
Buffer Block Planning for Interconnect-Driven Floorplanning

Jason Cong, Tianming Kong and David Zhigang Pan
Department of Computer Science

University of California, Los Angeles, CA 90095
Email: fcong, kongtm, pang@cs.ucla.edu�

Abstract

This paper studies buffer block planning for interconnect-driven
floorplanning in deep submicron designs. We first introduce the
concept of feasible region (FR) for buffer insertion, and derive
closed-form formula for FR. We observe that the FR for a buffer
is quite large in general even under fairly tight delay constraint.
Therefore, FR gives us a lot of flexibility to plan for buffer loca-
tions. We then develop an effective buffer block planning (BBP)
algorithm to perform buffer clustering such that the overall chip
area and the buffer block number can be minimized. To the best of
our knowledge, this is the first in-depth study on buffer planning for
interconnect-driven floorplanning with both area and delay consid-
eration.

1 Introduction

For deep submicron (DSM) VLSI designs, it is widely accepted
that interconnect has become the dominant factor in determining
the overall circuit performance and complexity. Many intercon-
nect synthesis techniques have been proposed recently for inter-
connect performance optimization, such as topology construction,
driver sizing, buffer insertion, wire sizing and spacing (see [1] for
a tutorial). Among them,buffer insertionin particular, is a very
effective and useful technique by inserting active devices (buffers)
to break original long interconnects into shorter ones such that the
overall delay can be reduced. It has been shown that without buffer
insertion, the interconnect delay for a wire increases about quadrat-
ically as wire length increases, but it only increases linearly under
proper buffer insertion [2, 3, 4]. As an example, [5] showed that the
delay of a 2cm global interconnect can be reduced in a factor of 7x
by optimal buffer insertion. As the intrinsic delay of a buffer (i.e.,
the cost for buffer insertion) becomes smaller and the chip dimen-
sion gets larger, it is expected that a large number of buffers shall
be inserted for high-performance designs in current and future tech-
nology generations (e.g., close to 800,000 for 50nm technology as
estimated in [6]). The introduction of so many buffers will signifi-
cantly change a floorplan, and shall be planned as early as possible,
to ensure timing closure and design convergence.

However, most existing buffer insertion algorithms (e.g., [7, 8, 9,
10]) were designed for post-layout interconnect optimization, and
also for a single net. There was no global planning for tens of thou-
sands of nets that may need buffer insertion to meet their perfor-
mance requirement as in DSM designs. Meanwhile, most existing
floorplanning algorithms (e.g., [11, 12, 13]) only focused on wire-
length/area minimization, and did not consider buffer insertion for
performance optimization. [14] considered buffer insertion during
floorplanning, but it simply assumed that buffers can be inserted
anywhere in an existing floorplan. However, not as wires which
may have over-the-cell routing structure (given multiple metal lay-
ers), buffers must consume silicon resource and require connections
to power/ground network, thus may not be placed anywhere inside

�This research is partially sponsored by Semiconductor Research Cor-
poration under Contract 98-DJ-605, and equipment donation from Intel.

an existing circuit blocks. Otherwise, it will seriously impact the hi-
erarchical design style, make it difficult to use/reuse IP blocks. As
a result, the designers often prefer to form buffer blocks between
existing circuit blocks of current floorplan, which may increase the
total chip area. If there is no careful planning of these large amount
of buffers, one may get excessive area increase. Moreover, with-
out careful planning, it is most likely that these buffers will be dis-
tributed rather randomly over the entire chip, which will definitely
complicate global/detailed routing and power/ground distribution.

To effectively address the above issues, as part of our general
effort of developing an interconnect-centric design flow [15], we
study in this paper thebuffer block planning(BBP) problem, which
automatically generates buffer blocks for interconnect optimization
during physical-level floorplanning. It considers buffer location
constraints (e.g., hard IP blocks and pre-design layout) and pro-
vides more regular buffer structure for ease of layout design and
sharing of power/ground networks. Our major contributions of this
paper include:

� We first introduce the concept of feasible region (FR) for
buffer insertion under certain delay constraint, and derive an
analytical formula for it.

� We find that the FR for a buffer can be surprisingly large, even
under tight delay constraint. This crucial observation provides
us a lot of flexibility to plan a buffer’s location.

� We propose to use buffer blocks to appropriately cluster indi-
vidual buffers together so that the total chip area due to buffer
insertion, as well as the number of buffer blocks can be mini-
mized.

� We develop an effective algorithm for buffer block planning.
It can be used as a key element for interconnect-driven floor-
planning.

To the best of our knowledge, this is the first in-depth study of
buffer planning for interconnect-driven floorplanning. The rest of
the paper is organized as follows. Section 2 formulates the problem.
Section 3 derives the feasible region for buffer insertion. Section 4
studies buffer block planning and proposes an effective algorithm
for it. Experimental results are shown in Section 5, followed by the
conclusion in Section 6. Due to space limitation, we omit proofs to
the theorems in this paper. Interested reader may refer to [16] for
details.

2 Problem Formulation
We propose to study the followingbuffer block planning(BBP)
problem: given an initial floorplan and the performance constraints
for each net, we want to determine the optimal locations and dimen-
sions of buffer blocks (i.e., the extra blocks between existing circuit
blocks of current floorplan) such that the overall chip area and the
number of buffer blocks after buffer insertion are minimized while
the performance constraint for each net is satisfied (if it is a valid
timing constraint for the given floorplan that can be met by opti-
mal buffer insertion). The output from our buffer block planning

0-7803-5832-X /99/$10.00 ©1999 IEEE.

consists of the following information: the number of buffer blocks,
each buffer block’s area, location, and corresponding nets that use
some buffer in this buffer block to meet the delay constraints. In this
study, we focus on two-pin nets and derive the closed-form formula
of feasible region for buffer insertion. The concepts of feasible re-
gion and buffer block planning can be extended to multiple-pin nets
as well.

We model a driver/buffer as a switch-level RC circuit [5], and
use the well-known Elmore delay model for delay computation.
The key parameters for interconnect and buffer in our study are
listed in Table 1. The values are based on a 0.18�m technology in
NTRS’97[17].

Table 1: Key parameters

r unit length wire resistance (
=�m) 0:068
c unit length wire capacitance (fF=�m) 0:118
Tb intrinsic delay for buffer (ps) 36:4
Cb input capacitance of buffer (fF) 23:4
Rb output resistance of buffer (
) 180

3 Feasible Region for Buffer Insertion
The feasible region(FR) for a bufferB is defined to be the maxi-
mum region whereB can be located such that by inserting bufferB
into any location in that region, the delay constraint can be satisfied.
Figure 1 illustrates the concept of FR for inserting 1 ork buffers into
a net where the source and sink of the net are connected by a given
route. In the figure, the FR’s are the shaded line segments.

3.1 Feasible Region for Single-Buffer Insertion
For single-buffer insertion in Figure 1(a), let us denotex to be the
distance from driver to buffer. We have the following theorem for
its feasible region:

Theorem 1 For a given delay constraintTreq, the feasible region
[xmin; xmax] for inserting one buffer is

xmin = MAX

0;
K2 �

p
K2

2
� 4K1K3

2K1

!

xmax = MIN

l;
K2 +

p
K2

2
� 4K1K3

2K1

!

where

K1 = rc

K2 = (Rb �Rd)c+ r(CL � Cb) + rcl

K3 = RdCb + Tb +Rb(CL + cl) +
1

2
rcl2 + rlCL � Treq:

2

Note that for Theorem 1 to be valid,K2

2 � 4K1K3 � 0 shall
hold. Otherwise, no feasible region exists and the initial floorplan-
ning/timing budget has to be modified. Figure 2 shows the FR for
inserting one buffer to an interconnect of length from 6mm to 9mm.
We first compute the best delayTbest by inserting one buffer, then
assign the delay constraint to be(1+�)Tbest, with � to be from 0 to
50%. The x-axis shows the� and the y-axis shows the FR distance,
i.e.,xmax�xmin. It is interesting to see that even with fairly small
amount of slack, say 10% more delay fromTbest, the FR can be as
much as 50% of the wire length. This important observation leads
great flexibility for buffer planning, to be discussed later on in this
paper.

CL
feasible region for each buffer

Rd x
x

x
2

1

k

CLfeasible regionRd
x

(a)

(b)

l

x

x

max

min

Figure 1: Feasible regions for inserting (a) one buffer; (b)k buffers.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0.00 0.10 0.20 0.30 0.40 0.50 0.60
F
e
a
s
i
b
l
e

r
e
g
i
o
n

d
i
s
t
a
n
c
e

(
u
m
)

delta

9mm
8mm
7mm
6mm

Figure 2: The distance feasible region for inserting a buffer under
different delay constraint of�.

3.2 Feasible Regions for Multiple-Buffer Insertion
For a long interconnect, more than one buffer may be needed to
meet a given delay budget. Fork buffers inserted, we have the
following theorem to compute the feasible region for each buffer.

Theorem 2 For a long interconnect withk buffers inserted,
the feasible region for thei-th buffer (i � k) is xi 2
[xmin(k; i); xmax(k; i)] with

xmin(k; i) = MAX

0;
K0

2 �
p
K02

2
� 4K0

1
K0

3

2K0

1

!

xmax(k; i) = MIN

l;
K0

2 +
p
K02

2
� 4K0

1
K0

3

2K0

1

!

whereK0

1, K0

2 andK0

3 are functions ofk and i (for simplicity of
notation, we drop them in the above equations) with

K0

1(k; i) =
(k + 1)rc

2i(k � i+ 1)

K0

2(k; i) =
(Rb �Rd)c

i
+
r(CL � Cb) + rcl

k � i+ 1

K0

3(k; i) = kTb � Treq +

�
Rd + (i� 1)Rb +

(k � i)rl

k � i+ 1

�
� Cb

+ Rb[(k � 1)Cb + CL + cl] +
rcl2

2(k � i+ 1)
+ rlCL

�
(i� 1)c(Rb �Rd)

2

2ir
�

(k � i)r(Cb � CL)
2

2(k � i + 1)c
:

2

It can be verified that Theorem 1 is a special case of Theorem 2
with k = i = 1. The following theorem determines the minimum
number of buffers that are required to meet a given delay budget.

Theorem 3 The minimum number of buffers to meet the delay con-
straintTreq for an interconnect of lengthl is

kmin =

&
K5 �

p
K2

5
� 4K4K6

2K4

'
(1)

where

K4 = RbCb + Tb (2)

K5 = Treq +
r

c
(Cb � CL)

2 +
c

r
(Rb �Rd)

2

�(rCb + cRb)l� Tb �RdCb �RbCL (3)

K6 =
1

2
rcl2 + (rCL + cRd)l � Treq (4)

2

Based on these results, given a two-pin net with a delay con-
straint,kmin and the feasible region for each buffer can be com-
puted in constant time. As a simple example, for a 1cm net with
Rd = Rb, CL = Cb and the delay constraintTreq = 1:05 � Tbest
(Tbest is the best delay by optimal buffer insertion, which is 464ps),
we can calculate that the minimum number of buffers needed
is kmin = 2, and the feasible regions for the first and second
buffers are[1:47mm; 5:20mm] and [4:80mm; 8:53mm], respec-
tively. Note that the FR’s of adjacent buffers may overlap, as in this
example. This is because FR for each buffer is computed indepen-
dently, assuming all other buffers can be optimally placed to satisfy
the delay constraint, i.e., our FR provides the maximum freedom
for each a buffer. It shall be noticed that during the buffer planning
phase (in Section 4), when a buffer is placed (i.e., “committed”) to
a position within its feasible region, we will need to update the FR’s
of all otherunplacedbuffers of the same net to safely meet its delay
constraint. But since we have the analytical formula, this update
can be computed in constant time.

3.3 2-Dimensional Feasible Region
So far, our discussion of FR is restricted to a one-dimensional line,
i.e., we assume the route from source to sink is already speci-
fied by some global router. Thus the feasible region is also one-
dimensional. In practice, however, global routing usually has not
been performed prior to or during floorplanning. In this case we
can compute a much larger 2-dimensional FR for each buffer. This
2-dimensional feasible region is essentially theunion of the one-
dimensional feasible regions ofall possible routes from source to
sink. Therefore, we can have much more freedom for buffer plan-
ning. Since for each net, its buffer location will then determine
roughly its routing, our buffer block planning indeed determines
the overall global routing structure for each net.

For a two-dimensional net, let the source location be(xsrc; ysrc)
and the sink location be(xsink; ysink). We only need to consider
non-degenerate two-dimensional cases here, i.e.,xsrc 6= xsink and
ysrc 6= ysink. Also, we consider only the monotone (i.e., non-
detour) routes from source to sink. We prove that with Manhattan
monotone routing, the 2-D FR can be obtained by the following
theorem.

Theorem 4 For a net withk buffers, the 2-dimensional feasible re-
gion for thei-th buffer is the region bounded by two parallel lines
with Manhattan distances from the source to bexmin(k; i) and

xmax(k; i), respectively (the same as Theorem 2), and by the rect-
angular bounding box between the source and the sink. The slope
of the two parallel lines is either +1 or -1, depending on the sign of
ysink�ysrc
xsink�xsrc

: if ysink�ysrc
xsink�xsrc

> 0, the slope is -1; ifysink�ysrc
xsink�xsrc

< 0,
the slope is +1. 2

Note that in previous works of buffer insertion, buffers are mostly
inserted in their delay-minimal positions, which we call them as
restrictedpositions because they are only a small subset within our
FR. The restricted positions for a 2-dimensional net can be obtained
by the following corollary:

Corollary 1 For a 2-D net withk buffers, the restricted positions
of thei-th buffer for all monotone routes from the source to the sink
form a restricted line within the feasible region of thei-th buffer.
The line slope is again either +1 or -1, the same as that in Theo-
rem 4. 2

Also, if there are obstacles (such as hard IP blocks), we just need
to deduct them from the feasible region. An example of a two-
dimensional feasible region with a restricted line and some obsta-
cles is illustrated in Figure 3.

xmin

xmax
�����
�����
�����
�����

�����
�����
�����
�����

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

source

circuit block

feasible region

restricted line

insertion point

possible but infeasible region sink

Figure 3: 2-D feasible region and a restricted line. The existing
circuit blocks act as obstacles for buffer insertion.

4 Buffer Block Planning
In the previous section, we show that for a given delay constraint, a
buffer may be inserted in a fairly wide feasible region. Therefore,
it gives us a lot of flexibility to plan for every buffer’s insertion po-
sition (within its FR) such that the overall chip area due to buffer
insertion, as well as the total number of buffer blocks can be min-
imized. It shall be noted that such a buffer block planning also
determines the overall global routing structures for long intercon-
nects by determining their internal buffer locations. In this section,
we will present an effective algorithm for buffer block planning.

The BBP problem is very difficult in the following senses: (i)
Many buffer blocks might need to be optimally shaped for overall
chip area minimization; (ii) To make the situation even more com-
plicated, different buffers of the same net will not be independent
of each other. For a long interconnect with more than one buffers
inserted, Theorem 2 gives the maximum FR for each buffer. How-
ever, when a buffer is committed to a certain location within its FR,
the FR’s for other buffers in the same net will have to be updated so
that the delay constraint can be safely met1.

In the rest of this section, we will present an effective algorithm
to solve the buffer block planning problem. There are several im-
portant features in our BBP algorithm: (i) It takes advantage of both
the flexibility of FR and the simplicity of its analytical formulae, so

1Fortunately, we have the analytical formula to compute FR. Thus, the
update can be done extremely fast.

Algorithm: Buffer Block Planning (BBP)
1. Build horizontal and vertical polar graph;
2. Build tile data structure;
3. For each tile, compute its area slacks;
4. while (there exists buffer to be inserted)f
5. tile Pick A Tile();
6. Insert Buffers(tile);
7. updateWc,Hc, FR and area slacks;
8. g

Figure 4: Overall flow of the buffer block planning algorithm.

that one may handle large circuits with tens of thousands long inter-
connects easily; (ii) Since in most floorplans, there are somedead
areas that cannot be taken by any circuit module, our algorithm
will use these dead areas as much as possible to save the overall
chip area; (iii) Different from previous buffer insertion algorithm
which only inserts one buffer for a single net, our BBP algorithm
always maintainsglobal buffer insertion information forall nets,
thus it can effectively cluster individual buffers that belong to dif-
ferent nets into buffer blocks.

Figure 4 gives the overall flow of the buffer block planning algo-
rithm. Lines 1 to 3 are the data preparation stages. First, we will
build the horizontal and vertical polar graphs [18], for the given
floorplan denoted asGH andGV , respectively. Let us takeGH to
illustrate how to build the horizontal polar graph.GH is a directed
graph, each vertexv in it corresponds to a vertical channel, and an
edgee = (v1; v2) corresponds to a circuit module whose left and
right boundaries are adjacent to channelsv1 andv2, respectively.
For each vertexv, we assign its weightw(v) to be its correspond-
ing channel width. Similarly, for each edgee, we assign its weight
w(e) to be its corresponding module width. GraphGV can be built
similarly. By running longest path algorithm onGH /GV , we can
obtain the width/height of the chip (denoted byWc/Hc). For those
channels not on the critical paths inGH /GV , we will have some
positive slacks in width/height, which lead to dead areas. It shall
be noted that during buffer insertion, some circuit modules may
have to shift to make room for buffer blocks (e.g., if no dead area
exists). Therefore, a horizontal channel’s height or a vertical chan-
nel’s width may increase during BBP.

To better represent buffer block and facilitate easy data manipu-
lation such as feasible region intersection, we divide each channel
into a set of rectangular tiles. Then we compute for each tile� , its
slack with respect to the longest path in the polar graphGH orGV .

Thewhile loop from lines 4 to 8 is the main part of our BBP algo-
rithm. The iterative buffer insertion process will continue as long as
there is still some net that needs buffer(s) to meet performance con-
straint. Each iteration of thewhile loop has two major steps: first,
we will pick a best tile for buffer insertion (Pick A Tile); then, we
will insert proper buffers into this tile (Insert Buffers).

To pick the best tile in each iteration, thePick A Tile routine
works in the following two modes, depending on whether there ex-
ists some useful dead area for buffer insertion or not:

1. There exists some tile whose area slack is positive (due to dead
area). In this case, buffers inserted into this tile will not in-
crease the overall chip area as long as the total area of buffers
inserted in the tile is smaller than this tile’s area slack. For ex-
ample of a tile� in a vertical channel, suppose its width slack
is w� , and its height isH� . Then we can insert as many as
bw�H�=Abc buffers into tile� without increasing the over-
all chip area, whereAb is the area of a buffer. The actual
number of buffers that can be inserted into� may be smaller,
since only those buffers whose FR intersects with tile� can

be candidates to be inserted into� . Therefore, the number of
buffers that can be inserted into� , without chip area increase
is n� = min(bw�H�=Abc;m�), wherem� is the number
of buffers whose FR’s intersect with tile� . Since we may
have multiple tiles with positive slack (especially at the begin-
ning of BBP), we will pick the one with largestn� because
this greedy approach shall reduce the total number of buffer
blocks, which is also our buffer block planning objective.

2. There is no tile with positive area slack. Then, any buffer in-
sertion will increase the overall chip area. When some buffer
is inserted into a tile, we have to shift some circuit modules.
This shifting will make room for other tiles, so we will have
some new positive-slack tiles. Our tile selection process will
try to maximize such opportunity. Notice that as a buffer is
inserted in� , other tiles in the same channel with� will have
positive area and tend to have buffers inserted in the future,
thus the chance of buffers clustering increases. To maximize
such effect, we will pick the channel that has the maximum
buffer insertion demand and choose one tile in it. Note that in
this scenario, since we need to expand the channel, we only
insert one buffer into it to minimize the area increase.

Our strategy forInsert Buffers into the tile� that has just been
picked byPick A Tile also works in two modes, corresponding to
those two inPick A Tile:

1. The tile� has dead area. From case 1 inPick A Tile, we
know thatn� buffers can be inserted into the tile. Meanwhile,
there arem� buffer candidates whose FR’s intersect with tile
� , with m� � n� . Then ifn� = m� , we will insert all these
m� buffers; ifm� > n� , we will only insert firstn� buffers
out of thesem� buffers, sorted according to the increasing
size of their FRs. Different from previous approaches that just
inserts one buffer for one net, our approach inserts as many as
n� buffers forn� different nets simultaneously. Since all of
them are clustered into tile� , they form a natural buffer block.

2. The tile does not have dead area, but needs expansion to make
room for any buffer insertion. In this case, we only insert one
buffer, i.e.,n� = 1. Again, if there are multiple buffers that
can be inserted in this tile, we insert the one with tightest FR
constraint.

After deciding how many and whichn� buffers are inserted
(“committed”) into tile � , we will update the following informa-
tion: (i) The feasible regions of “uncommitted” buffers in the same
net for which we just inserted a buffer into� ; (ii) The correspond-
ing vertex (i.e., channel) weights inGH and/orGV that are affected
by the insertion of the buffer block; (iii) The new chip dimension
Wc, Hc and the slacks for each channel and tile. Then we repeat
the buffer insertion/clustering process until all buffers are placed. It
shall be pointed that our BBP algorithm can handle both slicing and
non-slicing floorplanning structures.

5 Experimental Results
We have implemented our buffer block planning algorithms using
C++ on an Intel Pentium-II machine with 256M-byte main mem-
ory. This section presents the experimental results. The parameters
(refer to Table 1) used in our experiments are based on a0:18�m
technology in the NTRS’97 roadmap [17].

We have tested our algorithms on 11 circuits, as summarized in
Table 2. The first six circuits are from MCNC benchmark [19],
and the other five are randomly generated. In this paper, we focus
on 2-pin nets, so we decompose each multi-pin net into a set of

Table 2: Test circuit statistics.

circuit #modules # nets # pads #2-pin nets
apte 9 97 73 172

xerox 10 203 2 455
hp 11 83 45 226

ami33 33 123 43 363
ami49 49 408 22 545

playout 62 2506 192 2150
ac3 27 212 75 446
xc5 50 1005 2 2275
hc7 77 449 51 1450

a9c3 147 1202 22 1613
pc2 124 3126 192 4204

source-to-sink 2-pin nets2. We then compute the critical length for
buffer insertion (defined to be the minimal interconnect length that
buffer insertion is needed for delay reduction) using the analytical
formula in [20]. We will use it to filter out short interconnects, i.e.,
if a net is shorter than the critical length, we will ignore it during
buffer block planning since buffer insertion can not help reduce its
delay. The initial floorplan for each circuit is generated by running
the simulated tempering (an improved Monte Carlo technique of
simulated annealing) algorithm as in [21]. For each net, we first
compute its best delay by optimal buffer insertionTopt [20], and
then randomly assign its delay budget to be1:05 � 1:20Topt.

We compare our BBP algorithm with a conventional buffer inser-
tion algorithm without trying to plan buffer positions, i.e., at each
iteration, a buffer is randomly picked and assigned to a feasible lo-
cation, denoted as RDM algorithm. We run BBP and RDM under
two different scenarios: one is RES where a buffer can only be lo-
cated in its delay-minimal restricted position(s) (see Figure 3); and
the other is FR where a buffer may be insertedanywherein its fea-
sible region. The results for the four different algorithmatic com-
binations are summarized in Table 3, where BBP/RES means BBP
algorithm applied to scenario RES, RDM/FR means RDM applied
to scenario FR, and so on.

In Table 3, we report for each algorithm combination: (i) the
total number of buffers inserted to meet performance constraints
(buffers), (ii) the number of buffer blocks (#BB), (iii) the number
of 2-pin nets that can meet their delay constraints (#meet)3, (iv) the
chip area increase due to buffer insertion in percentage (area), and
(v) the CPU time in second (cpu). It is interesting to observe from
the table that

� Under the same RES scenario (i.e., only the restricted posi-
tions are allowed for buffer insertion), the RDM and BBP al-
gorithms will have about the same number of buffers inserted
and the same number of nets meeting their delay constraints.
However, our BBP algorithm is able to explicitly cluster ap-
propriate buffers together, so that it leads to significant area
saving and much less number of buffer blocks than RDM al-
gorithm. For example of circuitpc2, the area increase of
BBP/RES is 3.21%, whereas that of RDM/RES is about 9%
(2.8x larger); the #BB of BBP/RES is 542, whereas that of
RDM/RES is about 1290 (2.38x larger). The same conclusion

2Note that the number of 2-pin nets is possibly smaller than that of orig-
inal nets (playout) because the power/ground and single-pin nets are ex-
cluded.

3A net will fail to meet its delay constraint if the given delay constraint
is too tight, or its buffer’s feasible region is fully occupied by existing circuit
blocks.

about the comparison of BBP versus RDM holds for the FR
scenario. It is also interesting to observe that BBP algorithm
does not indeed increase CPU time from RDM. Actually, it
may use slightly less run time. This is because during BBP,
one buffer block (not just one buffer) can be determined at a
time.

� Under the same algorithm, e.g., BBP, the usage of FR signif-
icantly increases the number of nets that can meet their delay
constraints (for example ofac3, from 289 to 369, a 28% in-
crease). This is because our feasible region is usually much
larger than the delay-minimal RES locations, so that one can
avoid existing circuit/buffer blockages during buffer insertion.
Note that as#meetincreases, the number of buffers inserted
to meet performance constraints also increases accordingly
from RES to FR. However, since the FR provides much more
freedom during buffer clustering, the number of buffer blocks
(#BB) in fact reduces (for example of ofa9c3, from 557 to
366, a 34% reduction); and the area expansion due to buffer
insertion is also less by using FR with better buffer cluster-
ing. Since the FR computation/update can be computed in
constant time, the run times under FR scenario only increase
slightly compared to those under RES. As a result, our largest
example (pc2with more than 13,000 buffers) only takes about
100s.

To summarize, it is obvious that the BBP/FR is the best combi-
nation among these four to meet delay targets, with very marginal
area increase (less than 2.1% for all test cases), least number of
buffer blocks and comparable CPU times. It shall be noticed, how-
ever, that even under this best algorithm, there may still exist quite
some nets that cannot meet their delay constraints under some given
floorplan and timing budget. Therefore, it is important to have an
interconnect-driven floorplanning engine to work closely with our
BBP/FR algorithm. We are currently working on it.

As an example, we show in Figure 5 the circuit buffer block lay-
outs from RDM/RES and BBP/FR on circuitxerox.

(a) (b)

Figure 5: Floorplan and buffer block layouts of the MCNC circuit
xeroxby (a) RDM/RES; (b) BBP/FR. The ten big blocks are circuit
functional modules, and the rest are buffer blocks.

6 Conclusion
In this paper, we first introduce the concept of feasible region for
buffer insertion and derive the analytical formula to compute FR
under given delay constraint. We then propose an effective buffer
block planning (BBP) algorithm to automatically generate buffer
blocks for interconnect optimization with chip area and buffer block
number minimization. Experimental results show that our BBP/FR
algorithm leads to significant improvement over previous buffer in-
sertion/planning algorithms. We believe that our buffer block plan-
ning scheme will play a central role in an interconnect-driven floor-
planning system.

Table 3: Comparison of four different buffer insertion/planning algorithms.
buffers #BB #meet area cpu(s) buffers #BB #meet area cpu(s)

circuit RDM/RES RDM/FR
apte 157 74 81 1.50% 0.14 181 93 98 1.81% 0.25

xerox 343 102 210 1.85% 0.36 403 116 262 2.11% 0.56
hp 242 119 106 2.48% 0.28 274 147 128 2.78% 0.47

ami33 625 278 271 2.91% 1.22 660 306 302 3.41% 1.78
ami49 867 376 342 3.19% 2.47 921 404 394 3.42% 3.78

playout 3997 581 1337 3.74% 13.23 4244 730 1515 4.06% 17.61
ac3 649 267 302 2.56% 1.00 736 290 377 2.90% 1.61
xc5 2860 460 1379 4.20% 7.95 3197 499 1727 4.21% 11.83
hc7 2557 909 967 6.50% 11.56 2662 941 1053 6.63% 17.89

a9c3 4035 1082 1257 4.46% 26.09 4236 1156 1416 4.66% 34.80
pc2 12237 1290 2687 8.95% 80.11 13157 1371 3339 8.99% 122.34

BBP/RES BBP/FR
apte 168 48 90 0.80% 0.14 185 34 102 0.69% 0.23

xerox 330 68 195 1.06% 0.33 399 66 260 1.38% 0.53
hp 245 77 109 1.49% 0.30 280 64 131 1.24% 0.48

ami33 616 161 259 1.49% 1.06 667 125 305 1.36% 1.63
ami49 882 197 355 1.25% 2.08 946 136 412 0.78% 3.25

playout 4016 245 1350 1.13% 10.02 4263 201 1533 0.84% 13.98
ac3 639 145 289 1.28% 0.86 733 118 369 1.11% 1.39
xc5 2920 285 1431 2.58% 6.38 3210 193 1739 1.79% 10.16
hc7 2542 455 946 2.86% 9.89 2693 299 1068 1.92% 15.88

a9c3 4082 557 1293 1.83% 21.13 4265 366 1446 0.89% 29.20
pc2 12530 542 2837 3.21% 63.91 13238 416 3462 2.02% 99.84

Acknowledgments
The authors would like to thank Dr. Wilm Donath from IBM T. J.
Watson Research Center, Dr. Norman Chang from HP Labs, and
Dr. Lukas van Ginneken from Magma Design Automation for their
helpful discussions.

References
[1] J. Cong, L. He, C.-K. Koh, and P. H. Madden, “Performance opti-

mization of VLSI interconnect layout,”Integration, the VLSI Journal,
vol. 21, pp. 1–94, 1996.

[2] H. B. Bakoglu, Circuits, Interconnections, and Packaging for VLSI.
Addison-Wesley, 1990.

[3] R. Otten, “Global wires harmful?,” inProc. Int. Symp. on Physical
Design, pp. 104–109, Apr. 1998.

[4] J. Cong and D. Z. Pan, “Interconnect delay estimation models for syn-
thesis and design planning,” inProc. Asia and South Pacific Design
Automation Conf., pp. 97–100, Jan., 1999.

[5] J. Cong, L. He, K.-Y. Khoo, C.-K. Koh, and D. Z. Pan, “Interconnect
design for deep submicron ICs,” inProc. Int. Conf. on Computer Aided
Design, pp. 478–485, 1997.

[6] J. Cong, “Challenges and opportunities for design innova-
tions in nanometer technologies.,” inSRC Working Papers,
http://www.src.org/prgmgmt/frontier.dgw, Dec. 1997.

[7] L. P. P. P. van Ginneken, “Buffer placement in distributed RC-tree net-
works for minimal Elmore delay,” inProc. IEEE Int. Symp. on Circuits
and Systems, pp. 865–868, 1990.

[8] J. Lillis, C. K. Cheng, and T. T. Y. Lin, “Optimal wire sizing and buffer
insertion for low power and a generalized delay model,” inProc. Int.
Conf. on Computer Aided Design, pp. 138–143, Nov. 1995.

[9] T. Okamoto and J. Cong, “Buffered Steiner tree construction with
wire sizing for interconnect layout optimization,” inProc. Int. Conf.
on Computer Aided Design, pp. 44–49, Nov. 1996.

[10] C. C. N. Chu and D. F. Wong, “Closed form solution to simultaneous
buffer insertion/sizing and wire sizing,” inProc. Int. Symp. on Physical
Design, pp. 192–197, 1997.

[11] W. M. Dai, B. Eschermann, E. S. Kuh, and M. Pedram, “Hierachical
placement and floorplanning for bear,” inIEEE Trans. on Computer-
Aided Design, pp. 1335–1349, 1989.

[12] D. Wong and C. L. Liu, “Floorplan design of VLSI circuits,” inAlgo-
rithmica, pp. 263–291, 1989.

[13] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “Rectangle-
packing-based module placement,” inProc. of Int. Conf. on Computer-
Aided Design, pp. 472–479, 1995.

[14] M. Kang, W. Dai, T. Dillinger, and D. LaPotin, “Delay bounded
buffered tree construction for timing driven floorplanning,” inProc.
of Int. Conf. on Computer-Aided Design, pp. 707–712, 1997.

[15] J. Cong, “An interconnect-centric design flow for nanometer technolo-
gies,” inProc. of Int’l Symp. on VLSI Technology, Systems, and Appli-
cations, pp. 54–57, June, 1999.

[16] J. Cong, T. Kong, and D. Z. Pan, “Buffer block planning for
interconnect-driven floorplanning,” Tech. Rep. 990036, UCLA CS
Dept, 1999.

[17] Semiconductor Industry Association,National Technology Roadmap
for Semiconductors, 1997.

[18] R. Otten, “Graphs in floor-plan design,”International Journal of Cir-
cuit Theory and Applications, vol. 16, pp. 391–410, Oct. 1988.

[19] “http://www.cbl.ncsu.edu/cbldocs/lys92.html,”

[20] C. J. Alpert and A. Devgan, “Wire segmenting for improved buffer
insertion,” inProc. Design Automation Conf, 1997.

[21] J. Cong, T. Kong, D. Xu, F. Liang, J. S. Liu, and W. H. Wong, “Relaxed
simulated tempering for VLSI floorplan design,” inProc. Asia and
South Pacific Design Automation Conf., pp. 13–16, Jan., 1999.

