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Abstract. In this paper we present a new kind of cryptanalytic attack
which utilizes bugs in the hardware implementation of computer instruc-
tions. The best known example of such a bug is the Intel division bug,
which resulted in slightly inaccurate results for extremely rare inputs.
Whereas in most applications such bugs can be viewed as a minor nui-
sance, we show that in the case of RSA (even when protected by OAEP),
Pohlig-Hellman, elliptic curve cryptography, and several other schemes,
such bugs can be a security disaster: Decrypting ciphertexts on any com-
puter which multiplies even one pair of numbers incorrectly can lead to full
leakage of the secret key, sometimes with a single well-chosen ciphertext.
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1 Introduction

With the increasing word size and sophisticated optimizations of multiplication
units in modern microprocessors, it becomes increasingly likely that they contain
some undetected bugs. This was demonstrated by the accidental discovery of the
Pentium division bug in the mid 1990’s, by the less famous Intel 80286 popf bug
(that set and then cleared the interrupt-enable bit during execution of the very
simple popf instruction, when no change in the bit was necessary), by the recent
discovery of a bug in the Intel Core 2 memory management unit (which allow
memory corruptions outside of the range of permitted writing for a process), etc.

In this paper we show that if some intelligence organization discovers (or se-
cretly plants) even one pair of single-word integers a and b whose product is com-
puted incorrectly (even in a single low order bit) by a popular microprocessor,
then any key in any RSA-based security program running on any one of the mil-
lions of PC’s that contain this microprocessor can be easily broken, unless ap-
propriate countermeasures are taken. In some cases, the full key can be retrieved
with a single chosen ciphertext, while in other cases (such as RSA protected by the
popular OAEP technique), a larger number of ciphertexts is required. The attack
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is also applicable to other cryptographic schemes which are based on exponentia-
tion modulo a prime or on point multiplication in elliptic curves, and thus almost
all the presently deployed public key schemes are vulnerable to such an attack.

The new attack, which we call a Bug Attack, is related to the notion of fault at-
tacks discovered by Boneh, Demillo and Lipton in 1996 [4], but seems to be much
more dangerous in its implications. The original fault attack concentrated on soft
errors that yield random results when induced at a particular point of time by
the attacker (latent faults were briefly mentioned, but were never studied). They
require physical possession of the computing device by the attacker, and the de-
liberate injection of a transient fault by operating this device in an unusual way
(e.g., in a microwave oven, at high temperature, with high frequency clock, or with
a sudden spike in the power supply). Such attacks are feasible against smart cards,
but are much harder to carry out against PC’s. In the new bug attack, the target
PC’s can be located at secure locations half a world away, and millions of PC’s can
be attacked simultaneously over the Internet, without having to manipulate the
operating environment of each one of them individually. Unlike the case of fault
attacks, in bug attacks the error is deterministic, and is triggered whenever a par-
ticular computation is carried out; the attacker cannot choose the timing or nature
of the error, except by choosing the inputs of the computation.

Since the design of modern microprocessors is usually kept as a trade secret,
there is no efficient method for the user to verify that a single multiplication bug
does not exist. For example, there are 2128 pairs of inputs in a 64× 64 bit multi-
plier, so we cannot try them all by exhaustive search. We can even expect that
most of the 2128 pairs of inputs will never be multiplied on any processor. Even if
we assume that Intel had learned its lesson and meticulously verified the correct-
ness of its multipliers, there are many smaller manufacturers of microprocessors
who may be less careful with their design, and less careful in testing the quality
of the chips they produce. In addition, many PC’s are sold with overclocked
processors which are more likely to err when performing complex instructions
such as 64-bit integer multiplication. The problem is not limited to microproces-
sors: Many cellular telephones are running RSA or elliptic curve computations
on signal processors made by TI and others, FPGA or ASIC devices can embed
in their design flawed multipliers from popular libraries of standard cell designs,
and many security programs use optimized “bignum packages” written by others
without being able to fully verify their correctness.

In addition to such innocent bugs, there is the issue of intentionally tampered
hardware, which is a major security problem. In February 2005 the matter was
addressed in a US Department of Defense (DoD) report [17], which warned about
the risks of importing hardware from foreign countries to the US. Recently the
F.B.I. reported that 3,500 counterfeit Cisco network components were discovered
in the US, and some of them had even found their way into US military and gov-
ernment facilities [9]. Although in this case Cisco did not find any evidence of ma-
licious modifications, it certainly demonstrates the feasibility of such a scenario.
In [7], the open source design of the Leon3 processor was changed to exemplify
that a hardware backdoor can be introduced into processors. The change (which
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affected only 0.05% of the logic gates) was shown to allow attackers to load a ma-
licious firmware and take full control of the attacked machine. Even commercially
sold bug-free processors can be made buggy by anyone along the supply chain who
modifies their firmware via their built-in bug-fixing mechanisms.

What we show in this paper is that the innocent or intentional introduction of
any bug into the multiplier of any processor (even when it affects only two specific
inputs whose product contains a single erroneous low-order bit) can lead to a major
security disaster,which canbe secretly exploited in an essentially undetectableway
by a sophisticated intelligence organization. Even though we are not aware of any
such attacks being carried out in practice, hardware manufacturers and security
experts should be aware of this possibility, and use appropriate countermeasures.

In this paper we present bug attacks against several widely deployed cryptosys-
tems (such asPohlig-Hellman [11], RSA [13], elliptic curve schemes, and some sym-
metric primitives), and against several implementations of these schemes. For all
the discussed schemes, we show that the secret exponent can be retrieved by a
chosen ciphertext attack, and in the case of Pohlig-Hellman, the secret exponent
can also be retrieved by a chosen plaintext attack. In the case of RSA, we show
that if decryption is performed using the Chinese remainder theorem (CRT) [10,
Note 14.70] the public modulus n can be factored using a single chosen cipher-
text. A particularly interesting observation is that even though RSA-OAEP [1]
was designed to prevent chosen ciphertext attacks, we can actually use this pro-
tective mechanism as part of our bug attack in order to learn whether a bug was or
was not encountered during the exponentiation process. This demonstrates that
in spite of the similarity between bug attacks and fault attacks, their countermea-
sures can be very different. For example, just stopping an erroneous computation
or recomputing the result with a different exponentiation algorithm may protect
the scheme against fault attacks, but will leak the full key via a bug attack.

This paper is organized as follows: Section 2 gives an overview of the meth-
ods we use in most of our attacks, and describes the two most commonly used
implementations of modular exponentiations: the left-to-right (LTOR) and right-
to-left (RTOL) exponentiation algorithms. Section 3 presents the simplest bug
attack on RSA when decryption is performed using the Chinese remainder theo-
rem (CRT), using a single chosen ciphertext. Section 4 presents attacks on several
cryptosystems when exponentiations are computed using the LTOR algorithm,
and Section 5 presents attacks on the same schemes when the exponentiations
are computed using the RTOL algorithm. In Section 6 we discuss bug attacks
on elliptic curve schemes and some symmetric primitives. Section 7 summarizes
the contributions of this paper, and presents the time and data complexities of
all our attacks. Finally, Appendix A provides descriptions of the cryptosystems
discussed in this paper.

2 Overview of Our Methods and Notations

We present several attacks which use multiplication bugs. We concentrate on
these operations since multiplication and division are typically the most complex
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operations, their implementations are most aggressively optimized, and therefore
bugs are more likely to exist in them than in simple operations like addition or
XOR, and are less likely to be discovered by the manufacturers.

2.1 Multiplication of Big Numbers

In cryptography, we are often required to perform arithmetic operations on big
numbers, which must be represented using more than a single 32-bit or 64-bit
word. Arithmetic operations on such values must be broken down into arithmetic
operations on the different words which comprise them. For example, when mul-
tiplying two very long integers x and y, each represented by ten words, each of
the ten words of x is multiplied by each of the ten words of y, in some order,
and the results are then summed up to the appropriate words of the product.
If x contains a in the sense that one of the ten words of x is a, y contains b, and
the processor produces an incorrect result when a and b are multiplied, then the
result of multiplying x · y on that processor will typically be incorrect (unless
there are multiple errors that exactly cancel each other during the computation,
which is very unlikely when the other words in x and y are randomly chosen).

2.2 Notations

We use the notation x · y to denote the result of multiplying x by y on a bug-
free processor, and x � y to denote the result of the same computation when
performed on a faulty processor. Similarly, the notation xl denotes the value
of x to the power l as computed on a bug-free processor, and x〈l〉 denotes the
value of x to the power l as computed by a particular algorithm on a faulty
processor (See Section 2.5 for details of popular exponentiation algorithms).
Since we assume that faults are extremely rare, for most inputs we expect the
result of the computation to be the same on both the faulty and the bug-free
processors, and in these cases we use the notations x · y and xl, even when
referring to computations done on the faulty processor.

2.3 Methods

Our attacks request the decryptions of ciphertexts which may or may not in-
voke the execution of the faulty multiplications, depending on the bits of the
secret exponent d. The results of those decryptions are used to retrieve the bits
of the secret exponent d. We develop two methods for creating the conditions
under which the buggy instructions are executed. The first method chooses a
ciphertext C, such that an intermediate value x during the decryption process
contains both a and b. If x is squared, then we expect that x2 �= x〈2〉, and thus
the result of the entire decryption process is also expected to be incorrect. If x is
multiplied by a different value y, which contains neither a nor b, then we expect
that x · y = x � y, and the decryption result is expected to be correct. The
second method chooses C such that during decryption one intermediate value x
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LTOR Exponentiation RTOL Exponentiation

z ← 1 y ← x; z ← 1
For k = log n down to 0 For k = 0 to log n

If dk = 1 then z ← z2 · xmod n If dk = 1 then z ← z · y mod n
Otherwise, z ← z2 mod n y ← y2 mod n

Output z Output z

Fig. 1. The Two Basic Exponentiation Algorithms

contains a, while another value y contains b. If x and y are multiplied then it is
expected that x · y �= x � y, and the result of decryption on the faulty proces-
sor is expected to be incorrect. If x and y are not multiplied by the decryption
algorithm, we expect the decryption to be correct.

2.4 Complexity Analysis

Let w be the length (in bits) of the words of the processor. When analyzing
complexities of our attacks throughout this paper we assume that numbers (both
exponentiated values and exponents) are 1024-bit long, and that w = 32 (in the
summary of the paper we also quote the complexities for w = 64). The standard
representation of 1024-bit long numbers requires �210/w� words. Given a random
1024-bit value x, and a w-bit value a, the probability that x contains a (in any
of its 210/w words) is about 2−w210/w. For w = 32 this probability is 2−27, and
for w = 64 it is 2−60. Given two w-bit values a and b, the probability that x

contains both a and b is about
(
2−w210/w

)2. For w = 32 this probability is
about 2−54, and for w = 64 it is about 2−120.

2.5 Exponentiation Algorithms

Given a value x and a secret exponent d = dlog ndlog n−1 . . . d1d0, the expo-
nentiation x �→ xd mod n can be efficiently computed by several exponentiation
algorithms [10, Chapter 14.6]. In this paper we present attacks against implemen-
tations that use the two basic exponentiation algorithms, LTOR (left-to-right)
and RTOL (right-to-left), described in Figure 1. Our techniques can be easily
adapted to attack implementations that use other exponentiation algorithms
such as the sliding window algorithm, the k-ary exponentiation algorithm, etc.

2.6 Remarks

The following remarks apply to most of the attacks presented in this paper.

1. Microprocessors usually perform different sequences of microcode instruc-
tions when computing a · b and b · a, and thus the bug is not expected to be
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symmetric: for a · b the processor may give an incorrect result, while for b · a
the result is correct. Therefore, the correctness of the result of multiplying
two big numbers x and y, where x contains a and y contains b, depends on
whether the implementation of x · y multiplies a · b or b · a. We assume that
such implementation details are known to the attacker.

2. Given a value w, the number of bits in the binary representation of w is
	log2 w
+ 1 (the indices of the bits of w are 0, . . . , 	log w
, where 0 is the
index of the least significant bit, and 	log w
 is the index of the most signif-
icant bit). Throughout this paper we use log w (without the floor operator)
as a shorthand for the index of the most significant bit of w.

3. It may be the case that more than one pair of buggy inputs a ·b exist. In such
cases, if γ multiplication bugs are known to the attacker, the complexities
of some of the attacks we present can be decreased. In attacks where the
attacker can control only one of the operands of the multiplication, and the
other operand is expected to appear randomly, the time complexity can be
decreased by a factor of min(γ, 	logn/w
). If some of the buggy pairs of
operands share the same value for one of the operands, this factor can even
get better (but it cannot be higher than γ). In attacks where both operands
are expected to appear randomly, the time complexity can be decreased by
a factor of γ. Note that symmetric bugs, where both the results of a · b and
b · a are incorrect, are counted as two bugs.

4. If both operands of the buggy instruction are equal (i.e., a = b), the com-
plexity of some of our attacks can be greatly reduced, while other attacks
become impossible. The former case happens when attacks rely on faults in
the squaring of values X , where X happens by chance to contain both a
and b. In this case only one word (a) needs to appear in X , which makes
the probability of this event much higher. On the other hand, attacks which
use the existence of a bug in order to decide whether x and y were squared
or multiplied together become impossible. When the attack requires that x
contains a and that y contains b, our ability to distinguish between these
cases depends on whether a = b.

3 Breaking CRT-RSA with One Chosen Ciphertext

We now describe a simple attack on RSA implementations in which decryptions
are performed using the Chinese remainder theorem (CRT). Let n = pq be the
public modulus of RSA, where p and q are large primes, and assume without
loss of generality that p < q. Knowing the target’s public key n (but not its
secret factors p and q), the attacker can easily compute a half size integer which
is guaranteed to be between the two secret factors p and q of n. For example,
	√n
 always satisfies p ≤ 	√n
 < q, and any integer close to

√
n is also likely

to satisfy this condition. The attacker now chooses a ciphertext C which is the
closest integer to

√
n, such that both a and b appear as low order words in C,

and submits this “poisonous input” to the target PC.
The first step in the CRT-RSA computation is to reduce the input C modulo p

and modulo q. Due to its choice, Cp = C mod p is randomized modulo the smaller



Bug Attacks 227

factor p, but Cq = C mod q = C remains unchanged modulo the larger factor q.
The next step in RSA-CRT is always to square the reduced inputs Cp and Cq,
respectively. Since a and b are unlikely to remain in Cp, the computation mod p
is likely to be correct. However, mod q the squaring operation will contain a
step in which the word a is multiplied by the word b, and by our assumption
the result will be incorrect. Assuming that the rest of the two computations
mod p and q will be correct, the final result of the two exponentiations will
be combined into a single output M̂ which is likely to be correct mod p, but
incorrect mod q. The attacker can then finish off his attack in the same way as
the original fault attack, by computing the greatest common divisor (gcd) of n
and M̂ e −C, where e is the public exponent of the attacked RSA key. This gcd
is the secret factor p of n.

Note that if such C cannot be found, then q − p < 22w. In this case, n can
be easily factored by other methods (e.g., Fermat’s factorization method, which
will factor n in 2w time without any calls to the decryption oracle).

4 Bug Attacks on LTOR Exponentiations

In this section we present bug attacks against several cryptosystems, where
exponentiations are performed using the LTOR exponentiation algorithm. We
first present chosen plaintext (or chosen ciphertext) attacks against the Pohlig-
Hellman scheme, then present chosen ciphertext attacks against RSA, and finally
discuss how to adapt our attacks on RSA to the case of RSA-OAEP.

4.1 Bug Attacks on Pohlig-Hellman

The Pohlig-Hellman cipher uses two secret exponents e and d: the former is used
for encryption, and the latter for decryption. Given one of the secret exponents,
the other can be computed by d ≡ e−1 (mod p − 1). We discuss adaptive and
non-adaptive chosen ciphertext attacks which retrieve the bits of the decryp-
tion exponent d; similar chosen plaintext attacks can retrieve the encryption
exponent e.

We start by presenting a simple adaptive attack, which demonstrates the basic
idea of our technique. We later improve this attack with additional ideas.

4.1.1 Basic Adaptive Chosen Ciphertext
In this section, an attack which requires the decryption of 2 log p chosen cipher-
texts is presented. The attack retrieves the bits of the secret exponent one at
a time, from dlog p to d1 (d0 is known to be one, as d is odd). Therefore, when
the search for di is performed, we can assume that the bits di+1, . . . , dlog p are
already known.

The attack works as follows:

1. Choose a value X which contains the words a and b.
2. For i = log p down to 1 do
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(a) Denote the value of the known bits of d by d′ =
∑log p

k=i+1 2k−(i+1)dk.
(b) Compute C = X1/d′

mod p.
(c) Ask for the decryption M̂ = C〈d〉 mod p on the faulty processor.
(d) Obtain the correct decryption M = Cd mod p.
(e) If M = M̂ conclude that di = 1, otherwise conclude that di = 0.

3. Set d0 = 1.

The attack is based on the following observations. Since p is a known prime,
the attacker can compute arbitrary roots modulo p. During the i’th iteration
of the attack, the value of C is chosen such that when it is exponentiated to
power d with LTOR, the intermediate value of the variable z after log p − i
iterations is X . The next operation of the LTOR algorithm is either squaring
z, or multiplying it by C, depending on the value of di. Since the intermediate
value z = X contains both a and b, we expect to get an incorrect decryption if
z is squared (i.e., when di = 0), and a correct decryption if z is first multiplied
by C (i.e., when di = 1).

Note that the bug-free decryption in Step 2d may be obtained on the same
buggy microprocessor by using the multiplicative property of modular exponen-
tiation. The attacker may request the decryption M ′ of C′ = C3 mod p (or any
other power of C which is not expected to cause the execution of the faulty
instructions), and then check whether M̂3 ≡ M ′ (mod p) to learn if an error
had occurred. Thus, no calls to a bug-free decryption device that uses the same
secret key (which is usually unavailable) is required. In fact, since the same
value of X is used for each of the iterations, the correct decryption M can be
computed from the value of the correct decryption in the previous iteration as:
M = M̄d′/d̄′

mod n, where M̄ and d̄′ are the values of the corresponding variables
in the previous iteration. Therefore, no additional decryption requests (beyond
the first one) are needed in order to obtain all the correct decryption results
throughout the attack.

The attack requires buggy decryption of log p+1 chosen ciphertexts to retrieve
d, or buggy encryption of log p + 1 chosen plaintexts to retrieve e. Each one of
these values makes it easy to compute the other value since p is a known prime.

4.1.2 Improved Adaptive Chosen Ciphertext Attack
We observe that X can be selected such that both X and X〈2〉 contain a and
b. A further improvement uses X ’s which contain a and b, such that when X is
squared m times repeatedly on a faulty processor (for some m > 0), all the values
X〈2j〉 contain a and b. Using such X , we can improve the expected complexity
of the attack by a factor of α = 2−2−m. Further details on this improved attack
will be presented in the full version of this paper.

4.1.3 Chosen Ciphertext Attack
The (non-adaptive) chosen ciphertext attack presented later in Section 4.2.2 is
also applicable in the case of Pohlig-Hellman. The attack requires decryption of
228 ciphertexts to retrieve the secret exponent d (the attack on RSA requires
227 ciphertexts, but in the case of Pohlig-Hellman an additional decryption is
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required for each buggy decryption, in order to verify the correctness of the
decryption). As in the previous attacks on Pohlig-Hellman, a similar chosen
plaintext attack can retrieve the secret exponent e.

4.2 Bug Attacks on RSA

We describe several chosen ciphertext attacks on RSA, where the attacked im-
plementation performs decryptions without using CRT. Instead, we assume that
the decryption of a ciphertext C is performed by computing Cd mod n using
LTOR (where d is the secret exponent of RSA). We assume that the public ex-
ponent e and the public modulus n are known. The main difference between the
case of RSA and the case of Pohlig-Hellman is that there is no known efficient
algorithm to compute roots modulo a composite n, when the factorization of n
is unknown.

Unlike the case of Pohlig-Hellman, in the case of RSA checking whether the
decrypted message M̂ is the correct decryption of a chosen ciphertext C can be
easily done by checking whether M̂ e ≡ C (mod n). Thus, there is no need to
request the decryptions of additional messages for this purpose.

4.2.1 Adaptive Chosen Ciphertext Attack
We describe an adaptive chosen ciphertext attack which requires the decryption
of log n chosen ciphertexts by the target computer. The generation of each of
the ciphertexts requires 227 time on the attacker’s (bug-free) computer, and thus
the total time complexity of the attack is about 237.

Description of the attack:

1. For i = log n down to 1 do
(a) Denote the value of the known bits of d by d′ =

∑log n
k=i+1 2k−(i+1)dk.

(b) Repeatedly choose random values C which contain b, until Cd′
mod n

contains a.
(c) Ask for the decryption M̂ = C〈d〉 mod n using the faulty processor.
(d) Compute Ĉ = M̂ e mod n.
(e) If Ĉ = C conclude that di = 0, otherwise conclude that di = 1.

2. Set d0 = 1.

The attack is similar to the basic attack presented in Section 4.1.1, except that
here only the word a is contained in the intermediate value of the exponentiation.
The word b is contained in the ciphertext C, and therefore the roles of the correct
and incorrect results are exchanged between di = 0 and di = 1.

During the execution of the LTOR algorithm, the intermediate value of the
variable z after log n−i iterations contains a (due to the selection of C in Step 1b
of the attack). If di = 0 then z is squared, and no errors in the computation are
expected to occur, leading to Ĉ = C in Step 1e. If di = 1, then z is multiplied by
C, which contains the word b, and due to the bug, the result of the exponentiation
is expected to be incorrect, leading to Ĉ �= C in Step 1e.

As explained in Section 2, the probability that the random number Cd′
mod n

contains somewhere along it the word a is 2−27 (for our standard parameters).
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Therefore, Step 1b takes an average time of 227 exponentiations on the attacker’s
computer.

4.2.2 Chosen Ciphertext Attack
The previous adaptive attack on exponentiations using LTOR is the basis for the
following non-adaptive chosen ciphertext attack. The attack requests the decryp-
tion of 229 chosen ciphertexts, all of which contain the word b. It is expected that
for every 0 ≤ i ≤ log n, there are about four ciphertexts for which the intermedi-
ate value of z after i rounds of the exponentiation algorithm contains the word a.
The value of di can be determined by the correctness of the decryption of those
ciphertexts, using considerations similar to the ones used in the attack of Sec-
tion 4.2.1. If for some i there are no ciphertexts Cj for which Xj = Cd′

j mod n
contains a, there is no choice but to continue the attack recursively for both
di = 0 and di = 1. However, when the wrong value is chosen, a contradiction
may be encountered before retrieving the rest of the bits (i.e., more than one
ciphertext Cj for which Xj contains a is found, and the decryption of some,
but not all, of them is incorrect). By using standard results from the theory of
branching processes, 229 ciphertexts suffice to ensure that recursive calls which
represent wrong bit values are quickly aborted.
Here are some details of this attack:

1. Choose 229 random ciphertexts Cj (1 ≤ j ≤ 229) containing the word b, and
ask for their decryptions M̂j using the faulty processor.

2. For i = log n down to 1 do
(a) Denote the value of the known bits of d by d′ =

∑log n
k=i+1 2k−(i+1)dk.

(b) For each ciphertext Cj compute Xj = Cd′
j mod n.

(c) Consider all ciphertexts Cj such that Xj contains a:
i. If for all such ciphertexts Cj it holds that M̂ e

j mod n = Cj then set
di = 0.

ii. If for all such ciphertexts Cj it holds that M̂ e
j mod n �= Cj then set

di = 1.
iii. If there are no such ciphertexts try the rest of the attack for both

di = 0 and di = 1.
iv. If for some of these ciphertexts Cj , M̂ e

j mod n = Cj and for others
M̂ e

j mod n �= Cj (i.e., a previously set value of one of the bits is
wrong) then backtrack.

3. Set d0 = 1.

The data complexity may be increased in order to decrease the probability
of not having ciphertexts Cj such that Xj contains a. Alternatively, it may be
decreased, at the expense of more recursive guesses (Step 2(c)iii), with increased
time complexity. If for every i there exists a j such that Cd′

j contains b, the time
complexity is equal to the data complexity (i.e., 229).
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4.2.3 Known Plaintext Attack
The chosen ciphertext attack from Section 4.2.2 can be easily transformed into
a known plaintext attack which requires 256 known plaintexts. Among the 256

plaintexts, only 229 are expected to contain b. We can discard all the plaintexts
which do not contain b, and use the rest as inputs for the attack described in
Section 4.2.2.

Note that the known plaintexts must be the result of decrypting the corre-
sponding ciphertexts on the faulty processor. The attack will not work if the
given plaintext-ciphertext pairs are obtained by encrypting plaintexts (either on
the attacker’s computer or on the target computer).

4.3 Bug Attacks on OAEP

Since RSA has many mathematical properties such as multiplicativity, it is often
used in modes of operation which protect it against attacks based on these
properties. The most popular mode is OAEP [1], which is provably secure. We
show here that although OAEP protects against “standard” attacks on RSA, it
provides only limited protection against bug attacks, since it was not designed
to deal with errors during the computation.

OAEP adds randomness and redundancy to messages before encrypting them
with RSA, and rejects ciphertexts which do not display the expected redun-
dancy when decrypted. Random ciphertexts are not expected to display such
a redundancy, and are likely to be rejected by the receiver with overwhelming
probability. To choose valid ciphertexts with certain desired characteristics, we
choose random plaintexts and encrypt them using proper OAEP padding, until
we get a ciphertext that has the desired structure by chance (since OAEP is a
randomized cipher, we can also try to encrypt the same message with different
random values, and thus can control the result of the decryption). Our main
observation is that the structure we need in our attack (such as the existence of
a certain word in the ciphertext) has a relatively high probability regardless of
how much redundancy is added to the plaintext by OAEP, and the knowledge
that a correctly constructed ciphertext was rejected suffices to conclude that
some computational error occurred. We are thus exploiting the OAEP counter-
measure itself in order to mount the new bug attack!

The attacks we present on RSA-OAEP are very similar to the attacks on
RSA from Section 4.2, with some minor modifications. The same attacks are
also applicable to OAEP+ [16].

4.3.1 Adaptive Chosen Ciphertext Attack
Unlike the attack of Section 4.2.1, OAEP stops us from choosing ciphertexts C
which contain b, and thus in Step 1b we must choose random messages (on our
own computer) until b “appears” in C at random. As explained in Section 2.4,
the probability that this happens and in addition Cd′

mod n contains a is 2−54.
As mentioned above, computation errors are identified in Step 1e of the attack
on OAEP by the mere rejection of the ciphertext, and there is no need to know
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the actual value which was rejected. The attack requires the decryption of log n
chosen ciphertexts, and thus its total time complexity for 1024-bit n’s is 264.

4.3.2 Chosen Ciphertext Attack
The (non-adaptive) chosen ciphertext attack on RSA from Section 4.2.2 can also
be used in the case of OAEP. For a random message, the probability that the
ciphertext contains b is 2−27. In order to find 229 messages with a ciphertext
which contains b (as required by the attack), we have to try about 256 random
messages. Therefore, the attack requires the decryption of 229 chosen cipher-
texts, plus 256 pre-computation time on the attacker’s own computer. Once the
decryptions of the chosen ciphertexts are available, the key can be retrieved in
229 additional time.

5 Bug Attacks on RTOL Exponentiations

In this section we present attacks against Pohlig-Hellman, RSA, and RSA-OAEP,
where exponentiations are performed using the RTOL exponentiation algorithm.
In RTOL, the value of the variable y is squared in every iteration of the expo-
nentiation algorithm, regardless of the bits of the secret exponent. Any error
introduced into the value of y undergoes the squaring transformation in every
subsequent iteration, and is propagated to the value of z if and only if the cor-
responding bit of the exponent is set. Consequently, every set bit in the binary
representation of the exponent introduces a different error into the value of z,
while zero bits do not introduce any errors. This allows us to mount efficient non-
adaptive attacks, and to retrieve more than one bit from each chosen ciphertext,
as described in the attacks presented in this section.

5.1 Bug Attacks on Pohlig-Hellman

We present a chosen ciphertext attack against Pohlig-Hellman, where exponen-
tiations are performed using RTOL. The attack is aimed at retrieving the bits
of the secret exponent d. As in Section 4.1, an identical chosen plaintext attack
can retrieve the bits of the secret exponent e.

5.1.1 Chosen Ciphertext Attack
We present a (non-adaptive) chosen ciphertext attack which retrieves the secret
key when the exponentiation is performed using RTOL. Let X be a value which
contains the words a and b, and let β = X2/X〈2〉. Unlike the improved attack
on Pohlig-Hellman of Section 4.1.2, it does not help if X〈2〉 also contains a
and b (on the contrary, it makes the analysis slightly more complicated). Each
chosen ciphertext is used to retrieve r bits of the secret exponent d, where r is
a parameter of the attack. The reader is advised to consider first the simplest
case of r = 1.
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The attack is carried out using the following steps:

1. For i = log p− (log p mod r) down to 0 step −r

(a) Compute C = X1/2i−1
mod p.

(b) Denote the value of the known bits of d by d′ =
∑log p

k=i+r 2k−(i+r)dk.
(c) Ask for the decryption M̂ = C〈d〉 mod p on the faulty processor.
(d) Obtain the correct decryption M = Cd mod p.
(e) Find an r-bit value u such that M/M̂ = β2rd′+u mod p (0 ≤ u < 2r).
(f) Denote the bits of u by ur−1ur−2 . . . u1u0.
(g) Conclude that di+k = uk, ∀ 0 ≤ k < r.

Consider the decryption of C in Step 1c, for some i. Exponentiation by the
RTOL algorithm sets y = C, and squares y repeatedly. After squaring it i − 1
times, the value of y becomes X , which contains both a and b. When y is squared
again, a multiplicative error factor of β is introduced into its computed value
(compared to its bug-free value). If di = 1 then z is multiplied by y, and thus the
same multiplicative error factor of β is also propagated into the value of z. After
the next squaring of y, it contains an error factor of β2, which is propagated into
the value of z when di+1 = 1. In each additional iteration of the exponentiation
the previous error in y is squared, and the error affects the result if and only
if the corresponding bit of d is set. At the end of the exponentiation, the error
factor in the final result is:

M

M̂
≡

log p∏
k=i

(
β2k−i

)dk ≡ β
Plog p

k=i 2k−idk (mod p).

Since only r bits of the exponent are unknown, they can be easily retrieved by
performing 2r − 1 modular multiplications.

As in the attacks of Section 4.1, all the error-free decryption queries in Step 1c
can be replaced by the decryption of one additional ciphertext on the faulty
processor: The attacker can request the decryption M3 of C3 mod p (or any
other power of C which is not expected to cause a decryption error), and then
in Step 1e can find an r-bit value u such that

M3

M̂3
≡

[
log p∏
k=i

(
β2k−i

)dk

]3

≡ β3(2rd′+u) (mod p).

The attack requires 2�(log p + 1)/r� decryptions of chosen ciphertexts, and
all of them can be pre-computed by log p modular square roots (Step 1a of the
attack). Once the decryptions are available, each execution of Step 1e finds r
bits of d using 2r − 1 multiplications, which is equivalent to about 2r/ log p
modular exponentiations. Since Step 1e is executed �(log p + 1)/r� times, the
total time complexity is about 2r/r. For small values of r this time complexity is
negligible compared to the time of the pre-computation. For r ≥ 12, however, this
computation takes longer, and there is a tradeoff between the time complexity
and the data complexity.
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5.2 Bug Attacks on RSA

Unlike the case of Pohlig-Hellman, there is no known efficient algorithm for
extracting roots modulo a composite n with unknown factors. The chosen ci-
phertext attack presented in this section circumvents this problem by choosing
random ciphertexts until a suitable ciphertext is found.

5.2.1 Chosen Ciphertext Attack
The attack in this case is similar to the attack on RTOL modulo a prime p
(Section 5.1.1), except for some necessary adaptations to the case of RSA. The
attack requires a pre-computation to find a value X which contains both a and b,
and such that all the values X1/2i−1

for 1 ≤ i ≤ log n are known (Step 2 in the
following attack). The parameter r represents the number of bits retrieved in
each iteration.

The detailed attack is as follows:

1. Choose a random ciphertext C0, and let t = 0.
2. While t ≤ log n or Ct does not contain both a and b do:

(a) t = t + 1.
(b) Compute Ct = C2

t−1 mod n.
3. Let X = Ct and let X〈2〉 be the result of squaring X on a faulty processor.
4. Let β = X2/X〈2〉 mod n.
5. For i = log n− (log n mod r) down to 0 step −r

(a) Ask for the decryption M̂ of C = Ct−i using the faulty processor, M =
C

〈d〉
t−i mod p.

(b) Denote the value of the known bits of d by d′ =
∑log n

k=i+r 2k−(i+1)dk.
(c) Compute Ĉ = M̂ e mod n.

(d) Find an r-bit value u such that C/Ĉ ≡
(
β2rd′+u

)e

(mod n).
(e) Denote the bits of u by ur−1ur−2 . . . u1u0.
(f) Conclude that di+k = uk, ∀ 0 ≤ k < r.

A random ciphertext contains a and b with probability 2−54, and therefore the
pre-computation of Step 2 is expected to take time corresponding to 254 modular
multiplications (which is equivalent to 244 modular exponentiations when log n =
1024). In each iteration of the attack, r bits are retrieved by performing 2r − 1
modular multiplications, which are equivalent to about (2r − 1)/ log n modular
exponentiations. Thus, once the decrypted ciphertexts are available, the attack
requires a time equivalent to about⌈

log n

r

⌉
2r − 1
log n

≈ 2r − 1
r

modular multiplications. As in the attack of Section 5.1, this attack requires
�log n/r� decryptions of pre-computed chosen ciphertexts. Step 5d finds r bits
of the secret exponent d using 2r − 1 multiplications, and thus (as in the attack
from Section 5.1.1) for large values of r there is a tradeoff between the time
complexity and the data complexity.
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5.3 Bug Attacks on OAEP Implementations That Use RTOL

5.3.1 Adaptive Chosen Ciphertext Attack
We present an adaptive chosen ciphertext attack for the case of RSA-OAEP when
exponentiations are performed using RTOL. The presented attack resembles the
attack from Section 4.3, but it identifies the bits of d starting from the least
significant bit.

The description of the attack is as follows:

1. Set d0 = 1.
2. For i = 1 to log n

(a) Denote the value of the known bits of d by d′ =
∑i−1

k=0 2kdk mod n.
(b) Repeatedly encrypt random messages M until C =E(M)=(OAEP(M))e

satisfies that C2i

mod n contains a and Cd′
mod n contains b.

(c) Ask for the decryption of C using the faulty processor.
(d) If the decryption succeeds conclude that di = 0, otherwise conclude that

di = 1.

After i iterations of the decryption exponentiation algorithm, the value of
the variable z is Cd′

mod n, and the value of the variable y is C2i

mod n. The
ciphertext C is chosen such that one of these values contains a and the other
contains b. Therefore, if these values are multiplied (di = 1), then the result of the
decryption is expected to be wrong, and the ciphertext is rejected, otherwise, no
errors are expected to occur, and the decryption is expected to succeed (di = 0).

The complexity of finding the ciphertext in Step 2b is 254, and the complexity
of the entire attack for 1024-bit n’s is 264 exponentiations on the attacker’s
computer. The attack requires log n chosen ciphertexts, which are decrypted on
the target machine.

6 Bug Attacks on Other Schemes

6.1 Elliptic Curve Schemes

In cryptosystems based on elliptic curves, exponentiations are replaced by mul-
tiplying a point by a constant. It should be noted that the implementations
of point addition (corresponding to multiplication in modular groups) and of
point doubling (corresponding to squaring in modular groups) are different, but
both of them use multiplications of large integers. Our bug attacks can be easily
adapted in such a way that the bug is invoked only if two points are added (or
alternatively, only if a point is doubled). The correctness or incorrectness of the
result reveals the bits of the exponent.

6.2 Bug Attacks on Symmetric Primitives

Multiplication bugs can also be used to get information on the keys of symmet-
ric ciphers which include multiplications, such as the block ciphers IDEA [8],
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MARS [5], DFC [6], MultiSwap [14], Nimbus [18] and RC6 [12], the stream
cipher Rabbit [3], the message authentication code UMAC [2], etc.

In IDEA, MARS, DFC, MultiSwap and Nimbus, subkeys are multiplied by
intermediate values. If an encryption (or decryption) result is known to be in-
correct, an attacker may assume that one of the subkeys used for these multi-
plications is a, and the corresponding intermediate value is b. For example, by
selecting a plaintext which contains b in a word that is multiplied by a subkey,
the attacker can easily check if the value of that subkey is a.

In Rabbit, a 32-bit value is squared to compute a 64-bit result used to update
the internal state of the cipher. In faulty implementations with word size 8 or 16
(which are likely word sizes for smart card implementations), faults in the stream
can give the attacker information about the internal state. Similarly, the block
cipher RC6 uses multiplications of the form A · (2A+1) for 32-bit values A, and
thus multiplication bugs may cause errors in faulty implementations with word
size 8 or 16. However, this is an unlikely scenario, since bugs in processors with
small words are expected to cause frequent errors which can be easily discovered.

The MAC function UMAC uses multiplications of two words, both of which
depend on the authenticated message. If an incorrect MAC is computed on a
faulty processor, an attacker can gain information on the intermediate values of
the computation.

Table 1. Summary of the Attacks Presented in This Paper

Scheme Exp. Attack Sec. Data Pre- Attack Complexity Complexity
Alg. Comp. Time for 32-bit for 64-bit

Time Words∗ Words∗

Pohlig- RTOL CP/CC 5.1.1 2
˚

log p
r

ˇ∗∗ log p log p+2r

r
∗∗ 26/210/227 26/210/227

Hellman LTOR ACP/ 4.1.1 log p - log p 210/–/210 210/–/210

ACC

LTOR CP/CC 4.1.3 2·2w ·w
log p

- 2·2w ·w
log p

228/–/228 261/–/261

RSA CRT CC 3 1 - 1 1/-/1 1/-/1

RTOL CC 5.2.1
˚

log n
r

ˇ∗∗ 22ww2

log2 n
log n+2r

r
∗∗ 25/254/227 25/2120/227

LTOR ACC 4.2.1 log n – 2w · w 210/–/237 210/–/270

LTOR CC 4.2.2 4·2w ·w
log n

– 4·2w ·w
log n

229/–/229 262/–/262

LTOR KP 4.2.3 4·22w ·w2

log2 n
– 4·2w ·w

log n
256/–/229 2122/–/262

RSA RTOL ACC 5.3.1 log n − 22w ·w2

log n
210/–/264 210/–/2130

with LTOR ACC 4.3.1 log n − 22w ·w2

log n
210/–/264 210/–/2130

OAEP LTOR CC 4.3.2 4·2w ·w
log n

4·22w ·w2

log2 n
4·2w ·w
log n

229/256/229 262/2122/262

KP – Known Plaintext.
CP – Chosen Plaintext; ACP– Adaptive Chosen Plaintext.
CC – Chosen Ciphertext; ACC– Adaptive Chosen Ciphertext.
w is the word size (in bits) of the faulty processor.
∗ Complexity is described in terms of data/pre-computation time/attack time.
∗∗ r is a parameter of the attack. The presented numbers are for r = 25.
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7 Summary and Countermeasures

We have presented several chosen ciphertext attacks against exponentiation
based public-key and secret-key cryptosystems, including Pohlig-Hellman and
RSA. We show such attacks for the two most common implementations of expo-
nentiation. We also discuss the applicability of these techniques to elliptic curve
cryptosystems and symmetric ciphers. The attacks and their complexities are
summarized in Table 1.

There are various countermeasures against bug attacks. Many protection tech-
niques against fault attacks are also applicable to bug attacks, but we stress that
due to the differences between the techniques, most of them have to be adapted
to the new environment. As shown in Sections 4.3 and 5.3, and unlike the case of
fault attacks, the mere knowledge that an error has occurred suffices to mount an
attack, even if the output of decryption is not available. Therefore, if a decryp-
tion is found to be incorrect, it can be dangerous to send out an error message,
and the correct result must be computed by other means.

Possible ways to compute the correct result include using a different expo-
nentiation algorithm, or relying on the multiplicative property of the discussed
schemes to blind the computations. When blinding is used, an attacker has no
control over the exponentiated values, and they are not made available to her.
Thus, even if faults occur during the exponentiation, no information is leaked.
However, this method renders the system vulnerable to timing attacks, as the
decryption of ciphertexts which trigger the bug take longer than decryptions
which succeed in the first attempt. In order to protect the implementation from
timing attacks, the original exponentiations must be blinded, so that no un-
blinded exponentiations are performed. Another alternative is to exponentiate
modulo n · r, where r is a small (e.g., 32-bit) prime, rather than modulo n, and
reduce mod n only at the last step.
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When Alice wants to encrypt a message m, she computes c = me mod p. Bob
can decrypt c by computing its e-th root modulo p. In practice, the decryption
is performed by computing cd mod p, where d is a decryption exponent such that
d ·e ≡ 1 (mod p−1). Note that given the encryption exponent e, the decryption
exponent d can be easily computed, and thus e must be kept secret.

The Pohlig-Hellman-Shamir [15] keyless protocol allows encrypted communi-
cation between two parties that do not have shared secret keys. The protocol
is based on the commutative properties of the Pohlig-Hellman cipher. Let p be
a large prime number. Alice and Bob each has a secret encryption exponent
(eA and eB, respectively) and a secret decryption exponent (dA and dB, re-
spectively) such that eA · dA ≡ eB · dB ≡ 1 (mod p − 1). When Alice wishes
to send Bob an encrypted message m, she sends c1 = meA mod p. Bob then
computes c2 = ceB

1 mod p and sends it back to Alice. Alice decrypts c2 and
sends the decryption c3 = cdA

2 mod p to Bob. Finally, Bob decrypts c3 to get
the message m = cdB

3 mod p. The protocol is secure under standard computa-
tional assumptions (The Diffie-Hellman assumption), but not against man in the
middle attacks.

A.2 The RSA Cryptosystem

RSA [13] is a public-key cryptosystem. Let n = pq be a product of two large
prime integers. Bob has a public key (n, e) such that gcd(e, (p− 1)(q − 1)) = 1,
and a private key (n, d) such that d · e ≡ 1 (mod (p − 1)(q − 1)). When Alice
wants to send bob an encrypted message m she computes c = me mod n. When
Bob wants to decrypt the ciphertext he computes cd ≡ mde ≡ m (mod n).

The security of RSA relies on the hardness of factoring n. If the factors of n
are known, RSA can be easily broken.

A.3 RSA Decryption Using CRT

The modular exponentiations required by RSA are computationally expensive.
Some implementations of RSA perform the decryption modulo p and q sep-
arately, and then use the Chinese remainder theorem (CRT) to compute the
decryption cd mod n. Such an implementation speeds up the decryption by a
factor of 4 compared to naive implementations.

Given a ciphertext c, it is first reduced modulo p and modulo q. The two
values are exponentiated modulo p and q separately: mp = cdp mod p, and mq =
cdq mod q, where dp = d mod p − 1 and dq = d mod q − 1. Now m is computed
using CRT, such that m ≡ mp (mod p) and m ≡ mq (mod q). This is done by
computing m = (xmp + ymq)mod n, where x and y are pre-computed integers
that satisfy:

{
x ≡ 1 (mod p)
x ≡ 0 (mod q) and

{
y ≡ 0 (mod p)
y ≡ 1 (mod q)

.
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A.4 OAEP

Optimal Asymmetric Encryption Padding (OAEP) [1] and OAEP+ [16] are
methods of encoding a plaintext before its encryption, with three major goals:
adding randomization to deterministic encryption schemes (e.g., RSA), prevent-
ing the ciphertext from leaking information about the plaintexts, and preventing
chosen ciphertext attacks. OAEP is based on two one-way functions G and H ,
which are used to create a two-round Feistel network, while OAEP+ uses three
one-way functions. Only OAEP is described here.

Let G : {0, 1}k0 → {0, 1}l+k1, H : {0, 1}l+k1 → {0, 1}k0 be two one-way func-
tions, where l is the length of the plaintext, and k0, k1 are security parameters.
When Alice wants to compute the encryption C of a plaintext M , she chooses a
random value r ∈ {0, 1}k0 and computes

s = G(r) ⊕ (M ||0k1),
t = (H(s)⊕ r),

w = s||t,
C = E(w),

where || denotes concatenation of binary vectors, and E denotes encryption with
the underlying cipher. Decryption of c is performed by:

w = D(C),
s = w[0 . . . l + k1 − 1],
t = w[l + k1 . . . n− 1],
r = H(s)⊕ t,

y = G(r) ⊕ s,

M = y[0 . . . l − 1],
z = y[l . . . l + k1 − 1],

where D denotes decryption under the same cipher used in the encryption phase.
If z �= 0k0 , then the ciphertext is rejected and no plaintext is provided. Otherwise,
the decrypted plaintext is M .
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