
Bug Hunt: Making Early Software Testing Lessons Engaging and Affordable

Sebastian Elbaum, Suzette Person, Jon Dokulil, Matt Jorde

Computer Science and Engineering Department,

University of Nebraska-Lincoln,

Lincoln, Nebraska, USA,

{elbaum,sperson,jdokulil,majorde}@cse.unl.edu

Abstract

Software testing efforts account for a large part of soft-

ware development costs. However, as educators, we strug-

gle to properly prepare students to perform software testing

activities. This struggle is caused by multiple factors: 1)

it is challenging to effectively incorporate software testing

into an already over-packed curriculum, 2) ad-hoc efforts

to teach testing generally happen too late in the students’

career, after bad habits have already been developed, and

3) these efforts lack the necessary institutional consistency

and support to be effective. To address these challenges we

created Bug Hunt, a web-based tutorial to engage students

in learning software testing strategies. In this paper we de-

scribe the most interesting aspects of the tutorial including

the lessons and feedback mechanisms, and the facilities for

instructors to configure the tutorial and obtain automatic

student assessment. We also present the lessons learned af-

ter two years of deployment.

Categories and Subject Descriptors: D.2.5: Software

Software Engineering, Testing and Debugging; K.3.2:

Computer Education Computer and Information Science

Education.

General Terms:Verification.

Keywords: Software Testing Education, Web-based Tuto-

rial.

1 Introduction

”... we have as many testers as we have devel-

opers. And testers spend all their time testing,

and developers spend half their time testing.” Bill

Gates [7]

Early integration of software engineering principles and

techniques into the undergraduate CS curriculum creates

several benefits for students. First, it helps instill good soft-

ware development practices as soon as the students begin

to tackle their first programming assignments [10]. Sec-

ond, it makes the students’ software development experi-

ences more realistic [1, 18]. Third, it reduces the tendency

to develop hard-to-break, poor software development habits

[1, 10].

Software testing principles and techniques have been

identified as one of the areas that should be integrated early

in the curriculum, for example, in the CS1/CS2 sequence

[4, 9, 12, 17, 19]. Testing is relevant because it is likely to be

an important part of the professional life of most graduates

(a trend that seems likely to continue and accelerate in the

future [16]). Furthermore, testing is a vehicle for demon-

strating the importance of other software artifacts that stu-

dents may find difficult to appreciate within a “classroom”

scale development environment (e.g., the value of strong (or

weak) requirements documents can be easily appreciated as

the basis for the generation of black box tests).

Incorporating testing earlier into the curriculum, how-

ever, has proven to be challenging. Several educators lead-

ing this integration process [8, 12, 13, 14, 19] have identi-

fied several general challenges: 1) lack of properly trained

instructors, 2) lack of physical resources such as lab space,

3) diversity of students’ goals and skills levels, and 4) large

amount of material already present in the CS1/CS2 course

sequence.

Several potential solutions have been proposed to ad-

dress these challenges. For example, Patterson et al. sug-

gested integrating testing tools into programming environ-

ments. A prototype of this approach joins the JUnit frame-

work with BlueJ, a Java IDE to create an easy-to-use inter-

face that supports structured unit testing [15]. Jones sug-

gests several testing-related activities that can be incorpo-

rated into early CS courses, and has explored the integra-

tion of testing into the core introductory CS courses through

a structured testing lab and different forms of courseware

[13]. Edwards proposes that, from the very first program-

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on November 4, 2009 at 00:14 from IEEE Xplore. Restrictions apply.

ming activities in CS1, students submit test cases with their

code for the purpose of demonstrating program correctness

[5, 6]. Goldwasser suggests requiring students to submit a

test set with each programming assignment. The test sets

are then used to test all the programs submitted and stu-

dents are graded on how well their programs perform on

other students’ test sets as well as how their test set per-

forms in uncovering flaws in others’ programs [8]. Mar-

rero et al. push this idea further by providing extra credits

for students submitting test suites that find faults in other

students’ implementations [14]. More recently, we are wit-

nessing emerging efforts to develop specific learning mod-

ules and methodologies targeting testing [2, 11].

Although supportive of the idea of including testing con-

cepts in the CS1/CS2 sequence, our Department has strug-

gled for several years to make this effort effective and sus-

tainable. In addition to the previously identified challenges,

we have also observed problems with the students’ level of

interest and engagement regarding their testing assignments

and labs. This problem has also been perceived by oth-

ers [3, 14, 15], but not addressed in the available solutions.

Faculty support for including testing topics in the CS1/CS2

sequence has also been inconsistent. We have found that

while some instructors were hesitant to reuse courseware

because of the effort required to adapt the materials, others

wanted fully packaged courseware that would minimize the

amount of time required for preparation and grading.

In an effort to promote early integration of software test-

ing concepts into the CS curriculum in a manner that en-

gages students, while making it amenable for wide-spread

adoption among instructors, we have developed a hands-on,

web-based tutorial named Bug Hunt. Bug Hunt has several

features that make it attractive to both instructors and stu-

dents:

• It incorporates challenges in each lesson and provides

immediate feedback to promote engagement while stu-

dents practice the application of fundamental testing

techniques.

• It is self-paced so students can spend as much time as

they feel necessary to complete the material.

• It provides an “out of the box” solution, and it is also

configurable to accommodate the instructors’s require-

ments.

• It provides a complete and automatic assessment of

students’ performance to reduce the instructor’s load.

In the next section, we discuss the organizational struc-

ture of Bug Hunt. Section 3 discusses Bug Hunt’s fea-

tures including lessons and challenges, feedback mecha-

nisms, degree of configurability, and automated student as-

sessment. In Section 4, we summarize the lessons learned

after two years of deployment.

Lesson

Objectives

Results

Exercise

Lesson

Objectives

Results

Exercise

Lesson

Objectives

Results

Exercise

Registration

and

Login

Guidelines Summary

Lesson

Objectives

Results

Exercise

Figure 1. Bug Hunt Lesson-based Structure.

2 Bug Hunt Organizational Structure

Bug Hunt is a web application built with Java 2 Enter-

prise Edition (J2EE) technologies using a standard model-

view-controller architecture that we now briefly describe.

Persistent data such as the exercises and the students’ per-

formance are stored in a relational database. The view con-

sists of a series of JSP pages with access restricted based

on the user’s account type (student or instructor) that gen-

erate the appropriate user page. The execution logic is di-

vided into modules corresponding to low-level tasks such

as database access and test case execution. The controller

uses these modules to access the model, perform necessary

actions, and update the user view.

Users interact with Bug Hunt through a web browser. For

example, a student utilizes a web browser for registering,

logging into, and completing the lessons in Bug Hunt. Stu-

dents logging into Bug Hunt for the first time, are provided

with a set of general guidelines including the objectives of

the tutorial and a description of how to use the tutorial,

while a student who has already begun the lessons is taken

to the same lesson number and test suite contents at which

she was working when the tutorial was exited. Once logged

in, a student progresses through a series of lessons, using

a specific testing strategy in each lesson to find program

faults. As a student works through each lesson, progress

is measured by the number of faults detected by the stu-

dent’s test suite and by how the student performs relative

to the other participating classmates. To provide a uniform

content presentation throughout Bug Hunt, each lesson in-

cludes a set of objectives, an exercise, and the results for

the exercise. Once the tutorial is completed, the student re-

ceives an overall performance summary. Figure 1 summa-

rizes the high-level structure of Bug Hunt from the student’s

perspective.

Bug Hunt’s lesson-based structure is meant to incremen-

tally build the student’s understanding of software testing

practices. The first lesson introduces basic software test-

ing concepts and terminology. Subsequent lessons build

on these concepts, giving students hands-on practice with

black-box and white-box testing techniques, while encour-

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on November 4, 2009 at 00:14 from IEEE Xplore. Restrictions apply.

aging exploration of the input space and systematic test case

development. The final lesson ties everything together by

introducing students to automated testing. Test cases cre-

ated in each lesson carry forward to subsequent lessons,

emphasizing the complementary nature of the various test-

ing strategies. Test cases are also maintained across tutorial

sessions allowing students to exit and re-enter the Bug Hunt

tutorial without losing their work.

Each Bug Hunt lesson is comprised of the following

components:

Objectives. This page provides a brief description of the

testing concepts a student should be familiar with at

the end of the lesson and identifies the testing strategy

the student will practice during the lesson.

Exercise. An exercise consists of several sub-components.

Instructions. A brief set of instructions describes the

lesson’s challenge and testing activity. This informa-

tion is presented at the top of the exercise for the stu-

dent to consult while applying the testing strategy.

Artifacts. Each lesson draws from a set of artifacts to

provide the information appropriate for the lesson. The

artifacts are listed on the main lesson page for easy ref-

erence while the student works through the testing ac-

tivity. In Figure 2 for example, both the requirements

and the source code listing are provided to help the stu-

dent complete Lesson 1.

Distinctive Feedback Each lesson has a unique dis-

play widget tailored to the particular type of testing

being practiced by the student. For example, in Figure

4, where the student is practicing white-box testing,

the display widget indicates which parts of the code

are covered by the test suite, and the degree to which

the code is covered (i.e., how many test cases cover a

given section of code). These widgets provide visual

feedback that is updated each time a student submits a

test case for execution.

Tests. During each lesson, students devise and sub-

mit test cases for execution, one at a time, through

the Test Case Input area. Each test case consists of a

set of program inputs and the associated expected out-

put value. The Bug Hunt application server executes

each test case as it is submitted and provides immedi-

ate feedback through various devices such as the bug

jar, the Test Execution Log, the Display Widget, and

several location-sensitive tool-tips (more details on the

feedback mechanisms are presented in Section 3.2).

Assistance. Throughout the tutorial, students have ac-

cess to a set of lesson “hints” presented in the form of

“Frequently Asked Questions.” This information cov-

ers topics such as “Where do I start?” and “How do

I...?”

Results. This page summarizes the student’s performance

in terms of fault detection and provides additional in-

formation about the faults found. The Test Execution

Log is also displayed for the student to review before

proceeding to the next lesson. Figure 6 shows the re-

sults for a student who has completed Lesson 3.

3 Features

This section describes the main features of Bug Hunt that

are intended to engage students while making it amenable

for widespread adoption among CS instructors.

3.1 Lessons and Challenges

Each lesson contains a specific set of objectives, a unique

challenge, and a distinctive feedback widget to encourage

the exploration of different fault findings strategies. Ta-

ble 1 summarizes the challenges and feedback widgets by

lesson, and the following paragraphs provide more details

about each.

The first lesson of the Bug Hunt tutorial, Lesson 1, helps

familiarize students with basic software test suite terminol-

ogy (e.g, test case, test case execution, expected outcomes,

passing and failing test cases) and test activity organization

(e.g., test suite, test execution log). The Lesson 1 challenge

is to find a particular fault using the clues provided (e.g.,

highlighted requirement) as they create their test cases. Fig-

ure 2 provides a screenshot of Lesson 1.

Lesson 2 introduces the concept of black-box testing

where students have access only to the program require-

ments, but not to the source code. Beyond finding new bugs,

the challenge in this Bug Hunt lesson is to develop tests that

expose the potential program outputs. To achieve this expo-

sure, students must explore the relationships between inputs

and program outputs, thereby discovering various input cat-

egories in the process. Figure 3 shows a screenshot of the

main lesson page for Lesson 2 (note the distinctive feedback

utilized to measure output exposure).

In Lesson 3, students learn about white-box testing.

They no longer have access to the program requirements,

but instead use the program code as the primary source of

information to find faults. Bug Hunt generates an annotated

version of the source code after every test case execution

to indicate the number of times a particular line of code is

executed by the student’s test suite. The Lesson 3 challenge

is to build a test suite that achieves complete statement cov-

erage. Figure 4 shows a screenshot of the exercise page for

Lesson 3, and Figure 6 presents a Lesson Summary page

for the this lesson. (the same summary format is presented

at the end of each lesson).

The final Bug Hunt lesson, Lesson 4, builds on the three

previous lessons by introducing the concepts of automation

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on November 4, 2009 at 00:14 from IEEE Xplore. Restrictions apply.

Figure 2. Lesson 1: Concepts and Terminology.

Figure 3. Lesson 2: Black Box Testing.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on November 4, 2009 at 00:14 from IEEE Xplore. Restrictions apply.

Figure 4. Lesson 3: White Box Testing.

Figure 5. Lesson 4: Testing Automation and Efficiency.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on November 4, 2009 at 00:14 from IEEE Xplore. Restrictions apply.

Figure 6. Results for a lesson.

Figure 7. Students Performance Report for Instructor.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on November 4, 2009 at 00:14 from IEEE Xplore. Restrictions apply.

Lesson Challenge Distinctive Feedback Widget

1 Find the specific fault described in the lesson instructions Clued requirements and source code

2 Exercise all classes of program outputs Bar graph of fault distribution according to exercised output

3 Cover all executable statements in the code Annotated and colored code structure representing coverage

4 Select enough tests to maintain fault detection effectiveness Test case selection device and Junit test suite

Table 1. Lessons, challenges, and mechanisms.

and efficiency in testing. Students are challenged to find as

many program faults as possible and achieve as much state-

ment coverage as possible by using the fewest number of

test cases from their test suite. The level of code coverage

is indicated using the same annotated source code display

used in Lesson 3. For each test case selected, a JUnit test

suite is also generated and the complete Java class contain-

ing all of the test cases is displayed on the main lesson page.

Figure 5 shows a screenshot of Lesson 4.

3.2 Feedback Mechanisms

Providing students with meaningful and timely feedback

is advocated as a good teaching practice to improve learn-

ing. Bug Hunt provides feedback to help students realize

what they know, what they do not know, and how to im-

prove their performance. In order to be more effective, Bug

Hunt interleaves the feedback with the learning activities

through several mechanisms.

Test Log. When a well specified test is provided in the

text case input box, it is sent to the Bug Hunt server, where it

is executed, and then posted in the student’s Test Execution

Log. When a test is not well specified (e.g., the expected

value was set incorrectly), the test is returned by the server

and marked as invalid in the Test Execution Log (see test #9

in Figure 4). This process assures the student that the test

exercised the program as expected.

Widget. As tests are executing, the distinctive lesson

feedback widget is updated. For example, in Lesson 3, code

annotations and colors are modified as tests cover previ-

ously unexecuted code, and in Lesson 4 the generated Junit

suite is updated when the selected tests change or a new test

case is incorporated into the suite.

Faults. When a test case exposes a fault, the test log

indicates that the test made the program fail by displaying

a “bug” icon next to the test case. Newly exposed faults

are distinguished from the ones already found by other tests

through their hue. Students can obtain further instructive

feedback on the fault found by hovering with the mouse

over the “bug” icon to see a description of it and its associ-

ated code fragment. Each unique “bug” is inserted into the

“bug jar” that appears at the top-right corner of each lesson.

The display also contains a “bug jar” with the faults exposed

by the class to serve as a benchmark.

Summaries. After each lesson, individual student re-

sults are presented in the form of a “Lesson Summary”

(see Figure 6), which includes a Test Execution Log list-

ing the cumulative test execution results and a brief person-

alized paragraph summarizing the student’s testing efforts

and encouraging him or her to continue the quest for find-

ing “bugs.” After a student has completed all of the lessons

in Bug Hunt, a “Tutorial Summary” page is presented. The

information contained in the Tutorial Summary includes the

details of each test in the student’s test suite (e.g., the input

values, the expected output value, the actual output value,

and the fault or faults exposed by the test when appropri-

ate), the total number of faults discovered by the student’s

test suite, a description for each fault that was revealed, and

the percentage of the program faults that were found.

Follow-up. Once the student has completed the tuto-

rial, we encourage further practice and experimentation by

emailing a package to the student containing the program

source code, the JUnit test cases, and a JUnit test driver

class. The program source code includes comments with

detailed instructions on how to build and execute the pro-

gram, and how to utilize the JUnit test suite.

3.3 Degree of Configurability

To set-up a new course in Bug Hunt, the instructor con-

tacts the Bug Hunt administrator with the course name

and the instructor’s contact information. Once the course

setup is complete, the instructor will have access to the ros-

ter management component where students’ first and last

names and their email addresses must be entered. Next,

the instructor selects one of the pre-configured exercises

through the course management menu (see Figure 8). Then,

Bug Hunt emails the URL of the account activation page to

the students enrolled in the roster. The account activation

process requires each student to enter his or her last name.

The student’s email address is used to verify his or her iden-

tity. After choosing a login id and password the student is

ready to begin the tutorial.

In Bug Hunt most of the lesson content and subcom-

ponents are stored in a database. For example, all of the

program requirements, source code, faults and tests, and

the lesson instructions and objectives are part of the Bug

Hunt database scheme. This data-oriented architecture al-

low us to support instructors interested in adding their own

exercises to expose students to new challenges, to include

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on November 4, 2009 at 00:14 from IEEE Xplore. Restrictions apply.

specific types of faults or more formal requirements, and

to incorporate particular programming constructs that are

more difficult to validate (e.g., polymorphic classes, con-

currency). We are, however, still in the process of devel-

oping an interface for instructors to perform such activities

directly without the assistance of a Bug Hunt administrator.

3.4 Automated Student Assessment

One of the key features for instructors utilizing Bug Hunt

is the automatic student assessment feature which can gen-

erate a report such as the one presented in Figure 7. As a

student creates and executes each test case, Bug Hunt tracks

and records the results of the test case execution. Informa-

tion collected includes the test case input values, expected

output values, actual output values, the lesson number in

which the student created the test case, and the results of

the test case execution. When a test case fails, a reference

to the fault discovered by the failing test case is also saved.

Since students in a given course are linked together via a

class identifier, individual student performance can also be

measured relative to course performance. This feature elim-

inates the need for the instructor to grade, manage and re-

port students’ results.

4 Deployment and Lessons Learned

Since its deployment two years ago, over 400 students at

several institutions have used Bug Hunt. For the students

within our Department, we have included an anonymous

questionnaire at the end of the tutorial to help us perform a

preliminary assessment of Bug Hunt. The questionnaire in-

cludes 12 quantifiable questions measured in a likert scale,

two open-ended questions, and a section for additional com-

ments.

Some of the most interesting findings of the 204 re-

sponses collected follow:

• 77% of the students “agreed” or “strongly agreed” that

Bug Hunt added significant value to the material pre-

sented in the lecture(s) on software testing (15% were

neutral and 8% did not feel the tutorial added value).

• 56% of the students “agreed” or “strongly agreed” that

Bug Hunt could totally replace the lectures on testing

(21% were neutral, but 23% felt the lectures’ mate-

rial is still necessary). This seems to indicate that,

for an important number of students, the tutorial is not

enough on its own.

• 66% of the students “agreed” or “strongly agreed” that

Bug Hunt taught them concepts that will be useful for

their future assignments, and 60% felt the same way

about the potential usefulness of this material for their

future job. This may indicate that the students may not

be fully aware of the need and impact of testing ac-

tivities in real software development organization, and

perhaps Bug Hunt may need to address this early on.

• 32% of the students found the white box testing les-

son to be the most interesting and valuable. It was also

surprising to see that 5% of the students thought that

the JUnit and automated lesson was valuable but 27%

thought was the most interesting. Clearly, the chal-

lenge and distinctive feedback utilized in each lesson

may play a big role in these values. However, Lesson

3 is where the students found the greatest number of

faults, raising an interesting general conjecture about

whether the right challenge and widget may improve a

tester’s performance.

The section for additional comments was completed by

over one hundred students. Many of these comments were

of the type “I liked” and “I disliked” and were specific to

certain lessons. For example, over 20% of the students

commented on the value of the white-box testing lesson in

making them aware of the association between tests and

code, independently of whether they discovered a fault or

not. Also, many students provided various suggestions to

expedite the process of providing inputs such as “have a

drop-down box with the inputs I [have already] used.”

The comments also provided some more general in-

sights. For example, a third of the students emphasized

the value of feedback, quick interaction, and an engaging

interface with comments such as “I liked that the tutorial

was interactive and you got results of your tests immedi-

ately.”, “The tutorial was fun... it broke the monotony...”,

“I liked how it gave real experience instead of just theory”

, or “Seeing the bugs appear in the jar made me feel I was

accomplishing something”.

Another common theme in the responses was the realiza-

tion that different strategies provide distinct strengths. This

was evident in comments such as “I liked black box because

I had never before thought of looking for bugs without us-

ing source code”, “I like to find bugs in different ways. I

liked learning the different approaches”, or “It showed me

that there are a lot of different methods to debug a program

and that some are more useful than others.”

Clearly, this assessment process so far has been focused

on pinpointing areas of the tutorial that are confusing, on

identifying lessons that could be enhanced or made more

attractive, and on determining the value of the lessons from

a student’s perspective. Still, we do not know whether

the learning experience as a whole is effective when com-

pared with alternative practices. The next assessment step is

to perform a controlled experiment aimed at quantitatively

determining the level of student understanding achieved

through the tutorial.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on November 4, 2009 at 00:14 from IEEE Xplore. Restrictions apply.

Figure 8. Course Management Menu

In addition to the student assessments, discussions with

the instructors have raised the need for further enhance-

ments and even the potential for optional additional lessons

to target more advanced courses. More importantly, instruc-

tors are expected to be the main contributors of exercises to

enrich Bug Hunt1. Although the mechanism to share the ex-

ercises among instructors is already in place, we currently

lack a way for the instructors to upload such exercises, so

this will be a high-priority for the next version of Bug Hunt

in order to enable community participation.

Acknowledgments

This work was supported in part by the Career Award

0347518 to the University of Nebraska-Lincoln, the Great

Plains Software Technology Initiative, and the UCARE

Project at the University of Nebraska-Lincoln. We would

like to thank Nick Steinbaugh and Yu Lin for their help in

implementing this tutorial, and Alex Baker and Andre Van

Der Hoek from UC-Irvine for their feedback on the tutorial.

Finally, we would also like to thank all of the students and

instructors who participated in the preliminary assessment

of Bug Hunt.

1Instructors are encouraged to explore and use Bug Hunt at:

http://esquared.unl.edu/BugHunt “Try a demo” link

References

[1] Software Engineering 2004. Curriculum guidelines

for undergraduate degree programs in software engi-

neering. http://sites.computer.org/ccse, 2004.

[2] R. Agarwal, S.H. Edwards, and M.A. Perez-Quinones.

Designing and adaptive learning module to teach soft-

ware testing. In Symposium on Computer Science Ed-

ucation, pages 259–263, March 2006.

[3] E. Barriocanal, M. Urban, I. Cuevas, and P. Perez. An

experience in integrating automated unit testing prac-

tices in an introductory programming course. Inroads

SIGCSE Bulletin, 34(4):125–128, December 2002.

[4] CC2001-Task-Force. Computing curricula 2001. Fi-

nal report, IEEE Computer Society and Association

for Computing Machinery, 2001.

[5] S. Edwards. Rethinking computer science education

from a test-first perspective. In Conference on Object-

oriented Programming Systems, Languages, and Ap-

plications, pages 148–155, October 2003.

[6] S. Edwards. Using software testing to move students

from trial-and-error to reflection-in-action. In Sympo-

sium on Computer Science Education, pages 26–30,

March 2004.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on November 4, 2009 at 00:14 from IEEE Xplore. Restrictions apply.

[7] Bill Gates. Q&A: Bill Gates on trustworthy comput-

ing. Information Week, May 2002.

[8] M. Goldwasser. A gimmick to integrate software

testing thoughout the curriculum. In Frontiers in

Computer Science Education, pages 271–175, March

2002.

[9] T. Hilburn and M. Townhidnejad. Software quality:

a curriculum postscript? In Symposium on Computer

Science Education, pages 167–171, 2000.

[10] U. Jackson, B. Manaris, and R. McCauley. Strategies

for effective integration of software engineering con-

cepts and techniques into the undergraduate computer

science curriculum. In Symposium on Computer Sci-

ence Education, pages 360–364, March 1997.

[11] D.S. Janzen and H. Saiedian. Test-driven learning: In-

trinsic integration of testing into the cs/se curriculum.

In Symposium on Computer Science Education, pages

254–258, March 2006.

[12] E. Jones. An experiential approach to incorporating

software testing into the computer science curricu-

lum. In ASEE/IEEE Frontiers in Education Confer-

ence, page F3D, October 2001.

[13] E. Jones. Integrating testing into the curriculum - ar-

senic in small doses. In Symposium on Computer Sci-

ence Education, pages 337–341, February 2001.

[14] W. Marrero and A. Settle. Testing first: Emphasizing

testing in early programming courses. In Conference

on Innovation and Technology in Computer Science

and Education, pages 4–8, 2005.

[15] A. Patterson, M. Kölling, and J. Rosenberg. Introduc-

ing unit testing with BlueJ. In Conference on Innova-

tion and Technology in Computer Science and Educa-

tion, pages 11–15, 2003.

[16] Program-Planning-Group. The economic impacts in-

adequate testing infrastructure. Planning Report 02-3,

National Institute of Standards and Technology, May

2002.

[17] J. Roberge and C. Suriano. Using laboratories to

teach software engineering principles in the introduc-

tory computer science curriculum. In Symposium on

Computer Science Education, pages 106–110, Febru-

ary 1994.

[18] M. Shaw. Software engineering education: a roadmap.

In International Software Engineering Conference -

Future of Software Engineering, pages 371–380, May

2000.

[19] T. Shepard, M. Lamb, and D. Kelly. More test-

ing should be taught. Communications of the ACM,

44(6):103–108, June 2001.

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

Authorized licensed use limited to: CALIF STATE UNIV NORTHRIDGE. Downloaded on November 4, 2009 at 00:14 from IEEE Xplore. Restrictions apply.

