
BUFFER OVERFLOW MANAGEMENT IN QoS SWITCHES∗

ALEXANDER KESSELMAN† , ZVI LOTKER‡ , YISHAY MANSOUR† ,

BOAZ PATT-SHAMIR‡ , BARUCH SCHIEBER§ , AND MAXIM SVIRIDENKO§

SIAM J. COMPUT. c© 2004 Society for Industrial and Applied Mathematics
Vol. 33, No. 3, pp. 563–583

Abstract. We consider two types of buffering policies that are used in network switches sup-
porting Quality of Service (QoS). In the FIFO type, packets must be transmitted in the order in
which they arrive; the constraint in this case is the limited buffer space. In the bounded-delay type,
each packet has a maximum delay time by which it must be transmitted, or otherwise it is lost. We
study the case of overloads resulting in packet loss. In our model, each packet has an intrinsic value,
and the goal is to maximize the total value of transmitted packets.

Our main contribution is a thorough investigation of some natural greedy algorithms in various
models. For the FIFO model we prove tight bounds on the competitive ratio of the greedy algorithm
that discards packets with the lowest value when an overflow occurs. We also prove that the greedy
algorithm that drops the earliest packets among all low-value packets is the best greedy algorithm.
This algorithm can be as much as 1.5 times better than the tail-drop greedy policy, which drops the
latest lowest-value packets.

In the bounded-delay model we show that the competitive ratio of any on-line algorithm for a
uniform bounded-delay buffer is bounded away from 1, independent of the delay size. We analyze
the greedy algorithm in the general case and in three special cases: delay bound 2, link bandwidth 1,
and only two possible packet values.

Finally, we consider the off-line scenario. We give efficient optimal algorithms and study the
relation between the bounded-delay and FIFO models in this case.

Key words. buffer overflows, competitive analysis, Quality of Service, FIFO scheduling, dead-
line scheduling

AMS subject classifications. 90B35, 68M20, 68Q25, 68W01

DOI. 10.1137/S0097539701399666

1. Introduction. Unlike the “best effort” service provided by the Internet to-
day, next-generation networks will support guaranteed Quality of Service (QoS) fea-
tures. In order for the network to support QoS each network switch must be able
to guarantee a certain level of QoS in some predetermined parameters of interest,
including packet loss probability, queuing delay, jitter, and others.

In this work, we consider models based on the IP environment. Implementing
QoS in an IP environment is receiving growing attention, since it is widely recognized
that future networks would most likely be IP based. There have been a few proposals
that address the integration of QoS in the IP framework, and our models are based
on some of these proposals, specifically in the general area of providing differentiated
network services in an IP environment. For example, different customers may get
different levels of service, which might depend on the price they pay for the service.

∗Received by the editors December 12, 2001; accepted for publication (in revised form) Decem-
ber 11, 2003; published electronically March 23, 2004. An extended abstract of this paper appeared
in Proceedings of the 33rd Annual ACM Symposium on Theory of Computing (STOC ’01), Crete,
Greece, 2001.

http://www.siam.org/journals/sicomp/33-3/39966.html
†Department of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel (alx@math.tau.ac.

il, mansour@math.tau.ac.il). The research of these authors was partially supported by a grant from
the Israel Ministry of Science and Technology.

‡Department of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel (zvilo@eng.
tau.ac.il, boaz@eng.tau.ac.il). The research of these authors was partially supported by a grant from
the Israel Ministry of Science and Technology.

§IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598 (sbar@us.ibm.
com, sviri@us.ibm.com).

563

564 KESSELMAN ET AL.

buffer
management

incoming
packets outgoing

stream

link buffer

link buffer

link buffer

link buffer

input ports output ports

dropped
packets

Fig. 1.1. Schematic representation of the model. Left: general switch structure. Right: output
port structure. Packets are placed in the buffer, and the buffer management algorithm controls which
packet will be discarded and which will be transmitted.

One way of guaranteeing QoS is by committing resources to each admitted con-
nection, so that each connection has its dedicated resource set that will guarantee
its required level of service regardless of all other connections. This conservative pol-
icy (implemented in the specification of CBR traffic in asynchronous transfer mode
(ATM) networks [23]) might be extremely wasteful since network traffic tends to be
bursty. Specifically, this policy does not take into consideration the fact that usually,
the worst-case resource requirements of different connections do not occur simultane-
ously. Recognizing this phenomenon, most modern QoS networks allow some “over-
booking,” employing the policy popularly known as statistical multiplexing. While
statistical multiplexing tends to be very cost-effective, it requires satisfactory solu-
tions to the unavoidable events of overload. In this paper we consider such scenarios
in the context of buffering. The basic situation we consider is an output port of a
network switch with the following activities (see Figure 1.1). At each time step, an
arbitrary set of packets arrives, but only a fixed number of packets can be transmitted.
The buffer management algorithm controls which packets are admitted to the buffer,
which are discarded, and which are transmitted at each step.

We consider two types of buffer models. In the FIFO model, packets can never be
sent out of order: formally, for any two packets p, p′ sent at times t, t′, respectively, we
have that if t′ > t, then packet p did not arrive after packet p′. The main constraint
in this classical model is that the buffer size is fixed, so when too many packets arrive,
buffer overflow occurs and some packets must be discarded. In most implementations
the discard policy is the natural tail-drop policy, in which the latest packets are
discarded.

The second model we consider is the bounded delay model. This model is relatively
new, and is warranted by networks that guarantee the QoS parameter of end-to-end
delay. Specifically, in the bounded-delay model each packet arrives with a prescribed
allowed delay time. A packet must be transmitted within its allowed delay time or
else it is lost. In this model, the buffer management policy can reorder packets. We
consider two variants of the model. In the uniform bounded delay model, the switch
has a single fixed bound on the delay of all packets, and in the variable bounded delay
model, the switch may have a different delay bound for each packet.

The focus of our paper is the following simple refinement of the models described
above. Each packet arrives with its intrinsic value, and the goal of the buffer man-
agement algorithm is to discard packets so as to maximize the total value of packets

BUFFER OVERFLOW MANAGEMENT IN QoS SWITCHES 565

transmitted. All we assume about the value of the packets is that it is additive; that
is, the value of a set of packets is the sum of the values of packets in the set.

In this paper we present a thorough investigation of the natural greedy algorithms
in the various models. In the FIFO model, the greedy algorithm discards the lowest-
value packets whenever an overflow occurs, with ties broken arbitrarily. We prove a
tight bound of 2 − W

B+W on the competitive factor of this algorithm, where B is the
buffer size and W is the link bandwidth. For the case where the ratio of the maximum
to minimum value is bounded by some α ≥ 1, we prove a tight bound of 2 − 2

α+1
on the competitive factor. The proof of the upper bound is quite involved. We then
consider different variants of the greedy algorithms, since the greedy policy does not
specify which packet to drop in case there is more than one packet with the lowest
value. Specifically, we consider the head-drop greedy policy, which drops the earliest
lowest-value packets. We show that for any input sequence the head-drop greedy
policy achieves equal or better value than any other greedy policy. This is somewhat
surprising, since most implementations use the tail-drop policy. Furthermore, we show
that the ratio of the value served by the head-drop greedy policy to the value served
by the tail-drop policy can be as high as 3/2 in some cases. We also prove a lower
bound on the competitive ratio of any on-line algorithm in the FIFO model.

For the bounded delay model we have the following results. First, we show that
the competitive ratio of any on-line algorithm for a uniform bounded delay buffer is
bounded away from 1, independent of the delay size. This holds even if all packets
have an arbitrarily long allowed delay. Next, we consider the simple greedy algorithm,
which in this model always sends the packet with the highest value. We prove that
the competitive ratio of this algorithm is exactly 2. In the common case when there
are only two possible values of packets (i.e., “cheap” and “expensive” packets) the
competitive factor of the greedy algorithm is exactly 1+1/α, where α ≥ 1 is the ratio
of the expensive value to the cheap value. We then consider the special case where
the delay is less than 2, namely, a packet, if not dropped, is sent when it arrives or in
the next time step. We show that in this case, the bound of 2 can be improved: we
give algorithms that achieve a competitive ratio of 1.618 for the variable delay model.
We also prove lower bounds of 1.11 on the competitive ratio for the uniform delay
model and 1.17 for the bounded delay model. Better bounds are presented for the
case where the bandwidth link is 1. We show that in this variant slight modifications
of the greedy algorithm guarantee better performance.

Lastly, we consider the off-line case. We prove that the overflow management
problem has matroid structure in both buffer models, and hence admits efficient op-
timal off-line algorithms.

Related work. There is a myriad of research papers about packet drop policies in
communication networks; see, for example, the survey of [16] and references therein.
Some of the drop mechanisms, such as random early detection (RED) [11], are de-
signed to signal congestion to the sending end. The approach abstracted in our model,
where each packet has an intrinsic value and the goal is to maximize the total through-
put value, is implicit in the recent DiffServ model [8, 9] and ATM [23]. The bounded
delay model is an abstraction of the model described in [13].

There has been work on analyzing various aspects of the model using classical
queuing theory and assuming Poisson arrivals [21]. The Poisson arrival model has
been seriously undermined by the discovery of the heavy tail nature of traffic [18]
and the chaotic nature of TCP [24]. In this work we use competitive analysis, which
makes no probabilistic assumptions.

566 KESSELMAN ET AL.

The work of [2] concentrated on the case where one cannot discard a packet
already in the buffer. The authors give tight bounds on the competitive factor of
various algorithms for the special case where there are only two different weights.
In [20], the question of video smoothing is studied. One of the results in that paper,
which we improve here, is an upper bound of 4 on the competitive ratio of the greedy
algorithm for the FIFO model. The work of [14] deals with the loss-competitive
analysis rather than the throughput-competitive analysis. The authors show how to
translate the loss guarantee to the throughput guarantee and obtain an almost tight
upper bound for the case of two packet values. A similar result is presented in this
paper for the bounded delay model. The work of [3] studies bandwidth allocation
from the competitive analysis viewpoint, disregarding buffer overflows.

The bounded delay model can be viewed as a scheduling problem. In this problem
we are given parallel machines (whose number is the link bandwidth) and jobs with
release time and deadline that correspond to the packets arriving to the pool. The
goal is to maximize the throughput, defined as the sum of the weights of the jobs that
terminate by their deadline. In our case we also have the additional constraint that
all jobs have the same processing time. The off-line variant of this scheduling problem
denoted by P | ri; pi = p |

∑
wi(1 − Ui) in the standard scheduling notation can be

solved in polynomial time using maximum matching. To the best of our knowledge
the on-line variant of this problem has not been considered elsewhere. The more
general off-line problem, where the processing time is not fixed, is NP-hard. Recently,
approximation algorithms for this problem were considered in [5, 4, 22]. The more
general on-line problem, where the processing time is not fixed, was considered in [19],
where the authors prove competitive ratios that are substantially larger than those
in our case. Slightly better ratios can be achieved for the case where processing time
is not fixed if preemption is allowed. This case was considered in [6, 7, 15]. For the
unweighted version of this problem, i.e., when the goal is to maximize the number of
jobs completed by their deadline (which is trivial if all processing times are the same),
[6] showed a tight competitive factor of 4. For the weighted version the tight bound
is
√

1 + k2, where k is the ratio of the maximum value density to the minimum value
density of a job [15].

Paper organization. The remainder of this paper is organized as follows. In
section 2 we define the models and some notation. In section 3 we consider the FIFO
model and in section 4 we consider the bounded delay models. Finally in section 5
we discuss off-line algorithms.

2. Model and notation. In this section we formalize the model and the nota-
tion we use. We consider two main models: the FIFO model and the bounded-delay
switch model. First, we list the assumptions and define quantities that are common
to both models.

We assume that time is discrete. Fix an algorithm A. At each time step t, there
is a set of packets QA(t) stored at the buffer (initially empty). Each packet p has a
positive real value denoted by v(p). At time t, a set of packets A(t) arrives. A set
of packets from QA(t) ∪ A(t), denoted by SA(t), is transmitted. We denote by SA =
∪t SA(t) the set of packets transmitted by the algorithm A and by Sval

A = {p : p ∈ SA,
v(p) = val} the set of packets of value val sent by A. Note that we consider the
so-called cut-through model in which a packet may arrive and be transmitted at the
same step. A subset of QA(t) ∪ A(t) \ SA(t), denoted by DA(t), is dropped. The set
of packets in the buffer at time t + 1 is QA(t + 1) = QA(t) ∪ A(t) \ (DA(t) ∪ SA(t)).
We omit subscripts when no confusion arises.

BUFFER OVERFLOW MANAGEMENT IN QoS SWITCHES 567

The input is the packet arrival function A(·) and the packet value function v(·).
Packets may have other attributes as well, depending on the specific model. The
buffer management algorithm has to decide at each step which of the packets to drop
and which to transmit, satisfying some constraints specified below. For a given input,
the value served by the algorithm is the sum of the values of all packets transmitted
by the algorithm. For a set P of packets define v(A) to be the total value of the
packets in the set. In this notation the value served by algorithm A is

∑
t v(SA(t)).

The sequence of packets transmitted by the algorithm must obey certain restric-
tions.

Output link bandwidth. We assume that there is an integer number W called the
link bandwidth such that the algorithm cannot transmit more than W packets in a
single time unit; i.e., |S(t)| ≤ W for all t. For simplicity, we usually assume that
W = 1 unless stated otherwise.

FIFO buffers. In the FIFO model there are two additional constraints. First, the
sequence of transmitted packets has to be a subsequence of the arriving packets. That
is, if a packet p is transmitted after packet p′, then p could not have arrived before p′.
Second, the number of packets in the buffer is bounded by the buffer size parameter,
denoted by B. Formally, the constraint is that for all times t, |Q(t)| ≤ B. (Note that
our model allows for a larger number of packets in the transient period of each step,
starting with packets’ arrival and ending with packets’ drop and transmission.)

Bounded-delay buffers. In this model we assume that packets have another at-
tribute: for each packet p there is the slack time of p, denoted by sl(p). The require-
ment is that a packet p ∈ A(t) must be either transmitted or dropped before time
t + sl(p) (i.e., in one of the steps t, t + 1, . . . , t + sl(p) − 1). The time t + sl(p) is also
called the deadline of p, denoted by dl(p). We emphasize that in this model there is
no explicit bound on the size of the buffer, and that packets may be reordered.

Uniform and variable bounded-delay buffers. One case of special interest within
the bounded-delay buffers model is when the slack of all packets is equal to some known
parameter δ. We call this model δ-uniform bounded-delay buffers. If all packet slacks
are only bounded by some number δ, we say that the buffer is δ-variable bounded-delay.

On-line and off-line algorithms. We call an algorithm on-line if for all time steps t,
it has to decide which packets to transmit and which to drop at time t without any
knowledge of the packets arriving at steps t′ > t. If future packet arrival is known,
the algorithm is called off-line. We denote the optimal policy by OPT and the set
of packets sent by the optimal policy by SO. The competitive ratio (or competitive
factor) of an algorithm A is an upper bound, over all input sequences P , on the ratio
of the maximal value that can be transmitted by OPT to the value that is transmitted

by A, that is, maxP (v(OPT)
v(A)). Note that since we deal with a maximization problem

this ratio will always be at least 1. In what follows, we denote by SO and SG the sets
of packets transmitted by OPT and by the on-line algorithm considered, respectively,
if it is not explicitly stated otherwise.

3. The FIFO model. In this section we consider the FIFO model. Recall that
in this model a buffer of size B is used to store the incoming packets. Packets have to
be transmitted in the order in which they arrive. Each packet has a value associated
with it and the goal is to maximize the value of the transmitted packets.

First, we prove a lower bound on the competitive ratio of any on-line algorithm
in the FIFO model. This proof improves the 1.25 bound proved in [20].

Theorem 3.1. The competitive ratio of any deterministic on-line algorithm in
the FIFO model is at least 1.281.

568 KESSELMAN ET AL.

Proof. Assume that the link rate is 1 packet per time unit. Fix an on-line
algorithm A, and let CA denote its competitive ratio. We consider two scenarios. In
both scenarios, B packets of value 1 arrive at time t = 0. In each of the next time
steps a single packet of value α > 1 arrives. This continues until we reach time B or
until A sends an α value packet (which means that A has dropped all the remaining
packets of value 1 from the buffer). Let t be that time.

In the first scenario, the input stream ends at time t. The benefit of A is 1 ·t+α ·t,
while the off-line benefit is 1 ·B + α · t.

In the second scenario, at time t+1 a burst of B packets, each of value α, arrive.
The off-line benefit in this case is α(B + t), while the benefit of A is 1 · t + α ·B.

Thus, the competitive ratio of A is

CA ≥ max

(
B + αt

t + αt
,
α(B + t)

t + αB

)
.(3.1)

In our model, the adversary first chooses α so as to maximize CA, then the algorithm
chooses t (possibly depending on α) so as to minimize CA, and then the competi-
tive ratio is computed from (3.1). We work backwards, assuming first that α is a
parameter. It is easy to see that (3.1) is minimized when

B + αt

t + αt
=

α(B + t)

t + αB
.(3.2)

Solving (3.2) for t, we get that its only nonnegative root is

t0(B,α) = B

√
(α− 1)2 + 4α3 − α + 1

2α2
.

Define t′0(α) = t0(B,α)/B. With this notation, it follows from (3.1) that the compet-
itive ratio of A satisfies

CA ≥ 1 + αt′0(α)

t′0(α) + αt′0(α)
.(3.3)

Using numerical methods, we find that the right-hand side of (3.3), viewed as a
function of α, is maximized when α ≈ 4.01545. Substituting in (3.1), we obtain that
the competitive ratio of A cannot be better than 1.28197.

3.1. Tight analysis of the greedy algorithm. We consider the greedy algo-
rithm for output link bandwidth W , for any integer W > 0. In this algorithm no pack-
ets are dropped in time step t in which |Q(t)|+|A(t)| ≤ B+W . If |Q(t)∪A(t)| = k > 0,
then the earliest min(W,k) packets are transmitted and the rest are stored in the
buffer. If |Q(t)| + |A(t)| = k > B + W , the k − B − W packets with the lowest
value are dropped, ties broken arbitrarily. Among the remaining B +W packets, the
W earliest packets are transmitted and the rest are stored in the buffer.

For the sake of simplicity, we assume that B is a multiple of W .1 Let BW = B/W
denote the number of time steps that is needed to transmit the whole buffer. We first
show that the competitive ratio of the greedy algorithm is no worse than 2. Later,
we improve this bound and show that the improved bounds are tight.

1If W does not divide B, one can think of “fractions” of time steps in which sets of less than
W packets are transmitted. This makes the analysis somewhat cumbersome, but the results of this
section carry over to the general case as well.

BUFFER OVERFLOW MANAGEMENT IN QoS SWITCHES 569

Theorem 3.2. The competitive ratio of the greedy algorithm is at most 2 for any
output link bandwidth W .

Proof. Consider a sequence of packets. We need to show that v(OPT) ≤
2v(Greedy). Let DO

G(t) = SO ∩DG(t) denote the set of packets that were dropped by
the greedy algorithm at time t but were transmitted by the optimal algorithm. Let
DO

G be the union of all these sets. We show a mapping from the packets in DO
G to

packets in SG with the following properties: (i) a packet from DO
G is mapped to a

packet in SG with at least the same value, (ii) at most one packet from DO
G is mapped

to any packet in SG ∩ SO, and (iii) at most two packets from DO
G are mapped to any

packet in SG \ SO. Clearly, the existence of the mapping implies the theorem.
We construct the mapping iteratively. At each iteration we consider a packet

from DO
G and map it to a packet in SG. The packets in DO

G are considered in the
order of their drop time. Suppose that the current packet to be mapped is p ∈ DO

G(t).
This means that all the packets in DO

G(s), for s < t, and maybe some of the packets
in DO

G(t) have been mapped already. Given the partially defined mapping, define a
set of “available” packets in SG as follows. A packet in q ∈ SG ∩ SO is available if so
far no packet is mapped to q. A packet in q ∈ SG \ SO is available if so far at most
one packet is mapped to q. The packet p is mapped to the earliest available packet
that was transmitted by the greedy algorithm at or after time t.

Clearly, the mapping defined above satisfies the second and third properties. It
remains to be shown is that it satisfies the first property as well. Consider the mapping
process step by step, where in each step a single packet is mapped. We prove that
the first property holds by induction on the steps of the mapping process. For the
basis of the induction note that if p ∈ DO

G(t) is the first packet to be dropped, then it
is mapped to the packet transmitted by the greedy algorithm at time t. Clearly, the
value of this packet is at least v(p).

s(t)
Time

s(t)+Bt

Time

Schedule of the Greedy Algorithm

r(t)

Mapping of DROP sets

S(r(t)) S(s(t))S(t)

DROP(r(t)) DROP(t) DROP(s(t))

Q(t)

Fig. 3.1. An example of the mapping from DO
G to SG.

Suppose that the first property holds for all packets mapped before p ∈ DO
G(t).

We show that it also holds for p. Let s(t) be the earliest time at or after t such that
the buffer maintained by the greedy algorithm at time s(t) is full and all the packets
in the buffer at time s(t) are transmitted by the greedy algorithm (see Figure 3.1).
Observe that since the buffer is full at time t, s(t) is well defined.

Claim 1. The value of each of the packets transmitted by Greedy at times
t, . . . , s(t) + BW is at least v(p).

Proof. Consider the greedy algorithm in the time interval t, . . . , s(t) +BW . Con-
struct a sequence of time steps inductively as follows:

570 KESSELMAN ET AL.

• t0 = t.
• For ti < s(t), define ti+1 to be the first step after ti in which a packet that

was in the buffer at time ti is dropped.

Let tk be the last time step in this sequence. Note that tk = s(ti) for all 0 ≤ i ≤ k
by definition. We prove the claim by induction on k. For the case k = 0 we have
that s(t) = t, and since all packets in the buffer at time s(t) are transmitted in steps
s(t), . . . , s(t) +BW , and all these packets have value at least v(p) by the greedy rule,
we are done. For the induction step, assume that the claim holds for k and consider
k + 1. Let q be a packet that was in the buffer at time t0 and dropped at time t1.
By the FIFO ordering, all packets transmitted in steps t0, . . . , t1 were in the buffer at
time t0. By the greedy rule we have that (i) all packets transmitted at times t0, . . . , t1
have value at least v(p), and (ii) v(q) ≥ v(p). The claim follows by combining fact (i)
with the induction hypothesis applied to q and time t1.

To prove that the first property holds for p, we show that it is mapped to one of
the packets transmitted at times t, . . . , s(t) + BW . For this we need to show that at
least one of the packets transmitted at times t, . . . , s(t)+BW remains available at the
time p is mapped. The “number of availabilities” at the time packet p is mapped is
defined as the maximum number of packets that can still be mapped to the packets
transmitted at times t, . . . , s(t) + BW . Specifically, every available packet (at the
time p is mapped) among the packets transmitted at times t, . . . , s(t) + BW that is
also in SO contributes 1 to the number of availabilities. Every available packet (at
the time p is mapped) among the packets transmitted at times t, . . . , s(t) + BW that
is not in SO contributes 2 to the number of availabilities if it is not mapped and
contributes 1 if one packet has been mapped to it already.

Claim 2. The number of availabilities before any of the packets dropped at time t

is mapped is at least
∑s(t)

i=t |DO
G(i)|.

Proof. Let r(t) be the latest time before or at t such that no packets dropped by
the greedy algorithm at time r(t)− 1 or earlier are mapped to packets transmitted at
time r(t) or later. If no such r(t) exists, then define r(t) = 0 (the first step).

Intuitively, we start by showing that each interval r(t), . . . , s(t) + BW is inde-
pendent of the other intervals. Specifically, we claim that the number of avail-
abilities before any of the packets dropped at time r(t) and later is mapped is at

least
∑s(t)

i=r(t) |DO
G(i)|. To see that, let C(t) denote the set of packets available to

the greedy algorithm at times r(t), . . . , s(t) that were transmitted by the optimal
algorithm. In other words, C(t) is the subset of packets transmitted by the opti-
mal algorithm that were considered (stored at the beginning of the interval or ar-
rived during the interval) by the greedy algorithm at times r(t), . . . , s(t). Note that
|C(t)| ≤ W · (s(t) − r(t) + 2BW + 1), because packets in C(t) cannot be transmitted
by the optimal algorithm in time steps other than r(t) −BW , . . . , s(t) + BW .

Next, let x(t) be the number of packets of C(t) that are transmitted by the
greedy algorithm at times r(t), . . . , s(t) + BW . Observe that no packet from SO that
arrives at times s(t), . . . , s(t) + BW is transmitted by the greedy algorithm at times
s(t), . . . , s(t)+BW . This is because by definition, all packets stored by Greedy at time
s(t) are transmitted, a process that lasts BW time units. It follows that exactly x(t)
packets from C(t) are transmitted by the greedy algorithm at times r(t), . . . , s(t)+BW .
This implies that the number of availabilities before any of the packets dropped at
time r(t) and later is mapped is at least 2W · (s(t) + BW − r(t) + 1) − x(t). This is
true since by definition of r(t), none of the packets that are dropped before time r(t)

BUFFER OVERFLOW MANAGEMENT IN QoS SWITCHES 571

is mapped to packets transmitted at times r(t), . . . , s(t) + BW . It follows that

s(t)∑
i=r(t)

|DO
G(i)| ≤ W (s(t) − r(t) + 2BW + 1) − x(t)

≤ 2W (s(t) + BW − r(t) + 1) − x(t).(3.4)

We can now prove the claim. Since by (3.4) the maximum number of packets
that can be mapped to the packets transmitted at times r(t), . . . , s(t) + BW is at

least
∑s(t)

i=r(t) |DO
G(i)|, we have, by the definition of r(t), that the maximum number

of packets that can be mapped to the packets transmitted at times r(t), . . . , t − 1

is strictly less than
∑t−1

i=r(t) |DO
G(i)|. We conclude that the number of availabilities

before the packets dropped at t are mapped is at least
∑s(t)

i=t |DO
G(i)|.

The theorem follows directly from Claims 1 and 2.
We now refine the analysis above to get tighter bounds. Let α be the ratio of

the largest value of a packet to the smallest value of a packet (clearly we can assume
without loss of generality that all packets have positive values).

Theorem 3.3. The competitive ratio of the greedy algorithm is at most 2(1− 1
α+1)

for any output link bandwidth W , where α
def
=

maxp{vp}
minp{vp} .

Proof. Given the mapping defined above, partition SG into three subsets as
follows.

• G1 is the set of packets in SG that are not in SO and that are not the image
of (i.e., not mapped to by) any packet in DO

G .
• G2 is the set of packets in SG that are unavailable after the mapping is done,

namely, all packets in SG ∩ SO that are the image of one packet in DO
G , and

all packets in SG \ SO that are the image of two packets in DO
G .

• G3 = SG \ (G1 ∪G2), that is, the packets in SG ∩ SO that are not the image
of any packet in DO

G , and the packets in SG \ SO that are the image of one
packet in DO

G .
We associate two packets from SO with each packet in q ∈ G2 as follows. If

q ∈ G2 ∩ SO, then the two packets are q itself and the packet mapped to q. If
q ∈ G2 \ SO, then the two packets are the two packets mapped to q. Similarly, we
associate a packet from SO with each packet in q ∈ G3 as follows. If q ∈ G3 ∩ SO,
then this packet is q. If q ∈ G3 \ SO, then this packet is the packet mapped to q.
Note that this way we associate every packet in SO with some packet in SG. Note
that v(q) is always at least the value of each of its associated packets, and the fact
that no packet is associated with more than two packets implies the bound on the
competitive ratio. We are able to improve the bound of 2 on this ratio using the fact
that no packet is associated with packets in G1.

Note that |SG| ≥ |SO|. It follows that |G1| ≥ |G2|, and thus we can match any
packet q ∈ G2 with a mate p ∈ G1. We move a 1

α+1 “fraction” of the value of the
packets associated with q and associate it with p. Note that after the move the total
value associated with q is no more than 2(1− 1

α+1)v(q). Since v(q) ≤ αv(p), the total
value associated with p is no more than

2
1

α + 1
v(q) ≤ 2

α

α + 1
v(p) = 2

(
1 − 1

α + 1

)
v(p).

Theorem 3.4. The competitive ratio of the greedy algorithm is at most 2− W
B+W

for any output link bandwidth W .

572 KESSELMAN ET AL.

Proof. Modify the mapping defined in the proof of Theorem 3.2 as follows. For
each time t such that DO

G(t) �= ∅, decrease by W the number of availabilities con-
tributed by the packets transmitted by the greedy algorithm at time t. Specifically, if
p ∈ SO, then no packet is mapped to p and if p /∈ SO, at most one packet is mapped
to p.

We need to show that Claim 2 still holds. For this, it suffices to show that the
number of availabilities before any of the packets dropped at time r(t) and later

is mapped is at least
∑s(t)

i=r(t) |DO
G(i)|. Notice that the number of availabilities is

decreased by at most W (s(t) − r(t) + 1). Claim 2 follows for the modified mapping
since

s(t)∑
i=r(t)

|DO
G(i)| ≤ W (s(t) − r(t) + 2BW + 1) − x(t)

≤ 2W (s(t) + BW − r(t) + 1) − x(t) −W (s(t) − r(t) + 1).

Notice that the value of the packet transmitted at time t is at least the minimal
value of the packets in DO

G(t). We “shift” a W/(|DO
G(t)|+W) fraction of the value of

each of the packets in DO
G(t) from the packet to which it has been mapped originally

and associate it to one of the packets transmitted by the greedy algorithm at time t.
Since |DO

G(t)| ≤ B and |SG(t)| = W , we get that each packet transmitted by the
greedy algorithm is associated with at most 1 + B

B+W = 2− W
B+W packets of at most

the same value from SO.
Finally, we observe that the last two bounds are tight. Consider the following

scenario. At the first time step, B + W packets of value 1 arrive; W are transmitted
and the rest are kept in the buffer. Then, at each time t ∈ {1, . . . , BW }, W packets
of value α ≥ 1 arrive and are kept in the buffer. At time BW + 1 the buffer contains
B packets of value α; at this time another B + W packets of value α arrive. The
greedy algorithm transmits only B+W of these packets, while the optimal algorithm
transmits 2B + W of value α and only W of value 1. We get that the competitive
ratio for this scenario is

(2B + W)α + W

(B + W)(α + 1)
= 2 − α(W + 1) + 2B

(B + W)(α + 1)
.

Letting α go to infinity we get the ratio 2− W
B+W , and letting B go to infinity we get

the ratio 2 − 2
α+1 .

3.2. The best greedy algorithm. The greedy algorithm is underspecified:
when there are several packets with the same low value, it is not specified which
of them is discarded by the greedy algorithm. It is easy to see that for any link
bandwidth, the number of packets transmitted is the same for all variants of the
greedy algorithm. However, is there a difference between the variants of the greedy
algorithm in terms of weighted throughput? In this section we show that, perhaps
surprisingly, it is always better to discard the earliest packets, i.e., the packets which
spent the most time in the buffer. We call this policy head-drop, as the algorithm
prefers to drop packets from the head of the buffer. Head-drop is in contrast to the
common practice of tail-drop, where the newest packets are discarded. We show that
there exist scenarios in which tail-drop results in significantly more losses than head-
drop. We remark that the head-drop policy [17] enjoys additional advantages in the
TCP/IP environment, namely, it helps the congestion avoidance mechanism.

BUFFER OVERFLOW MANAGEMENT IN QoS SWITCHES 573

The following theorem proves that the head-drop greedy algorithm is, in a certain
sense, the best greedy algorithm.

Theorem 3.5. Let G be any greedy algorithm, and let GH be the greedy head-drop
algorithm. For any input sequence, the total value transmitted by GH is at least the
total value transmitted by G.

Proof. Fix an input sequence. First, observe that the number of packets in the
buffer of G and the number in the buffer of GH at time t are equal for all times t.
(This follows from an easy induction on time, which shows that for any given arrival
sequence and link bandwidth, the size of the queue in each step is the same for all
algorithms that drop packets only when an overflow occurs.) To prove the theorem,
we define, for each time step t, a 1-1 mapping from QGH (t) to QG(t) such that each
packet p ∈ QGH (t) is mapped to a packet q ∈ QG(t) with at least the same value; i.e.,
v(p) ≤ v(q).

We claim that the existence of these mappings implies the theorem as follows. For
a packet p ∈ Q(t) define the rank of p to be its rank in the sequence of packets in Q(t)
ordered in ascending values. The existence of the mappings implies that for each time
step t, the value of the packet ranked i in QGH (t) is at most the value of the packet
ranked i in QG(t). Since |DGH (t)| = |DG(t)|, and since in any greedy algorithm D(t)
consists of the lowest ranked packets in Q(t), it follows that v(DGH (t)) ≤ v(DG(t)).

The value served by an algorithm is
∑

t v(S(t)); hence we get

∑
t

v(SGH (t)) =
∑
t

v(A(t)) −
∑
t

v(DGH (t))

≥
∑
t

v(A(t)) −
∑
t

v(DG(t))

=
∑
t

v(SG(t)).

All that remains is to prove the existence of the mappings. Fix a time step t and
consider QG(t) and QGH (t). To construct the mapping, we use the natural concept
of “height” of a packet in a buffer: For an algorithm A and a packet p ∈ QA(t),
the height of p, denoted by hA(p, t), is 1 plus the number of packets that have to be
either transmitted or dropped before p can be transmitted. In other words, hA(p, t)
is the rank of p in the sequence of packets in QA(t) ordered by arrival time. We also
say that a packet p ∈ QA(t) is said to be below (or above) a packet p′ ∈ QA(t) if
hA(p, t) < hA(p′, t) (or, respectively, hA(p, t) > hA(p′, t)).

We now define the mapping from QGH (t) to QG(t). Each packet in QGH (t)∩QG(t)
is mapped to itself. To complete the mapping, consider the packets in QGH (t)\QG(t)
in ascending order of height. Map each such packet p to the packet with the lowest
height in QG(t) \QGH (t) that has not been mapped yet. It is not difficult to see that
this mapping is indeed 1-1. We need to show that each packet in QGH (t) \ QG(t) is
mapped to a packet in QG(t) \QGH (t) of at least the same value. For this we prove
the following two lemmas.

Lemma 3.6. Let p ∈ QGH (t) \QG(t) for some time t. Then v(p) ≤ v(q), for all
q ∈ QG(t) satisfying hG(q, t) ≤ hGH (p, t).

Proof. Let t0 be the time in which G dropped p (and hence p /∈ QG(t0 + 1)).
We prove the lemma by induction on t − t0. For the base case t = t0 + 1, we have
by the greedy rule that v(p) ≤ v(p′) for any p′ ∈ QG(t). For the inductive step, let
t > t0+1. First, note that p arrived before step t−1, since otherwise it must have been
dropped at step t − 1, contradicting the assumption that t > t0 + 1. It follows that

574 KESSELMAN ET AL.

p

QGH(t)

p

q’

QG (t)

p’

p

QGH(t-1)

p

q

QG (t-1)

p

p’

QGH (t’)

q’

Fig. 3.2. Scenario considered in the proof of Lemma 3.7. p /∈ QG(t), q′ /∈ QGH (t), and
q /∈ DG(t− 1).

hGH (p, t−1) is well defined. Consider a packet p′ ∈ QG(t) with hG(p′, t) ≤ hGH (p, t).
If hG(p′, t− 1) is defined and hG(p′, t− 1) ≤ hGH (p, t− 1), we are done by induction.
If p′ ∈ A(t− 1) or if hG(p′, t− 1) > hGH (p, t− 1), then it must be the case that some
packet p′′ ∈ QG(t − 1) with hG(p′′, t − 1) ≤ hGH (p, t − 1) is dropped by G at time
t− 1. By the greedy rule v(p′) ≥ v(p′′). Since by induction v(p′′) ≥ v(p), we are done
in this case too.

Lemma 3.7. Let t be any time step. If p ∈ QGH (t) ∩ QG(t), then hGH (p, t) ≤
hG(p, t).

Proof. Suppose that the lemma does not hold. Let t be the first time it is violated,
and let p be the packet with the minimal height such that hG(p, t) < hGH (p, t). Let
p′ be the packet immediately below p in QGH (t) (see Figure 3.2). Note that p′ is well
defined, since by assumption hGH (p, t) > hG(p, t) ≥ 1. Also note that p′ /∈ QG(t).
This is because otherwise we would also have hG(p′, t) < hGH (p′, t), contradicting
the height minimality of p. Due to the minimality of t, hG(p, t− 1) ≥ hGH (p, t− 1).
(Note that we cannot have the situation of p ∈ A(t − 1) and hG(p, t) < hGH (p, t).)
Thus, we must have that DG(t− 1) contains at least one packet below p. Denote this
packet by q. We claim that v(q) ≥ v(p′). If q = p′, the claim is trivial. Otherwise, we
have that p′ /∈ QG(t− 1) and hGH (p′, t− 1) ≥ hG(q, t− 1), and hence, by Lemma 3.6,
v(p′) ≤ v(q). Since QG(t) has more packets above p than QGH (t) has, there must
be a packet q′ above p in QG(t) that is not in QGH (t). Since q′ /∈ DG(t − 1) and
q ∈ DG(t − 1), it must be that v(q′) ≥ v(q) ≥ v(p′). However, the packet q′ is
not in QGH (t). Hence, it has been dropped by GH at some t′ < t. This yields
a contradiction to the head-drop rule, since v(p′) ≤ v(q′), both p′ and q′ are in
QGH (t′), and hGH (q′, t′) > hGH (p′, t′).

We can now complete the proof of the theorem by proving the existence of the
mapping. Suppose that p ∈ QGH (t) \ QG(t) is mapped to q ∈ QG(t) \ QGH (t). We
now show that hGH (p, t) ≥ hG(q, t). By Lemma 3.6 this implies that v(p) ≤ v(q).
Recall that the mapping of the packets in QGH (t)\QG(t) is done in ascending order of
heights and that any such packet is mapped to the packet with the minimal height in
QG(t) \QGH (t) that has not been mapped so far. To obtain a contradiction, suppose
that p is the packet with the minimal height in QGH (t) \ QG(t) that is mapped to
q ∈ QG(t) \ QGH (t), and hGH (p, t) < hG(q, t). Consider the packet p′ ∈ QG(t)
such that hG(p′, t) = hGH (p, t). It must be that p′ ∈ QG(t) ∩ QGH (t). We must
also have that the number of packets below p in QGH (t) \ QG(t) is the same as the
number of packets below p′ in QG(t) \ QGH (t). Thus, the set of packets below p in
QGH (t) ∩ QG(t) is the same as the set of packets below p′ in QG(t) ∩ QGH (t). It
follows that hG(p′, t) < hGH (p′, t), in contradiction to Lemma 3.7. This completes
the proof of Theorem 3.5.

The following theorem proves that GH can do much better than the greedy tail-

BUFFER OVERFLOW MANAGEMENT IN QoS SWITCHES 575

drop algorithm. Let GT denote the greedy tail-drop algorithm.

Theorem 3.8. There exist input sequences for which the value transmitted by GH
is arbitrarily close to 3/2 times the value transmitted by GT.

Proof. We describe sequences for the case W = 1, using parameters α and B. At
time 0, B/2 + 2 packets of value 1 arrive. At time 1, B/2 packets of value α
 1
arrive. Thus, at time 2, the head half of the buffer is filled with cheap packets, and the
tail half of the buffer is filled with expensive packets. At time 2, B/2+1 more 1-value
packets arrive (resulting in overflow); finally, at time 2+B/2, B+1 packets of value α
arrive, resulting in an additional overflow. Let us now consider the performance of
GT and GH . GT drops at time 2 the last B/2 cheap packets and transmits a cheap
packet in steps 2, 3, . . . , 1 +B/2. At time 2 +B/2, GT drops B/2 expensive packets,
and the total value eventually transmitted is α(B+1)+1(B2 +1). On the other hand,
GH drops at time 2 the first B/2 cheap packets and then drops at time 2 + B/2 the
other B/2 cheap packets, for a total transmitted value of α(3B

2 + 1) + 1. The result
follows for large B and α values.

4. Bounded delay buffers. In this section we consider the case of bounded
delay buffers. General bounded delay buffers are studied in section 4.1. We prove
a lower bound on the competitiveness of any on-line algorithm. The lower bound
holds even in the uniform-delay model, independent of the allowed delay. We then
show that for the general model, the greedy algorithm is exactly 2-competitive (the
bound is refined in case there are exactly two packet values). Finally, in section 4.2
we provide a detailed analysis of the special case where the delay bound is 2.

4.1. General bounded delay buffers. In this section we consider the general
case, where the slack times and values of the packets are arbitrary. We first present
a lower bound on the competitiveness of all on-line algorithms and then we turn to
analyze the simple greedy algorithm. We show that the greedy algorithm is exactly
2-competitive for the general delay-bounded case.

We begin with a negative result motivated by the following (false) intuition. It
may seem reasonable to hope that as the delay bound grows, the competitive factor
of on-line algorithms might tend to 1, since infinite delay bound seems like the off-line
case. This is not true, as proved in the following theorem. The proof is similar in
spirit to the proof in the FIFO case (Theorem 3.1).

Theorem 4.1. Let α be the ratio of the largest to the smallest packet value.
Then for any delay bound δ, the competitive ratio of any on-line algorithm is at least
1+ α−1

α(α+1) , even for uniform-delay buffers. Furthermore, if there are two packet values

whose ratio is 1 +
√

2, then the competitive ratio of any on-line algorithm is at least
1 + 1

(1+
√

2)2
≈ 1.17 for any value of δ.

Proof. Let A be any on-line algorithm, and let CA be its competitive ratio. To
bound CA, consider the following scenario. All packets have the same slack value δ.
At time t = 0 the buffer is empty and δ packets of value 1 arrive. During each of the
following δ − 1 steps (t = 1, . . . , δ − 1), a single packet of value α > 1 arrives. Let
x be the number of value 1 packets transmitted by A by time δ. We consider two
possible continuations of the scenario. In the first case, no more packets arrive, and
in the second case, δ packets of value α arrive at time δ. In the former case, the value
served by A is at most x + δα, while the optimal value is δ + δα. In the latter case,
the value served by A is x+α(2δ− x), while the optimal value is 2δα. It follows that
the competitive ratio of A is at least

576 KESSELMAN ET AL.

CA ≥ max

(
δ(1 + α)

x + δα
,

2δα

x + α(2δ − x)

)
.

Consider the two possible ratios. To get the lower bound our goal is to fix α so that
the maximum of the two ratios for any value of x is minimized. This is because the
on-line algorithm fixes x given the value of α. For any value of α, it is not difficult to
see that the best value of x that can be chosen by A is the one where the two ratios
are equal. Solving for x as a function of α, we get that the maximum of the ratios is
minimized when

x(α) =
2δα

α2 + 2α− 1
,

in which case the competitive ratio of the algorithm is

CA ≥ 1 +
α− 1

α(α + 1)
.

This proves the first part of the theorem. To prove the second part of the theorem,
we find the worst case α by elementary calculus. It turns out that the competitive
ratio is maximized (for x(α), i.e., when the algorithm makes the optimal choice) when
α = 1 +

√
2. In this case we get that CA ≥ 1 + 1

(1+
√

2)2
, as desired.

Next, consider the greedy algorithm for the general case where the allowed delays
may be different and the link bandwidth is W . The greedy algorithm is extremely
simple: at each time step t, transmit the W packets with the highest value whose
deadlines have not expired yet. Ties are broken arbitrarily. Note that effectively, the
greedy algorithm views each value as a priority class, in the sense that high-priority
packets are always transmitted before low-priority ones. For this simplistic strategy,
the following relatively strong property was already known [1, 12, 4] in slightly different
models.

Theorem 4.2. The greedy algorithm is exactly 2-competitive in the bounded-delay
buffer model, for any output link bandwidth.

The lower bound for the greedy algorithm holds even if all jobs have the same
weight. We note that for the unslotted model (where a packet may arrive during
the transmission of another, and preemption is disallowed), [12] proves a lower bound
of 2 on the competitive ratio of any deterministic algorithm, and 4/3 for the expected
competitive ratio of any randomized algorithms.

In some practical cases, the values assigned to packets are not very refined. In
the extreme case, there may be just “cheap” and “expensive” packets, for example, in
ATM’s Cell Loss Priority bit [23]. We can formalize this model by assigning only two
possible values to packets: 1 for “cheap” and α > 1 for “expensive.” In the following
theorem we prove that in this case, the bound guaranteed by Theorem 4.2 can be
sharpened to 1 + 1/α. Notice that the competitive ratio approaches 1 when α tends
to infinity.

Theorem 4.3. The greedy algorithm is at most 1 + 1/α-competitive in the
bounded-delay buffer model with two packet values of 1 and α > 1, for any output link
bandwidth.

Proof. Fix the input sequence, and let W be the output link bandwidth. Consider
any optimal algorithm for the sequence. Clearly, v(Sα

O) ≤ v(Sα
G). In addition, the

greedy algorithm schedules all packets from S1
O, except the packets that were lost

due to the decision of the greedy algorithm to transmit high-value packets with later
deadlines. Since each high-value packet may cause loss of at most one low-value
packet, we obtain that v(S1

O) − v(S1
G) ≤ v(Sα

G)/α. The theorem follows.

BUFFER OVERFLOW MANAGEMENT IN QoS SWITCHES 577

4.2. The case of δ = 2. Improving on the greedy algorithm in the bounded-
delay model turns out to be a challenging task. In this subsection we present a
candidate algorithm. However, we are able to analyze its behavior only for the special
case of δ = 2, i.e., under the assumption that each packet must be sent either when it
arrives or in the following time step. We also present improved lower bounds for this
case.

Before we start, let us recall the following well-known fact. A schedule for a set
of packets is called earliest deadline first schedule (or EDF for short) if the order in
which packets are sent is the order of their deadlines.

Lemma 4.4. A set of packets with given arrival times and deadlines can be
scheduled with link bandwidth W if and only if it can be scheduled by an EDF schedule.

In addition, packets with the same deadline in a feasible schedule can be further
ordered according to their values.

Lemma 4.5. A feasible EDF schedule may be transformed into another feasible
EDF schedule in which packets with the same deadline are sent in order of nonin-
creasing value.

Thus, without loss of generality, we may assume that the optimal algorithm sched-
ules packets in order of nondecreasing deadlines, and packets with the same deadline
in order of nonincreasing value. Ties are broken by the arrival order; i.e., packets
arriving first are scheduled first.

We use the following algorithms, stated for general delay bound δ and link band-
width W . The local-EDF algorithm is presented in Figure 4.1. We show in section 5
how the computation of the optimal schedule can be done efficiently. The β-EDF
algorithm is defined by a parameter 0 ≤ β ≤ 1 and appears in Figure 4.2.

Note that 1-EDF is the greedy algorithm, which sends the W packets with the
highest value, and that 0-EDF is the local-EDF algorithm.

Theorem 4.6. The 1/φ-EDF algorithm is at most φ-competitive in the 2-variable
bounded-delay buffer model, for any output link bandwidth W .

Proof. Fix an arrival sequence. We compare the schedule generated by φ-EDF
with a specific optimal schedule OPT. Specifically, by Lemmas 4.4 and 4.5, we may
assume that OPT is EDF, and that if two packets with the same deadline and different
values are sent at different times, then the more valuable packet is sent before the less
valuable one. We now prove a series of simple properties that follow directly from the
definition of the algorithms.

Lemma 4.7. If p is transmitted before p′ by β-EDF, then p is not transmitted
after p′ by OPT.

Proof. Suppose, for contradiction, that there exist packets p, p′ such that p ∈
SG(t) ∩ SO(t + 1) and p′ ∈ SO(t) ∩ SG(t + 1). Clearly both p and p′ have deadline
t+1. The lemma follows from the fact that both β-EDF and OPT send packets with
the same deadline in order of nonincreasing value.

Lemma 4.8. If p ∈ SG(t) performed a push-out at time t, then v(q′) ≤ v(p)/φ
for all packets q′ pushed out at time t.

Proof. It follows from the fact that at Step 3 of the β-EDF, we consider packets
pushing out and packets to be pushed out in order of nonincreasing and nondecreasing
value, respectively.

Lemma 4.9. Suppose that p, p′ ∈ SG(t) are packets with deadline t + 1 such that
p performed push-out at time t and p′ did not perform a push-out at time t. Then
v(p) ≤ v(p′).

578 KESSELMAN ET AL.

At each time step t do the following:

1. Compute the optimal schedule Ŝ for all packets not yet sent or expired (i.e.,
implicitly assuming no new packet will arrive).

2. Send the W packets which are sent at time t in Ŝ (we may assume, without loss
of generality, that Ŝ is EDF).

Fig. 4.1. The local-EDF algorithm.

At each time step t do the following:

1. Compute the optimal EDF schedule Ŝ for all packets not yet sent or expired.
Let S be the set of all packets scheduled in Ŝ, and let S′ and S′′ be the sets of
packets scheduled in Ŝ to be sent at times t and t + 1, respectively.

2. Let p ∈ S′ be the packet of minimal value in S′, and let q ∈ S′′ be the packet of
maximal value in S′′.

3. If v(p) < β · v(q), then

(a) Push-out step: Let S′ ← S′∪{q}\{p}, and S′′ ← S′′\{q}. The packet q
is said to have pushed out packet p.

(b) Go to Step 2.

4. Otherwise (i.e., v(p) ≥ β · v(q)), terminate the algorithm and transmit S′.

Fig. 4.2. The β-EDF algorithm.

Proof. By definition, β-EDF sends packets with the same deadline in nondecreas-
ing value order.

Lemma 4.10. Consider the sets S′ constructed at Step 1 at time t by the β-EDF
algorithm. If some packet p ∈ SO(t) with deadline t is not included in SG, then
(S′ ∩A(t)) ⊂ SO(t).

Proof. Let p′ ∈ S′ ∩A(t). Notice that |S′| = W and v(p′) > v(p) because p /∈ SG.
We argue that p′ ∈ SO(t). First, note that p′ ∈ SO, since otherwise OPT could
have been improved by swapping p and p′. Hence p ∈ SO(t) ∪ SO(t + 1). To see
that p′ ∈ SO(t), suppose for contradiction that p′ ∈ SO(t + 1). Note that since p
is not included in SG, we must have that either S′ contains no packet with deadline
t + 1, or |S| = 2W . In the former case, we get a contradiction to our assumption
that p′ ∈ S′ because the deadline of p′ is t + 1. In the latter case, we get that since
p′ ∈ S′∩SO(t+1) and |S| = 2W , there exists a packet p′′ ∈ A(t)∩S with deadline t+1
such that p′′ /∈ SO. Moreover, v(p′′) > v(p) by construction of the β-EDF schedule.
In this case, OPT can be improved by replacing p with p′′. The lemma follows.

For the remainder of the proof, we define a mapping m : SO → SG iteratively as
follows.

1. If p ∈ SO(t) ∩ (SG(t− 1) ∪ SG(t)) for some time step t, then m(p) = p.
2. For each time step t, map any unmapped packet p ∈ SO(t) to p′ ∈ SG(t) such

that either
(a) p′ is unmapped, or
(b) p′ ∈ SO(t + 1) and |m−1(p′)| = 1.

To prove the theorem, it suffices to show that (i) all packets in SO are mapped, and
that (ii) v(m−1(p)) ≤ φ · v(p) for all p ∈ SG.

Lemma 4.11. If at Step 2 a packet p ∈ SO(t) has to be mapped, then there always
exists a packet p′ ∈ SG eligible for either Step 2(a) or Step 2(b).

BUFFER OVERFLOW MANAGEMENT IN QoS SWITCHES 579

Proof. Consider an unmapped packet p ∈ SO(t) that is processed in the course of
Step 2. Since p has not been mapped at Step 1, either p ∈ SG(t + 1) or p ∈ SO \ SG.
Thus, since p is available to φ-EDF at time t and it is not transmitted at that time,
we have that |SG(t)| = W . The lemma follows by construction of the mapping.

Lemma 4.12. If a packet p ∈ SO(t) is mapped to a packet p′, then v(p) ≤ v(p′)/φ.

Proof. Suppose first that p is mapped to a packet p′ during Step 2(a). Then since
p is available to φ-EDF at time t and it is not transmitted, the value of any packet
that is scheduled at that time is at least v(p) · φ. So for the remainder of the proof,
assume that p is mapped to p′ during Step 2(b). In this case, since p has not been
mapped at Step 1, either p ∈ SG(t+1) or p ∈ SO \SG. By Lemma 4.7, p /∈ SG(t+1).
Also, p cannot have deadline t + 1, since otherwise, v(p) > v(p′) and φ-EDF would
have replaced p′ by p. Hence p ∈ (SO \ SG), and the deadline of p is t. It follows
that it must be the case that either (1) p is pushed out at Step 3(a) of β-EDF, or
(2) p /∈ S, where S is the set computed at Step 1 of β-EDF. Let us analyze these
cases.

(1) If p′ performed a push-out, then we are done by Lemma 4.8. Otherwise, let q
be the packet that pushed out p. According to Lemma 4.9 we have that v(q) ≤ v(p′),
and consequently, v(p) ≤ v(p′)/φ.

(2) If p /∈ S, then by Lemma 4.10 we have that p′ /∈ S′ ∩ A(t) because p′ /∈
SO(t) ∩ A(t) (recall that p′ ∈ SO(t + 1)). Thus, if p′ ∈ SG(t), then it should have
pushed out some packet q such that v(q) ≤ v(p)/φ. By construction of the optimal
φ-EDF schedule we have that v(q) ≥ v(p). Hence, v(p) ≤ v(p′)/φ.

Lemmas 4.11 and 4.12 conclude the proof of Theorem 4.6.

Uniform delay buffers. We remark that for uniform-delay buffers with δ = 2,
better upper bounds can be obtained. For example, Corollary 5.5 (in conjunction
with Theorem 3.4) says that a competitive ratio of 1.5 is achieved by the FIFO-
greedy algorithm in this model. Moreover, careful case analysis shows that the β-EDF

algorithm achieves a ratio of about 1.43 when β = 3+
√

13
2 ≈ 3.3. We omit the details.

We now prove lower bounds for the case δ = 2. First, we consider the case of
arbitrary bandwidth.

Theorem 4.13. The competitive ratio of any on-line algorithm for a W -bandwidth
2-uniform bounded-delay model is at least 10/9. Moreover, the competitive ratio of any
on-line algorithm for a W -bandwidth 2-variable bounded-delay model is at least 1.17.

Proof. We first show the bound for the uniform model. Fix an on-line algorithm A
and consider the following scenarios. Initially, the buffer is empty and 2W packets
of value 1 arrive. At the next step W packets of value α arrive. Suppose that A
drops a fraction x ≤ 1 of the 1-value packets. We consider two possible scenarios. In
the first no more packets arrive. Then the competitive ratio is bounded from below
by α+2

α+2−x since there exists a feasible schedule of the whole sequence. In the second
scenario 2W packets of value α arrive at the following time step. In this case the
competitive ratio of A is bounded from below by 3α+1

(2+x)α+2−x . Similar to the proof of

Theorem 4.1, the “best” value of x is the one that equates the two ratios. In this case

we get x = (α+2)(α−1)
α2+4α−1 . Substituting and maximizing for α we get α = 3 and x = 1/2

to yield the ratio 10/9.

We now establish the bound for the variable model. Fix an on-line algorithm A
and consider the following scenarios. Initially, the buffer is empty and W packets
of value 1 and delay 1 arrive. At the same step, W packets of value α and delay 2
arrive. Suppose that A drops a fraction x ≤ 1 of the 1-value packets. We consider
two possible scenarios. In the first no more packets arrive. Then the competitive

580 KESSELMAN ET AL.

ratio is bounded from below by α+1
α+1−x since there exists a feasible schedule of the

whole sequence. In the second scenario, W packets of value α and delay 1 arrive at
the next time step. In this case the competitive ratio of A is bounded from below by

2α
(1+x)α+1−x . These are the same ratios considered in the proof of Theorem 4.1, and

hence we get the same bound of 1 + 1
(1+

√
2)2

≈ 1.17.

Slightly better results can be proved for bandwidth 1.
Theorem 4.14. The competitive ratio of any deterministic on-line algorithm for

a 2-uniform and a 2-variable bounded-delay model with bandwidth 1 is at least 1.25
and

√
2, respectively.

Proof. Consider the uniform model first. Fix an on-line algorithm A and consider
the following scenario. At time 0, the buffer is empty and two packets of value 1 arrive,
and at time 1, a packet of value α > 1 arrives. There are two possible continuations.
In one, no more packets arrive, and in the other, at time 2 two additional packets of
value α arrive. Now, if A drops one of the low-value packets, then its competitive
ratio is at least α+2

α+1 since there exists a feasible schedule of all three packets of the
first continuation. Otherwise, at least one packet of value α is lost by A in the
second continuation, and hence the competitive ratio of A is at least 3α+1

2α+2 . Setting
α+2
α+1 = 3α+1

2α+2 , we get that for α = 3, the competitive ratio of A is at least 1.25.
The bad example for the variable delay model is even simpler. Let A be an on-line

algorithm, and consider the following scenario. At time 0, the buffer is empty and a
packet having value 1 and delay 1 arrives together with a packet of value α > 1 and
delay of 2. The two possible continuations are (i) no more arrivals and (ii) at time 1
an additional packet of value α with delay 1 (i.e., zero slack time) arrives. If A drops
the low-value packet, then its competitive ratio for continuation (i) is α+1

α since there
exists a feasible schedule of both packets. If the low-value packet is scheduled, then for
continuation (ii), A loses at least one high-value packet, showing that its competitive
ratio is at least 2α

α+1 . Solving α+1
α = 2α

α+1 , we get that for α = 1+
√

2, the competitive

ratio of A is at least
√

2.

5. The off-line case. In this section we show that the FIFO model has matroid
structure in the off-line setting. As a result, optimal off-line solutions can be found
in polynomial time. We also study the connection between the FIFO model and the
bounded-delay model.

We first consider the FIFO model. Fix the input sequence for the remainder of
this section. We also assume, without loss of generality, that all packets admitted to
the buffer are later sent: since we are dealing with the off-line case, a packet that will
be dropped can simply be rejected when it arrives.

Let C be the class of all work-conserving schedules, defined as follows. A sched-
ule A is said to be work conserving, denoted by A ∈ C, if

|SA(t)| = min(W, |QA(t) ∪A(t) \DA(t)|) for all time steps t,

where W is the link bandwidth. In words, a schedule is work-conserving if a packet
may be delayed only when the full bandwidth is used by other packets. Note that
work-conserving algorithms may still reject packets arbitrarily.

Theorem 5.1. For a FIFO schedule A, let SA be the set of all packets served

by A. Then IFIFO
def
= {SA : A ∈ C} is a matroid.

Proof. There are three properties to verify. The first two are trivial: ∅ ∈ I, and for
SA ⊂ SB with SB ∈ I, we clearly have that SA ∈ I by dropping the packets in B\A. It
remains to verify the following property: If |SA| > |SB |, then there exists p ∈ SA \SB

BUFFER OVERFLOW MANAGEMENT IN QoS SWITCHES 581

such that SB ∪ {p} ∈ I. This can be seen as follows. Let t0 be the first time in which
|SA(t0)| > |SB(t0)|: t0 exists by the assumption that |SA| > |SB |. Let t1 ≤ t0 be the
last step before t0 where |DA(t1)| < |DB(t1)|: t1 exists by the assumption that B is
work conserving. Then there exists a packet p ∈ DB(t1) \DA(t1). Moreover, since by
our choice, for any t ∈ [t1, t0] we have that |SB(t)| ≥ |SA(t) and |DB(t)| ≤ |DA(t)|,
and since A is work conserving by assumption, we also have that |QB(t)| < |QA(t)|
for all t ∈ [t1, t0]. Hence the packet p can be added to SB while keeping the schedule
feasible.

A similar result for the bounded delay case is well known [10, Theorem 17.12].
We state it here for completeness.

Theorem 5.2. For a bounded delay schedule A, let SA be the set of all packets

served by A. Then IBD
def
= {SA : A ∈ C} is a matroid.

We remark that for the FIFO model (and hence for the uniform bounded-delay
model as well; see Theorem 5.4 below), an optimal solution can be found in O(n logB)
time, and in O(n2) time for the variable bounded delay model, where n is the number
of packets in the input sequence and B is the buffer size.

Corollary 5.3. An optimal schedule for the FIFO and bounded delay models
can be found in polynomial time.

The following theorem shows a transformation from the FIFO model to the uni-
form bounded-delay model.

Theorem 5.4. For any input sequence, the optimal value served by a FIFO
schedule with buffer size B is equal to the optimal value served by a uniform bounded-
delay schedule with δ = B + 1.

Proof. Let OPTF be the optimal value served by a FIFO schedule with buffer
size B, and let OPTD be the optimal value served by a uniform bounded-delay sched-
ule with δ = B+1. First, note that any work-conserving schedule in the FIFO model
is also a schedule in the bounded delay model, since no packet in the FIFO model is
served more than B time units after its arrival, and hence OPTF ≤ OPTD. For the
other direction, consider any schedule in the uniform bounded-delay model. Since in
this model, a set of packets can be served if and only if the EDF schedule of this set
is feasible, we may assume without loss of generality that the schedule is EDF. Also
note that the number of packets in the bounded delay buffer is never more than the
maximal delay bound (recall that only packets that are eventually transmitted enter
the buffer). The result now follows from the fact that an EDF schedule in the uniform
bounded delay model is exactly the FIFO order, and hence OPTD ≤ OPTF .

A nice feature of the FIFO to bounded-delay transformation in the proof of Theo-
rem 5.4 is that it does not require off-line information. We therefore have the following
corollary.

Corollary 5.5. Let CF (B) be the best competitive factor of on-line FIFO al-
gorithms with buffer size B, and let CD(δ) be the best competitive factor of on-line
uniform bounded-delay algorithms with maximal delay δ. Then CD(B+1) ≤ CF (B).

We remark that the converse cannot be proved by our transformation, since it
requires knowledge of the future.

6. Conclusion. In this work we studied competitive overflow management. We
sharpened the results of [20] for the FIFO model, and initiated a study in the bounded-
delay model. In particular, we have proved the following facts:

• The greedy algorithm is 2-competitive for FIFO buffers.
• Among all the greedy algorithms, head-drop is the best.
• No on-line algorithm can be optimal for the bounded-delay case.

582 KESSELMAN ET AL.

• The greedy algorithm is (1+ 1
α)-competitive in the bounded delay model when

the set of possible values is 1 and α > 1.

Many important questions remain open:

• In the FIFO model, can one substantially improve on the 2-competitiveness
of the greedy algorithm in the general case? The best known result [14]
is for the case of two packet values 1 and α > 4, with competitive ratio

of
√
α+1√
α

. Combining this with our results for the greedy algorithm, one can

get a competitive ratio better than 2 for this case only. There is no real
improvement for the general case of packet values.

• In the bounded delay model, we know very little in the general case. Even
for the uniform bounded delay case, we know how to improve the greedy
algorithm only for the special case of δ = 2.

REFERENCES

[1] M. Adler, A. L. Rosenberg, R. K. Sitaraman, and W. Unger, Scheduling time-constrained
communication in linear networks, in Proceedings of the 10th Annual ACM Symposium
on Parallel Algorithms and Architectures, 1998, pp. 269–278.

[2] W. Aiello, Y. Mansour, S. Rajagopolan, and A. Rosen, Competitive queue policies for
differentiated services, in Proc. IEEE INFOCOM, 2000, pp. 431–440.

[3] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts, On-line routing of virtual circuits
with applications to load balancing and machine scheduling, J. ACM, 44 (1997), pp. 486–
504.

[4] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and B. Schieber, A unified approach
to approximating resource allocation and scheduling, J. ACM, 48 (2001), pp. 1069–1090.

[5] A. Bar-Noy, S. Guha, J. Naor, and B. Schieber, Approximating the throughput of multiple
machines in real-time scheduling, SIAM J. Comput., 31 (2001), pp. 331–352.

[6] S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Rosier, D. Shasha, and

F. Wang, On the competitiveness of online real-time task scheduling, in Proceedings of
the 32nd IEEE Symposium on Real-Time Systems, 1992, pp. 125–144.

[7] S. Baruah, G. Koren, B. Mishra, A. Raghunathan, L. Rosier, and D. Shasha, Online
scheduling in the presence of overload, in Proceedings of the 32nd IEEE Symposium on
Foundations of Computer Science, 1991, pp. 101–110.

[8] D. Black, S. Blake, M. Carlson, E. Davies, Z. Wang, and W. Weiss, An Architecture for
Differentiated Services, Internet draft, RFC 2475, Internet Engineering Task Force, 1998.

[9] D. Clark and J. Wroclawski, An Approach to Service Allocation in the Internet, unpub-
lished, 1997.

[10] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press,
Cambridge, MA, 1990.

[11] S. Floyd and V. Jacobson, Random early detection gateways for congestion avoidance,
IEEE/ACM Trans. on Networking, 1 (1993), pp. 397–413.

[12] S. Goldman, J. Parwatikar, and S. Suri, On-line scheduling with hard deadlines, J. Algo-
rithms, 34 (2000), pp. 370–389.

[13] V. Jacobson, K. Nicholas, and K. Poduri, An Expedited Forwarding PHB, Internet draft,
RFC 2598, Internet Engineering Task Force, 1999.

[14] A. Kesselman and Y. Mansour, Loss-bounded analysis for differentiated services, in Proceed-
ings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New
York, SIAM, Philadelphia, 2001, pp. 591–600.

[15] G. Koren and D. Shasha, Dover : An optimal on-line scheduling algorithm for overloaded
uniprocessor real-time systems, SIAM J. Comput., 24 (1995), pp. 318–339.

[16] M. A. Labrador and S. Banerjee, Packet dropping policies for ATM and IP networks, IEEE
Communications Surveys, 2 (1999).

[17] T. V. Lakshman, A. Neidhardt, and T. Ott, The drop from front strategy in TCP and in
TCP over ATM, in Proc. IEEE INFOCOM, 1996, pp. 1242–1250.

[18] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, On the self-similar nature of
ethernet traffic (extended version), IEEE/ACM Trans. on Networking, 2 (1994), pp. 1–15.

BUFFER OVERFLOW MANAGEMENT IN QoS SWITCHES 583

[19] R. Lipton and A. Tomkins, Online interval scheduling, in Proceedings of the Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms, ACM, New York, SIAM, Philadelphia,
1994, pp. 302–311.

[20] Y. Mansour, B. Patt-Shamir, and O. Lapid, Optimal smoothing schedules for real-time
streams, Distributed Computing, 17 (2004), pp. 77–89.

[21] M. May, J.-C. Bolot, A. Jean-Marie, and C. Diot, Simple performance models of differ-
entiated services for the Internet, in Proc. IEEE INFOCOM, 1999, pp. 1385–1394.

[22] C. Phillips, R. Uma, and J. Wein, Off-line admission control for general scheduling problems,
in Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms,
ACM, New York, SIAM, Philadelphia, 2000, pp. 879–888.

[23] The ATM Forum Technical Committee, Traffic Management Specification Version 4.0,
ftp://ftp.atmforum.com/pub/approved-specs/af-tm-0056.000.pdf (April 1996).

[24] A. Veres and M. Boda, The chaotic nature of TCP congestion control, in Proc. IEEE INFO-
COM, 2000, pp. 1715–1723.

