Bug Fixes on the IEEE 802.11 DCF module of the
Network Simulator ns-2.28

Felix Schmidt-Eisenlohr, Jon Letamendia-Murua,
Marc Torrent-Moreno, Hannes Hartenstein

Institute of Telematics, University of Karlsruhe, Germany
fschmidt@tm.uni-karlsruhe.de, jonle @web.de,
torrent@tm.uni-karlsruhe.de, hartenstein @rz.uni-karlsruhe.de

Technical Report 2006-1
ISSN 1432-7864
Dept. of Computer Science
Universitét Karlsruhe (TH)

1 Introduction

The Network Simulator 2 (ns-2) [1] is largely the most used simulator in the Ad Hoc research commu-
nity [2]. However, the 802.11 DCF module implemented in the default distribution of ns-2 presents some
bugs, i.e., discordances with the IEEE 802.11 Standard specifications [3].

We present in this Technical Report the result of an extensive analysis of both the IEEE 802.11 DCF
specification and the ns-2 module, realized with the support of [4]. We first describe the discordances found
with respect to the different DCF’s procedures. Second, we describe the different behavior corresponding
to the physical layer capture model that current wireless interfaces present [5]. Finally we provide in the
Appendix all source code modified in the different ns-2.28 files. All modified source code files can be found
for download at http://dsn.tm.uni-karlsruhe.de/ns-2.28-DCF-PHY-UKA.php.

2 Bug fixes

Each of the following subsections describes one or several bugs concerning a certain issue of the MAC
functionality. Within these sections, we describe the correspondent behavior according to the IEEE 802.11
specifications, the implementation provided by the default distribution of ns-2.28 and our proposition to fix
the non-matching behavior.

In order to avoid confusion and improve readability in this document the term transmission will only
refer to a transmission of the node being described. Transmissions from other stations will be referred as
receptions.

2.1 Erroneous packet reception

The IEEE 802.11 specification contains several lines concerning the handling of erroneous packet reception
and the usage of Extended Inter Frame Space (EIFS). Section 9.2.3.4 states:

“The EIFS shall be used by the DCF whenever the PHY has indicated to the MAC that a
frame transmission was begun that did not result in the correct reception of a complete MAC
frame with a correct FCS value. The duration of an EIFS is defined in 9.2.10. The EIFS
interval shall begin following indication by the PHY that the medium is idle after detection
of the erroneous frame, without regard to the virtual carrier-sense mechanism. The EIFS is
defined to provide enough time for another STA to acknowledge what was, to this STA, an
incorrectly received frame before this STA commences transmission. Reception of an error-
free frame during the EIFS resynchronizes the STA to the actual busy/idle state of the medium,

so the EIFS is terminated and normal medium access (using DIFS and, if necessary, backoff)
continues following reception of that frame.”

Sections 9.2.4, 9.2.5.1 and 9.2.5.2 state that EIFS will precede a packet transmission instead of DIFS
when following the detection of a frame that was not correctly received. We remark the following points:

e EIFS must be started when the medium is detected as idle after every frame that is not received
correctly.

e Reception of a correct frame must interrupt the EIFS period and the radio interface must resynchro-
nize to the actual busy/idle state.

The default distribution of ns-2.28 manages erroneous packet reception and EIFS as follows: every
time a station receives either a packet with errors or a packet that collides with another packet, the network
allocation vector (NAV) is set with a duration of an EIFS period. The station virtually determines the
medium as busy and in consequence is not allowed to send any frame during this period of time. Using
the NAV for waiting the EIFS period mixes two different concepts, virtual carrier sensing and inter frame
spaces. The ns-2.28 implementation does not fulfill the IEEE specifications because a mechanism to reset
EIFS after receiving an error-free frame is missing. Also, in case that a backoff procedure has to be started,
the time before a backoff restarts is too long, i.e., EIFS + DIFS, instead of EIFS. Our implementation solves
the problems of the default distribution as follows:

e A flag variable last_packet_correct_ indicates the result of the last packet reception. If the
station receives a packet with errors the flag is set to false. The flag is set to true whenever the station
receives an error-free packet, and at the latest, after waiting an interval of length EIFS even if no
packet was received during this time span.

e In the case i) the MAC module gets, from a higher layer, a data packet to be transmitted during
the reception of another packet, and ii) when having to resume a backoff period after the reception
of a packet, the flag last_packet_correct_ will be read. If the medium is sensed idle and
last_packet_correct_ is true at the end of the packet reception the DIFS period is used; in
case last_packet_correct_ is false EIFS is utilized.

The bugfix included changes in the following files: mac/mac-802_11.cc, mac/mac-802_11.h,
mac/mac-timers.cc and mac/mac-timers.h. All changed code is enclosed in a block starting
with “// BUGFIX UKA: EIFS” and ending with “// BUGFIX UKA END: EIFS” and is appropri-
ately commented. The code of the modified methods is listed in Appendix A.

The affected methods in the file mac/mac-802_11. cc are:

e checkBackoffTimer (), send(): select the appropriate inter-frame space depending on the
flag variable 1ast_packet_correct_.

e capture (), collision (): start an EIFS period instead of the NAV timer.
e deferHandler (): finish an EIFS period after its expiration.

e RetransmitRTS (), RetransmitDATA () : usage of the new method
StartRetransmitBackoff (), see below.

e recv (), recv_timer (): setthe flag variable last_packet_correct_ appropriately.
The following methods were added to the code:
e setEIFS (): method called at the start of an EIFS period to start the deferring time.

e resetEIFS (): method called at the moment a new packet is detected to manage the ongoing
timers, if any.

e startRetransmitBackoff (): handles the different cases when scheduling a retransmission
In the file mac/mac-timers.cc:

e BackoffTimer::start (): method arguments were extended, causing adaption of the method
calls at several places.

2.2 Packet arrival during a transmission

According to IEEE 802.11 specifications, wireless chipsets do not support the transmission and reception
of packets at the same time, but have to switch between these two states. Consequently, a packet that arrives
at a station during a transmission is not sensed by the station because the radio interface is in transmission
state. In the ns-2 simulator, however, packets that arrive during a transmission are marked all erroneous
at the moment they arrive, i.e., when the first symbol arrives at the interface, and discarded at the end,
i.e., when the last symbol has arrived, resulting in the start of an EIFS period. In our implementation the
packet is marked with a special label TX_RX_ERROR. After having received the last symbol of the packet,
it is discarded and no EIFS period follows. Note that a packet arriving during a transmission can not be
indicated by the physical layer as the beginning of a frame reception (Section 9.2.3.4 of the IEEE 802.11
specifications). Therefore, after the transmission ended, the reception of a packet can still not be indicated
and consequently, no EIFS period follows.

The bugfix included changes in the files mac/mac-802_11.cc and mac/mac-802_11.h. All
changed code is enclosed in a block starting with “// BUGFIX UKA: TxRxError” and ending with
“// BUGFIX UKA END: TxRxError” and is appropriately commented. The code of the modified
methods is listed in Appendix A.

The following methods are affected:

e transmit (), recv (): if there is a packet transmission and a packet reception at the same time,
the received packet is marked with TX_RX_ERROR = 1.

e recv_timer (): discard packets that arrived during a transmission.

2.3 Packet transmission

Several bugs concern the correct handling of packets that should be sent by a station. Depending on the
packet type there exist different issues explained in the following lines. The bugfix included changes in the
file mac/mac-802_11.cc. All changed code is enclosed in a block starting with “// BUGFIX UKA:
transmission” and ending with “// BUGFIX UKA END: transmission” and is appropriately
commented. The code of the modified methods is listed in Appendix A.

Transmission of a DATA or an RTS packet: The transmission of DATA and RTS packets is controlled
by the MAC layer using a set of timers and the physical and virtual indicators of the medium’s busy/idle
state. If the medium is sensed idle and neither backoff nor defer timer is running at the moment the MAC
layer gets a packet from a higher layer, the RTS (or DATA) packet can be transmitted after an idle period
of DIFS/EIFS (see section 9.2.5.1 of the IEEE 802.11 specification). However, if the medium is already
busy or becomes busy during the DIFS/EIFS period, a backoff procedure has to follow (see section 9.2.5.2
of the IEEE 802.11 specification). The number of backoff intervals (slots) that the medium has to be free is
determined with the help of the Contention Window (CW), that is increased on every retransmission attempt
(see section 9.2.4 of the IEEE 802.11 specification).

However, the standard distribution of ns-2.28 does not follow these rules after the MAC layer gets
a packet from a higher layer: i) in the method send (), a backoff period is started in case that the
medium is free and none of the timers is running; ii) the Contention Window is increased whenever
the medium becomes busy during DIFS/EIFS deferring period (see methods check_pktRTS () and
check_pktTx ()); iii) the backoff procedure is not initialized with the appropriate timer (mhBackoff_)
in the method tx_ resume ().

The bugs can be fixed by deferring for a period of length DIFS (without a backoff period) in the first
case, not increasing the Contention Window in the second case and by using the appropriate timer in the
last case.

Transmission of an acknowledgment packet (ACK): If a station receives a DATA packet it must acknowl-
edge the reception by transmitting an acknowledgment packet (ACK) after waiting a time period of SIFS.
The ACK packet should be transmitted in every case, according to section 9.2.8 of the specifications:

“After a successful reception of a frame requiring acknowledgment, transmission of the ACK
frame shall commence after a SIFS period, without regard to the busy/idle state of the medium.”

In the default distribution, this did not happen in case that the station was waiting for another frame, i.e.,
CTS, DATA or ACK. The improved implementation changes this behavior; in every case, the ACK is sent
after SIFS, see method recvDATA (). The pending timeout of the packet that the station is waiting for is
handled by calling the method sendHandler ().

Transmission of a broadcast packet: According to section 9.2.4 of the 802.11 specification, both the
short and the long retry counters should be reset if a broadcast packet was sent. This was not done in the
default distribution and is now added in the method Ret ransmitDATA ().

Retransmission of a DATA or RTS packet: Retransmission must occur if the expected acknowledgment
(or the CTS in case of an RTS packet) does not arrive before its expected time. This is described in section
9.2.5.7 of the 802.11 specification. Section 9.2.5.2 states:

“The backoff procedure shall also be invoked when a transmitting STA infers a failed transmis-
sion as defined in 9.2.5.7 or 9.2.8.”

However, the default distribution initiates the backoff procedure only in the case that the retry limit is not
reached. This error is corrected in our implementation in the methods RetransmitRTS (),
RetransmitDATA () and the new method StartRetransmitBackoff ().

2.4 Expiration of the network allocation vector (NAV)

checkBackoffTimer () isthe method thatis called when the state of the backoff process may need to be
changed, i.e., it is responsible to stop, pause or resume it depending on the station’s current status. However,
in the default implementation it exists another method, navHandler (), that manages the backoff process
in its own, i.e., without calling checkBackoffTimer (). Due to the changes in the EIFS timer (see
Section 2.1) the code inside navHandler () was not consistent any longer. This incorrect and duplicate
piece of code is fixed, now navHandler () handles the backoff timer calling checkBackoffTimer ().

The bugfix included changes in the file mac/mac-802_11.cc. All changed code is enclosed in a
block starting with “// BUGFIX UKA: NAV” and ending with “// BUGFIX UKA END: NAV” and
is appropriately commented. The code of the modified methods is listed in Appendix A.

2.5 Memory leak at the reception of a MAC control packet

DATA packets given to higher layers are removed from the memory when they are completely handled.
MAC control packets (RTS, CTS and ACK packets), however, are not given to higher layers and the memory
that they have allocated has to be freed by the MAC layer itself. This was not done in the default distribution,
so it was added in the method recv_timer ().

The bugfix included changes in the file mac/mac—-802_11.cc. All changed code is enclosed in a
block starting with *“// BUGFIX UKA: Memory” and ending with “// BUGFIX UKA END:
Memory” and is appropriately commented. The code of the modified methods is listed in Appendix A.

2.6 Capture effect

The default distribution has implemented a physical layer capability referred to as capture effect: if a
node is receiving a data packet (P;) and during its reception another packet (P;) reaches the station, the
radio interface is able to continue decoding successfully the first packet if its reception power (pow(Py))
is stronger than the reception power of the second packet (pow(P,)) by at least a factor called capture
threshold (Cprpy), i.e., pow(Py) > Cprpy - pow(Ps).

However, newer wireless chipsets allow further capturing [5]: if a radio interface is synchronized to a
packet (P;) and during its duration a second packet (P%») arrives, the station is able to resynchronize and
decode this second packet under the following two conditions:

e The receiving power of the second packet is at least higher by the factor capture threshold than the
receiving power of the first packet, i.e., pow(P2) > Cprp, - pow(Py).

e The second packet does not reach the receiver between 45 and 10us after the detection of the first
packet in order to properly resynchronize.

Using the old chipset only the first of both packets could be ‘captured’. The extended chipset capability can
be activated and deactivated setting a variable in the tcl simulation script:

e Mac/802_11 set newchipset_ false: deactivation of new chipset feature (default).

e Mac/802_11 set newchipset_ true: activation of new chipset feature.

The changes in the code affect the methods capture() and recv() in the file
mac/mac—802_11.cc. Also, the file mac/mac-802_11.h is modified and defines the variable to
activate the new feature. The default value of the tcl variable newchipset_ was added to the file
tcl/lib/ns-default.tcl. Finally, we trace a packet discard as the result of the capture effect (to
differentiate it from collisions) in the trace files, resulting in an additional state CAP defined in the file
trace/cmu-trace.h. All related passages are enclosed between comments of the form “// BUGFIX
UKA: capture” and “// BUGFIX UKA END: capture”. The code of the modified methods is
listed in Appendix A.

References

[1] “Network Simulator ns-2,” http://www.isi.edu/nsnam/ns/.

[2] S. Kurkowski, T. Camp, and M. Colagrosso, “MANET Simulation Studies: the Incredibles,” in SIG-
MOBILE Mobile Computing and Communications Review (MC2R), vol. 9, no. 4. New York, NY,
USA: ACM Press, 2005, pp. 50-61.

[3] ANSIIEEE, “IEEE Std. 802.11, 1999 Edition, Part11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) specifications,” http://www.ieee802.org/11/, 1999.

[4] M. S. Gast, 802.11 Wireless Networks, 2nd ed. O’Reilly, 2005.

[5]1 A. Kochut, A. Vasan, A. Shankar, and A. Agrawala, “Sniffing out the correct Physical Layer Cap-
ture model in 802.11b,” in Proceedings of 12th IEEE International Conference on Network Protocols
(ICNP 2004), October 2004.

A Source code

In the following, all methods affected by the improvements are listed. The original (old) implementation
and the improved (new) implementation are listed.

A.1 mac/mac-802 11.cc

inline void

Mac802_11::checkBackoffTimer ()

{

if (is_idle () && mhBackoff_ .paused())

// BUGFIX UKA: EIFS
// When the channel becomes free again the station will have
// to back off with DIFS or EIFS period depending on the
// last received packet

// old implementation
// mhBackoff_.resume (phymib_.getDIFS());

// new implementation
if (last_packet_correct_ == true)
mhBackoff_.resume (phymib_.getDIFS()) ;
else
mhBackoff_.resume (phymib_.getEIFS());
// BUGFIX UKA END: EIFS

if (! is_idle() && mhBackoff_.busy() && ! mhBackoff_ .paused()
mhBackoff_.pause();
}

inline void
Mac802_11::transmit (Packet xp, double timeout)
{

tx_active_ = 1;

if (EOTtarget_) {
assert (eotPacket_ == NULL);
eotPacket_ = p->copy();

% If I'm transmitting without doing CS, such as when
«+ sending an ACK, any incoming packet will be "missed"
* and hence, must be discarded.

if (rx_state_ != MAC_IDLE) {
struct hdr_mac802_11 xdh = HDR_MAC802_11 (p);
assert (dh->dh_fc.fc_type == MAC_Type_Control);
assert (dh—->dh_fc.fc_subtype == MAC_Subtype_ACK);
assert (pktRx_);
struct hdr_cmn xch = HDR_CMN (pktRx_);

// BUGFIX UKA: TxRxError

// If a station transmits it cannot sense and thus not receive

// packets at the same time physically. In the original simulator

// however such a packet is "received", marked errornous, discarded

// and an EIFS period follows.

// This however should not happen, because the packet is not sensed.
// Therefore the packet that is received is marked special and handled
// correctly after complete "reception" (handle it as "never sensed")

// old implementation
//ch->error () = 1; /+ force packet discard */

// new implementation
ch->error () = TX_RX_ERROR;
// BUGFIX UKA END: TxRxError

/*
* pass the packet on the "interface" which will in turn
* place the packet on the channel.
*
«+ NOTE: a handler is passed along so that the Network
* Interface can distinguish between incoming and
* outgoing packets.
*/
downtarget_->recv (p->copy (), this);

mhSend_.start (timeout) ;
mhIF_.start (txtime (p));
}

/*

Phy MIB Class Functions

*/

PHY _MIB::PHY MIB(Mac802_11 *parent)
{
/%
* Bind the phy mib objects. Note that these will be bound
* to Mac/802_11 variables
*/

parent->bind ("CWMin_", &CWMin) ;

parent->bind ("CWMax_", &CWMax);

parent->bind ("SlotTime_", &SlotTime);

parent->bind ("SIFS_", &SIFSTime);

parent->bind ("PreambleLength_", &PreambleLength);
parent->bind ("PLCPHeaderLength_", &PLCPHeaderLength);
parent->bind_bw ("PLCPDataRate_", &PLCPDataRate);

// BUGFIX UKA: capture

// bind variable

// Set newchipset_ to false for classical chipset behavior
// Set to true for improved capture support.
parent->bind_bool ("newchipset_", &newchipset);

// BUGFIX UKA END: capture

/*

Mac Class Functions

*/
Mac802_11::Mac802_11()

Mac (), phymib_(this), macmib_ (this), mhIF_(this), mhNav_ (this),

mhRecv_ (this), mhSend_ (this),

mhDefer_ (this), mhBackoff_(this)

nav_ = 0.0;

tx_state_ = rx_state_ = MAC_IDLE;
tx_active_ = 0;
eotPacket__ = NULL;
pktRIS_ = 0;

PktCTRL_ = 0;

cw_ = phymib_.getCWMin () ;
ssrc_ = slrc_ = 0;

// Added by Sushmita

et_ = new EventTrace();
sta_seqno_ = 1;

cache_ = 0;

cache_node_count_ = 0;

// BUGFIX UKA: capture

// saves the point of time of the start of the last packet reception
time_start_pktRx_= 0.0;

// BUGFIX UKA END: capture

// BUGFIX UKA: EIFS

// On initialization the last received packet is assumed as correct.
last_packet_correct_ = true;

// BUGFIX UKA END: EIFS

// chk if basic/data rates are set
// otherwise use bandwidth_ as default;

Tcl& tcl = Tcl::instance();
tcl.evalf ("Mac/802_11 set basicRate_");
if (strcmp(tcl.result(), "O") != 0)
bind_bw("basicRate_", &basicRate_);
else
basicRate_ = bandwidth_;

tcl.evalf ("Mac/802_11 set dataRate_");

if (strcmp(tcl.result(), "O0") != 0)
bind_bw ("dataRate_", &dataRate_);
else
dataRate_ = bandwidth_;
EOTtarget_ = 0;
bss_id_ = IBSS_ID;

//printf ("bssid in constructor %d\n",bss_id_);
}

// BUGFIX UKA: EIFS
// Two new functions for setting and resetting EIFS state

// Set_eifs: This method is called after an errornous packet
// reception, It sets last_packet_correct to false and

// starts the defer timer if backoff is not already running
// (in that case, the backoff timer cares about EIFS on

// resume (see checkbackofftimer()).

inline void
Mac802_11::set_eifs () {
last_packet_correct_ = false;
if (mhBackoff_ .busy() == false) {
mhDefer_.start (phymib_.getEIFS());

}

// reset_eifs: If the station starts receiving a packet, reset_eifs is

// called. It checks if the station is in the EIFS period and if this is
// done by defer timer. If this is the case the defer timer is stopped. If
// there are packets to send then the station will initialize a backoff

// period (if not already running), that is directly paused until the

// medium is idle again.

inline void
Mac802_11::reset_eifs()
{

if (last_packet_correct_ == false && mhDefer_.busy() == true) {
mhDefer_ .stop();
if (mhBackoff_.busy() == false && (pktRTS_ || pktTx_)) {

mhBackoff_.start(cw_, is_idle(), phymib_.getDIFS());

}
// BUGFIX UKA END: EIFS

void

Mac802_11::capture (Packet =*p)

{
// BUGFIX UKA: capture, EIFS
// Changes concerning capture effect:
// — Packets that are discarded because of the capture effect are
// mentioned in the trace
// - A new version of the chipset implementation that handles an
// "extended capture effect" is implemented
// Changes concerning EIFS handling:
// — NAV is not used for EIFS handling anymore; replace by mechnism
// using last_packet_correct_ variable and defer/backoff timers

// old implementation

/%

* Update the NAV so that this does not screw

* up carrier sense.

*/

// set_nav (usec (phymib_.getEIFS () + txtime(p)));
// Packet::free(p);

// new implementation
last_packet_correct_ = false;

if (phymib_.get_newchipset () == false) {
// handle the classical capture effect (new chipset feature is not used)
discard(p, DROP_MAC_CAPTURE) ;

} else {

// handle capture effect if (new chipset feature used)

if (pktRx_->txinfo_.RxPr > p->txinfo_.RxPr) {
// RxPr first packet > RxPr second packet
// (power difference a priori big enough, otherwise capture is not called)
// => continue receive packet 1, discard packet 2
discard (p, DROP_MAC_CAPTURE) ;
} else {
// RxPr first packet < RxPr second packet
// (power difference a priori big enough, otherwise capture is not called)
// => stop receive packet 1 and discard, receive packet 2 from now on

mhRecv_.stop () ; // receive timer for packet 1 stopped
mhRecv_.start (txtime (p)); // start receive timer for packet 2
discard(pktRx_, DROP_MAC_CAPTURE) ; // discard packet 1

pktRx_ = p; // make packet 2 the one that is received now

}
}
// BUGFIX UKA END: capture, EIFS

void
Mac802_11l::collision (Packet =*p)
{
switch (rx_state_) {
case MAC_RECV:
setRxState (MAC_COLL) ;
/* fall through =/
case MAC_COLL:
assert (pktRx_);
assert (mhRecv_.busy());
/*
% Since a collision has occurred, figure out
* which packet that caused the collision will
x "last" the longest. Make this packet,
* pktRx_ and reset the Recv Timer if necessary.

// BUGFIX UKA: EIFS

// A collision implies reception of an errornous packet

// set the last_packet_correct_ variable to false
last_packet_correct_ = false;

// BUGFIX UKA END: EIFS

if (txtime (p) > mhRecv_.expire()) {
mhRecv_.stop () ;
discard(pktRx_, DROP_MAC_COLLISION) ;
pktRx_ = p;
mhRecv_.start (txtime (pktRx_));

}

else {
discard(p, DROP_MAC_COLLISION) ;

}

break;

default:
assert (0);

void

Mac802_11::tx_resume ()

{
double rTime;
assert (mhSend_.busy () == 0);
assert (mhDefer_.busy() == 0);

if (pktCTRL_) |
/*
* Need to send a CTS or ACK.
*/
mhDefer_.start (phymib_.getSIFS());
} else if (pktRTS_) {
if (mhBackoff_.busy() == 0) {

// BUGFIX UKA: transmission
//

// Do backoff period using the (interruptable) backoff timer, not

// the (non-interruptable) defer timer

// old implementation

o

//rTime = (Random::random() % cw_) * phymib_.getSlotTime () ;

//mhDefer_.start (phymib_.getDIFS() + rTime);

// new implementation

mhBackoff_.start (cw_, is_idle(), phymib_.getDIFS());

//BUGFIX UKA END: transmission
}
} else if (pktTx_) {
if (mhBackoff_.busy() == 0) {
hdr_cmn x*ch = HDR_CMN (pktTx_) ;
struct hdr_mac802_11 smh = HDR_MAC802_11 (pktTx_) ;

if ((u_int32_t) ch->size() < macmib_.getRTSThreshold()
|| (u_int32_t) ETHER_ADDR (mh->dh_ra) == MAC_BROADCAST) {

// BUGFIX UKA: transmission
//

// Do backoff period using the (interruptable)

// not the (non-interruptable) defer timer

// old implementation

// rTime = (Random::random() % cw_)
// * phymib_.getSlotTime () ;

// mhDefer_.start (phymib_.getDIFS() + rTime);

// new implementation

backoff timer,

mhBackoff_.start (cw_, is_idle(), phymib_.getDIFS());

// BUGFIX UKA END: transmission
} else {
mhDefer_.start (phymib_.getSIFS());
}
}
} else if(callback_) {
Handler xh = callback_;
callback_ = 0;
h->handle ((Eventx*) 0);
}
setTxState (MAC_IDLE) ;

void
Mac802_11::deferHandler ()
{

// BUGFIX UKA: EIFS

// Defer timer is also used for EIFS handling now. This method is called at

// the end of a complete EIFS. The assertion needs to be extended and the

// last_packet_correct_ variable has to be reset.
// old implementation
// assert (pktCTRL_ || pktRTS_ || pktTx_);

// new implementation

assert (pktCTRL_ || pktRTS_ || pktTx_ || last_packet_correct_ == false);

last_packet_correct_ = true;
// BUGFIX UKA END: EIFS

if (check_pktCTRL() == 0)
return;
assert (mhBackoff_.busy() == 0);
if (check_pktRTS() == 0)
return;
if (check_pktTx () == 0)
return;

void
Mac802_11::navHandler ()
{

// BUGFIX UKA: NAV

// 1f NAV finishes, paused backoff timers have to be resumed.
// Use the appropriate method instead of an individual solution here.

// old implementation

// if(is_idle() && mhBackoff_.paused()
// mhBackoff_.resume (phymib_.getDIFS());

// new implementation

checkBackoffTimer () ;
// BUGFIX UKA END: NAV
}

int

Mac802_11::check_pktRTS ()

{
struct hdr_mac802_11 =mh;
double timeout;

assert (mhBackoff_.busy() == 0);

if (pktRTS_ == 0)
return -1;
mh = HDR_MAC802_11 (pktRTS_);

switch (mh->dh_fc.fc_subtype) {
case MAC_Subtype_RTS:
if (! is_idle()) {
// BUGFIX UKA: transmission
// The contention window should only be increased before retransmit
// (see Standard spec. section 9.2.4)

// old implementation

// inc_cw();
// BUGFIX UKA END: transmission

// BUGFIX UKA: EIFS
// changed method definition for backoff start causes changed call

// old implementation
// mhBackoff_.start (cw_, is_idle());
// new implementation

mhBackoff_.start (cw_, is_idle(), phymib_.getDIFS());
// BUGFIX UKA END: EIFS
return 0;
}
setTxState (MAC_RTS) ;
timeout = txtime (phymib_.getRTSlen(), basicRate_)
+ DSSS_MaxPropagationDelay // XXX
+ phymib_.getSIFS ()
+ txtime (phymib_.getCTSlen(), basicRate_)
+ DSSS_MaxPropagationDelay;
break;
default:
fprintf (stderr, "check_pktRTS:Invalid MAC Control subtype\n");
exit (1);
}
transmit (pktRTS_, timeout);

return 0;

int

Mac802_11::check_pktTx ()

{
struct hdr_mac802_11 =*mh;
double timeout;

assert (mhBackoff_.busy() == 0);

if (pktTx_ == 0)
return -1;

mh = HDR_MAC802_11 (pktTx_);

switch (mh->dh_fc.fc_subtype) {
case MAC_Subtype_Data:
1f (! is_idle()) |
sendRTS (ETHER_ADDR (mh->dh_ra)) ;
// BUGFIX UKA: transmission
// The contention window should only be increased before retransmit
// (see Standard spec. section 9.2.4)

// old implementation

// inc_cw();

10

// BUGFIX UKA END: transmission

// BUGFIX UKA: EIFS
// changed method definition for backoff start causes changed call

// old implementation
// mhBackoff_.start (cw_, is_idle());

// new implementation

mhBackoff_.start (cw_, is_idle(), phymib_.getDIFS());
// BUGFIX UKA END: EIFS

return 0;

}
setTxState (MAC_SEND) ;

if ((u_int32_t)ETHER_ADDR (mh->dh_ra) != MAC_BROADCAST)
timeout = txtime (pktTx_)
+ DSSS_MaxPropagationDelay // XXX

+ phymib_.getSIFS ()
+ txtime (phymib_.getACKlen (), basicRate_)

+ DSSS_MaxPropagationDelay; // XXX
else
timeout = txtime (pktTx_);
break;
default:
fprintf (stderr, "check_pktTx:Invalid MAC Control subtype\n");
exit (1);

}
transmit (pktTx_, timeout);
return 0;

}

// BUGFIX UKA: EIFS

//

// The new implementation of EIFS causes a more complicated retransmission
// handling. Depending on the expiration time of EIFS backoff timers have to
// be initialized with different waiting times. Since this functionality

// is needed at severeal places in the RetransmitRTS and RetransmitDATA

// methods, it is expoerted to an own method, StartRetransmitBackoff.

void

Mac802_11::StartRetransmitBackoff ()

{
// Set tx state to idle first so that the correct waiting time is used.
// This is VERY dirty, but if the medium is not idle here, we would never start
// e.g. with expire time of defer handler, but it would always be paused directly
// and on resume, DIFS or EIFS is chosen.
//
// This call does not change anything, because after leaving this method, we
// leave RestransmitRTS/DATA, and then, this call comes in send_timer in every
// case, where tx state would be set to idle.
setTxState (MAC_IDLE) ;

if (last_packet_correct_ == false && mhDefer_.busy()) {
// defer is running because of EIFS => stop defering, start backoff
if (mhDefer_.expire() < phymib_.getDIFS()) {

// time until defer expires is shorter than DIFS => start BO with DIFS
mhDefer_.stop();
mhBackoff_.start (cw_, is_idle(), phymib_.getDIFS());
} else {
// time until defer expires is greater than DIFS => wait rest of defer
// (complete EIFS) and do backoff slots then
mhBackoff_.start (cw_, is_idle(), mhDefer_.expire());
mhDefer_.stop();
}

} else {
// no defer running; just start backoff
if (mhBackoff_ .busy() == false) {

mhBackoff_.start (cw_, is_idle(), phymib_.getDIFS());

}

// BUGFIX UKA END:EIFS

void
Mac802_11::RetransmitRTS ()
{
assert (pktTx_);
assert (pktRTS_);
assert (mhBackoff_.busy() == 0);
macmib_.RTSFailureCount++;

11

ssrc_ += 1; // STA Short Retry Count

if (ssrc_ >= macmib_.getShortRetryLimit ()) {
discard (pktRTS_, DROP_MAC_RETRY_COUNT_EXCEEDED); pktRTS_ = 0;
/* tell the callback the send operation failed
before discarding the packet x/
hdr_cmn *ch = HDR_CMN (pktTx_) ;
if (ch->xmit_failure_) {
/*
* Need to remove the MAC header so that
* re-cycled packets don’t keep getting

* bigger.
*/
ch->size () -= phymib_.getHdrLenll ();
ch->xmit_reason_ = XMIT_REASON_RTS;

ch->xmit_failure_ (pktTx_->copy (),
ch->xmit_failure_data_);

}
discard (pktTx_, DROP_MAC_RETRY_COUNT_EXCEEDED) ;
0;

pktTx_ =
ssrc_ = 0;
rst_cw();
} else {
struct rts_frame xrf;
rf = (struct rts_framex)pktRTS_->access (hdr_mac::offset_);

rf->rf fc.fc_retry = 1;

inc_cw();

// BUGFIX UKA: EIFS

// call StartRetransmitBackoff instead of directly starting backoff
// This is now done at the end of this method.

// old implementation

// mhBackoff_.start (cw_, is_idle());
// BUGFIX UKA END: EIFS
}

// BUGFIX UKA: transmission, EIFS

// transmission: backoff is started here, because it has to be done in every
// case and not only in case of not reaching the limit.

// EIFS: backoff is not started directly but uses StartRetransmitBackoff

// method.

// new implementation

StartRetransmitBackoff ();
// BUGFIX UKA END: transmission, EIFS

}

void
Mac802_11::RetransmitDATA ()
{
struct hdr_cmn =*ch;
struct hdr_mac802_11 =*mh;
u_int32_t =*rcount, thresh;

// BUGFIX UKA: EIFS
// This assertion is not always valid, the BO timer might already be
// running after an EIFS period

// old implementation

// assert (mhBackoff_.busy() == 0);
// BUGFIX UKA END: EIFS

assert (pktTx_);
assert (pktRTS_ == 0);

ch = HDR_CMN (pktTx_) ;
mh = HDR_MAC802_11 (pktTx_);

/*
* Broadcast packets don’t get ACKed and therefore
* are never retransmitted.

*/
if ((u_int32_t)ETHER_ADDR (mh->dh_ra) == MAC_BROADCAST) {
Packet::free (pktTx_);
pktTx_ = 0;

// BUGFIX UKA: transmission

// After sending a packet with a group address, both the short and
// long retry counter should be reset (see Standard 9.2.4)

ssrc_ = 0;

slrc_ = 0;

// BUGFIX UKA END: transmission

12

/*
* Backoff at end of TX.
*/

rst_cw();

// BUGFIX UKA: EIFS
// Call StartRetransmitBackoff instead of directly starting backoff

// old implementation
// mhBackoff_.start (cw_, is_idle());
// new implementation

StartRetransmitBackoff ();
// BUGFIX UKA END: EIFS

return;

macmib_.ACKFailureCount++;

if((u_int32_t) ch->size() <= macmib_.getRTSThreshold()) {
rcount = &ssrc_;
thresh = macmib_.getShortRetryLimit ();
} else {
rcount = &slrc_;
thresh = macmib_.getLongRetryLimit () ;

(xrcount) ++;

if (xrcount >= thresh) {
/* IEEE Spec section 9.2.3.5 says this should be greater than
or equal x/
macmib_.FailedCount++;
/* tell the callback the send operation failed
before discarding the packet x/
hdr_cmn xch = HDR_CMN (pktTx_) ;
if (ch->xmit_failure_) {
ch->size () —-= phymib_.getHdrLenll () ;
ch->xmit_reason_ = XMIT_REASON_ACK;
ch->xmit_failure_ (pktTx_->copy (),
ch->xmit_failure_data_);

}

discard(pktTx_, DROP_MAC_RETRY_COUNT_EXCEEDED) ;
pktTx_ = 0;
*rcount = 0;
rst_cw();
}
else {
struct hdr_mac802_11 =dh;
dh = HDR_MAC802_11 (pktTx_) ;
dh->dh_fc.fc_retry = 1;

sendRTS (ETHER_ADDR (mh->dh_ra)) ;
inc_cw();

// BUGFIX UKA: EIFS
// Call StartRetransmitBackoff at the ned of the method instead of
// directly starting backoff

// old implementation

// mhBackoff_.start (cw_, is_idle());
// BUGFIX UKA END: EIFS
}

// BUGFIX UKA: transmission, EIFS

// transmission: backoff is started here, because it has to be done in every
// case and not only in case of not reaching the limit.

// EIFS: backoff is not started directly but uses StartRetransmitBackoff

// method.

// new implementation
StartRetransmitBackoff ();

// BUGFIX UKA END: transmission, EIFS

void
Mac802_11::send(Packet xp, Handler «h)
{

double rTime;

13

struct hdr_mac802_11« dh = HDR_MACS802_11(p);

EnergyModel xem = netif_ ->node ()->energy_model ();
if (em && em—->sleep()) {

em->set_node_sleep (0);

em->set_node_state (EnergyModel: : INROUTE) ;

callback_ = h;
sendDATA (p) ;
sendRTS (ETHER_ADDR (dh->dh_ra)) ;

/*
«+ Assign the data packet a sequence number.
*/

dh->dh_scontrol = sta_seqno_++;

/%
* If the medium is IDLE, we must wait for a DIFS
« Space before transmitting.

*/
if (mhBackoff_.busy() == 0) {
if (is_idle()) {
if (mhDefer_.busy() == 0) {
/*

* If we are already deferring, there is no

* need to reset the Defer timer.

*/

// BUGFIX UKA: transmission

// The station must defer only for DIFS if the medium is free
// and the is no backoff or defer runnning

// old implementation

// rTime = (Random::random() % cw_)
// * (phymib_.getSlotTime());
// mhDefer_.start (phymib_.getDIFS() + rTime);

// new implementation

mhDefer_.start (phymib_.getDIFS());
// BUGFIX UKA END: transmission

}

// BUGFIX UKA: EIFS

// support of EIFS causes new sitauations at packet sending as well
// If the last packet was not correct and defer is running and the
// medium is free, defer runs in an EIFS period. If now the time

// until expiration is smaller than DIFS, it is necessary to wait
// at least for an additional period of DIFS before sending.

// new implementation

else {
if (last_packet_correct_ == false && mhDefer_.expire() < phymib_.getDIFS()) {
// Defer runs because of EIFS and expiration
// time is shorter than DIFS
// => defer for DIFS again
mhDefer_.stop();
mhDefer_.start (phymib_.getDIFS());

}
// BUGFIX UKA END: EIFS
} else {
/*
* If the medium is NOT IDLE, then we start
* the backoff timer.
*/

// BUGFIX UKA: EIFS
// method call for backoff start changed

// old implementation
// mhBackoff_.start (cw_, is_idle());

// new implementation

mhBackoff_.start (cw_, is_idle(), phymib_.getDIFS());
// BUGFIX UKA END: EIFS

void
Mac802_11::recv (Packet xp, Handler «h)
{

14

struct hdr_cmn xhdr = HDR_CMN (p) ;

/*
* Sanity Check
*/
assert (initialized());
/*
« Handle outgoing packets.
*/
if (hdr->direction () == hdr_cmn::DOWN) {
send(p, h);
return;
}
/*
«+ Handle incoming packets.
*
* We just received the 1lst bit of a packet on the network
* interface.
*
*/
/*
« If the interface is currently in transmit mode, then
«+ it probably won’t even see this packet. However, the
«+ M"air" around me is BUSY so I need to let the packet
* proceed. Just set the error flag in the common header
* to that the packet gets thrown away.
*/

// BUGFIX UKA: TxRxError

// packets at the same time physically. In the original simulator

// however such a packet is "received", marked errornous, discarded

// and an EIFS period follows.

// This however should not happen, because the packet is not sensed.
// Therefore the packet that is received is marked special and handled
// correctly after complete "reception" (handle it as "never sensed")

// old implementation

//if (tx_active_ && hdr->error() == 0) {
// hdr->error() = 1;
// 0}

// new implementation

if (tx_active_) {

hdr->error () = TX_RX_ERROR;
}
// BUGFIX UKA END: TxRxError

// BUGFIX UKA: EIFS
// on receiving a packet, a running EIFS period is stopped

// new implementation

reset_eifs();
// BUGFIX UKA END: EIFS

if (rx_state_ == MAC_IDLE) {

setRxState (MAC_RECV) ;

pPktRx_ = p;

/*
* Schedule the reception of this packet, in
* txtime seconds.
*/

mhRecv_.start (txtime (p));

// BUGFIX UKA: capture

// The starting time of packet reception has to be stored to make sure
// the capture mechanism is simulated correctly. The new capture

// effect does not work if the starting time of the second packet

// reception is in the interval between 4 and 10ms after the start of
// the first reception.

// new implementation

time_start_pktRx_ = Scheduler::instance () .clock();
// BUGFIX UKA END: capture

} else {
/*
* If the power of the incoming packet is smaller than the
* power of the packet currently being received by at least
* the capture threshold, then we ignore the new packet.

*/

15

// BUGFIX UKA: capture

// Also support the new capture effect (can be activated and

// deactivated using the tcl variable newchipset_). In case of

// activation a capture is also possible if the packet arriving

// later has a higher power of reception and does not reach the

// receiver within an interval of 4 to 10ms after start of reception
// of the first packet due to synchronization constraints.

// old implementation

/*
if (pktRx_->txinfo_.RxPr / p->txinfo_.RxPr >= p->txinfo_.CPThresh) {
capture (p) ;
} else {
collision(p);
}
*/

// new implementation

// store current time and capture threshold
// (given in dB; transform to a factor)

double now = Scheduler::instance() .clock();
double Threshold = pow(10,p->txinfo_.CPThresh/10);
if (phymib_.get_newchipset () == false) {

// classic chipset, capture only possible if first packet is stronger
if (pktRx_->txinfo_.RxPr / p->txinfo_.RxPr >= Threshold) {
capture (p);
} else {
collision(p);
}
} else {
// improved chipset
if (pktRx_->txinfo_.RxPr / p->txinfo_.RxPr >= Threshold) {
capture (p);
} else if ((p->txinfo_.RxPr / pktRx_->txinfo_.RxPr >= Threshold)&&
((time_start_pktRx_ + 4e-6 > now) || (time_start_pktRx_ + 10e-6 < now))) {
// in case that second packet is stronger, check if
// sychronization is possible
capture (p) ;
time_start_pktRx_ = now;
} else {
collision(p);
}
}
// BUGFIX UKA END: capture

void

Mac802_11::recv_timer ()

{
u_int32_t src;
hdr_cmn xch = HDR_CMN (pktRx_);
hdr_mac802_11 *mh = HDR_MAC802_11 (pktRx_);
u_int32_t dst = ETHER_ADDR (mh->dh_ra);

u_int8_t type = mh->dh_fc.fc_type;
u_int8_t subtype = mh->dh_fc.fc_subtype;

assert (pktRx_) ;

assert (rx_state_ == MAC_RECV || rx_state_ == MAC_COLL);
/%
% If the interface is in TRANSMIT mode when this packet
% "arrives", then I would never have seen it and should
* do a silent discard without adjusting the NAV.
*/

// BUGFIX UKA: TxRxError

// Discard a packet that reaches the station during a transmission.
// The packet could technically not be received, however it is

// possible in simulation. Therefore, such packets are marked

// special and just ignored after complete "reception".

// old implementation

//1if (tx_active_) {

// Packet::free (pktRx_) ;
// goto done;
//}

// new implementation
if (tx_active_ || ch->error () == TX_RX_ERROR) {

Packet::free (pktRx_);
goto done;

16

}
// BUGFIX UKA END: TxRxError

/*
* Handle collisions.
*/
if (rx_state_ == MAC_COLL) {
discard(pktRx_, DROP_MAC_COLLISION) ;
// BUGFIX UKA: EIFS
// Start an EIFS period instead of the NAV timer by calling set_eifs

// old implementation
// set_nav (usec (phymib_.getEIFS()));
// new implementation

set_eifs();
// BUGFIX UKA END: EIFS

goto done;

*
«+ Check to see if this packet was received with enough

* bit errors that the current level of FEC still could not

« fix all of the problems - ie; after FEC, the checksum still
* failed.

*

£

(ch—->error()) {
Packet::free (pktRx_);

// BUGFIX UKA: EIFS
// Start an EIFS period instead of the NAV timer by calling set_eifs

// old implementation
// set_nav (usec (phymib_.getEIFS()));
// new implementation

set_eifs();
// BUGFIX UKA END: EIFS

goto done;

}

// BUGFIX UKA: EIFS
// At this point it is sure that an error-free packet is received.
// Remember this fact.

// new implementation

last_packet_correct_ = true;
// BUGFIX UKA END: EIFS

/*
«+ IEEE 802.11 specs, section 9.2.5.6
* - update the NAV (Network Allocation Vector)
x/
if (dst != (u_int32_t)index_) {
set_nav (mh->dh_duration);

/* tap out - x/

if (tap_ && type == MAC_Type_Data &&
MAC_Subtype_Data == subtype)
tap_->tap (pktRx_) ;

Adaptive Fidelity Algorithm Support - neighborhood infomation
collection

Hacking: Before filter the packet, log the neighbor node
I can hear the packet, the src is my neighbor

/

(netif_ ->node () ->energy_model () &&
netif_ ->node () ->energy_model () —>adaptivefidelity()) {
src = ETHER_ADDR (mh->dh_ta);
netif_ ->node () ->energy_model () ->add_neighbor (src) ;

Fhok o % % % ok ot

i

}

/*
« Address Filtering
*/
if(dst != (u_int32_t)index_ && dst != MAC_BROADCAST) {

/*
* We don’t want to log this event, so we just free
* the packet instead of calling the drop routine.

17

*/
discard (pktRx_, "---");
goto done;

switch (type) {

case MAC_Type_Management:
discard (pktRx_, DROP_MAC_PACKET_ERROR) ;
goto done;
case MAC_Type_Control:
switch (subtype) {
case MAC_Subtype_RTS:
recvRTS (pktRx_) ;
break;
case MAC_Subtype_CTS:
recvCTS (pktRx_) ;
break;
case MAC_Subtype_ ACK:
recvACK (pktRx_) ;

break;
default:
fprintf (stderr, "recvTimerl:Invalid MAC Control Subtype %$x\n",
subtype) ;
exit (1);

}

// BUGFIX UKA: Memory

// The memory used by MAC Control packets should be freed if packets
// are received and not used anymore This step was missing in the

// original implementation.

// new implementation

Packet::free (pktRx_);
// BUGFIX UKA END: Memory

break;
case MAC_Type_Data:
switch (subtype) {
case MAC_Subtype_Data:
recvDATA (pktRx_) ;
break;
default:
fprintf (stderr, "recv_timer2:Invalid MAC Data Subtype $x\n",
subtype) ;
exit (1);
}
break;
default:
fprintf (stderr, "recv_timer3:Invalid MAC Type %x\n", subtype);
exit (1);
}

done:

pktRx_ = 0
(

i
rx_resume () ;

void
Mac802_11::recvDATA (Packet =*p)

{

struct hdr_mac802_11 xdh = HDR_MAC802_11 (p);
u_int32_t dst, src, size;
struct hdr_cmn xch = HDR_CMN (p) ;

dst = ETHER_ADDR (dh->dh_ra);

src = ETHER_ADDR (dh->dh_ta);

size = ch->size();

/*
« Adjust the MAC packet size - ie; strip
* off the mac header

x/
ch->size() —-= phymib_.getHdrLenll();
ch->num_forwards () += 1;
/*
« If we sent a CTS, clean up...
x/
if (dst != MAC_BROADCAST) {
if(size >= macmib_.getRTSThreshold()) {
if (tx_state_ == MAC_CTS) {
assert (pktCTRL_) ;
Packet::free (pktCTRL_); pktCTRL_ = 0;
mhSend_.stop () ;
/*

18

* Our CTS got through.
*/
} else {
discard(p, DROP_MAC_BUSY) ;
return;
}
sendACK (src) ;
tx_resume () ;
} else {
/%
* We did not send a CTS and there’s no
* room to buffer an ACK.
*/
1f (pktCTRL_) |
discard(p, DROP_MAC_BUSY) ;
return;
}
sendACK (src) ;
// BUGFIX UKA: transmission
// An ACK packet should be sent in every case directly after a SIFS
// period, even if there is a timeout pending
// (See 9.2.8 in the Standard)

// old implementation

// 1if (mhSend_.busy () == 0)
// tx_resume();

// new implementation

if (mhSend_.busy() == 0) {
tx_resume () ;
} else {

// the station is waiting for a timeout. Stop waiting and
// schedule a retransmit (done by sendHandler). tx_resume
// to send the ACK is called from within sendHandler!
mhSend_.stop () ;
sendHandler () ;

}

// BUGFIX UKA END: transmission

}
/*

Make/update an entry in our sequence number cache.
*/

/* Changed by Debojyoti Dutta. This upper loop of if{}else was
suggested by Joerg Diederich <dieder@ibr.cs.tu-bs.de>.
Changed on 19th Oct’2000 =/

if (dst != MAC_BROADCAST) {
if (src < (u_int32_t) cache_node_count_) {
Host *h = &cache_[src];
if (h->seqno && h->seqno == dh->dh_scontrol) {
discard(p, DROP_MAC_DUPLICATE) ;
return;

h->seqno = dh->dh_scontrol;
} else {
static int count = 0;
if (++count <= 10) {

printf ("MAC_802_11: accessing MAC cache_ array out of range

(src %u, dst %u, size %d)!\n", src, dst, cache_node_count_);
if (count == 10)
printf (" [suppressing additional MAC cache_ warnings]l\n");

Pass the packet up to the link-layer.
* XXX - we could schedule an event to account
for this processing delay.

in BSS mode, if a station receives a packet via

the AP, and higher layers are interested in looking
at the src address, we might need to put it at

the right place - lest the higher layers end up
believing the AP address to be the src addr! a quick
grep didn’t turn up any higher layers interested in
the src addr though!

anyway, here if I’m the AP and the destination
address (in dh_3a) isn’t me, then we have to fwd

the packet; we pick the real destination and set

EE S A

19

set it up for the LL; we save the real src into
the dh_3a field for the ’'interested in the info’
receiver; we finally push the packet towards the
LL to be added back to my queue - accomplish this
by reversing the direction!x/

* ok ok ok o

((bss_id() == addr()) && ((u_int32_t)ETHER_ADDR (dh->dh_ra) != MAC_BROADCAST) &&
((u_int32_t)ETHER_ADDR (dh->dh_3a) != addr())) {
struct hdr_cmn xch = HDR_CMN (p) ;
u_int32_t dst = ETHER_ADDR (dh->dh_3a);
u_int32_t src = ETHER_ADDR (dh->dh_ta);
/+ if it is a broadcast pkt then send a copy up

* my stack also

*/
if (dst == MAC_BROADCAST) {

uptarget_->recv (p->copy (), (Handlerx) 0);

ch->next_hop () = dst;

STORE4BYTE (&src, (dh->dh_3a));
ch->addr_type () NS_AF_ILINK;
ch->direction() = hdr_cmn: :DOWN;

uptarget_->recv(p, (Handlerx) 0);

void
Mac802_11::recvACK (Packet =xp)

{
struct hdr_cmn xch = HDR_CMN (p) ;

if (tx_state_ != MAC_SEND) {
discard (p, DROP_MAC_INVALID_STATE) ;
return;

}
assert (pktTx_);

mhSend_.stop();

/*
«+ The successful reception of this ACK packet implies
* that our DATA transmission was successful. Hence,
* we can reset the Short/Long Retry Count and the CW.
*
* need to check the size of the packet we sent that’s being
«+ ACK’d, not the size of the ACK packet.
*/
if((u_int32_t) HDR_CMN (pktTx_)->size() <= macmib_.getRTSThreshold())
ssrc_ = 0;
else
slrc_ = 0;
rst_cw();
Packet::free (pktTx_);
pktTx_ = 0;
/%
« Backoff before sending again.
x/
assert (mhBackoff_.busy() == 0);

// BUGFIX UKA: EIFS
// changed method definition for backoff start causes changed call

// old implementation
// Backoff_ .start (cw_, is_idle());
// new implementation

mhBackoff_.start(cw_, is_idle(), phymib_.getDIFS());
// BUGFIX UKA END: EIFS

tx_resume () ;

mac_log(p);

A.2 mac/mac-802_11.h

class PHY_MIB {
public:
PHY_MIB (Mac802_11 xparent);

inline u_int32_t getCWMin() { return(CWMin); }
inline u_int32_t getCWMax () { return(CWMax); }

20

inline double getSlotTime () { return(SlotTime); }
inline double getSIFS() { return(SIFSTime); }
inline double getPIFS() { return(SIFSTime + SlotTime); }

inline double getDIFS() { return(SIFSTime + 2 % SlotTime); }

inline double getEIFS() {
// see (802.11-1999, 9.2.10)
return (SIFSTime + getDIFS ()
+ (8 » getACKlen())/PLCPDataRate);
}
inline u_int32_t getPreamblelength() { return(PreamblelLength); }
inline double getPLCPDataRate () { return(PLCPDataRate); }

inline u_int32_t getPLCPhdrLen() {
return ((PreambleLength + PLCPHeaderLength) >> 3);
}

inline u_int32_t getHdrLenll () {
return (getPLCPhdrLen () + sizeof (struct hdr_mac802_11)
+ ETHER_FCS_LEN) ;
}

inline u_int32_t getRTSlen() {
return (getPLCPhdrLen () + sizeof (struct rts_frame));
}

inline u_int32_t getCTSlen() {
return (getPLCPhdrLen () + sizeof (struct cts_frame));

}

inline u_int32_t getACKlen() {
return (getPLCPhdrLen () + sizeof (struct ack_frame));
}

// BUGFIX UKA: capture
// returns true if the new implementation of the chipset is supported,
// otherwise false

// new implementation

inline bool get_newchipset () {
return newchipset;

}

// BUGFIX UKA END: capture

private:
u_int32_t CWMin;
u_int32_t CWMax;
double SlotTime;
double SIFSTime;
u_int32_t PreamblelLength;
u_int32_t PLCPHeaderLength;
double PLCPDataRate;

// BUGFIX UKA: capture
// true if new chipset implementation is used, false otherwise

// new implementation

int newchipset;
// BUGFIX UKA END: capture
}i

// BUGFIX UKA: TxRxError
// Define a specific value to mark packets that are not really received
// because of the RxTxError

// new implementation

#define TX_RX_ERROR 5
// BUGFIX UKA END: TxRxError

class Mac802_11 : public Mac {
friend class DeferTimer;

friend class BackoffTimer;

friend class IFTimer;

friend class NavTimer;

friend class RxTimer;

friend class TxTimer;
public:

Mac802_11();

21

void recv (Packet *p, Handler «h);

inline int hdr_dst (charx hdr, int dst = -2);

inline int hdr_src(charx hdr, int src = -2);
inline int hdr_type (char+ hdr, u_intlé_t type = 0);
inline int bss_id() { return bss_id_; }

// Added by Sushmita to support event tracing
void trace_event (char *, Packet «x);
EventTrace xet_;

protected:
void backoffHandler (void) ;
void deferHandler (void) ;
void navHandler (void) ;
void recvHandler (void) ;
void sendHandler (void) ;
void txHandler (void) ;
private:
int command (int argc, const charxconstx argv);
/*
« Called by the timers.
*/
void recv_timer (void);
void send_timer (void) ;
int check_pktCTRL() ;
int check_pktRTS () ;
int check_pktTx();
/*
« Packet Transmission Functions.
*/
void send (Packet *p, Handler xh);
void sendRTS (int dst);
void sendCTS (int dst, double duration);
void sendACK (int dst);
void sendDATA (Packet #p);

// BUGFIX UKA: EIFS
// definition of new method

// new implementation

void StartRetransmitBackoff ();
// BUGFIX UKA END: EIFS

void RetransmitRTS () ;
void RetransmitDATA () ;

/*

« Packet Reception Functions.

*/
void recvRTS (Packet »p);
void recvCTS (Packet xp);
void recvACK (Packet =xp);
void recvDATA (Packet #p);
void capture (Packet *p);
void collision (Packet =xp);
void discard(Packet xp, const char* why);
void rx_resume (void) ;
void tx_resume (void) ;
inline int is_idle(void);
/%

« Debugging Functions.

x/
void trace_pkt (Packet xp);
void dump (charx fname) ;

inline int initialized() {
return (cache_ && logtarget_
&& Mac::initialized());

inline void mac_log(Packet xp) {
logtarget_->recv (p, (Handlerx) 0);

double txtime (Packet x*p);
double txtime (double psz, double drt);
double txtime (int bytes) { /% clobber inherited txtime() =/ abort(); return 0;}

inline void transmit (Packet *p, double timeout);

22

inline void checkBackoffTimer (void) ;
inline void postBackoff (int pri);

inline void setRxState (MacState newState);
inline void setTxState (MacState newState);

// BUGFIX UKA: EIFS
// declaration of methods to set and reset EIFS

// new implementation

inline void set_eifs();
inline void reset_eifs();
// BUGFIX UKA END: EIFS

inline void inc_cw() {
cw_ = (cw_ << 1) + 1;
if (cw_ > phymib_.getCWMax ())
cw_ = phymib_.getCWMax () ;
}
inline void rst_cw() { cw_ = phymib_.getCWMin(); }

inline double sec(double t) { return(t »= 1.0e-6); }
inline u_intl6_t usec (double t) {
u_intl6_t us = (u_intlé6_t)floor((t *= le6) + 0.5);
return us;
}
inline void set_nav(u_intl6_t us) {
double now = Scheduler::instance () .clock();
double t = us * le-6;
if((now + t) > nav_) {
nav_ = now + t;
if (mhNav_.busy ()
mhNav_.stop (
mhNav_.start (t);

)
)i

protected:
PHY_MIB phymib_;
MAC_MIB macmib_;

/% the macaddr of my AP in BSS mode; for IBSS mode

+ this 1is set to a reserved value IBSS_ID - the

* MAC_BROADCAST reserved value can be used for this
* purpose

*/
int bss_id_;
enum {IBSS_ID=MAC_BROADCAST};
private:
double basicRate_;
double dataRate_;
/*
* Mac Timers
*/
IFTimer mhIF_; // interface timer
NavTimer mhNav_; // NAV timer
RxTimer mhRecv_; // incoming packets
TxTimer mhSend_; // outgoing packets
DeferTimer mhDefer_; // defer timer
BackoffTimer mhBackoff_; // backoff timer
/*

Internal MAC State

*/
double nav_; // Network Allocation Vector

// BUGFIX UKA: EIFS
// variable that remembers if the last received packet was error-free

// new implementation

int last_packet_correct_;
// BUGFIX UKA END: EIFS

// BUGFIX UKA: CAPTURE
// Variable saving the time of reception start

// new implementation

double time_start_pktRx_;
// BUGFIX UKA END: CAPTURE

23

MacState rx_state_; // incoming state (MAC_RECV or MAC_IDLE)

MacState tx_state_; // outgoint state
int tx_active_; // transmitter is ACTIVE
Packet ~eotPacket_; // copy for eot callback
Packet *pktRTS_; // outgoing RTS packet
Packet *pktCTRL_; // outgoing non-RTS packet
u_int32_t Cw_; // Contention Window
u_int32_t ssrc_; // STA Short Retry Count
u_int32_t slrc_; // STA Long Retry Count
int min_frame_len_;
NsObject* logtarget_;
NsObjectx EOTtarget_; // given a copy of packet at TX end
/*

Duplicate Detection state

*/

u_intl6_t sta_seqno_; // next segno that I’1l use
int cache_node_count_;
Host xcache_;

i

A.3 mac/mac-timers.cc

// BUGFIX UKA: EIFS

// New additional parameter for this method, specifing the time the backoff
// process should wait before counting down the slots.

// The value is of interest ONLY if medium is NOT busy at the moment

// of calling this method!

// old implementation

//void
//BackoffTimer::start (int cw, int idle)

// new implementation
void

BackoffTimer::start (int cw, int idle, double time)
// BUGFIX UKA END: EIFS

Scheduler &s = Scheduler::instance();

assert (busy_ == 0);

busy_ = 1;

paused_ = 0;

stime = s.clock();

rtime = (Random::random() % cw) * mac->phymib_.getSlotTime () ;

#ifdef USE_SLOT_TIME
ROUND_TIME () ;
#endif

// BUGFIX UKA: EIFS
// use the time parameter if necessary

// old implementation

/*
difs_wait = 0.0;
if (idle == 0)
paused_ = 1;
else {
assert (rtime >= 0.0);
s.schedule (this, &intr, rtime);
}
*/

// new implementation

if (idle == 0) {
difs_wait = 0.0;
paused_ = 1;

} else {

difs_wait = time;

24

assert (rtime >= 0.0);
s.schedule (this, &intr, rtime + difs_wait);

}
// BUGFIX UKA END: EIFS

A.4 mac/mac-timers.h
class BackoffTimer : public MacTimer {
public:
BackoffTimer (Mac802_11 *m) : MacTimer (m), difs_wait (0.0) {}

// BUGFIX UKA: EIFS
// new declaration of start method with new parameter

// old implementation
// void start (int cw, int idle);
// new implementation

void start (int cw, int idle, double time);
// BUGFIX UKA END: EIFS

void handle (Event =xe);

void pause (void) ;

void resume (double difs);
private:

double difs_wait;

i

A.5 trace/cmu-trace.h

// BUGFIX UKA: capture

// packet drop in case of a packet capture
#define DROP_MAC_CAPTURE "CAP"

// BUGFIX UKA END: capture

A.6 tcl/lib/ns-default.tcl

BUGFIX UKA: capture

By default, new implementation of the card chipset is deactivated.
Mac/802_11 set newchipset_ false

BUGFIX UKA END: capture

25

