Querying Strategy

- A Querying Strategy
- specifies when to test
- which feature for
- which individual
subject to spending at most budget, b
- Returns a classifier with
highest (posterior) expected accuracy
- Goal: Optimal Querying Strategy
- "typically" identifies classifier with high expected accuracy
- ... minimizes Expected Regret

Related Work: PAC,

- Computational learning theory:
- Find $m=m(\ldots \varepsilon, \delta, \ldots)$, given ε, δ
- Asymptotic, constants hidden
- Full training instance

- Budgeted Learning:
- Firm budget ... m=63
- Individual feature queries

What BudgetLearning isn't...

Budgeted

Train (fixed size)

Learning

Test
Standard Learning

Test

Train (varying size)

 -On-line Learning

Train + Test
Exper. Design (I)

Related Work: Active Learning

- Budgeted earning
- Active Learning

$\mathrm{f}_{2} \mathrm{f}_{3} \quad \mathrm{f}_{4} \quad$ Class				
b	0	5	b	$?$
b	1	3	a	?
a	1	1	a	?
b	1	1	a	?
a	0	3	a	?

BudgetLearning = MDP

- Budgeted Learning is a

Depth-limited Markov decision process

- State = current distribution
- Action = specific 〈instance, feature〉 probe
- Reward = 0, except final state: quality
- But
- State space is exponential
- ... \approx POMDP
- ?? Special purpose algorithm here??

Talk Overview

Motivation

Active Model Selection
(\approx multi-armed bandit scenario)

- Bayesian Framework
- Hardness
- Algorithms
- Empirical comparisons
- Theoretical Results
- Naïve Bayes models
- Learn \& Classify under Hard Constraints
- Conclusions

Which treatment works best, unconditionally?

Which single pill?

Active Model Selection:

Budgeted Coins Problem

- Input:
- n independent coins For each coin:
- Prior over head probability Θ_{i}
- Tossing cost r_{i}

- Total budget b
- After several flips (total cost: $\Sigma_{\mathrm{i}} \mathrm{r}_{\mathrm{i}} \leq b$)
choose a single coin c^{*} for future tosses
- Measure of coin performance:
(expected) head probability of c^{*}
- Measure of strategy: expected regret ...

Two (related) Distributions:

 Parameter, Instances

Maximizing Expected Mean

- Two coins, Θ_{1} and Θ_{2}

- Compute mean, $\mu_{i}=E\left(\Theta_{i}\right)$
- As $\mu_{2}>\mu_{1}$, we should pick coin 2 .

Beta Distributions

- Coin ~ Beta(a,b)

$$
\begin{aligned}
& \text { Expected head probability }=\frac{a}{a+b} \\
& \text { Expected tail probability }=\frac{b}{a+b}
\end{aligned}
$$

- Dynamics and updates:
probability of heads
Tossing a coin with
Beta(3, 7)
posterior

Example

Strategies

- Strategy \equiv Prescription of
- which coin to toss at each time
- Strategy tree :

Quality of a Strategy

- Expected Mean of a strategy: $\sum_{\text {leafi }} \operatorname{Pr}($ reach leaf i) $\times($ mean returned at leaf i)
- Eg:

This is

Lookahead of 1

- Two coins:
c1: Beta(1,2)
c2: Beta(1,3)
- Budget of $1 .$. which to toss?

$$
\begin{array}{ll}
\text { c1: } \operatorname{Beta}(1,3) & \text { c1: } \operatorname{Beta}(2,2) \\
\text { c2: } \operatorname{Beta}(1,3) & \text { c2: } \operatorname{Beta}(1,3)
\end{array}
$$

Expected Mean
$=\frac{2}{3} \times \frac{1}{4}+\frac{1}{3} \times \frac{2}{4}=\frac{20}{60}$

c1: $\operatorname{Beta}(1,2) \quad$ c1: $\operatorname{Beta}(1,2)$
c2: $\operatorname{Beta}(1,4) \quad$ c2: $\operatorname{Beta}(2,3)$
Expected Mean

$$
=\frac{3}{4} \times \frac{1}{3}+\frac{1}{4} \times \frac{2}{5}=\frac{21}{60}
$$

Toss c2!

Related Work (II): Bandit Problems

- Multi-armed Bandit Problems
- Berry\&Fristedt, Bandit Problems: Sequential Allocation of Experiments. 1985
- On-line
- Exploitation versus Exploration tradeoff
- AMS:
- During training: only Exploration
- Reward: function of final state
(Std) Bandit
Problem

Train + Test

Train (fixed size)

Talk Overview

- Motivation
- Active Model Selection
(\approx multi-armed bandit scenario)
Bayesian Framework
Hardness
- Algorithms
- Empirical comparisons
- Theoretical Results
- Naïve Bayes models
(learning classifiers)
- Learn \& Classify under Hard Constraints
- Conclusions

Complexity Results

- Obvious Dynamic Program: $O\left(b^{k}\right)$
- If (fixed) k coins: Poly-time !
- AMS is in PSPACE
- AMS is NP-Hard:
- Under non-identical coin costs

- Proof: Using bi-modal coin priors:
- Knapsack reduces to AMS
- Maximize profit = Maximize "success" probability
- If costs are identical + priors uni-modal... Unknown...

Intuitions

- In general... (identical costs) toss coin $\quad c_{i}$ if this toss has a fair chance of improving max'm mean, given budget
- Typically, this means ...
- c_{i} 's mean is high and/or
- c_{i} 's variance is high (few trials so far)
\Rightarrow easy to "move distribution"
- But exceptions exist ...

Example Scenario

Even though c1 has

- higher prior
- higher variance!
- Two coins:
c1: Beta(1,2)
c2: $\operatorname{Beta}(1,3)$
- Budget of $1 . .$. which to toss?

$$
\begin{aligned}
& \text { c1: } \operatorname{Beta}(1,3) \\
& \text { c2: } \operatorname{Beta}(1,3)
\end{aligned}
$$

Expected Mean
$=\frac{2}{3} \times \frac{1}{4}+\frac{1}{3} \times \frac{2}{4}=\frac{20}{60}$

c1: $\operatorname{Beta}(1,2) \quad$ c1: $\operatorname{Beta}(1,2)$
c2: $\operatorname{Beta}(1,4) \quad$ c2: $\operatorname{Beta}(2,3)$
Expected Mean

$$
=\frac{3}{4} \times \frac{1}{3}+\frac{1}{4} \times \frac{2}{5}=\frac{21}{60}
$$

Algorithms

1. Round-robin
2. Random
3. Greedy
4. Allocational: Single-coin look-ahead
5. Biased-robin
6. Interval Estimation
7. Gittins indices

1. Round-Robin

c1
c2
c3
c4
c5

-	+	+	+	-
+	+	+	-	-

2. Random

c1
c2
c3
c4
c5

-	+	+	+	-
+	+	-		-

3. Greedy

- True budget b (say $b=10$)
- At each time:
- Find best action $a^{(1)}$ assuming budget is $b_{\text {temp }}=1$
- Perform $a^{(1)}$
- Repeat

4. Single Coin Full Lookahead

- Remaining budget $\mathrm{b}=4$, \# $\mathrm{coins}=3 . \quad$ toss $=\square$
- Options...

- Decide which is best,
- ... flip that coin ONCE
- Perform this comparison at every time point!

4. Single Coin Lookahead

- For each coin i :
- Imagine spending
entire remaining budget b on coin\# i
- (Note: b+1 possible outcomes)
- Calculate expected loss
- Toss coin with
lowest single-coin-allocation-loss
-ONCE
- Repeat (budget now b-1)

5. Biased-Robin

$$
\mathrm{c} 1
$$

c2
c3
c4
c5

+	+	+	-	+
-	+	+		-
-	+	-		
	-			

- If "+", keep using.
- If "-", go to next.
"Play the winner" ... [Robbins, 52]

5. Biased-Robin

- Optimal strategy for identical priors has pattern:

- Biased-Robin =

Continue tossing same coin while it gives heads. If tails, go to next coin.

Skip IntEst, Gittins

Comparison of Policies

Policy	Uses data?	Uses budget?
Round Robin Random	No	No
Biased Robin	Yes	No
Greedy	Yes	No
SingleCoinLook	Yes	Yes

Talk Overview

- Motivation
- Active Model Selection
(\approx multi-armed bandit scenario)
- Bayesian Framework
- Hardness
- Algorithms
- Empirical comparisons
- Theoretical Results
- Naïve Bayes models
(learning classifiers)
- Learn \& Classify under Hard Constraints
- Conclusions

Comparing Different Situations

- Problem: Each situation has own
$-\Theta_{\max }=\max _{i} \Theta_{i}$
Random variable corresponding to highest probability
- Different runs, with different $\Theta_{\max }$'s, are incomparable
- Regret $=\Theta_{\max }-\Theta^{*}$
= difference of head prob between best coin $\mathrm{c}_{\text {max }}$ vs chosen coin c^{*}
- Always want Regret $=0$

Example of Regret

- Chose C_{2} from $\left\{\mathrm{C}_{1}, \mathrm{C}_{2}\right\}$
- If $\Theta_{2} \geq \Theta_{1}$,
- regret = 0
- Else, regret $=\Theta_{1}-\Theta_{2}$
- As we don't know actual probabilities, need to minimize expected regret

Expected Regret

- Expected regret, if coin i is chosen:

$$
E\left(\Theta_{\max }-\Theta_{i}\right)=E\left(\Theta_{\max }\right)-E\left(\Theta_{i}\right)
$$

where

- $\Theta_{\max }=\max _{i} \Theta_{i}$

Random variable corresponding to highest probability

- $\mu_{i}=E\left(\Theta_{i}\right)$

Mean of coin i

Minimum Regret $=$ Highest Mean

- To minimize regret, pick highest mean coin:

$$
\begin{aligned}
& \min _{i} E\left(\Theta_{\max }-\mu_{i}\right) \\
& \quad=E\left(\Theta_{\max }\right)-\max _{i} E\left(\mu_{i}\right) \\
& \quad=E\left(\Theta_{\max }\right)-\mu_{\max }
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{E}\left(\Theta_{\max }\right) & =\mathrm{E}\left(\max _{\mathrm{i}} \Theta_{\mathrm{i}}\right) \\
\mu_{\max } & =\max _{\mathrm{i}} \mathrm{E}\left(\Theta_{\mathrm{i}}\right)
\end{aligned}
$$

Empirical Results

Uniform Priors Beta(1,1)

- $n=10, b=10$ (optimal)
- $n=10, b=40$

Skewed "positive" $\operatorname{Beta}(n, 1)$

- $\operatorname{Beta}(5,1), n=10, b=10$
- $\operatorname{Beta}(10,1), n=10, b=40$

Skewed "negative" Beta(1,n)

- $\operatorname{Beta}(1,5), n=10, b=10$
- $\operatorname{Beta}(1,10), n=10, b=40$

$\operatorname{Beta}(10,1) ; n=10, b=40$

Round-Robin vs Biased-Robin

- Quickly (after a few tests),
see that some coins are NOT "good"...
Beta(1,5)
Beta(3,2)
- RoundRobin must continue to test each coin
- including these ineffective ones !
- Biased-Robin can avoid "wasting" tests...

Why is RoundRobin ok here?

- c ~ Beta(1,10)
$\Rightarrow c$ typically returns tails
\Rightarrow No real winners here...
\Rightarrow Round-robin as good as anything else...

Comments on Algorithms

Round-Robin, Biased-Robin, ... can skip coin c_{i} if no chance

- After 9 flips, $\mathrm{c}_{1} \sim \operatorname{Beta}(1,3)$
$c_{2} \sim \operatorname{Beta}(6,1)$,
$\mathrm{C}_{3} \sim \ldots$
- 1 more flip... c_{1} has NO chance!

Talk Overview

- Motivation
- Active Model Selection

- Bayesian Framework
- Hardness
- Algorithms
- Empirical comparisons
- Theoretical Results
- Naïve Bayes models

Learn \& Classify under Hard Constraints
Future Work

Closed Forms

- Uniform priors
- $E\left(\Theta_{\max }\right)=\frac{n}{n+1}$
- Round-robin (RR)
- n coins
- budget $b=k \times n$

$$
E\left(\mu_{\max } \mid R R\right)=\frac{1}{k+2}\left[k+1-\sum_{d=1}^{n}\left(\frac{i}{k+1}\right)^{n}\right]
$$

Approximability

Algorithm A is APPROXIMATION Algorithm iff
$\frac{r_{A}}{r^{*}}$ is bounded by a constant (for any budget, coins, ...)

Approximability (con't)

- NOT approximation alg's
- Round Robin
- Random
- Greedy
- Interval Estimation
- Biased-robin
- Unknown...
? Single-coin look-ahead
? Gittins

Talk Overview

- Foundations
- Active Model Selection
(\approx multi-armed bandit scenario)
Learning Naïve Bayes parameters (learning classifiers)
- Framework
- "Sampling" Algorithms
- Empirical Comparisons
- Learn \& Classify under Hard Constraints
- Conclusions

Initial Situation

	f_{1}	f_{2}	f_{3}	f_{4}	Class
Instance 1	$?$	$?$	$?$	$?$	1
Instance 2	$?$	$?$	$?$	$?$	0
	$?$	$?$	$?$	$?$	$?$
	$?$	$?$	$?$	$?$	0
	$?$	$?$	$?$	$?$	1

Intermediate Situation

Given current values, we should probe

- which feature,
- of which instance?

Task

Given

- Cost of features

For each

- Remaining budget and state

Compute

- Which feature of which instance

Coins \Rightarrow NaïveBayes

- Flipping a coin \Rightarrow querying a feature
- Twice as many choices:

For each query, must decide

- which feature, and
- what the class label should be Action $a c t_{i j}=$ query from $P\left(X_{i} \mid Y_{j}\right)$
- Two beta distributions for each X_{i},
- one for $Y=1$, one for $Y=0$
- Distributions are updated from counts of $X_{i}=1$ or 0
- exactly like coins problem

Naïve Bayes Model

 class

- Very simple generative model
- Features independent, given class
- Each + class instance "the same", ...
- handles missing data
- \# of parameters is linear - $O(n)$
- easy to estimate...

Algorithms

- Round-robin
- Random
- Biased-robin
- As long as loss of single feature is decreasing, keep querying it
- Greedy
- Single-Feature Look-ahead (sfl)
- Depth d = how far to investigate
- (IntervalEstimate, Gittins)

Policy 1: Round Robin (RR)

- Purchase random, complete instances

Costs
$X_{1}=1$
$X_{2}=1$
$X_{3}=10$
$X_{4}=5$
$X_{5}=3$

$\mathrm{X}_{1} \mathrm{X}_{2} \mathrm{X}_{3} \mathrm{X}_{4} \mathrm{X}_{5} \mathrm{Y}$

0	1	1	0	0	1
					0
1	1	0	1	0	0
					1
1	0	0	0	0	0
					1

Remaining Budget: $\$ 0$

Policy 2: Biased Robin (BR)

- More discriminative; plays the winner.

Costs
$X_{1}=1$
$X_{2}=1$
$x_{3}=10$
$x_{4}=5$
$x_{5}=3$

0					1
0					0
					0
	1				1
					0
1					1

Remaining Budget:

Policy 4:

Single Feature Lookahead

$$
\operatorname{SFL}\left(X_{i}, y\right)=\sum_{j \in \text { outcomes }(d) .} P(j) \operatorname{Loss}(j)
$$

- expected loss of spending next "d" dollars on a single feature-class pair (X_{i}, y)

- Purchase best $\left(X_{i}^{*}, y^{*}\right)$. once, and recur.

Empirical Studies

- Synthesized data
- Each parameter $\theta_{+ \text {fil }+}, \theta_{- \text {fil }-} \sim \operatorname{Beta}(1,1)$
- ... each feature slightly discriminant
- Single Discriminative Feature
- $P(+f 1 \mid+)=0.9 ; P(-f 1 \mid--)=0.1$
- ... "P(+fi)" independent of class $\mathrm{i}=2 . . \mathrm{n}$
- UCIrvine data
(Each point: average over 50 runs)

Performance on "No Great Feature"

$$
\theta_{+ \text {fil }+}, \theta_{-\mathrm{fij}-} \sim \operatorname{Beta}(1,1)
$$

Single Discriminative Feature $\mathrm{n}=10$

Comments (synthesized data)

- When some feature is discriminant,
- Biased-Robin, SFL "look" for it...
- ...big advantage!
- If not...
- all strategies about the same...

Empirical Studies

- Synthesized data
- UCIrvine data
- Mushroom
- 8124 instances
- 23 features (1 very discriminant)
- House voting
- ... investigate $\operatorname{sfl}(d)$ over $d \ldots$

UCI Mushroom Dataset

Which features were probed?

- 8124 instances $\times 23$ features $=186,582$ probes
- ... get within 0.01 (0.04 vs 0.03) of optimal in $\underline{300 \text { ! }}$
- RoundRobin:
- Each of 23 features probed $\approx 300 / 23 \approx 13$ times
- SFL, BiasedRobin:
- discriminant features (like F\#5): $\approx 70-110$ times
- other features: ≈ 1 time
- ... SFL, BR did MUCH better than RR

Patterns...

- SFL = (one of) best, in general
- MUSHROOM, VOTE
+ CAR, DIABETES, CHESS, BREAST
- ... depth d does matter ...
- Biased-Robin best of budget-insensitive
- Run times:
- RR, BR really fast
- Greedy ok
- SFL slowest (\approx minutes/experiment)

Talk Overview

Foundations
Active Model Selection
Learning Naïve Bayes parameters
Learn \& Classify under Hard Constraints

- Framework
- Algorithms
- Empirical Comparisons
- Conclusions

So far

- So far...
- LEARNER must pay for features
- But CLASSIFIER gets ALL features to for free!
- What if CLASSIFIER also pays for features?
- Budgets:
- Learner budget:

- Classifier budget (per patient): b_{C}
- Eg...spend $b_{L}=\$ 1000$ to learn a classifier, that can spend only $b_{C}=\$ 30 /$ patient...
- How???

The Problem

Inputs
 Output

Training Pool:

| X_{1} | X_{2} | \ldots | X_{r} | Y |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $?$ | $?$ | \ldots | $?$ | 1 |
| $?$ | $?$ | \ldots | $?$ | 0 |
| $?$ | $?$ | \ldots | $?$ | 0 |
| | | \bullet | | |
| | | \bullet | | |
| $?$ | $?$ | \ldots | $?$ | 1 |

Learning budget: $\quad b_{L}$ Classification budget: b_{c}
Feature Cost: $\quad \mathrm{C}\left(\mathrm{X}_{1}\right), \ldots, \mathrm{C}\left(\mathrm{X}_{\mathrm{r}}\right)$
Bounded Active Classifier:

$$
C\left(X_{3}\right)+C\left(X_{7}\right)+C\left(X_{1}\right) \leq b_{C}
$$

Optimal Bounded Active Classifier

$B A C^{*}=\quad \arg \min$
 $B \in\left\{\cos t b_{c}\right.$ active classifiers $\} \quad \sum \mathbf{x}, y$

Good News:

BAC^{*} can be produced via a dynamic program, given
(1) $P(Y=y \mid X=x)$
(2) $P\left(X_{i}=x_{i} \mid X / X_{i}=X^{\prime}\right)$
where \mathbf{x} is any size $\approx \mathrm{b}_{\mathrm{C}}$ feature vector Bad News:

Only limited learning budget b_{L} for estimating (1) \& (2)

Double Dynamic Program !!

- After $b_{\llcorner }$purchases, remaining LEARNING budget $r=0$, Produce optimal depth-b ${ }^{\text {r }}$ Compute "score"
- Back up:
- Aftr" to to
"Way in possible "purchase", \ldots..ig to $b_{L}{ }^{\prime}=0 \ldots$ with score.
Score is BEST of these
Dynamic
Program II
- ... when remaining $b^{\prime}{ }^{\prime}=2$,
consider each possible "purchase", ... $b_{L}{ }^{\prime}=1$ situation ...

Alternative:

Heuristic Learning Policies

- \exists ? tractable purchasing policy that performs well?
- ... consider 5 different heuristic policies...

Heuristic Policies

1. Round Robin
2. Biased Robin

3. Greedy

4. Single Feature Look-ahead (SFL)
5. Randomized SFL

Skip

Glass

(Identical Feature Costs)

Breast Cancer

(Identical Feature Costs)

Pima Indians

(Different Feature Costs)

Summary of Results

- Don't use Round Robin
- Do use
- Randomized Single Feature Lookahead (RSFL)

Talk Overview

Foundations
Active Model Selection
Learning Naïve Bayes parameters
Learn \& Classify under Hard
Constraints
Conclusions

- Future Work
- Contributions

Future Work, Ia (framework)

	f_{1}	f_{2}	f_{3}	f_{4}	Class
Instance 1	$?$	$?$	$?$	$?$	$?$
Instance 2	$?$	$?$	$?$	$?$	$?$
	$?$	$?$	$?$	$?$	$?$
	$?$	$?$	$?$	$?$	$?$
	$?$	$?$	$?$	$?$	$?$

Future Work, Ib (framework)

- Complex cost model
- non-uniform misclassification costs.
- Bundling tests
- Decision-theoretic. optimize f(budget, regret)
- budget + $\tau \times$ regret
- Allow learner to perform more powerful probes
- purchase X_{3} in instance where $X_{7}=0$ and $Y=1$

Future Work, II: Algorithms

- Other algorithms
- ... from MDP literature ?
- We tried TD (λ) on coins... linear combination, tiling, ...
- No luck...
- Address current open problems
- ? NP-hard for uniform cost, uni-modal distr'n
- Finding optimal allocation?

Bound on effectiveness of best allocation strategy?

- Develop policies with guarantees on learning performance

Summary

- Defined framework
- Ability to purchase individual feature values
- Fixed LEARNING Budget
- Fixed CLASSIFICATION Budget
- Results show ...
- Avoid Round Robin
- Try clever algorithm
- Biased Robin
- Randomized Single Feature Lookahead

Thanks

- Joint work with
- Omid Madani
- Dan Lizotte
- Aloak Kapoor
$A^{\text {Albeta }}$
ninawnr
Fund
- All (OM, DL, RG) thank
- NSERC
- AICML
- U of Alberta Computing Science
- OM thanks Alberta Ingenuity

CORE

- AK thanks iCORE

