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Abstract
We develop a general framework for social choice prob-
lems in which a limited number of alternatives can be
recommended to an agent population. In our budgeted
social choice model, this limit is determined by a bud-
get, capturing problems that arise naturally in a variety
of contexts, and spanning the continuum from pure con-
sensus decision making (i.e., standard social choice) to
fully personalized recommendation. Our approach ap-
plies a form of segmentation to social choice problems—
requiring the selection of diverse options tailored to dif-
ferent agent types—and generalizes certain multi-winner
election schemes. We show that standard rank aggrega-
tion methods perform poorly, and that optimization in our
model is NP-complete; but we develop fast greedy algo-
rithms with some theoretical guarantees. Experiments on
real-world datasets demonstrate the effectiveness of our
algorithms.

1 Introduction
The ease with which users now rate, compare or rank options
has allowed an unprecedented degree of personalization in
product recommendation, information retrieval, web search,
and other domains. Despite this trend, tailoring options to
specific users can be difficult because of privacy concerns,
(actual or perceived), scarce data, or the infeasibility of com-
plete personalization. For example, decisions about public
projects (e.g., city parks) may require the choice of a single
option: different projects cannot be built to meet the desires
of different individuals. Similarly, companies may design a
single product to maximize consumer satisfaction across its
target market. In such settings, a single consensus recommen-
dation must be made for the population as a whole. If recom-
mendations are responsive to the preferences of individuals,
we lie within the realm of social choice, an area receiving
much attention in AI and computer science in recent years [6;
4; 9; 11; 14; 15; 23].

There is, of course, a middle ground between pure person-
alization and pure consensus recommendation. For example,
if the company can configure its operations to produce three
variants of the product in question, it must determine the three
products that jointly maximize consumer satisfaction. With
public projects, a city’s budget may allow small number of
parks to be built. In domains like web search, if one has insuf-
ficient data about the user making a query, a limited number

of responses can be presented using available browser “real
estate” to increase the odds that the user finds at least one re-
sult appealing. In such cases we fall somewhere between a
single consensus decision and fully personalized recommen-
dations for individuals. Some (perhaps implicit) aggregation
of preferences must take place—fully personalized offerings
to each individual are infeasible—placing us in the realm of
social choice; but at the same time, we have an opportunity
to tailor options to the preferences of the aggregated groups,
and indeed, explicitly design the precise form of aggregation
to optimize some social choice function.

In this paper, we develop a general model for such settings.
The budgeted social choice (BSC) framework—unlike typi-
cal social choice models in which a single outcome (or rank-
ing) is selected —allows multiple options to be offered, and
assumes each user will benefit from the best option, accord-
ing to her own preferences. However, the number of options
is constrained by a budget, preventing pure personalization.
This budget can take a variety of forms: a strict limit on the
number of options (e.g., at most 3 products, or 10 web links
on a page); or a maximum total cost (e.g., expenditure on city
parks less than $3M). We can also allow more nuanced trade-
offs between the cost of additional options and the increased
benefit to the target population (e.g., add a fourth product op-
tion if increase in consumer satisfaction outweighs the cost
of a fourth production line). Finally, we consider settings in
which the budget is a function of both the options and their
overall usage or uptake in the population: our framework al-
lows for fixed charges (e.g., staffing an assembly line) and
unit costs (e.g., marginal cost of one unit of product).

We can view budgeted social choice as applying segmen-
tation [18] to social choice. Segmentation problems (defined
formally below) seek k solutions to some combinatorial op-
timization problem which will be used by n ≥ k different
“customers,” each with a different objective value for any
of the candidate solutions. Optimization requires segment-
ing customers into k groups depending on which of the k
solutions offers the greatest benefit. Bringing this view to
social choice is illuminating when considering the tradeoff
between the costs and benefits of “personalization” vs. con-
sensus. Though our motivations are different, some multi-
winner models in voting theory [5; 22] can also be viewed as
a form of BSC, as we elaborate below.

We first present a general model of budgeted social choice:



given a set of alternative (or options) A and agents N , each
agent having preferences over A, our goal is to assign an op-
tion from A to each i ∈ N . The assignment of an option
to any i has a fixed cost (e.g., the cost of building a specific
park) and a unit cost for each agent so assigned (e.g., per-
person usage costs). Given a fixed budget, we seek an assign-
ment that maximizes user satisfaction subject to the budget
constraint. We also consider several special cases. When unit
costs are zero, the problem is submodular and greedy opti-
mization has theoretical guarantees; and when, in addition,
all fixed costs are identical, we end up with proportional rep-
resentation schemes from voting theory. We show the NP-
hardness of even this simple case, prove that top-k methods
based on typical rank aggregation methods can perform quite
poorly, and examine our greedy algorithm empirically in both
the general and special cases on two data sets. Empirical re-
sults suggest that greedy optimization is extremely fast and
finds nearly optimal assignments (or option sets).

2 Background
We review some basic concepts from social choice (see [12]
for more background) and segmentation problems. We as-
sume a set of agents (or voters) N = {1, . . . , n} and a set of
alternativesA = {a1, . . . , am}. Let ΓA be the set of rankings
(or votes) overA (i.e., permutations overA). Alternatives can
represent any outcome space over which the voters have pref-
erences (e.g., product configurations, restaurant dishes, can-
didates for office, public projects, etc.) and for which a single
collective choice must be made. Agent `’s preferences are
represented by a ranking v` ∈ ΓA, where ` prefers ai to aj ,
denoted ai �v` aj , if v`(ai) < v`(aj). The collection of
votes V = (v1, . . . , vn) ∈ ΓnA is a preference profile.

Given a preference profile, there are two main problems in
social choice. The first is selecting a consensus alternative,
requiring the design of a social choice function f : ΓnA → A
which selects a “winner” given a profile. The second is se-
lecting a consensus ranking [2], requiring a rank aggrega-
tion function f : ΓnA → ΓA. The consensus ranking can
be used for many purposes; e.g., the top-ranked option may
be taken as the consensus winner, or we might select the
top k alternatives from the ranking in settings where mul-
tiple candidates are required (e.g., parliamentary seats [5;
22], or web search results [11]). Plurality is a common ap-
proach for selecting consensus alternatives: the option with
the greatest number of “first place votes” wins (various tie-
breaking schemes can be adopted). However, plurality fails
to account for voter preferences for any alternative other than
its top ranked (assuming sincere voting). Other schemes, such
as the Borda count or single transferable vote (STV), produce
winners that are more sensitive to the relative preferences of
voters. Among schemes that produce consensus rankings,
positional methods, of which the Borda ranking is a special
case, and the Kemeny consensus [16] are especially popular.

Definition 1. A positional scoring function (PSF) α :
{1, . . . ,m} 7→ R≥0 maps ranks onto scores such that
α(1) ≥ · · · ≥ α(m) ≥ 0. Given a ranking v` and alterna-
tive a, let α`(a) = α(v`(a)). The α-score of a, given profile
V , is α(a, V ) =

∑
v`∈V α`(a). An α-ranking r∗α = r∗α(V ) is

any ranking that orders alternatives from highest to lowest α-
score. The Borda score is the positional score given by score
vector β(i) = m − i, and a Borda ranking r∗β = r∗β(V ) is
defined using score vector β.

Definition 2. Let 1 be the indicator function, and r, v
be two rankings. The Kendall-tau metric is τ(r, v) =∑

1≤i<j≤m 1[(v(ai) − v(aj))(r(ai) − r(aj)) < 0]. Given
a profile V , the Kemeny cost of a ranking r is κ(r, V ) =∑
v`∈V τ(r, v`). The Kemeny consensus is any ranking r∗κ =

r∗κ(V ) that minimizes the Kemeny cost.

Intuitively, Kendall-tau distance measures the number of
pairwise misorderings between an output ranking r and a vote
v, while the Kemeny consensus minimizes total misorderings
across profile V . While positional scoring is easy to imple-
ment, much work in computational social choice has focused
on NP-hard schemes like Kemeny [11; 4].

Rank aggregation has interesting connections to work on
rank learning, much of which concerns aggregating (possi-
bly noisy) preference information from agents into full pref-
erence rankings. For example, Cohen et al. [8] focus on learn-
ing rankings from (multiple user) pairwise comparison data,
while label ranking [14] considers constructing personalized
rankings from votes. Often unanalyzed is why particular ag-
gregation methods are suited to such settings.

Segmentation problems [18] formalize settings where one
must solve an optimization problem for a number of different
“customers,” each of whom has a different objective function,
hence different values for a given solution. Full personal-
ization (offering each customer her preferred solution) is of-
ten not feasible, but partial personalization can be realized by
segmenting customers into groups, and determining the best
solution for each segment. Assuming customers i ≤ n, so-
lutions a ∈ A, and customer “value” functions fi over A for
each i, a fixed k-segmentation problem asks for k solutions
a1, . . . , ak maximizing:∑

i≤n

max
j≤k

fi(aj). (1)

From a customer-centric perspective, a customer benefits
from the option made available that it favors most. A variable
segmentation problem is identical except that the number of
solutions k is variable, and each solution incurs a fixed cost
γ. Thus we add −γk to the objective in Eq. 1.

3 General Budgeted Social Choice
While social choice techniques are used increasingly in ap-
plications like web search and recommender systems, the
motivations for producing consensus recommendations for
users with different preferences often varies. Consider, for in-
stance, the motivation for “budgeted” consensus recommen-
dation discussed in our introduction. If a decision maker can
offer a limited set ofK choices to a population of users to best
satisfy their preferences, methods like Kemeny, Borda, etc.
could be used to produce an aggregate ranking from which
the topK alternatives are taken. However, there is little ratio-
nale for doing so without a deeper analysis of what it means
to “satisfy” the preferences of the user population.



Rather than applying existing social choice schemes di-
rectly, we derive optimal consensus decisions from funda-
mental decision-theoretic principles and show how these dif-
fer from classic aggregation rules. Our model can be viewed
as applying segmentation to problems in social choice,
though our model differs from the variable segmentation for-
mulation above [18]. We present our general model in this
section, then analyze an important special case in the next.

We begin with the basic ingredients of social choice: vot-
ers N , alternatives A, and preference profile V . Rather than
choosing a single alternative from A, we might allow a de-
cision maker to propose a recommendation set Φ ⊆ A, or
slate of options, to improve voter satisfaction, but limit the
choices by incorporating a budget. The precise formulation
of voter satisfaction requires both a measure of individual
voter satisfaction with Φ, and a measure of social welfare.
Our framework can accommodate many measures of utility
and welfare, but for concreteness we focus on one specific
measure. First, we assume voters derive benefit from at most
one a ∈ Φ. This is consistent with many of the motivat-
ing scenarios discussed above. Models in which voters have
preferences over the entire set [3] also fit into our budgeted
framework, but will require a different style of analysis. Sec-
ond, we use positional scoring rules (such as Borda) to quan-
tify a voter’s satisfaction with her “selected” alternative (as
defined below). Again, other models of voter satisfaction or
utility can be incorporated in our model (these would require
relatively minor changes to the analysis below). Finally we
use the sum of such voter “utilities,” or social welfare, as our
societal utility metric. Other models also fit within the frame-
work (e.g., maxmin fairness) but we confine our analysis to
social welfare maximization.

We assume a budget B that limits the total cost of a rec-
ommendation set Φ ⊆ A: this is the key factor preventing
full personalization in general. Thus, we must specify the
cost of Φ. For each a ∈ A, let ta be its fixed cost and ua its
unit cost. For instance, a company that decides to manufac-
ture different product configurations must pay certain fixed
production costs for each distinct configuration it offers (e.g.,
capital expenditures, product design costs); in addition, there
are per-unit costs associated with producing each unit of the
product (e.g., labor/material costs). The cost of Φ is then the
fixed cost of each a ∈ Φ, plus the unit-cost of a for each voter
that derives benefit from a.

Intuitively, we’d like voters to derive benefit from their
most preferred option in the recommendation set. However,
since unit costs vary across a ∈ Φ, a decision maker can-
not simply propose a set Φ: allowing agents to choose their
most preferred alternative freely may exceed the budget (e.g.,
all voters choose expensive options). Instead, the decision
maker produces an assignment of alternatives to agents that
maximizes social welfare. Putting this together gives:
Definition 3. A recommendation function Φ : N → A as-
signs agents to alternatives. Given PSF α and profile V , the
α-score of Φ is:

Sα(Φ, V ) =
∑
`∈N

α`(Φ(`)) . (2)

Let Φ(N) = {a : Φ−1(a) 6= ∅} be the set of recommended

alternatives. The cost of Φ is:

C(Φ) =
∑
a∈A

1[a ∈ Φ(N)] · ta +
∑
`∈N

uΦ(`) . (3)

The first component in C(Φ) represents the fixed costs of
recommended options, and second reflects total unit costs.

Definition 4. Given alternatives A, profile V , PSF α and
budget B > 0, the budgeted social choice (BSC) problem is:

max
Φ

Sα(Φ, V ) subject to C(Φ) ≤ B. (4)

We say that the problem is infeasible if every Φ has to-
tal cost exceeding B. While we define the problem using
PSFs to measure social welfare, other variants of this prob-
lem are possible (as discussed above). Notice that the solu-
tion to a BSC problem not only chooses a set of alternatives,
but explicitly—and optimally—segments voters into groups
reflecting their assigned options. Though we adopt the intu-
itions of segmentation, our cost structure is more general than
that of [18], as it allows per-unit charges and variable fixed
costs. Our model has a few interesting special cases:

• If we wish to leave some voters “unassigned”, we use a
dummy item d with td = ud = 0. Each voter’s rank-
ing for d can default to the bottom of its vote (i.e., po-
sitional score 0), or can reflect genuine preference for
being unassigned. All such problems are feasible.
• Let ta = t (i.e., fixed charges are constant) and ua = 0

for all a ∈ A, and B = Kt. Since unit costs are zero,
we can select a set Φ of size K and let users select their
most preferred option (hence Φ needn’t assign options
to voters). This corresponds to the limited choice model,
discussed in detail in the next section. If unit costs are
non-zero but constant, ua = u, we again can recom-
mend a set of size K = b(B − nu)/tc.
• When fixed costs vary, but unit costs u = ua are con-

stant, we generalize the limited choice model slightly:
because unit costs are identical, agents can still select
their preferred alternative from a slate (of varying size)
whose total fixed cost does not exceed B − nu.
• If every recommendation function Φ satisfiesC(Φ) ≤ B

(e.g., if all charges are zero), we are in a fully personal-
izable setting, and each agent is assigned their their most
preferred alternative.

Our formulation can be modified in other ways. For in-
stance, we may ignore budget, and instead allow an explicit
tradeoff between social welfare (voter happiness) and costs,
and simply maximize total score less total cost of Φ (as in
[18] for specific forms of cost). In this way, unit cost would
not prevent assignment of a more preferred option to a voter if
the voter’s satisfaction outweighs the unit cost (once a fixed
charge is incurred) or if it maximized surplus. This would
better reflect a profit maximization motive in some settings
(treating user satisfaction as a measure of willingness to pay).
Our model as defined above is more appropriate in settings
where users of a recommended alternative cannot be (di-
rectly) charged for its use (e.g., as in the case of certain public
goods, corporate promotions or incentive programs, etc.).



Budgeted social choice is related to other optimization
problems. When fixed costs vary but unit costs are constant,
BSC is similar to budgeted maximum coverage [17] but dif-
fers in our use of scores for voter-alternative pairs (our “cover
cost” varies with the assignment). More closely related is the
generalized maximum coverage problem [7], but again differ-
ences exist (e.g., coverage is not required and unit costs are
constant in [7]). Facility location problems are also related,
especially to the limited choice model in the next section; and
a form of (concave) unit costs for customers served at a facil-
ity is analyzed in [13].

General BSC can be written as an integer program (IP) with
m(n+ 1) variables and 1 +mn+ n constraints:

max
xi,y`i

∑
`∈N

m∑
i=1

α`(ai) · y`i

subject to

[
m∑
i=1

taixi

]
+

[∑
`∈N

m∑
i=1

uaiy`i

]
≤ B, (5)

y`i ≤ xi, ∀` ≤ n, i ≤ m, (6)
m∑
i=1

y`i = 1, ∀` ≤ n. (7)

The variable xi indicates whether alternative ai appears in the
recommendation assignment and y`i indicates whether agent
` has been assigned ai. Constraint (5) is the budget limit, (6)
and (7) ensure voters benefit only from alternatives in Φ, and
benefit from exactly one such element.

Generally the solution to this IP will be computationally
infeasible. Developing an approximation algorithm for BSC
is complicated by the existence of unit costs. We need to limit
the assignment of expensive alternatives despite “demand”
from voters. Despite this, we develop a greedy heuristic al-
gorithm called SweetSpotGreedy (or SSG); see Alg. 1. The
main intuition is to successively “cover” or “satisfy” agents
of a certain type by selecting their most preferred alternative.
For a given a ∈ A, we sort voters based on their ranking of
a and then compute the bang-per-buck ratio of assigning a
to the first i voters—i.e., total score divided by total cost of
assigning a to these i voters (much like knapsack heuristics).
We pick the index i∗a that maximizes the bang-per-buck ratio
r∗a. This is the sweet spot, where the marginal score improve-
ment of assigning a to additional voters just fails to account
for the incremental cost of offering more units of a. To the
recommendation function Φ we add the a∗ with the greatest
ratio r∗a∗ and assign it to the i∗a∗ agents who prefer it most.
We repeat this procedure after removing the previously as-
signed a, each time selecting a new a∗ and recommending it
to the voters that maximize its bang per buck. This first phase
may not produce a feasible assignment Φ: the budget may
be exhausted before all agents are assigned an alternative. A
second backtracking phase produces a feasible solution by
rolling back the most recent updates to Φ from Phase 1. Each
time an alternative is rolled back, we try to find an a ∈ A that
can be assigned to all unassigned agents without depleting the
budget. If, after full backtracking, this can’t be achieved, the
instance is infeasible.

Algorithm 1 The SweetSpotGreedy (SSG) algorithm.
Input: α, V , B, fixed costs t and unit costs u.
1: Φ← ∅ and A∗ ← ∅
2: Let NΦ denote {` : Φ(`) is undefined}
3: {PHASE 1 : ADD ITEMS WITH BEST SWEET SPOT}
4: loop
5: for a ∈ A\A∗ do
6: J ← {` : a �` Φ(`) and ua ≥ uΦ(`)}
7: Na = NΦ ∪ J
8: Ra =

[
α`(a)
ua

]
`∈NΦ

∪
[
α`(a)−α`(Φ(`))
ua−uΦ(`)

]
`∈J

9: SRa ← sort Ra to get (β1/γ1, . . . , β|Ra|/γ|Ra|) {If
γi = 0 then the “ratio” gets put in front of sorted list. For
another denominator γj = 0 we then compare whether
βi > βj .}

10: reorder Na to [`a1 , . . . , `
a
|Na|] so `ai corresponds to βi/γi

11: Let r∗a and i∗a be the max and argmax over i of

{
∑i
j=1 βj

ta+
∑i
j=1 γj

: i ∈ {1, . . . , |SRa|} and ta +
∑i
j=1 γj ≤

B − C(Φ)} if ∅ then set to undefined.
12: end for
13: if a∗ ← argmaxa∈A\A∗ r∗a is undefined then
14: break {all r∗a is undefined—over budget}
15: else
16: append a∗ to A∗

17: update Φ with {(`a∗i , a∗) : 1 ≤ i ≤ i∗a} ∪ {(`, a∗) : ` ∈
N, a∗ �` Φ(`) and ua∗ ≤ uΦ(`)}

18: end if
19: end loop
20: {PHASE 2: BACKTRACKING}
21: while Φ incomplete do
22: a∗ ← pop A∗

23: remove {(`, a∗) : ` ∈ N,Φ(`) = a∗} from Φ

24: Ã← {a ∈ A : ta +
∑
`∈NΦ

ua ≤ B − C(Φ)}
25: if Ã 6= ∅ then
26: a∗ ← argmaxa∈Ã

∑
`∈NΦ

α`(a)

27: update Φ with {(`, a∗) : ` ∈ NΦ} and break
28: end if
29: end while
30: return INFEASIBLE if Φ = ∅, otherwise Φ

SSG has running time O(m2n log n). The intuition behind
our algorithm is similar in spirit to the 1− 1

e−o(1) approxima-
tion algorithm for generalized maximum coverage [7]. How-
ever, that algorithm is impractical and of a more theoretical
nature, requiring O(m2n) calls to a fully polytime approxi-
mation scheme for maximum density knapsack.

As discussed above, when unit costs are zero our problem
reduces to selecting a subset Φ ⊆ A with total fixed cost less
than B. When fixed costs are constant, BSC reduces to the
limited choice problem discussed below. In fact, SSG outputs
the same recommendation function as the algorithm Greedy
discussed below, which has an approximation guarantee:

Proposition 5. If ua = 0 and ta = 1 for all a ∈ A then SSG
outputs the same recommendation as Greedy. Hence, it has
an approximation ratio 1− 1

e .

We describe experiments with the SSG in Sec. 5. Full
proofs of all results can be found in an preliminary, longer
version of this paper [19].



4 The Limited Choice Model
We now consider the limited choice problem, a simple version
of BSC in which one must choose a slate of K alternatives
that maximizes voter satisfaction. As mentioned above, this
can be viewed as BSC in which unit costs are zero and fixed
costs are constant, ta = bB/Kc. For example, a company
may be be able to offer at most K products to its target mar-
ket due to production constraints, where the products are sub-
stitutes (no consumer uses more than one); or a municipality
may have budget for K new parks and citizens draw enjoy-
ment from their most preferred park. Notice that we need not
assign options to voters, but simply select a recommendation
set Φ and allow voters to “use” their most preferred a ∈ Φ:
Definition 6. A K-recommendation set is any Φ ⊆ A of size
K. Given a PSF α, the α-score of Φ is:

Sα(Φ, V ) =
∑
`∈N

max
a∈Φ

α`(a) . (8)

The optimal K-recommendation set with respect to α is:

Φ∗α = argmax
|Φ|=K

Sα(Φ, V ) . (9)

Sα(Φ, v) denotes the score with respect to a single vote v.
We simply write S when α is clear from context, and Sβ to
denote Borda scoring.

Eq. 9 gives an identical model to the Chamberlin and
Courant [5] scheme of proportional representation; thus re-
sults for that scheme apply directly to this version of the lim-
ited choice model, as we discuss below. Limited choice is
related to the K-medians problem, treating alternatives as fa-
cilities, voters as customers, and (negated) positional scores
as distances. Most work on K-medians focuses on metric
rather than non-metric or ordinal settings (see [1] for an ex-
ception). Facility location is related as well (see Sec. 3).

Again, while positional scoring is our focus, other mea-
sures of utility and social desiderata fit within the limited
choice framework. For example, we can use maxmin-fairness
(with respect to positional scoring) encoded as:

Φ∗fair = argmax
|Φ|=K

min
`∈N

Sα(Φ, v`) . (10)

Similarly, setting α(i) = 1[i = 1] gives a satisfaction mea-
sure reflecting plurality scoring: the optimal Φ∗α selects theK
options with the greatest number of first-place “votes.” How-
ever, choosing the top K alternatives from a consensus rank-
ing using positional scoring is, in general, not appropriate.
For any ranking r, let r|K denote the K top-ranked alterna-
tives in r. The Borda ranking r∗β can produce slates r∗β |K that
are a factor of 2 from optimal using our limited-choice mea-
sure, while the α-ranking for arbitrary PSFs can be as much
as a factor of K from optimal. We have, for any K:

Proposition 7. (a) inf(m,n,V )
Sβ(r∗β |K,V )

Sβ(Φ∗,V ) = 1/2; and (b)

inf(α,m,n,V )
Sα(r∗α|K,V )
Sα(Φ∗,V ) ≤ 1/K.

The full proof is omitted (see [19]), but the upper bound in
(a) is demonstrated Fig. 1.

These results show that care must be taken in the appli-
cation of rank aggregation methods to novel social choice

problems. In our limited choice setting, using positional
scores (e.g., Borda) to determine the K most “popular” al-
ternatives can perform very poorly.1 We note too that STV,
often used for proportional representation [23] can perform
poorly: we can show that the slate produced by STV can
also be a factor of 2 worse than optimal. Intuitively, the
optimal slate appeals to the diversity of the agent prefer-
ences in a way that is not captured by “top K” methods (this
is one of the motivations for the proportional schemes [5;
22]). More importantly, our method is defined with respect
to an explicit decision criterion.

Determining an optimal Φ in the limited choice model is
NP-complete even in the specific case Borda scoring:2

Theorem 8. Deciding if there is a K-recommendation set Φ
with (Borda) score Sβ(Φ, V ) ≥ t is NP-complete, for t ≥ 0,

We can formulate this NP-hard problem as an IP much
like in BSC (see [22] who do so for proportional represen-
tation). Again, the IP will not scale to large problems. Fortu-
nately, limited choice presents us with a constrained submod-
ular maximization, which admits a simple greedy algorithm
with approximation guarantees [21].

Algorithm Greedy. Inputs α, V and integer K > 0. Set Φ0 ←
∅. Update ΦK times by adding the option that increases score most,
i.e., Φi ← Φi−1 ∪ {argmaxa∈A S(Φi−1 ∪ {a}, V )}. Output ΦK .

Theorem 9. For a fixed V , S(·, V ) defined over 2A, with
S(∅, V ) = 0, is submodular and non-decreasing. Thus, con-
strained maximization of Eq. (9) can be approximated within
a factor of 1− 1

e by Greedy. That is, S(Greedy,V )
S(Φ∗,V ) ≥ 1− 1

e .

5 Experimental Evaluation
We evaluate our greedy algorithms, and compare them to top-
k methods based on both Borda and Kemeny rankings, on
two real-world data sets, APA and Sushi: Greedy is tested on
both, and SweetSpotGreedy only on Sushi (since APA cap-
tures electoral data and is not suited to models with unit costs
or non-uniform fixed costs).

Limited Choice: APA Dataset The American Psycholog-
ical Association (APA) held a presidential election in 1980,
where roughly 15,000 members expressed preferences for
5 candidates—5738 votes were full rankings. Members
roughly divide into “academics” and “clinicians,” who are
on “uneasy terms,” with voters in each group tending to fa-
vor like-minded candidates (candidate sets {1, 3} and {4, 5}
appeal to different voters, with candidate 2 somewhere be-
tween) [10]. We applied our model to the full rankings with
K = 2 and Borda scoring. We expected our model to fa-
vor “diverse” pairs (i.e., academic-clinician pairs score high-
est), and indeed, the optimal recommendation set is {3, 4}
with Sβ = 18182. In fact, the four highest scoring pairs are

1While the 1
2

-approximation obtained in the case of Borda rank-
ing is of interest theoretically, it does limit its practical use as an
approximation method, since leaving 50% of societal value on the
table is unlikely to be acceptable in practice.

2The NP-hardness of a variant of proportional representation [5]
is known [23], but using a model with added flexibility that does not
imply the NP-hardness of our limited choice model.
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Fig. 1: Example showing that r∗β |K can be factor of 2 worse than optimal. Assume q items {0, 1, . . . , q − K − 1, β1, . . . , βK}, and
n = K(q −K − 2) votes. Votes are divided into K blocks, each with q −K − 2 votes. For each block j ≤ K, item j − 1 is the top item in
each vote, and j (mod K) the worst. This means the optimal recommendation set is Φ∗ = {0, . . . ,K − 1}, with Sβ(Φ∗, V ) = (q − 1)n.
The jth block of votes has a structure illustrated in the figure, with two example votes shown: the items j and j (mod K) are fixed in the
top/bottom spots and items β1, . . . , βK are fixed in positions q/2−K+ 1, . . . , q/2. (Fixed items are shaded.) Remaining items are arranged
in the other positions in the first vote (unshaded). Starting with one such arrangement (e.g., the top vote in the figure), each alternative is
“rotated downward” one unshaded position (with wrap around) to produce the next vote in the block. This is repeated until q − K − 2
votes are constructed for block j (i.e., one vote for each unshaded position). Thus, any non-fixed item occupies each unshaded rank in
exactly once in block j. The average score of an unshaded item is

∑
i∈[q−2]\{q/2,...,q/2+K−1} i = −q2+3 q−2+qK+K2−K

−2q+2K+4
< q/2 (since

q > K + 2). Hence the average score of any item in {K, . . . , q − K − 1} (which occupy only unshaded ranks) across all blocks is less
than q/2. Also the average score of any item in Φ∗ is less than q/2: item j − 1 has score q − 1 in block j but has score 0 in block j − 2
(mod K), and average less than q/2 in all other blocks (it is unshaded in those). But the average score of βi is at least q/2 (since its
position is fixed in all blocks ). Hence the top K items of the Borda ranking r∗β are β1, . . . , βK . But Sβ(r∗β |K,V ) = (q/2 + K − 1)n, so
S(r∗β |K,V )/S(Φ∗, V ) = (q/2 +K − 1)/(q − 1), which approaches 1/2 from above as q →∞.

diverse in this sense. Greedy outputs the diverse set {1, 5}
with score 17668, whereas the top 2-set from the Borda and
Kemeny rankings is {1, 3} with score 17352. Not only do
Borda and Kemeny produce an inferior pair with respect to
score, the pair is non-diverse, illustrating the key weakness of
top-k methods based on standard consensus ranking meth-
ods. The quality of the Borda/Kemeny approximations is
even worse with scoring functions that exaggerate score dif-
ferences across rank positions (see below).

Limited Choice: Sushi Dataset The sushi dataset contains
5000 full preference orderings over 10 varieties of sushi [15].
In the limited choice setting, we might have a banquet in
which only a small selection of sushi types can be provided
to a large number of guests. Table 1 shows the approximation
ratios of various algorithms for different slate sizes K, using
an exponentially decreasing PSF αexp(i) = 2m−i. CPLEX
was used to solve an IP to determine optimal slates (compu-
tation times are shown). We evaluate Greedy, random sets of
size K (averaged over 20 instances for each K), and Borda
and Kemeny (recommending the top K options). We see
that Greedy always finds the optimal slate (in fact, does so
for all K ≤ 9), and does so very quickly (under 1s.) rela-
tive to CPLEX optimization. Borda and Kemeny provide de-
cent approximations, but are not optimal. Unsurprisingly, for
large K (relative to |A|) random subsets do well, but perform
poorly for small K. Results using Borda scoring are similar
except that, unsurprisingly, random sets yield better approxi-
mations, since Borda count penalizes less for recommending
lower-ranked alternatives than the exponential PSF.

General BSC: Sushi Dataset We tested SSG on the sushi
dataset in the general BSC model. We first randomly gen-
erated fixed costs while holding unit costs at zero. This of-
fers a slight generalization of limited choice. Integer fixed
costs for each sushi variety were chosen uniformly at random
from [20, 50), with a budget of 100: so we typically recom-
mend 2 to 5 items. We compared SSG to the optimal solution

K Greedy Borda Kemeny Random CPLEX (sec.)
2 1.0 1.0 0.932 0.531 49.1
3 1.0 0.986 0.949 0.729 90.38
5 1.0 0.989 0.970 0.813 20.32
7 1.0 1.0 1.0 0.856 13.16

Table 1: Results using the limited choice model on the sushi dataset
with 10 alternatives and 5000 full rankings. Four algorithms are
shown in the columns 2–5 along with their approximation ratios for
each K. CPLEX solution times are shown in the last column.

(using an IP solved with CPLEX) on 20 random cost pro-
files (the preferences are fixed by the data set).3 Borda scor-
ing and the exponential PSF αexp give similar results. With
Borda, SSG is within 99% of the optimal recommendation
function on average (it usually attains the optimum, and is
never worse than 94% of optimal). Its running times lie in
the range [1.91s, 2.34s] (with a simple Python implementa-
tion). Meanwhile, CPLEX has an average solution time of
114s (and range [69s, 176s]), taking roughly two orders of
magnitude longer to produce recommendations that improve
of SSG by an average of only 1%.

In a second experiment, we varied both fixed and unit costs,
with fixed much larger: integer unit costs were chosen uni-
formly from [1, 4] and fixed costs from [5000, 10000]. A
budget of 35000 allows roughly 3 unique alternatives to be
recommended. We again compare SSG to the optimal rec-
ommendation function on 20 random instances. With Borda
scores, SSG recommendations are on average within 98% of
optimal, while taking 2–5s. to run. In contrast, CPLEX takes
458s. on average (range [130s, 1058s]) to produce an opti-
mal solution. We achieve similar results using the exponen-
tial PSF, with SSG averaging 97% of optimal and taking 3–6s.
while CPLEX averages 321s. (range [131s, 614s]). These ex-

3Top-k methods using consensus rankings like Borda or Kemeny
cannot be used in general BSC problems, since they cannot reason
about cost, nor can they assign voters to specific alternatives.



periments show that SSG has extremely strong performance,
quickly finding excellent approximations to optimal recom-
mendation functions.

6 Conclusion

We have introduced a new class of budgeted social choice
problems that spans the spectrum from genuine consensus (or
“one-size-fits-all”) decision making to fully personalized rec-
ommendation. Our key motivation, that some customization
to the preferences of distinct groups of users may be feasi-
ble where complete individuation is not, holds of many real-
world scenarios. Despite the diversity of user preferences,
one must produce/recommend a limited number of alterna-
tives, a problem best tackled by segmenting agents with sim-
ilar preferences and selecting an alternative for each group.
Our model includes certain schemes for proportional repre-
sentation as special cases, and indeed motivates the possible
application of proportional schemes to ranking and recom-
mendation. Our framework often favors diversity, as opposed
to popularity, of the chosen alternatives. Despite the theoret-
ical complexity of optimization, our greedy methods perform
extremely well on the data sets tested.

Extensions of this work include developing several varia-
tions of the budgeted model mention above: e.g., imposing
separate budgets for fixed and unit costs; adopting different
cost models; and incorporating more general utility metrics,
including set-based voter preferences. If social welfare is
a surrogate for decision maker revenue or return on invest-
ment (ROI), and other investment options are available (e.g.
a government considering public projects) we may wish to
relax the budget constraints and instead maximize ROI per
unit cost. Deeper connections to proportional voting and
other multi-winner schemes are also being explored, as is the
performance of top-k methods using other rank aggregation
schemes (such as Kemeny).

We are also developing probabilistic models and algo-
rithmic methods for budgeted social choice with incomplete
votes. Incomplete preferences are the norm in practical ap-
plications, such as recommender systems, where users offer
preferences/ratings over only a small subset of alternatives.
Budget-based slates can be constructed decision-theoretically
exploiting distributional information over population prefer-
ences (e.g., those of some target market): recommendation
sets or assignments are optimized with respect to the posterior
over preferences given partial user data. In higher stakes set-
tings, such as political or corporate voting, robust selection of
alternatives based on minimax regret should prove very useful
[20], particularly when used in conjunction with an elicitation
process where users are asked only relevant queries. Prefer-
ence distributions may prove useful in minimizing the total
number of preference queries.
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