
Math. Program., Ser. A
DOI 10.1007/s10107-009-0307-4

FULL LENGTH PAPER

Budgeted matching and budgeted matroid intersection
via the gasoline puzzle

André Berger · Vincenzo Bonifaci ·
Fabrizio Grandoni · Guido Schäfer

Received: 22 December 2008 / Accepted: 10 September 2009
© Springer and Mathematical Programming Society 2009

Abstract Many polynomial-time solvable combinatorial optimization problems
become NP-hard if an additional complicating constraint is added to restrict the set of
feasible solutions. In this paper, we consider two such problems, namely maximum-
weight matching and maximum-weight matroid intersection with one additional bud-
get constraint. We present the first polynomial-time approximation schemes for these
problems. Similarly to other approaches for related problems, our schemes compute
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two solutions to the Lagrangian relaxation of the problem and patch them together to
obtain a near-optimal solution. However, due to the richer combinatorial structure of
the problems considered here, standard patching techniques do not apply. To circum-
vent this problem, we crucially exploit the adjacency relations on the solution polytope
and, surprisingly, the solution to an old combinatorial puzzle.

Keywords Matching · Matroid intersection · Budgeted optimization ·
Lagrangian relaxation

Mathematics Subject Classification (2000) 05C70 · 05B35 · 90C27 · 68R99

1 Introduction

Many combinatorial optimization problems can be formulated as follows. We are given
a (finite) set F of feasible solutions and a weight function w : F → Q that assigns a
weight w(S) to every feasible solution S ∈ F . An optimization problem Π asks for
the computation of a feasible solution S∗ ∈ F of maximum weight optΠ , i.e.,

optΠ := maximize w(S) subject to S ∈ F . (Π )

In this paper, we are interested in solving such optimization problems if the set of
feasible solutions is further constrained by a single budget constraint. More precisely,
we are additionally given a non-negative cost function c : F → Q+ that specifies a
cost c(S) for every feasible solution S ∈ F and a non-negative budget B ∈ Q+. The
budgeted optimization problem Π̄ of the above problem Π can then be formulated as
follows:

opt := maximize w(S) subject to S ∈ F , c(S) ≤ B. (Π̄)

Even if the original optimization problem Π is polynomial-time solvable, adding
a budget constraint typically renders the budgeted optimization problem Π̄ NP-hard.
Problems that fall into this class are, for example, the constrained shortest path prob-
lem [3], the constrained minimum spanning tree problem [1], and the constrained
minimum arborescence problem [12]. We study the budgeted version of two funda-
mental optimization problems, namely the maximum-weight matching problem and
the maximum-weight matroid intersection problem.

In the budgeted matching problem, we are given an undirected graph G = (V, E)

with edge weights w : E → Q and edge costs c : E → Q+, and a budget B ∈ Q+.
The set F of feasible solutions corresponds to the set of all matchings in G. (Note that
we do not require that the matchings in F are perfect.) Define the weight of a matching
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Budgeted matching and budgeted matroid intersection

M as the total weight of all edges in M , i.e., w(M) := ∑
e∈M w(e). Similarly, the

cost of M is defined as c(M) := ∑
e∈M c(e). The goal is to compute a matching

M∗ ∈ F of maximum weight w(M∗) among all matchings M in F whose cost c(M)

is at most B.
In the budgeted matroid intersection problem, we are given two matroids

M1 = (E,F1) and M2 = (E,F2) on a common ground set of elements E (for-
mal definitions will be given in Sect. 2). Throughout this paper, we assume that a
matroid is given implicitly by an independence oracle that determines in O(1) time
whether a given set X ⊆ E is an independent set of the matroid or not. Moreover,
we are given element weights w : E → Q, element costs c : E → Q+, and a
budget B ∈ Q+. The set of all feasible solutions F := F1 ∩ F2 is defined by the
intersection of M1 and M2. The weight of an independent set X ∈ F is defined as
w(X) := ∑

e∈X w(e) and the cost of X is c(X) := ∑
e∈X c(e). The goal is to compute

a common independent set X∗ ∈ F of maximum weight w(X∗) among all feasible
solutions X ∈ F satisfying c(X) ≤ B. Problems that can be formulated as the inter-
section of two matroids are, for example, matchings in bipartite graphs, arborescences
in directed graphs, spanning forests in undirected graphs, etc.

A special case of both budgeted matching and budgeted matroid intersection is the
budgeted matching problem on bipartite graphs. This problem is NP-hard by a simple
reduction from the knapsack problem. We remark that without the budget constraint
the two problems can be solved in polynomial-time (see, e.g., [33]).

1.1 Our contribution

We give the first polynomial-time approximation schemes (PTAS) for the budgeted
matching problem and the budgeted matroid intersection problem. For a given input
parameter ε > 0, our algorithms compute a (1 − ε)-approximate solution in time
O(mO(1/ε)), where m is the number of edges in the graph or the number of elements
in the ground set, respectively.

The basic structure of our polynomial-time approximation schemes resembles sim-
ilar approaches for related budgeted optimization problems [29]. By dualizing the
budget constraint of Π̄ and lifting it into the objective function, we obtain for any
λ ≥ 0 the Lagrangian relaxation LR(λ).

z(λ) := maximize (w(S) + λ(B − c(S))) subject to S ∈ F . (LR(λ))

Note that the relaxed problem LR(λ) is equivalent to the optimization problem Π

with modified Lagrangian weights wλ(e) := w(e) − λc(e) for every e ∈ E . Since
the original problem Π is polynomial-time solvable, we can compute the optimal
Lagrangian multiplier λ∗ := arg minλ≥0 z(λ) and two optimal solutions S1 and S2 to
LR(λ∗) such that c(S1) ≤ B ≤ c(S2). (Details will be given in Sect. 2.) The idea now
is to patch S1 and S2 together to obtain a feasible solution S for Π̄ whose weight w(S)

is at least (1 − ε)opt. Our patching consists of two phases: an exchange phase and an
augmentation phase.
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Exchange phase Consider the polytope induced by the feasible solutions F to the
original problem Π and let F be the face given by the solutions of maximum Lagrang-
ian weight. This face contains both S1 and S2. In the first phase, we iteratively replace
either S1 or S2 with another vertex on F , preserving the invariant c(S1) ≤ B ≤ c(S2),
until we end up with two adjacent solutions. Note that both solutions have objective
value z(λ∗) ≥ opt. However, with respect to their original weights, we can only infer
that w(Si ) = z(λ∗) − λ∗(B − c(Si )), i ∈ {1, 2}. That is, we cannot hope to use
these solutions directly: S1 is a feasible solution for Π̄ but its weight w(S1) might be
arbitrarily far from opt. In contrast, S2 has weight w(S2) ≥ opt, but is infeasible.

Augmentation phase In this phase, we exploit the properties of adjacent solutions
in the solution polytope. For matchings it is known that two solutions are adjacent in
the matching polytope if and only if their symmetric difference is an alternating cycle
or path X . Analogously, two adjacent extreme points in the common basis polytope
of two matroids can be characterized by a proper alternating cycle X in the corre-
sponding exchangeability graph [8,14]. The idea is to patch S1 according to a proper
subpath X ′ of X . This subpath X ′ guarantees that the Lagrangian weight of S1 does
not decrease too much, while at the same time the gap between the budget and the
cost of S1 (and hence also the gap between w(S1) and z(λ∗)) is reduced. This way we
obtain a feasible solution S whose weight differs from opt by at most the weight of
two edges (elements).

Of course, constructing such a solution S alone is not sufficient to obtain a PTAS:
the maximum weight of an edge (element) might be comparable to the weight of an
optimum solution. However, this problem can be easily overcome by guessing the
edges (elements) of largest weight in the optimum solution in a preliminary step.

Surprisingly, the key ingredient that enables us to prove that there always exists a
good patching subpath stems from an old combinatorial puzzle which we quote from
the book by Lovász [19, Problem 3.21].

“Along a speed track there are some gas-stations. The total amount of gasoline
available in them is equal to what our car (which has a very large tank) needs for
going around the track. Prove that there is a gas-station such that if we start there
with an empty tank, we shall be able to go around the track without running out
of gasoline.”

1.2 Related work

For the budgeted matching problem there is an optimal algorithm if the costs are
uniform. This problem is equivalent to finding a maximum-weight matching that con-
sists of at most B edges, which can be solved by a reduction to perfect matching.

Naor et al. [25] proposed a fully polynomial-time approximation scheme (FPTAS)
for a rather general class of problems, which contains the budgeted matching problem
considered here as a special case. However, personal communication [24] revealed
that unfortunately the stated result [25, Theorem 2.2] is incorrect.

Papadimitriou and Yannakakis [28] provide a very general and powerful tool to
design approximation algorithms for problems with a constant number of objectives,
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based on the construction of ε-approximate Pareto curves. In order to construct
such approximate Pareto curves efficiently, a sufficient condition is the existence
of a pseudo-polynomial-time algorithm for the exact version of the problem con-
sidered. The task in the exact version of the problem is to return a feasible solution
of exactly some prespecified value. For example, the existence of such a pseudo-
polynomial-time algorithm for the minimum spanning tree problem [2] implies a
polynomial-time algorithm which returns a (1 + ε)-approximate solution violat-
ing every budget constraints by at most a factor of (1 + ε) for the corresponding
multi-objective version. In the case of exact (perfect) matching, there is a pseudo-
polynomial-time randomized (Monte Carlo) algorithm [23]. A similar result holds
for exact matroid intersection [4]. These results imply that there are randomized
fully polynomial-time approximation schemes for the budgeted matching and bud-
geted matroid intersection problems that compute an (expected) (1 − ε)-approxi-
mate solution violating the budget constraint by a factor of at most (1 + ε). Sim-
ilar results can be obtained for a fixed number of budget constraints. We remark
that derandomizing the mentioned exact algorithms is a long-standing, important
open problem and thus it seems hard to find a deterministic FPTAS (or even PTAS)
for the problems considered here using this approach. In contrast, our polynomial-
time approximation schemes are deterministic and do not violate the budget con-
straint.

Budgeted versions of polynomial-time solvable optimization problems have been
studied extensively. The best known ones are probably the constrained shortest path
problem and the constrained minimum spanning tree problem. Finding a shortest
s, t-path P (with respect to weight) between two vertices s and t in a directed graph
with edge weights and edge costs such that the total cost of P is at most B appears as
an NP-hard problem already in the book by Garey and Johnson [10]. Similarly, finding
a minimum weight spanning tree whose total cost is at most some specified value is
NP-hard as well [1].

Goemans and Ravi [29] obtain a PTAS for the constrained minimum spanning tree
problem by using an approach which resembles our exchange phase. Starting from two
spanning trees obtained from the Lagrangian relaxation, they walk along the optimal
face (with respect to the Lagrangian weights) of the spanning tree polytope until they
end up with two adjacent solutions S1 and S2 with c(S1) ≤ B ≤ c(S2). In this polytope,
two spanning trees are adjacent if and only if their symmetric difference consists of
just two edges. Therefore, the final solution S1 is a feasible spanning tree whose weight
is away from the optimum by the weight of only one edge. In particular, once two such
adjacent solutions have been found there is no need for an additional augmentation
phase, which is instead crucial for matchings and matroid intersections. The PTAS
by Goemans and Ravi [29] also extends to the problem of finding a minimum-weight
basis in a matroid subject to a budget constraint. A bicriteria FPTAS for the constrained
minimum spanning tree problem has been found by Hong et al. [13]. However, the
question whether there exists an FPTAS for the constrained minimum spanning tree
problem is open.

Finding constrained minimum arborescences in directed graphs is NP-hard as well.
Guignard and Rosenwein [12] apply Lagrangian relaxation to solve it to optimality
(though not in polynomial time). Previous work on budgeted optimization problems
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also includes results on budgeted scheduling [34] and bicriteria results for several
budgeted network design problems [21].

Besides the mentioned technique by Papadimitriou and Yannakakis, not much is
known about problems with multiple budget constraints. A problem that might be cast
into this framework is the degree-bounded minimum spanning tree problem, where
the goal is to find a minimum-weight spanning tree such that the degree of each node
v respects a prespecified degree bound Bv . This problem can be formulated as a span-
ning tree problem with a budget constraint for each node v: The cost is one for all
edges incident to v and zero otherwise, and the budget is Bv . A lot of work has been
devoted to this problem [5,6,9,11,15,16,30,31], culminating in the recent algorithm
by Singh and Lau [35]. Their algorithm computes a spanning tree that violates the
degree bound of every node by at most one (additive) and whose weight is at most the
weight of an optimal degree-bounded spanning tree. The mentioned results, however,
do not extend to arbitrary cost functions.

To the best of our knowledge, the Gasoline Lemma was first used algorithmically
by Lin and Kernighan [18] in the context of devising an efficient heuristic for the
traveling salesman problem.

1.3 Organization of the paper

The paper is structured as follows. In Sect. 2, we give some prerequisites on matroids
and Lagrangian relaxation. We then present the PTAS for the budgeted matching prob-
lem in Sect. 3. The PTAS for the budgeted matroid intersection problem is the subject
of Sect. 4. In Sect. 5 we discuss some open problems.

2 Preliminaries

2.1 Matroids

Let E be a set of elements and F ⊆ 2E be a non-empty set of subsets of E . Then
M = (E,F) is a matroid if the following holds:

1. If X ∈ F and Y ⊆ X , then Y ∈ F .
2. For every X, Y ∈ F , |X | = |Y |, for every x ı nX there is a y ı Y such that X\{x}∪

{y} ∈ F .

The elements of F are called independent sets. An independent set X is a basis of
M if for every x ∈ E\X , X ∪ {x} /∈ F . We assume that F is represented implicitly
by an oracle: for any given I ⊆ E , this oracle determines whether I ∈ F or not. In
the running time analysis, each query to the oracle is assumed to take constant time.
It is not hard to show that matroids have the following properties (see e.g., [33] and
references therein).

Lemma 1 For any given matroid M = (E,F):

1. (Deletion) For every E0 ⊆ E, M − E0 := (E ′,F ′) is a matroid, where
E ′ := E\E0 and F ′ := {X ∈ F : X ∩ E0 = ∅}.
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2. (Contraction) For every E0 ∈ F , M/E0 := (E ′,F ′) is a matroid, where E ′ :=
E\E0 and F ′ := {X ⊆ E\E0 : X ∪ E0 ∈ F}.

3. (Truncation) For every q ∈ N, Mq := (E,Fq) is a matroid, where
Fq := {X ∈ F : |X | ≤ q}.

4. (Extension) For every set D, D ∩ E = ∅, M+ D := (E ′,F ′) is a matroid, where
E ′ := E ∪ D and F ′ := {X ⊆ E ∪ D : X ∩ E ∈ F}.

Observe that an oracle for the original matroid implicitly defines an oracle for all
the derived matroids above. Given X ∈ F and Y ⊆ E , the exchangeability graph of
M with respect to X and Y is the bipartite graph exM(X, Y ) := (X\Y, Y\X; H)

with edge set H = {(x, y) : x ∈ X\Y, y ∈ Y\X, X\{x} ∪{ y} ∈ F}.
Lemma 2 [17] (Exchangeability Lemma) Given X ∈ F and Y ⊆ E, if the graph
exM(X, Y ) has a unique perfect matching, then Y ∈ F .

The intersection of two matroids M1 = (E,F1) and M2 = (E,F2) over the same
ground set E is the pair M = (E,F1 ∩ F2). We remark that the intersection of two
matroids might not be a matroid, while every matroid M = (E,F) is the intersec-
tion of itself with the trivial matroid (E, 2E ). Lemma 1 can be naturally extended to
matroid intersections. For example, for a given matroid intersection (E,F1 ∩ F2), by
Lemma 1.3 (E,Fq

1 ∩ Fq
2 ) is still the intersection of two matroids, for any q ∈ N.

Given two matroids M1 = (E,F1) and M2 = (E,F2), the common basis poly-
tope of M1 and M2 is the convex hull of the characteristic vectors of the common
bases. We say that two common bases X, Y ∈ F1 ∩ F2 are adjacent if their char-
acteristic vectors are adjacent extreme points in the common basis polytope of M1
and M2.

2.2 Lagrangian relaxation

We briefly review the Lagrangian relaxation approach; for a more detailed exposition,
the reader is referred to [26]. The Lagrangian relaxation of the budgeted optimization
problem Π̄ is given by:

z(λ) := maximize (w(S) + λ(B − c(S))) subject to S ∈ F . (LR(λ))

For any value of λ ≥ 0, the optimal solution to LR(λ) gives an upper bound on the
optimal solution of the budgeted problem, because any feasible solution S satisfies∑

e∈S c(e) ≤ B. The Lagrangian relaxation problem is to find the best such upper
bound, i.e., to determine λ∗ such that z(λ∗) = minλ≥0 z(λ) (see also Fig. 1). This
can be done in polynomial time by standard techniques whenever the corresponding
basic problem Π (and hence LR(λ) for fixed λ) is solvable in polynomial time [32].
Within the same time bound, one can also compute two solutions S1 and S2 satisfy-
ing c(S1) ≤ B ≤ c(S2), which are optimal with respect to the Lagrangian weights
wλ∗(e) := w(e) − λ∗c(e), e ∈ E . If Π admits a strongly polynomial-time combina-
torial algorithm (i.e., an algorithm which only compares and sums weights), one can
even compute λ∗, S1 and S2 in strongly polynomial time by using Megiddo’s paramet-
ric search technique [22]. This idea has been used, e.g., by Goemans and Ravi [29]
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Fig. 1 The Lagrangian value
z(λ) as a function of
λ (solid line). Each dashed line
represents the Lagrangian value
of a specific solution

to derive strongly polynomial-time algorithms for the constrained minimum spanning
tree problem. Since strongly polynomial-time combinatorial algorithms are known
for the weighted matching problem and the weighted matroid intersection problem
[33], we can use the same approach here in order to obtain strongly polynomial-time
algorithms for the corresponding budgeted versions.

2.3 The gasoline puzzle

One crucial ingredient in our patching procedure is the solution to the puzzle cited in
the introduction. We state it more formally in the following lemma.

Lemma 3 (Gasoline Lemma) Given a sequence of k real numbers a0, . . . , ak−1 such
that

∑k−1
j=0 a j = 0, there is an index i ∈ {0, . . . , k − 1} such that

∀h ∈ {0, . . . , k − 1} :
i+h∑

j=i

a j (mod k) ≥ 0.

Proof Let i ′ ∈ {0, . . . , k − 1} be the index for which
∑i ′

j=0 a j is minimum and set
i := (i ′ + 1) (mod k). By the choice of i ′, we have for every h ∈ {0, . . . , k − 1}:

i+h∑

j=i

a j (mod k) =
i+h∑

j=0

a j (mod k) −
i ′∑

j=0

a j (mod k) ≥ 0.

-.

3 A PTAS for the budgeted matching problem

In this section, we present our PTAS for the budgeted matching problem. Suppose
we are given a budgeted matching instance I := (G, w, c, B). Let n and m refer
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to the number of nodes and edges in G, respectively. Moreover, we define wmax :=
maxe∈E w(e) as the largest edge weight in I . Throughout this section, opt refers to the
weight of an optimal solution M∗ for I . In order to prove that there exists a PTAS, we
proceed in two steps: First we prove that there is an algorithm to compute a feasible
solution of weight at least opt − 2wmax. The Gasoline Lemma will play a crucial role
in this proof. The claimed PTAS is then obtained by guessing the edges of largest
weight in M∗ in a preliminary phase and applying the algorithm above.

Lemma 4 There is a polynomial-time algorithm to compute a solution M to the bud-
geted matching problem of weight w(M) ≥ opt − 2 wmax.

Proof As described in Sect. 2, we first compute the optimal Lagrangian multiplier
λ > 0 and two matchings M1 and M2 of maximum Lagrangian weight wλ(M1) =
wλ(M2) such that c(M1) ≤ B ≤ c(M2). Observe that for i ∈ {1, 2} we have that

wλ(Mi ) + λ B ≥ wλ(M∗) + λ B ≥ wλ(M∗) + λ c(M∗) = opt. (1)

We also remark that, by the optimality of M1 and M2, wλ(e) ≥ 0 for all e ∈ M1 ∪ M2.
We next show how to extract from M1 ∪ M2 a matching M with the desired proper-

ties in polynomial time. Intuitively, this will be achieved by exchanging edges along
cycles or paths in the symmetric difference of M1 and M2. We will distinguish two
cases, one in which a whole such cycle or path can be exchanged, and a more compli-
cated case, in which we can only exchange edges along a subpath of a cycle or path
in that symmetric difference.

Consider the symmetric difference M ′ = M1 ⊕ M2. Recall that M ′ ⊆ M1 ∪ M2
consists of a disjoint union of paths P and cycles C. We apply the following procedure
until eventually |P ∪C| ≤ 1: Take some X ∈ P ∪C and let A := M1 ⊕ X . If c(A) ≤ B
replace M1 by A. Otherwise replace M2 by A. Throughout this procedure we main-
tain the invariant c(M1) ≤ B ≤ c(M2). Observe that in each step, the cardinality of
M1 ∩ M2 increases by at least one (in fact by min{|M2 ∩ X |, |M1\X |}); hence this
procedure terminates after at most O(n) steps. Moreover, by the optimality of M1 and
M2, the Lagrangian weight of the two matchings does not change during the process
(i.e., the two matchings remain optimal). To see this note that by the optimality of
Mi , i ∈ {1, 2}, wλ(Mi ) ≥ wλ(Mi ⊕ X). On the other hand wλ(M1) + wλ(M2) =
wλ(M1 ⊕ X) + wλ(M2 ⊕ X). It follows that wλ(A) = wλ(M1) = wλ(M2).

If at the end of this procedure c(Mi ) = B for some i ∈ {1, 2}, we are done: Mi is
a feasible solution to the budgeted matching problem and

w(Mi ) = wλ(Mi ) + λc(Mi ) = wλ(Mi ) + λ B ≥ opt.

Otherwise, M1 ⊕ M2 consists of a unique path or cycle X = (x0, x1, . . . , xk−1) ⊆ E
such that c(M1 ⊕ X) = c(M2) > B > c(M1).

Note that from the above inequality it also follows that w(M1) ≥ opt − λ(B −
c(M1)), i.e., the original weight of an optimal Lagrangian solution that is feasible
is close to optimal if its cost is sufficiently close to the budget. The basic idea is to
exchange edges along a subpath of X so as to achieve a feasible solution whose cost
is close to the budget but still has large Lagrangian weight.
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Fig. 2 Examples illustrating the construction used in the proof of Lemma 4 where the symmetric difference
is a cycle (top) or a path (bottom). Each edge xi is labeled with its value ai

In more detail, consider the sequence

a0 = δ(x0)wλ(x0), a1 = δ(x1)wλ(x1), . . . , ak−1 = δ(xk−1)wλ(xk−1),

where δ(xi ) = 1 if xi ∈ M2 and δ(xi ) = −1 otherwise. (Note that, if X is a path,
x0 and xk−1 might both belong to either M1 or M2). This sequence has total value∑k−1

j=0 a j = 0, because of the optimality of M1 and M2. By the Gasoline Lemma, there
must exist an edge xi , i ∈ {0, 1, . . . , k −1}, of X such that for any cyclic subsequence
X ′ = (xi , x(i+1) (mod k), . . . , x(i+h) (mod k)), where h ∈ {0, . . . , k − 1}, we have that

0 ≤
i+h∑

j=i

a j (mod k) =
∑

e∈X ′∩M2

wλ(e) −
∑

e∈X ′∩M1

wλ(e). (2)

Consider the longest such subsequence X ′ satisfying c(M1 ⊕ X ′) ≤ B (see Fig. 2
for an example). Note that X ′ consists of either one or two alternating paths (the latter
case only occurs if X is a path whose first and last edge belong to X ′). Let e1 = xi .
Without loss of generality, we can assume e1 ∈ M2 (X ′ might start with one or two
edges of M1 with Lagrangian weight zero, in which case the next edge in M2 is a
feasible starting point of X ′ as well). Observe that M1 ⊕ X ′ is not a matching unless X
is a path and e1 its first edge. However, M := (M1 ⊕ X ′)\{e1} is always a matching.
Moreover, c(M) = c(M1 ⊕ X ′) − c(e1) ≤ c(M1 ⊕ X ′) ≤ B. That is, M is a feasible
solution to the budgeted matching problem.
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It remains to lower bound the weight of M . We have

w(M1 ⊕ X ′) = wλ(M1 ⊕ X ′) + λ c(M1 ⊕ X ′)

= wλ(M1 ⊕ X ′) + λ B − λ (B − c(M1 ⊕ X ′))

≥ wλ(M1) + λ B − λ (B − c(M1 ⊕ X ′))

≥ opt − λ (B − c(M1 ⊕ X ′)),

where the first inequality follows from (2) and the second inequality follows from (1).
Let e2 = x(i+h+1) (mod k). The maximality of X ′ implies that c(e2) > B − c(M1 ⊕

X ′) ≥ 0. Moreover, by the optimality of M1 and M2, the Lagrangian weight of any
edge e ∈ M1 ∪ M2 is non-negative, and thus 0 ≤ wλ(e2) = w(e2) − λ c(e2). Alto-
gether λ (B −c(M1 ⊕ X ′)) ≤ λ c(e2) ≤ w(e2) and hence w(M1 ⊕ X ′) ≥ opt−w(e2).

We can thus conclude that

w(M) = w(M1 ⊕ X ′) − w(e1) ≥ opt − w(e2) − w(e1) ≥ opt − 2 wmax.

-.

Theorem 1 There is a deterministic algorithm that, for every ε > 0, computes a
solution to the budgeted matching problem of weight at least (1 − ε) · opt in time
O(m2/ε+O(1)), where m is the number of edges in the graph.

Proof Let ε ∈ (0, 1) be a given constant. Assume that the optimum matching M∗

contains at least p := 02/ε1 edges. (Otherwise the problem can be solved optimally
by brute force.) Consider the following algorithm. Initially, we guess the p heavi-
est (with respect to weights) edges M∗

H of M∗. Then we remove from the graph G
the edges in M∗

H , all edges incident to M∗
H , and all edges of weight larger than the

smallest weight in M∗
H . We also decrease the budget by c(M∗

H ). Let I ′ be the result-
ing budgeted matching instance. Note that the maximum weight of an edge in I ′ is
w′

max ≤ w(M∗
H )/p ≤ εw(M∗

H )/2. Moreover, M∗
L := M∗\M∗

H is an optimum solu-
tion for I ′. We compute a matching M ′ for I ′ using the algorithm described in the
proof of Lemma 4. Eventually, we output the feasible solution M := M∗

H ∪ M ′.
For a given choice of M∗

H the running time of the algorithm is dominated by the
time to compute the two solutions M1 and M2. This can be accomplished in O(mO(1))

time using Megiddo’s parametric search technique [22]. Hence the overall running
time of the algorithm is O(m p+O(1)), where the m p factor is due to the guessing of
M∗

H . By Lemma 4, w(M ′) ≥ w(M∗
L) − 2 wmax

′. It follows that

w(M) = w(M∗
H ) + w(M ′) ≥ w(M∗

H ) + w(M∗
L) − 2 w′

max

≥ w(M∗) − ε w(M∗
H ) ≥ (1 − ε)w(M∗).

-.
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4 A PTAS for the budgeted matroid intersection problem

In this section we will develop a PTAS for the budgeted matroid intersection problem.
As in the PTAS for the budgeted matching problem, we will first show how to find a
feasible common independent set of two matroids M1 = (E,F1) and M2 = (E,F2)

of weight at least opt − 2wmax, where wmax is the weight of the heaviest element. The
PTAS will then follow similarly as in the previous section.

Like in the matching case, we initially use Megiddo’s parametric search technique
to obtain the optimal Lagrangian multiplier λ ≥ 0 and two solutions X, Y ∈ F1 ∩F2,
c(X) ≤ B ≤ c(Y ), that are optimal with respect to the Lagrangian weights wλ(e) =
w(e) − λ c(e), e ∈ E . Notice that neither X nor Y will contain any element e such
that wλ(e) < 0. Furthermore, both solutions can be used to derive upper bounds on
the optimum solution. In fact, let I ∗ be the optimum solution of weight opt = w(I ∗).
For Z ∈ {X, Y },

wλ(Z) + λ B ≥ wλ(I ∗) + λ B ≥ wλ(I ∗) + λ c(I ∗) = opt. (3)

If X and Y have different cardinalities, say |X | < |Y |, we extend M1 and M2 accord-
ing to Lemma 1.4 by adding |Y | −| X | dummy elements D of weight and cost zero,
and then we replace X by X ∪ D. (Dummy elements will be discarded when the
final solution is returned.) Of course, this does not modify the weight of the optimum
solution nor the weight and cost of X . Finally, using Lemma 1.3 we truncate the two
matroids to q := |X | = |Y |. The solutions X and Y will now be maximum-weight
common bases of each one of the two truncated matroids.

In the following, we will show how to derive from X and Y a feasible solution of
weight at least opt − 2wmax. This is done in two steps. First (Sect. 4.1), we extract
from X ∪ Y two adjacent common bases, one below and the other over the budget,
with the same (optimal) Lagrangian weight of X and Y . Then (Sect. 4.2) we apply
the Gasoline Lemma to a proper auxiliary graph to compute the desired approximate
solution.

4.1 Finding adjacent common bases

The following lemma characterizes two adjacent common bases in the common basis
polytope of two matroids.

Lemma 5 ([8,14]) Assume we have two matroids M1 = (E,F1), M2 = (E,F2)

and two common bases X, Y ∈ F1 ∩ F2. Then X and Y are adjacent extreme points
in the common basis polytope of M1 and M2 if and only if the following conditions
hold:

1. The exchangeability graph exM1(X, Y ) has a unique perfect matching M1.
2. The exchangeability graph exM2(X, Y ) has a unique perfect matching M2.
3. The union M1 ∪ M2 forms a cycle.

The following corollary of Lemma 5 will help us to deal with contracted matroids.
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Corollary 1 Assume we have two matroids M1 = (E,F1), M2 = (E,F2) and two
common bases X, Y ∈ F1 ∩ F2. Moreover, let Z ∈ F1 ∩ F2 and Z ⊆ X ∩ Y . Then
X and Y are adjacent extreme points in the common basis polytope of M1 and M2 if
and only if X\Z and Y\Z are adjacent extreme points in the common basis polytope
of M1/Z and M2/Z.

Proof First note, that X is a basis of Mi if and only if X\Z is a basis of Mi/Z
(i = 1, 2) by Lemma 1.2. The same holds for Y . Moreover, as Z ⊆ X ∩ Y , the
exchangeability graphs exMi (X, Y ) and exMi /Z (X\Z , Y\Z) (i = 1, 2) are the same,
since they are defined on the symmetric difference of X and Y . The claim then follows
immediately from Lemma 5. -.

Remember that X and Y are maximum-weight common bases of M1 and M2 with
respect to the Lagrangian weights wλ, and that c(X) ≤ B ≤ c(Y ). Since our solution
will be a subset of X ∪ Y , let us delete the elements E ′ = E\(X ∪ Y ) according to
Lemma 1.1. In order to do a similar patching procedure as for the matching problem,
we would like X and Y to be adjacent extreme points in the common basis polytope
of M1 and M2. The following lemma will help us to find such two adjacent common
bases which are also of maximum weight with respect to wλ.

Lemma 6 There is a polynomial-time algorithm that finds a third maximum-weight
common basis A with respect to wλ, such that X 2= A 2= Y and X ∩ Y ⊆ A ⊆ X ∪ Y ,
or determines that no such basis exists.

Proof Let Z = X ∩ Y . Without loss of generality, let X\Y = {x1, . . . , xr } and
Y\X = {y1, . . . , yr }. For 1 ≤ i, j ≤ r we now try to find a maximum-weight com-
mon basis of M1 and M2 that does not contain xi and y j . Denote by Mi j

1 = M1/Z −
{xi , y j } and Mi j

2 = M2/Z −{xi , y j } the matroids resulting from the contraction of Z
(Lemma 1.2) and the deletion of xi and y j (Lemma 1.1).

Consider the following (polynomial-time) algorithm. For every 1 ≤ i, j ≤ r com-
pute a maximum-weight common basis Ai j of Mi j

1 and Mi j
2 . If there is an Ai j sat-

isfying |Ai j | = r and wλ(Ai j ) = wλ(X\Z), then A = Ai j ∪ Z is the desired third
basis: Ai j is a common basis of Mi j

1 and Mi j
2 , and since |A| = |Ai j | + |Z | = |X |,

it is also a common basis of M1 and M2. Also, X 2= A 2= Y since xi and y j are not
present in Mi j

1 and Mi j
2 .

If none of the Ai j ’s satisfies |Ai j | = r and wλ(Ai j ) = wλ(X\Z), then no common
basis A of M1 and M2 with the desired properties exists. In fact, assume that there
is such a third maximum-weight basis A. Choose i and j such that xi , y j /∈ A. Note
that such indices must exist since X 2= A 2= Y . Then A\Z is a common basis of Mi j

1

and Mi j
2 . Since Ai j is a maximum-weight such common basis, wλ(Ai j ) ≥ wλ(A\Z).

Moreover |Ai j | = |A\Z | = r , and thus Ai j ∪ Z is a common basis of M1 and M2,
implying wλ(Ai j ∪ Z) ≤ wλ(A). Hence wλ(Ai j ) ≤ wλ(A\Z). We conclude that
wλ(Ai j ) = wλ(A\Z) = wλ(X\Z). -.

We can now apply Lemma 6 as follows. As long as we find a third basis A, we
replace X by A if c(A) ≤ B, and Y by A otherwise. In either case, the cardinality of

123



A. Berger et al.

the intersection of the new X and Y increases by at least one. Hence this process ends
after at most O(m) rounds.

At the end of the process, X and Y must be adjacent in the common basis poly-
tope of M1 and M2. In fact, X\Y and Y\X are maximum-weight common bases of
M1/(X ∩Y ) and M2/(X ∩Y ) and there is no other maximum-weight common basis
A′ of M1/(X ∩ Y ) and M2/(X ∩ Y ), as otherwise A = A′ ∪ (X ∩ Y ) would have
been found by the algorithm from Lemma 6. Now as X\Y and Y\X are the only two
maximum-weight common bases, they must also be adjacent on the optimal face of the
common basis polytope of M1/(X ∩Y ) and M2/(X ∩Y ). Therefore, by Corollary 1,
X and Y are adjacent in the common basis polytope of M1 and M2.

4.2 Merging adjacent common bases

Let X and Y be the two adjacent solutions obtained at the end of the process described
in the previous section. Note that if either c(X) = B or c(Y ) = B, we obtain a feasible
solution that is optimal also with respect to the original weights, in which case we are
done. In the following, we assume that c(X) < B < c(Y ). Without loss of generality,
we also assume that X\Y = {x1, x2, . . . , xr } and Y\X = {y1, y2, . . . , yr }.

Lemma 7 Given X and Y with the properties above, there is a polynomial-time algo-
rithm which computes a common independent set X ′ ∈ F1 ∩ F2 such that c(X ′) ≤ B
and w(X ′) ≥ opt − 2wmax.

Proof We exploit Lemma 5 to obtain two unique perfect matchings M1 in exM1(X, Y )

and M2 in exM2(X, Y ). Without loss of generality, we can assume that the ele-
ments of X\Y and Y\X are denoted such that M1 = {x1 y1, . . . , xr yr } and
M2 = {y1x2, y2x3, . . . , yr x1}. Let (x1, y1, x2, y2, . . . , xr , yr ) be the corresponding
cycle. Assign to the each edge x j y j a weight δ j := wλ(y j ) − wλ(x j ), and weight
zero to the remaining edges. Clearly,

∑r
j=1 δ j = 0, since X and Y have the same

maximum Lagrangian weight. By the Gasoline Lemma, there must exist an edge of
the cycle such that the partial sum of the δ-weights of each subpath starting at that
edge is non-negative. Without loss of generality, assume x1 y1 is such an edge. Thus
for every i ∈ {1, . . . , r}, ∑i

j=1 δ j ≥ 0. Find the largest k ∈ {1 . . . , r} such that

c(X) +
k∑

j=1

(
c(y j ) − c(x j )

)
≤ B.

Since c(Y ) > B, we have k < r and by construction

c(X) +
k∑

j=1

(
c(y j ) − c(x j )

)
> B − c(yk+1) + c(xk+1).
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We now show that X ′ := X\{x1, . . . , xk+1} ∪{ y1, . . . , yk} satisfies the claim. By
the choice of k, B − c(yk+1) < c(X ′) ≤ B. Also, since

∑k
j=1 δ j ≥ 0, we have

wλ(X ′) ≥ wλ(X) − wλ(xk+1) ≥ wλ(X) − wmax.

We next bound the weight of X ′:

w(X ′) = wλ(X ′) + λc(X ′) = wλ(X ′) + λB − λ(B − c(X ′))
≥ wλ(X) + λB − wmax − λc(yk+1) ≥ wλ(X) + λB − 2wmax

≥ opt − 2wmax.

Above we used the fact that wλ(e) ≥ 0 for all e ∈ Y , so in particular wλ(yk+1) =
w(yk+1) − λc(yk+1) ≥ 0, implying wmax ≥ w(yk+1) ≥ λc(yk+1). The last inequality
follows from (3).

It remains to prove that X ′ ∈ F1 ∩ F2. Consider the set X ′ ∪ {xk+1}: its sym-
metric difference with X is the set {x1, . . . , xk} ∪{ y1, . . . , yk}. Recall that xi yi is
an edge of M1. Thus, for i ≤ k, it is also an edge of exM1(X, X ′ ∪ {xk+1}) so that
this graph has a perfect matching. On the other hand this perfect matching must be
unique, otherwise M1 would not be unique in exM1(X, Y ). Thus by the Exchange-
ability Lemma X ′ ∪ {xk+1} ∈ F1. Similarly, consider the set X ′ ∪ {x1}: its symmet-
ric difference with X is the set {x2, . . . , xk+1} ∪{ y1, . . . , yk}. For i ≤ k, yi xi+1 is
an edge of M2. Thus exM2(X, X ′ ∪ {x1}) has a perfect matching, and it has to be
unique, otherwise M2 would not be unique in exM2(X, Y ). Thus by the Exchange-
ability Lemma X ′ ∪ {x1} ∈ F2. We have thus shown that X ′ ∪ {xk+1} ∈ F1 and
X ′ ∪ {x1} ∈ F2. As a consequence, X ′ ∈ F1 ∩ F2. -.

Theorem 2 There is a deterministic algorithm that, for every ε > 0, computes a
solution to the budgeted matroid intersection problem of weight at least (1 − ε) · opt
in time O(m2/ε+O(1)), where m is the number of elements.

Proof Let ε ∈ (0, 1) be a given constant. Assume that the optimum solution contains
at least p := 02/ε1 elements (otherwise the problem can be solved optimally by brute
force). We first guess the p elements of largest weight in the optimal solution. Using
contraction (Lemma 1.2) we remove these elements from both matroids, and using
deletion (Lemma 1.1) we also remove all elements that have a larger weight than
any of the contracted elements. We decrease the budget by the cost of the guessed
elements and apply the above algorithm to the resulting instance. Finally, we add
back the guessed elements to the returned solution. The final solution has weight at
least opt − 2w′

max, where w′
max is the largest weight of the elements that remained

after the guessing step. Since opt ≥ (2/ε)w′
max, we obtain a solution of weight at

least (1 − ε)opt. Similarly to the matching case, the running time of the algorithm is
O(m p+O(1)), where the m p factor is due to the guessing. -.
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5 Concluding remarks and open problems

There are several problems that we left open. One natural question is whether we can
apply our patching technique to other budgeted problems. Apparently, the main prop-
erty that we need is that two adjacent solutions are characterized by a proper path or
cycle. This is for example the case for maximum independent sets in claw-free graphs
(which follows, for example, from [7]). Indeed, our approach can be used to derive a
PTAS for the budgeted maximum independent set problem in this special graph class.

Another natural question is whether our techniques can be extended to the case of
multiple budget constraints. The difficulty here is that the Gasoline Lemma alone seems
unable to fill in the cost-budget-gap for several budget constraints simultaneously.

In our approach we crucially exploit the fact that removing edges/elements from a
feasible solution preserves feasibility. An interesting problem is extending our tech-
niques to problems that do not exhibit this property, such as for example the budgeted
version of the maximum perfect matching problem.

Finally, an interesting open problem is whether there are fully polynomial-time
approximation schemes (FPTAS) for the problems considered here. (Note that, already
with two budget constraints, our problems are strongly NP-hard via reduction from
multi-dimensional knapsack [20]). We conjecture that budgeted matching is not
strongly NP-hard. However, finding an FPTAS for that problem might be a very dif-
ficult task. In fact, consider the following exact perfect matching problem: Given an
undirected graph G = (V, E), edge weights w : E → Q, and a parameter W ∈ Q,
find a perfect matching of weight exactly W , if any. This problem was first posed by Pa-
padimitriou and Yannakakis [27]. For polynomial weights, the problem admits a poly-
nomial-time Monte Carlo algorithm [4,23]. Hence, it is very unlikely that exact perfect
matching with polynomial weights is NP-hard (since this would imply RP=NP). How-
ever, after several decades, the problem of finding a deterministic algorithm to solve
this problem is still open.

Interestingly, for polynomial weights and costs, the budgeted matching problem
is equivalent to the exact perfect matching problem. Let the budgeted perfect match-
ing problem be the variant of the budgeted matching problem, where we additionally
require that the computed matching is perfect.

Lemma 8 For polynomial weights and costs, the following problems are polynomially
equivalent: (a) exact perfect matching; (b) budgeted perfect matching; (c) budgeted
matching.

Proof Without loss of generality, we assume that all weights and costs are non-nega-
tive integers. Let wmax and cmax be the largest weight and cost, respectively.

(a) ⇒ (b): Let (G, w, W ) be an exact perfect matching instance. Solve the bud-
geted perfect matching instance (G, w, c, B), where B = W and c(e) = w(e) for
every edge e. If the solution returned has weight smaller than B = W , the original
problem is infeasible. Otherwise, the solution computed is a perfect matching of G of
weight W .

(b) ⇒ (c): Let (G, w, c, B) be a budgeted perfect matching instance. Consider the
budgeted matching instance (G, w′, c, B), where w′(e) = w(e) + (n/2 + 1)wmax for
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every edge e. The original problem is feasible if and only if the maximum matching
M∗ of the new problem contains n/2 edges, i.e., M∗ is a perfect matching.

(c) ⇒ (a): Let (G, w, c, B) be a budgeted matching instance. For two given W ∗

and B∗, consider the exact perfect matching instance (G, w′, W ′), where W ′ = (n/2+
1)cmaxW ∗ + B∗ and w′(e) = (n/2+1)cmaxw(e)+c(e) for every edge e. The problem
(G, w′, W ′) is feasible if and only if there is a matching of weight W ∗ and cost B∗ in
the original problem. By trying all the (polynomially many) possible values for W ∗

and B∗, we obtain the desired solution to the original problem. -.
As a consequence, a (deterministic) FPTAS for budgeted matching would solve the

mentioned long-standing open problem.
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