

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Bug Severity Prediction Algorithm using Topic-
based Feature Selection and CNN-LSTM
Algorithm

JungYeon Kim 1, Geunseok Yang 1,*
1Department of Computer Science and Engineering, Kyungnam University, 51767, Gyeongsangnam-do, South Korea;

Corresponding author: Geunseok Yang (gsyang@kyungnam.ac.kr)

ABSTRACT Increasing software usage has gradually increased the occurrence of bugs. When writing a bug

report, the severity of the bug can be freely selected, so the subjective judgment of the author is involved. In

subjective judgment, a severity error may occur depending on the background knowledge between the user

and the developer. To resolve this problem, in this paper, the severity was predicted using the feature selection

algorithm of the severity of each topic. We utilize the dataset in Eclipse and Mozilla open source projects.

First, we classify bug reports by topic-based severity, and extract features from the severity of each topic.

The severity was predicted by learning the characteristics from the CNN-LSTM algorithm, and the F-measure

was 90.62% and 93.22% of Mozilla. To evaluate the effectiveness of the proposed model, we compared the

baselines including DeepSeverity and EWD-Multinomial studies with Eclipse and Mozilla open source

projects and showed that the proposed model is more efficient.

INDEX TERMS CNN-LSTM, Feature Selection, Topic Modeling, Bug Severity Prediction, Software

Evolution

I. INTRODUCTION

Software usage is increasing as they are being applied to

various fields. Software improvements and bug outbreaks are

also rapidly increasing, and approximately 300 bug reports are

submitted daily for the Eclipse open source project [1].

In open source projects, when writing a bug report, the

author selects the severity of the bug and submits the bug

report. Subjective judgment may be involved in selecting the

bug severity. However, there is an error in judging the severity

of a bug because of the difference in background knowledge

between end users and developers [2].

Studies related to predicting bug severity are as follows.

Kumari et al. [3] evaluated the bug severity by using K-

Nearest Neighbor(KNN), j48, Random Forest(RF), Random

Number Generator(RNG), Naïve Bayes(NB), Convolutional

Neural Network(CNN), and Multiple Linear

Regression(MLR). They also proposed an approach using

entropy considering the irregularity of the data. Zhang et al. [4]

used several machine learning classification algorithms in bug

reports to confirm that NB multi-nominal outperforms NB, 1-

neighbor, and Support Vector Machine(SVM). An extended

study [5], developed a new severity prediction algorithm based

on text similarity. Choudhary et al. [6] used Eclipse's version

prediction model, which assigns priority based on the

information provided in the bug report. Features potentially

affecting the priority of a bug were time, text, author-related,

severity, product, and component. Tian et al. [7] predicted the

severity of the bug report using the nearest neighbor approach.

However, we must improve the prediction performance of bug

severity and has to be verified with data from various projects.

This problem is resolved with a bug severity prediction

algorithm using a topic-based feature selection [8, 9] and

Convolutional Long Short-Term Memory Neural Networks

(CNN-LSTM) algorithms [10]. In detail, we classify bug

reports by topic. Severity features for each topic are extracted

by applying the feature selection algorithm to the classified

topics. The extracted features are applied to the CNN-LSTM

algorithm to predict the bug severity.

To evaluate the effectiveness of the proposed method, we

compared the model with the baselines (DeepSeverity [11]

and EWD-Multinomial [12]) in open source projects (Eclipse

[13], Mozilla [14]), and it showed superior prediction.

The contribution of this paper is as follows.

• Topic-based feature selection and CNN-LSTM

algorithms predicted the bug severity. Also, bug reports

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3204689

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

were classified by reporting topic, and features were

extracted based on the severity of the topic. Additionally,

it was found that predicting the severity based on the

severity of each topic was superior to predicting the

severity through topic classification.

• To compare the performance of the bug severity model,

the baselines (DeepSeverity and EWD-Multinomial) and

the open source projects (Eclipse, Mozilla) were

compared, and the proposed method had superior

predictions.

If accurate bug severity can be predicted, serious bugs can

be corrected quickly to improve software quality.

II. BACKGROUND KNOWLEDGE

When using software or programs, bugs occur in unexpected

situations. When a user creates a new bug report, the specified

bug severity is selected by the project manager and reassigned

to an appropriate severity. Since the severity is set first by the

subjective judgment of the reporter who wrote the bug report,

additional maintenance costs and time may be required in

resetting the bug severity. Furthermore, since the severity is

reassigned by the individual project manager's judgment,

subjective thoughts can be reflected.

If the bug severity is predicted automatically, the objective

severity can be reflected so that an efficient software

maintenance process can proceed. This study describes bug

reports and bug severity for predicting bug severity.

A. Bug Report

Figure 1 shows an example of a bug report is #285939 Mozilla

[15].

FIGURE 1. Example of Mozilla Report #285939.

Figure 1 shows an example of a bug report is #285939

Mozilla [15]. The report for Mozilla Firefox was submitted on

March 13, 2005. The bug reporter is grzybek-1990, and the

developer is mossop. The status of the bug report is

RESOLVED DUPLICATE, and the current bug is CLOSED.

B. Bug Tracking System

The bug tracking system [16] enables the communication

between a user and a developer and can efficiently manage a

bug. Bugzilla, one of the representative bug tracking systems,

is an open source tool, and there are meta fields for priority

and severity in bug reports. The priority provides information

to help developers prioritize bugs that must be fixed. As the

attribute value of priority, the priority [17] comprises

immediate, urgent, normal, low, and none in five steps of P1

to P5. There are seven levels of severity [18] attribute values.

Blocker means that development or testing cannot proceed,

and Critical means that the program is broken, data corruption,

or memory leak occurs. Major means that a major functional

flaw is found, and Normal means a bug that must be fixed as

a general problem. Minor is a problem that can be easily

solved or has less significant functional flaws, and Trivial is a

simple external problem with typos or text misalignment.

Enhancements are not a bug but rather represent function and

performance improvement requirements.

III. RELATED WORK

Sahin et al. [19] used word embedding to perform feature

extraction. Severity predictions were performed using CNN,

LSTM, and extreme gradient boosting (XGBoost) methods,

and severity scores were measured to substitute the severity

levels of the severity predictions.

Kumari et al. [3] proposed an approach using entropy

considering the uncertainty and irregularity of the data to

evaluate the severity of bug reports. KNN, j48, RF, RNG, NB,

CNN, and MLR were applied as training classifiers and

verified using PITS, Eclipse, and Mozilla projects. They

showed that the proposed method improved the performance.

Kukkar et al. [20] proposed a novel method for assigning

severity levels of bugs using swarm intelligence and machine

learning. A Naïve Bayes model extracted the optimal feature

set from the bug summary and classified the bug report.

Kudjo et al. [21] proposed a method to use Bellwether

analysis to extract terms from bug summaries and trained four

models (deep neural network, logistic regression, k-nearest

neighbors, and random forest). The model's performance was

evaluated using standard indicators such as precision, recall,

and F-measure. The results showed that the model achieved an

F-measure between 14% and 97%.

Lamkanfi et al. [22] determined whether text mining

techniques could accurately predict the severity of bug reports

and showed that the results could be more accurate.

Tian et al. [23] predicted granular severity levels (e.g.,

major, major, and minor) using various attributes of past bug

reports (e.g., text summary, descriptive text, and title). They

proposed an algorithm based on the combination of the

BM25Fext similarity method to calculate the similarity

between two bug reports and K-NN considering duplicate

bugs. The approach was validated using various data sets

related to the Mozilla, OpenOffice, and Eclipse open source

projects.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3204689

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

Menzies et al. [24] A new technique called SEVERIS was

developed to allow test engineers to set the appropriate

severity level for a specific bug while validating NASA's

closed-source project. SEVERIS mainly used text mining

techniques to process textual descriptions of flawed bugs and

a rule learning approach to classify bug reports using the

RIPPER rule learner method.

Arokiam et al. [25] proposed a method for assigning

severity levels of bugs in the early stages of a development

project. To predict the severity level of a new bug, they

considered how a bug report was written rather than its content.

The project results demonstrated that this method could

predict the severity of bugs at an early stage of development

and outperforms the existing keyword-based models used in

many NASA projects.

Roy et al. [26] proposed a feature selection method to

improve the prediction accuracy of the severity prediction

model. The dataset was developed with Eclipse and Mozilla

and using bi-grams and text component-based technologies.

This was trained on the Naïve Bayes model and showed

improved severity prediction performance. They also proved

that the accuracy could vary from project to project and adding

more bigrams can degrade performance.

Sharma et al. [27] proposed an approach to predict the

priority of new bug reports. This study's accuracy shows that

it can successfully predict bug priorities in less than 70% of

Eclipse and OpenOffice projects, excluding Naïve Bayes.

Sabor et al. [28] improved the quality of bug reports by

integrating the stack trace of bug reports and features by

categories such as component, OS, and product. The class

imbalance distribution problem is addressed by classifying

classes into undersampling and oversampling based on the

number of instances representing each class. They then

assigned a high misclassification cost to the under sampled

class and a low misclassification cost to the oversampled class.

The misclassification cost is the ratio of the number of

instances of multiple classes to the number of instances of the

defined class. They used KNN) to obtain the probability of

classifying an unknown instance into a specified number of

classes. Finally, they compute the cost of assigning an instance

to a given class by multiplying the misclassification cost by

the probability of assigning an instance to the class by KNN.

The class label with the lowest cost of misclassification was

chosen as the class label for the unknown instance. The

model's accuracy was measured using precision, recall, and F-

measures as usual. The accuracy (F-measure) of the model

improved by up to 35% when integrating the stack trace

information into the category function of the bug report.

Umer et al. [29] performed another study considering

sentiment analysis using SentiWordNet dictionary. Sentiment

analysis was applied to bug reports related to the Eclipse open

source project to predict the priority of bug reports. Their

approach trained the SVM algorithm using sentiment scores

and extracted features from bug reports. This approach

outperformed other machine learning algorithms, including

Naïve Bayes, Naïve Bayes Multinomial, and Linear

Regression.

Ramay et al. [30] were the first to use a deep learning

algorithm to predict the severity level of a bug report, in

addition to the sentiment analysis of bug reporter sentiment

expressed in the bug report summary field. They used a

popular emotion dictionary called Senti4SD when using

SentiWordNet for emotion analysis. We then calculated the

emotion score for each bug report on a specific dataset

extracted from Bugzilla. Their work significantly improved

over the EWD-Multinomial.

IV. OUR APPROACH

This study implements the feature selection algorithm for each

topic severity. The CNN-LSTM algorithm is used. Figure 2

shows a schematic of our overall approach. We first classify

the topic of bug reports from the bug repository. We proceed

with the feature selection algorithm using the severity of bug

reports on the topic. The severity-specific features of each

topic are put as the input of the CNN algorithm, and the output

becomes the input of the LSTM. Finally, the output of the

LSTM is the severity.

FIGURE 2. Overview of Our Approach.

A. Preprocessing

Bug reporters freely express errors in various forms. There are

a summary and a description, and the reporter can write it

quickly. To use these bug reports, we must proceed with the

preprocessing process among natural language processing

technique [31]. In the preprocessing process, tokenization of

sentences, stopwords removal, and lemmatization is

performed. From the results, sentences were extracted as

words, and stop words such as “should”, “be”, “in”, “all”, and

“more” were removed.

If there is a sentence of “Callisto site should be in (all/more)

Eclipse Project featues”, the preprocessed result is as follows.

“callisto”, “site”, “all”, “more”, “eclipse”, “project”, “featue”.

Also, the word “featues” is extracted as the root of “featue”.

B. Topic Modeling

Usually, to proceed with the topic classification of documents,

the topic classification of documents is performed by applying

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3204689

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

Latent Dirichlet Allocation(LDA) algorithm [8]. This study

regarded a bug report as a document, and the topic of the bug

report is classified. Therefore, from the bug report, we can

grasp the mainly used

words for each topic and the proportion of the bug report in

the topic.

The bug report combines topic distribution and topic word

distribution and is calculated through the set parameters. As a

representative parameter, α is a Dirichlet distribution

parameter for generating a topic distribution of a document,

and β refers to a Dirichlet distribution for generating a word

distribution of a topic. Furthermore, K means the number of

topics designated by the user.

The topics classified in this study are shown in Table I and

Table Ⅲ, and the critical words for each topic are shown in

Table Ⅱ and Table Ⅳ. Table I shows samples from Topic-1 to

Topic-10. Bug reports for each topic are classified, and

because of the set parameters, we can confirm that the bug

reports do not belong to various topics. Table Ⅱ shows the

distribution of words by topic. For example, the word Rank#1

in Topic-1 has a distribution of 3878.1783(dialog) and means

the distribution of the most important word in Topic-1. Rank

#2 in Topic-1 means the distribution of the second most

important word in Topic-1 with a distribution of

2711.5182(save). In the same vein, Table 3 and Table 4 are the

same as Table 1 and Table 2.

TABLE I

EXAMPLE OF TOPIC CLASSIFICATION IN MOZILLA

Topic-1 Topic-2 Topic-3 Topic-4 Topic-5

803963 72543 321847 261143 722730

590202 117648 675189 703110 410023

254234 709566 112979 424775 418290

802867 445496 622053 224797 287220

Topic-6 Topic-7 Topic-8 Topic-9 Topic-10

678030 779036 448369 413028 597714

756903 423275 512743 459150 358268

748587 215608 756292 14462 304928

73603 46656 626919 471008 679266

TABLE Ⅱ

EXAMPLE OF TOPIC TERM DISTRIBUTION IN MOZILLA

Rank Topic-1 Topic-2 Topic-3 Topic-4 Topic-5

Rank#1
dialog

(3878.17)
event

(3764.42)

bug
(5665.07)

load
(7332.29)

message
(10059.73)

Rank#2
save

(2711.51)

javascript
(3644.33)

character
(3240.36)

image
(5500.15)

mail
(5755.93)

Rank#3
site

(2603.86)

element
(2802.06)

error
(3053.88)

browser
(3778.00)

folder

(5749.46)

Rank#4
user

(2524.96)

attribute
(2368.51)

name
(2765.44)

time
(3170.30)

new
(4712.45)

Rank#5
cookie

(2422.88)

document
(2252.56)

url
(2746.93)

cause
(3084.26)

email
(4314.72)

Rank Topic-6 Topic-7 Topic-8 Topic-9 Topic-10

Rank#1
plugin

(4235.35)
link

(6126.31)

text
(6366.98)

assertion
(4521.22)

menu
(9627.80)

Rank#2
install

(3208.89)

click
(5537.99)

table
(5971.91)

failure
(4064.81)

bookmark
(8941.51)

Rank#3
update

(3183.16)

can
(5092.39)

display
(4276.05)

test
(4056.28)

bar

(7680.90)

Rank#4
mozillum
(2920.24)

not
(4965.95)

render
(4110.07)

code
(2780.43)

button
(4728.85)

Rank#5
build

(2510.09)

text
(4930.85)

font
(3890.85)

fail
(2721.50)

toolbar
(4708.79)

TABLE Ⅲ

EXAMPLE OF TOPIC CLASSIFICATION IN ECLIPSE

Topic-1 Topic-2 Topic-3 Topic-4 Topic-5

23334 36141 70167 207148 285282

74354 80076 23464 83367 245707

75811 158334 10933 4951 14709

119414 197421 220609 26218 15642

Topic-6 Topic-7 Topic-8 Topic-9 Topic-10

822 197605 166449 84152 4602

85625 31321 124550 26079 64530

98420 276732 6924 39488 74515

147615 129725 46148 83705 296708

TABLE Ⅳ

EXAMPLE OF TOPIC TERM DISTRIBUTION IN ECLIPSE

Rank Topic-1 Topic-2 Topic-3 Topic-4 Topic-5

Rank#1
code

(2870.37)
search

(3476.93)

preference
(3759.44)

eclipse
(4997.15)

key
(2235.00)

Rank#2
javadoc
(2780.66)

help
(3233.03)

text
(3199.47)

can
(2900.97)

perspective
(2131.75)

Rank#3
wizard

(2505.60)

update
(2007.35)

page
(2331.46)

not
(2886.97)

open
(2125.04)

Rank#4
import

(2165.76)

plugin
(1799.29)

color
(1360.91)

crash
(1820.56)

window
(1807.10)

Rank#5
new

(2155.10)

property
(1691.22)

font
(1228.30)

browser
(1732.74)

show
(1685.02)

Rank Topic-6 Topic-7 Topic-8 Topic-9 Topic-10

Rank#1
menu

(3117.50)
need

(2743.51)

build
(3983.34)

npe
(2904.08)

method
(4963.73)

Rank#2
set

(2733.52)

test
(2729.77)

source
(2570.61)

exception
(1778.28)

class
(3525.86)

Rank#3
package
(2553.41)

apus
(2195.19)

launch
(2098.56)

compare
(1655.72)

assist
(2717.85)

Rank#4
action

(2042.72)

junit
(1963.54)

path
(1958.65)

change
(1652.24)

content
(1995.42)

Rank#5
select

(1831.73)

breakpoint
(1497.58)

folder
(1789.92)

resource
(1543.80)

refactor
(1964.99)

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3204689

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

C. Feature Selection Algorithm

The feature selection algorithm [9] selects useful features from

data, filters out duplicate or unrelated features, and

automatically selects the most relevant feature subset. This

study extracts features by the severity of topics using the

feature selection algorithm. First, duplicate features are

filtered through a feature subset, and a subset selected with the

highest classification performance or correlation is created.

Then, features are all input variables of the data model, and a

subset (subgroup) of existing features is maintained to reduce

the dimension of the data. A subset with a high score to be

obtained creates a feature subset. Finally, we combine the

feature subset of features with high performance. Therefore,

we extract the features of bug reports by topic severity.

D. CNN-LSTM Algorithm

This study applies the features to the CNN-LSTM algorithm,

as shown in Figure 3. We put the feature extraction result of

topic-based severity as the input of the CNN algorithm [10]

and the output again as the input of the LSTM algorithm [10].

The output of LSTM is severity.

FIGURE 3. Overview of the CNN-LSTM Algorithm.

The CNN algorithm comprises a convolution layer that

extracts features, a repeating pool layer that compresses the

extracted features, and a multilayer perceptron layer. The

convolution layer is called a convolutional neural network,

and the output data of the current location is a value obtained

by multiplying an adjacent cell by a convolution filter. The

pooling layer receives the output data of the convolution layer

and reduces the output data size (Activation Map) or

emphasizes specific data. Pooling layer methods include max

pooling, min pooling, and average pooling. In this study, using

Max Pooling, the value of the largest feature is used as a

representative value of other features. The LSTM algorithm,

as one of the leading models of Recurrent Neural

Networks(RNN), predicts future data considering previous

and past data. LSTM has a structure similar to RNN, but

instead of having one neural network layer, there is an

interactive 4-way gate. LSTM also has gates between input

and output so that situation control can be performed

according to the data structure. In addition, since the sequence

vector can be modeled identically, the F-measure can be

improved when predicting severity. Therefore, we predict the

severity of the bug by putting the feature subset into the CNN-

LSTM algorithm.

In general, CNN extracts data features well, and LSTM

shows good classification characteristics when the correlation

of the time series data is large. However, LSTM rather

degrades performance when the length of input data is long,

and CNN does not solve the long-distance dependence

between the data spread out on the time axis. Therefore, in this

paper, we input the severity features for each topic into the

CNN model and extract the features of the text, taking

advantage of both algorithms. The LSTM model is trained by

putting the output of the CNN algorithm. The results showed

that CNN-LSTM algorithms performed better than existing

CNN and LSTM algorithms.

V. EXPERIMENTAL RESULT

To proceed with the experiment, CPU i9-12K, RAM 64 GB,

GPU 3090 equipment was used, and the following process is

performed. First, we sort bug reports from the bug repository.

Build topic modeling using classified bug reports. We apply

the feature selection algorithm based on the bug severity

criteria for each topic and extract the feature subset. We put

the extracted features as the input of the CNN algorithm and

the output again as the input of the LSTM algorithm. Finally,

we predict the severity. In the model, the hyperparameter is

following: embedding = 200, conv1 = 128, max_pooling = 2,

lstm = 512, learning_rate = 1e-4. The detailed LSTM

hyperparameters are shown in Figure 4.

Figure 4. Our Model the Hyperparameter.

A. Our Dataset

In this paper, we used Eclipse and Mozilla projects. The total

number of Eclipse bug reports was 165,547 (October 10, 2001,

to June 14, 2005), and the total number of Mozilla bug reports

was 394,878 (July 16, 1999 to September 16, 1999). Also, the

severity ratio is the same as that of DeepSeverity [11].

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3204689

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

B. Evaluation Metrics

The formula (1) is used to evaluate the proposed model's

performance. We note that S_TP means that the actual correct

answer (True) is predicted as the correct answer (True). S_TN

means that the actual correct answer (False) is predicted to be

not the correct answer (False). S_FN means that the actual

correct answer (True) is predicted to be not the correct answer

(False). S_TP means that the actual correct answer (False) is

predicted as the correct answer (True). The formula (2)

represents the ratio of quality to how well it predicted a result

related to the actual ‘positive’. The formula (3) represents the

positive measure of how well the predicted result predicted in

relation to the correct answer. The formula (4) shows the

harmonic mean of the formula (2) and (3).

𝑆_𝐴𝑐𝑐 =
𝑆_𝑇𝑃 + 𝑆_𝑇𝑁

𝑆_𝑇𝑃 + 𝑆_𝐹𝑁 + 𝑆_𝐹𝑃 + 𝑆_𝑇𝑁
 (1)

𝑆_𝑃𝑟𝑒 =
𝑆_𝑇𝑃

𝑆_𝑇𝑃 + 𝑆_𝐹𝑃
 (2)

𝑆_𝑅𝑒𝑐 =
𝑆_𝑇𝑃

𝑆_𝑇𝑃 + 𝑆_𝐹𝑁
 (3)

𝑆_𝐹 =
2 × 𝑆_𝑃𝑟𝑒 × 𝑆_𝑅𝑒𝑐

𝑆_𝑃𝑟𝑒 + 𝑆_𝑅𝑒𝑐
 (4)

To avoid the data bias, we use 10-fold cross validation in

the experiment. The experimental results show the average

value for 10 times.

C. Baseline

To evaluate the model performance in this paper, the

following baselines and performance are compared. This

study uses DeepSeverity [11] as the baseline. DeepSeverity

runs Word2Vector on the text and predicts bug severity by

applying a CNN algorithm based on text sentiment analysis.

In the proposed model, applying the severity feature selection

and CNN-LSTM algorithms in the topic has the same logic as

the baseline called DeepSeveirty, and predicting the

appropriate severity is similar, so it is set as the baseline. Also,

we adopt the EWD-Multinomial algorithm [12] as a baseline.

They analyze the text based on emotional text analysis. Then,

they utilize a Naïve Bayes Multinomial to predict the bug

severity.

D. Research Questions

The research experiment is conducted with the following

research questions. In this study, research questions are

established as follows.

RQ1: Does the proposed model perform adequately in

predicting bug severity?

Before comparing with the baselines, we first evaluate the

proposed model's performance. If the proposed model shows

adequate performance, the performance is compared with the

baselines in severity prediction.

RQ2: Can the proposed model be applied in predicting

bug severity?

If the proposed model shows good performance by

comparing the performance with the baselines, it can be

applied in predicting the severity of bugs. This study plans to

verify significant differences in bug severity prediction

between the proposed model and baseline by performing

statistical verification [32] between baselines and simple

performance comparison.

E. Result

1) RESULT OF OUR APPROACH

We present the performance of our model in Figure 5.

FIGURE 5. Performance of the Proposed Model.

We note that the X axis represents Precision and Recall, and

F-Measure. In this paper uses Eclipse and Mozilla projects,

and overall, it shows performance of about 91% or more.

Therefore, our model predicts the severity of bug report well

(90.62% in Eclipse and 93.22% in Mozilla). We also

compared our model with CNN and LSTM algorithms. The

results are shown in Figure 6.

FIGURE 6. Comparison of Our Model and CNN and LSTM.

We note that the X axis represents models including our

approach CNN and LSTM, and the Y axis represents F-

measure. The proposed CNN-LSTM model predicts the bug

severity well (Eclipse 90.62% and Mozilla 93.22%). In this

paper, when simple CNN and LSTM algorithms were trained,

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3204689

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

Eclipse 48.33% and Mozilla 54.96% came out for CNN model,

and Eclipse 31.97% and Mozilla 53.23% for LSTM model

came out. Therefore, the proposed CNN-LSTM was shown to

be good in predicting the bug severity.

Also, we compared the performance of those with and

without the feature selection algorithm by topic-based severity,

as shown in the Figure 7. The performance of the algorithm

without applying the topic-based feature selection is about

59%. However, our model predicted the severity of about 91%.

Therefore, in this paper, we compare with the baseline by

applying the topic-based severity feature selection.

FIGURE 7. Comparison of Our Model and Non-Algorithm (without topic-

based feature selection).

2) COMPARISON RESULTS

The performance comparison between the proposed model

and baseline (Deep Severity and EWD-Multinomial) is shown

in Figure 8. The X axis represents the algorithms including our

approach, Deepseverity and EWD-Multinomial, and the Y

axis represents F-measure. The proposed model shows the

performance of Eclipse 90.62% and Mozilla 93.22%, and the

baseline DeepSeverity shows Eclipse 84.79% and Mozilla

84.04%. Also, EWD-Multinomial shows Eclipse 80.97% and

Mozilla 76.09%. Therefore, the proposed model predicts

better than the baseline (Deep Severity and EWD-

Multinomial).

FIGURE 8. Performance Comparison between Baselines.

In addition, statistical verification performs that the

proposed model has a statistically significant difference from

the baseline.

The null hypothesis for statistical verification is as follows.

H10: There is no significant difference between DeepSeveirty

and Eclipse, where the proposed model is the baseline.

H20: There is no significant difference between EWD-

Multinomial and Eclipse, where the proposed model is the

baseline.

H30: There is no significant difference between DeepSeveirty

and Mozilla, where the proposed model is the baseline.

H40: There is no significant difference between EWD-

Multinomial and Mozilla, where the proposed model is the

baseline.

The alternative hypothesis to the null hypothesis is as

follows.

H1a: There is a significant difference between DeepSeveirty

and Eclipse, where the proposed model is the baseline.

H2a: There is a significant difference between EWD-

Multinomial and Eclipse, where the proposed model is the

baseline.

H3a: There is a significant difference between DeepSeveirty

and Mozilla, where the proposed model is the baseline.

H4a: There is a significant difference between EWD-

Multinomial and Mozilla, where the proposed model is the

baseline.

In details, for statistical verification, we check the results of

the data normal distribution. To test for normality, the

Shapiro–Wilk test [33] is used. The Shapiro–Wilk test states

that the null hypothesis of any test is that the population

follows a normal distribution. If the p-value is less than the

selected alpha level (0.05), the null hypothesis is rejected and

the tested data do not follow a normal distribution. If the result

of the normal distribution was 0.05 or more, the t-test [34]

statistical verification method was used, and if the result was

0.05 or less, the Wilcoxon signed-rank test [35] statistical

verification method was used.

TABLE Ⅴ

STATISTICAL VERIFICATION RESULTS.

Hypothesis P-Value Result

H10 (T test) 4.885e-16 H1a: Accept

H20 (T test) 2.106e-12 H2a: Accept

H30 (T test) 1.874e-14 H3a: Accept

H40 (T test) 4.062e-12 H4a: Accept

The null hypothesis H10 means that the proposed model

does not significantly differ from DeepSeverity. However,

because of the null hypothesis test, a value of 4.885e-16 was

obtained, below 0.05, so the null hypothesis was rejected, and

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3204689

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

the alternative hypothesis was accepted. Therefore, the

proposed model has a significant difference in Eclipse than

DeepSeverity. The proposed model rejects the entire null

hypothesis and accepts the alternative hypothesis.

VI. DISCUSSION

A. Experiment Results

We compared the proposed model with baselines

(DeepSeverity and EWD-Multinomial) and severity

prediction performance, and the proposed method showed

better prediction performance. There was a statistically

significant difference. The proposed method applied the

feature selection algorithm for each severity in the topic and

improved the severity prediction performance with the CNN-

LSTM algorithm. It shows the following differences:

• Feature selection by the severity of each topic was

performed, and severity was predicted by learning the

CNN-LSTM model. It showed better performance than

DeepSeverity using CNN algorithm. In addition, the

performance of the simple CNN algorithm and LSTM

algorithm was compared, and the proposed model

showed better performance.

• This study compared performance with that of not

applying feature selection by the severity of each topic,

and it was confirmed that the application improved the

performance. Words characterized by features within the

severity of the topic were extracted, and performance

was improved.

B. Threats and Validity

This study used the Eclipse, Mozilla open source project with

approximately 560,000 data. Since we used some data rather

than the whole data, the proposed method cannot always show

good performance. Moreover, bug management for business

and open source projects is clearly different, such as data

structure and severity levels. Therefore, we will further verify

other business projects' applicability before performance

verification. In the proposed model, the K value is set to 1 in

the feature selection algorithm, and the topic modeling

hyperparameter is set as the default value. Even when

verifying open source projects with different hyperparameters

and K values, it cannot always be guaranteed to show good

performance. In the future, we plan to improve the model by

using various datasets to find K values and optimal

hyperparameters.

VII. CONCLUSION

The user's subjective judgment is included in setting the bug

severity of the software. If automatic bug severity setting is

possible, severity resetting can be improved from the project

manager's perspective, and the bug report author must write

specifically for the expression of the bug. Therefore, the

severity is assigned as an objective element, reducing software

maintenance costs and improving software quality. To resolve

this problem, in this paper, we applied the feature selection

algorithm of each topic severity and put the extracted features

as the input of the CNN algorithm. Then, the output is input to

the LSTM algorithm to predict the severity. To evaluate the

proposed model, performance was compared with the

baselines (DeepSeverity and EWD-Multinomial), achieving

superior predictions. Additionally, through statistical

verification, the proposed model showed a significant

difference from the baseline. In the future, we plan to validate

the model using various datasets and expand the research

using automatic parameter adjustment and various features.

REFERENCES
[1] G. Yang, T. Zhang, and B. Lee, “Towards Semi-automatic Bug

Triage and Severity Prediction based on Topic Model and Multi-
feature of Bug Reports”, In Proc. of IEEE Annual Computer Software
and Applications Conference, pp. 97-106, 2014.

[2] L. A. F. Gomes, R. da Silva Torres, and M. L. Côrtes, “Bug Report
Severity Level Prediction in Open Source Software: A Survey and
Research Opportunities”, In Journal of Information and Software
Technology, Vol. 115, pp. 58-78, 2019.

[3] M. Kumari, M. Sharma, and V. B. Singh, “Severity Assessment of a
Reported Bug by Considering its Uncertainty and Irregular State”, In
Journal of Open Source Software and Processes (IJOSSP), Vol. 9(4),
pp. 20-46, 2018.

[4] T. Zhang, G. Yang, B. Lee, and A. T. Chan, “Predicting Severity of
Bug Report by Mining Bug Repository with Concept Profile”, In Proc.
of Annual ACM Symposium on Applied Computing, pp. 1553-1558,
2015.

[5] T. Zhang, J. Chen, G. Yang, B. Lee, and X. Luo, “Towards More
Accurate Severity Prediction and Fixer Recommendation of Software
Bugs”, In Journal of Systems and Software, Vol. 117, pp. 166-184,
2016.

[6] P. A. Choudhary, and S. Singh, “Neural Network based Bug Priority
Prediction Model Using Text Classification Techniques”, In Journal
of Advanced Research in Computer Science, Vol. 8(5), 2017.

[7] Y. Tian, D. Lo, X. Xia, and C. Sun, “Automated Prediction of Bug
Report Priority Using Multi-Factor Analysis”, In Journal of
Empirical Software Engineering, Vol. 20(5), pp. 1354-1383, 2015.

[8] Y. Song, S. Pan, S. Liu, M. X. Zhou, and W. Qian, “Topic and
Keyword Re-ranking for LDA-based Topic Modeling”, In Proc. of
ACM conference on Information and knowledge management, pp.
1757-1760, 2009.

[9] W. Shang, H. Huang, H. Zhu, Y. Lin, Y. Qu, and Z. Wang, “A Novel
Feature Selection Algorithm for Text Categorization”, In Journal of
Expert Systems with Applications, Vol. 33(1), pp. 1-5, 2007.

[10] J. Zhang, Y. Li, J. Tian, and T. Li, “LSTM-CNN Hybrid Model for
Text Classification”, In Proc. of IEEE Advanced Information
Technology, Electronic and Automation Control Conference, pp.
1675-1680, 2018.

[11] A. Kukkar, R. Mohana, A. Nayyar, J. Kim, B. G. Kang, and N.
Chilamkurti, “A Novel Deep-learning-based Bug Severity
Classification Technique Using Convolutional Neural Networks and
Random Forest with Boosting”, In Sensors, Vol. 19(13), p. 2964,
2019.

[12] G. Yang, S. Baek, J. W. Lee, and B. Lee, “Analyzing Emotion Words
to Predict Severity of Software Bugs: A Case Study of Open Source
Projects”, In Proc. of the Symposium on Applied Computing, pp.
1280-1287, 2017.

[13] Eclipse, https://bugs.eclipse.org/bugs, (accessed 30 May 2022).
[14] Mozilla, https://bugzilla.mozilla.org/home, (accessed 30 May 2022).
[15] Mozilla #285939

https://bugzilla.mozilla.org/show_bug.cgi?id=285939, (accessed 30
May 2022).

[16] N. Serrano, and I. Ciordia, “Bugzilla, ITracker, and Other Bug
Trackers”, In IEEE Software, Vol. 22(2), pp. 11-13, 2005.

[17] Bugzilla Priority, https://wiki.mozilla.org/Bugzilla:Priority_System,
(accessed 30 May 2022).

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3204689

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

[18] Bugzilla Severity,
https://wiki.eclipse.org/WTP/Conventions_of_bug_priority_and_se
verity, (accessed 30 May 2022).

[19] S. E Sahin, and A. Tosun, “A Conceptual Replication on Predicting
the Severity of Software Vulnerabilities”, In Proc. of the Evaluation
and Assessment on Software Engineering, pp. 244-250, 2019.

[20] A. Kukkar, R. Mohana, and Y. Kumar, “Does Bug Report
Summarization Help in Enhancing the Accuracy of Bug Severity
Classification?”, In Journal of Procedia Computer Science, Vol. 167,
pp. 1345-1353, 2020.

[21] P. K. Kudjo, J. Chen, S. Mensah, R. Amankwah, and C. Kudjo, “The
Effect of Bellwether Analysis on Software Vulnerability Severity
Prediction Models”, In Journal of Software Quality Journal, Vol.
28(4), pp. 1413-1446, 2020.

[22] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting the
Severity of a Reported Bug”, In Proc. of IEEE Working Conference
on Mining Software Repositories, pp. 1-10, 2010.

[23] Y. Tian, D. Lo, and C. Sun, “Information Retrieval based Nearest
Neighbor Classification for Fine-grained Bug Severity Prediction”,
In Proc. of IEEE Working Conference on Reverse Engineering, pp.
215-224, 2012.

[24] T. Menzies, and A. Marcus, “Automated Severity Assessment of
Software Defect Reports”, In Proc. of IEEE International Conference
on Software Maintenance, pp. 346-355, 2008.

[25] J. Arokiam, and J. S. Bradbury, “Automatically Predicting Bug
Severity Early in the Development Process”, In Proc. of the
ACM/IEEE 42nd International Conference on Software Engineering:
New Ideas and Emerging Results, pp. 17-20, 2020.

[26] N. K. S. Roy, and B. Rossi, “Towards an Improvement of Bug
Severity Classification”, In Proc. of IEEE EUROMICRO Conference
on Software Engineering and Advanced Applications, pp. 269-276,
2014.

[27] M. Sharma, P. Bedi, K. K. Chaturvedi, and V. B. Singh, “Predicting
the priority of a reported bug using machine learning techniques and
cross project validation”, In Proc. of International Conference on
Intelligent Systems Design and Applications (ISDA), pp. 539-545,
2012.

[28] K. K. Sabor, M. Hamdaqa, and A. Hamou-Lhadj, “Automatic
Prediction of The Severity of Bugs Using Stack Traces and
Categorical Features”, In Journal of Information and Software
Technology, Vol. 123, 106205, 2020.

[29] Q. Umer, H. Liu, and Y. Sultan, “Emotion based Automated Priority
Prediction for Bug Reports”, In Proc. of IEEE Access, Vol. 6, pp.
35743-35752, 2018.

[30] W. Y. Ramay, Q. Umer, X. C. Yin, C. Zhu, and I. Illahi, “Deep Neural
Network-based Severity Prediction of Bug Reports”, In Proc. of IEEE
Access, Vol. 7, pp. 46846-46857, 2019.

[31] A. Kao, and S. R. Poteet, “Natural Language Processing and Text
Mining”, in Springer Science & Business Media, 2007.

[32] Statistical Hypothesis Testing, Wikipedia,
https://en.wikipedia.org/wiki/Statistical_hypothesis_testing,
(accessed 30 May 2022).

[33] Shapiro–Wilk test, Wikipedia,
https://en.wikipedia.org/wiki/Shapiro-Wilk_test, (accessed 30 May
2022).

[34] T-statistic, Wikipedia, https://en.wikipedia.org/wiki/T-statistic,
(accessed 30 May 2022).

[35] Wilcoxon signed-rank test, Wikipedia,
https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test, (accessed
30 May 2022).

FIRST A. JungYeon Kim is an
Undergraduate Student in the Department of

Computer Science and Engineering at

Kyungnam University, South Korea from
2019 to the present. She is currently a

Researcher in the Artificial Intelligence

Software Lab. in Kyungnam University,
South Korea from 2021 to the Present. Her

research interests are Artificial Intelligence,

Big Data, and Software Engineering.

SECOND B. Geunseok Yang is an Assistant

Professor in the Department of Computer
Science and Engineering, Kyungnam

University, South Korea from 2021 to the

present. He obtained his Ph.D. and M.Eng.

from the Department of Computer Science,

University of Seoul, South Korea in 2020 and

2015, respectively, and his bachelor degree
from the Department of Computer Science

and Engineering, Korea University of

Technology and Education, South Korea in
2013. His research interests are AI-based

Software Engineering and Software Mining.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3204689

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

