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ABSTRACT Increasing software usage has gradually increased the occurrence of bugs. When writing a bug 

report, the severity of the bug can be freely selected, so the subjective judgment of the author is involved. In 

subjective judgment, a severity error may occur depending on the background knowledge between the user 

and the developer. To resolve this problem, in this paper, the severity was predicted using the feature selection 

algorithm of the severity of each topic. We utilize the dataset in Eclipse and Mozilla open source projects. 

First, we classify bug reports by topic-based severity, and extract features from the severity of each topic. 

The severity was predicted by learning the characteristics from the CNN-LSTM algorithm, and the F-measure 

was 90.62% and 93.22% of Mozilla. To evaluate the effectiveness of the proposed model, we compared the 

baselines including DeepSeverity and EWD-Multinomial studies with Eclipse and Mozilla open source 

projects and showed that the proposed model is more efficient. 

INDEX TERMS CNN-LSTM, Feature Selection, Topic Modeling, Bug Severity Prediction, Software 

Evolution

I. INTRODUCTION 

Software usage is increasing as they are being applied to 

various fields. Software improvements and bug outbreaks are 

also rapidly increasing, and approximately 300 bug reports are 

submitted daily for the Eclipse open source project [1]. 

In open source projects, when writing a bug report, the 

author selects the severity of the bug and submits the bug 

report. Subjective judgment may be involved in selecting the 

bug severity. However, there is an error in judging the severity 

of a bug because of the difference in background knowledge 

between end users and developers [2]. 

Studies related to predicting bug severity are as follows. 

Kumari et al. [3] evaluated the bug severity by using K-

Nearest Neighbor(KNN), j48, Random Forest(RF), Random 

Number Generator(RNG), Naïve Bayes(NB), Convolutional 

Neural Network(CNN), and Multiple Linear 

Regression(MLR). They also proposed an approach using 

entropy considering the irregularity of the data. Zhang et al. [4] 

used several machine learning classification algorithms in bug 

reports to confirm that NB multi-nominal outperforms NB, 1-

neighbor, and Support Vector Machine(SVM). An extended 

study [5], developed a new severity prediction algorithm based 

on text similarity. Choudhary et al. [6] used Eclipse's version 

prediction model, which assigns priority based on the 

information provided in the bug report. Features potentially 

affecting the priority of a bug were time, text, author-related, 

severity, product, and component. Tian et al. [7] predicted the 

severity of the bug report using the nearest neighbor approach. 

However, we must improve the prediction performance of bug 

severity and has to be verified with data from various projects. 

This problem is resolved with a bug severity prediction 

algorithm using a topic-based feature selection [8, 9] and 

Convolutional Long Short-Term Memory Neural Networks 

(CNN-LSTM) algorithms [10]. In detail, we classify bug 

reports by topic. Severity features for each topic are extracted 

by applying the feature selection algorithm to the classified 

topics. The extracted features are applied to the CNN-LSTM 

algorithm to predict the bug severity. 

To evaluate the effectiveness of the proposed method, we 

compared the model with the baselines (DeepSeverity [11] 

and EWD-Multinomial [12]) in open source projects (Eclipse 

[13], Mozilla [14]), and it showed superior prediction. 

 

The contribution of this paper is as follows. 

• Topic-based feature selection and CNN-LSTM 

algorithms predicted the bug severity. Also, bug reports 
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were classified by reporting topic, and features were 

extracted based on the severity of the topic. Additionally, 

it was found that predicting the severity based on the 

severity of each topic was superior to predicting the 

severity through topic classification. 

• To compare the performance of the bug severity model, 

the baselines (DeepSeverity and EWD-Multinomial) and 

the open source projects (Eclipse, Mozilla) were 

compared, and the proposed method had superior 

predictions. 

 

If accurate bug severity can be predicted, serious bugs can 

be corrected quickly to improve software quality. 

II. BACKGROUND KNOWLEDGE 

When using software or programs, bugs occur in unexpected 

situations. When a user creates a new bug report, the specified 

bug severity is selected by the project manager and reassigned 

to an appropriate severity. Since the severity is set first by the 

subjective judgment of the reporter who wrote the bug report, 

additional maintenance costs and time may be required in 

resetting the bug severity. Furthermore, since the severity is 

reassigned by the individual project manager's judgment, 

subjective thoughts can be reflected. 

If the bug severity is predicted automatically, the objective 

severity can be reflected so that an efficient software 

maintenance process can proceed. This study describes bug 

reports and bug severity for predicting bug severity. 

A. Bug Report 

Figure 1 shows an example of a bug report is #285939 Mozilla 

[15]. 

 
FIGURE 1.  Example of Mozilla Report #285939. 
 

Figure 1 shows an example of a bug report is #285939 

Mozilla [15]. The report for Mozilla Firefox was submitted on 

March 13, 2005. The bug reporter is grzybek-1990, and the 

developer is mossop. The status of the bug report is 

RESOLVED DUPLICATE, and the current bug is CLOSED. 

B. Bug Tracking System 

The bug tracking system [16] enables the communication 

between a user and a developer and can efficiently manage a 

bug. Bugzilla, one of the representative bug tracking systems, 

is an open source tool, and there are meta fields for priority 

and severity in bug reports. The priority provides information 

to help developers prioritize bugs that must be fixed. As the 

attribute value of priority, the priority [17] comprises 

immediate, urgent, normal, low, and none in five steps of P1   

to P5. There are seven levels of severity [18] attribute values. 

Blocker means that development or testing cannot proceed, 

and Critical means that the program is broken, data corruption, 

or memory leak occurs. Major means that a major functional 

flaw is found, and Normal means a bug that must be fixed as 

a general problem. Minor is a problem that can be easily 

solved or has less significant functional flaws, and Trivial is a 

simple external problem with typos or text misalignment. 

Enhancements are not a bug but rather represent function and 

performance improvement requirements. 

III. RELATED WORK 

Sahin et al. [19] used word embedding to perform feature 

extraction. Severity predictions were performed using CNN, 

LSTM, and extreme gradient boosting (XGBoost) methods, 

and severity scores were measured to substitute the severity 

levels of the severity predictions. 

Kumari et al. [3] proposed an approach using entropy 

considering the uncertainty and irregularity of the data to 

evaluate the severity of bug reports. KNN, j48, RF, RNG, NB, 

CNN, and MLR were applied as training classifiers and 

verified using PITS, Eclipse, and Mozilla projects. They 

showed that the proposed method improved the performance. 

Kukkar et al. [20] proposed a novel method for assigning 

severity levels of bugs using swarm intelligence and machine 

learning. A Naïve Bayes model extracted the optimal feature 

set from the bug summary and classified the bug report. 

Kudjo et al. [21] proposed a method to use Bellwether 

analysis to extract terms from bug summaries and trained four 

models (deep neural network, logistic regression, k-nearest 

neighbors, and random forest). The model's performance was 

evaluated using standard indicators such as precision, recall, 

and F-measure. The results showed that the model achieved an 

F-measure between 14% and 97%. 

Lamkanfi et al. [22] determined whether text mining 

techniques could accurately predict the severity of bug reports 

and showed that the results could be more accurate. 

Tian et al. [23] predicted granular severity levels (e.g., 

major, major, and minor) using various attributes of past bug 

reports (e.g., text summary, descriptive text, and title). They 

proposed an algorithm based on the combination of the 

BM25Fext similarity method to calculate the similarity 

between two bug reports and K-NN considering duplicate 

bugs. The approach was validated using various data sets 

related to the Mozilla, OpenOffice, and Eclipse open source 

projects. 
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Menzies et al. [24] A new technique called SEVERIS was 

developed to allow test engineers to set the appropriate 

severity level for a specific bug while validating NASA's 

closed-source project. SEVERIS mainly used text mining 

techniques to process textual descriptions of flawed bugs and 

a rule learning approach to classify bug reports using the 

RIPPER rule learner method. 

Arokiam et al. [25] proposed a method for assigning 

severity levels of bugs in the early stages of a development 

project. To predict the severity level of a new bug, they 

considered how a bug report was written rather than its content. 

The project results demonstrated that this method could 

predict the severity of bugs at an early stage of development 

and outperforms the existing keyword-based models used in 

many NASA projects. 

Roy et al. [26] proposed a feature selection method to 

improve the prediction accuracy of the severity prediction 

model. The dataset was developed with Eclipse and Mozilla 

and using bi-grams and text component-based technologies. 

This was trained on the Naïve Bayes model and showed 

improved severity prediction performance. They also proved 

that the accuracy could vary from project to project and adding 

more bigrams can degrade performance. 

Sharma et al. [27] proposed an approach to predict the 

priority of new bug reports. This study's accuracy shows that 

it can successfully predict bug priorities in less than 70% of 

Eclipse and OpenOffice projects, excluding Naïve Bayes. 

Sabor et al. [28] improved the quality of bug reports by 

integrating the stack trace of bug reports and features by 

categories such as component, OS, and product. The class 

imbalance distribution problem is addressed by classifying 

classes into undersampling and oversampling based on the 

number of instances representing each class. They then 

assigned a high misclassification cost to the under sampled 

class and a low misclassification cost to the oversampled class. 

The misclassification cost is the ratio of the number of 

instances of multiple classes to the number of instances of the 

defined class. They used KNN) to obtain the probability of 

classifying an unknown instance into a specified number of 

classes. Finally, they compute the cost of assigning an instance 

to a given class by multiplying the misclassification cost by 

the probability of assigning an instance to the class by KNN. 

The class label with the lowest cost of misclassification was 

chosen as the class label for the unknown instance. The 

model's accuracy was measured using precision, recall, and F-

measures as usual. The accuracy (F-measure) of the model 

improved by up to 35% when integrating the stack trace 

information into the category function of the bug report. 

Umer et al. [29] performed another study considering 

sentiment analysis using SentiWordNet dictionary. Sentiment 

analysis was applied to bug reports related to the Eclipse open 

source project to predict the priority of bug reports. Their 

approach trained the SVM algorithm using sentiment scores 

and extracted features from bug reports. This approach 

outperformed other machine learning algorithms, including 

Naïve Bayes, Naïve Bayes Multinomial, and Linear 

Regression. 

Ramay et al. [30] were the first to use a deep learning 

algorithm to predict the severity level of a bug report, in 

addition to the sentiment analysis of bug reporter sentiment 

expressed in the bug report summary field. They used a 

popular emotion dictionary called Senti4SD when using 

SentiWordNet for emotion analysis. We then calculated the 

emotion score for each bug report on a specific dataset 

extracted from Bugzilla. Their work significantly improved 

over the EWD-Multinomial. 

IV. OUR APPROACH 

This study implements the feature selection algorithm for each 

topic severity. The CNN-LSTM algorithm is used. Figure 2 

shows a schematic of our overall approach. We first classify 

the topic of bug reports from the bug repository. We proceed 

with the feature selection algorithm using the severity of bug 

reports on the topic. The severity-specific features of each 

topic are put as the input of the CNN algorithm, and the output 

becomes the input of the LSTM. Finally, the output of the 

LSTM is the severity. 

FIGURE 2. Overview of Our Approach. 

A. Preprocessing 

Bug reporters freely express errors in various forms. There are 

a summary and a description, and the reporter can write it 

quickly. To use these bug reports, we must proceed with the 

preprocessing process among natural language processing 

technique [31]. In the preprocessing process, tokenization of 

sentences, stopwords removal, and lemmatization is 

performed. From the results, sentences were extracted as 

words, and stop words such as “should”, “be”, “in”, “all”, and 

“more” were removed. 

If there is a sentence of “Callisto site should be in (all/more) 

Eclipse Project featues”, the preprocessed result is as follows. 

“callisto”, “site”, “all”, “more”, “eclipse”, “project”, “featue”. 

Also, the word “featues” is extracted as the root of “featue”. 

B. Topic Modeling 

Usually, to proceed with the topic classification of documents, 

the topic classification of documents is performed by applying 
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Latent Dirichlet Allocation(LDA) algorithm [8]. This study 

regarded a bug report as a document, and the topic of the bug 

report is classified. Therefore, from the bug report, we can 

grasp the mainly used   

words for each topic and the proportion of the bug report in 

the topic. 

The bug report combines topic distribution and topic word 

distribution and is calculated through the set parameters. As a 

representative parameter, α is a Dirichlet distribution 

parameter for generating a topic distribution of a document, 

and β refers to a Dirichlet distribution for generating a word 

distribution of a topic. Furthermore, K means the number of 

topics designated by the user. 

The topics classified in this study are shown in Table I and 

Table Ⅲ, and the critical words for each topic are shown in 

Table Ⅱ and Table Ⅳ. Table I shows samples from Topic-1 to 

Topic-10. Bug reports for each topic are classified, and 

because of the set parameters, we can confirm that the bug 

reports do not belong to various topics. Table Ⅱ shows the 

distribution of words by topic. For example, the word Rank#1 

in Topic-1 has a distribution of 3878.1783(dialog) and means 

the distribution of the most important word in Topic-1. Rank 

#2 in Topic-1 means the distribution of the second most 

important word in Topic-1 with a distribution of 

2711.5182(save). In the same vein, Table 3 and Table 4 are the 

same as Table 1 and Table 2. 

 
TABLE I 

EXAMPLE OF TOPIC CLASSIFICATION IN MOZILLA 

Topic-1 Topic-2 Topic-3 Topic-4 Topic-5 

803963 72543 321847 261143 722730 

590202 117648 675189 703110 410023 

254234 709566 112979 424775 418290 

802867 445496 622053 224797 287220 

Topic-6 Topic-7 Topic-8 Topic-9 Topic-10 

678030 779036 448369 413028 597714 

756903 423275 512743 459150 358268 

748587 215608 756292 14462 304928 

73603 46656 626919 471008 679266 

 
TABLE Ⅱ 

EXAMPLE OF TOPIC TERM DISTRIBUTION IN MOZILLA 

Rank Topic-1 Topic-2 Topic-3 Topic-4 Topic-5 

Rank#1 
dialog 

(3878.17) 
event 

(3764.42) 

bug 
(5665.07) 

load 
(7332.29) 

message 
(10059.73) 

Rank#2 
save 

(2711.51) 

javascript 
(3644.33) 

character 
(3240.36) 

image 
(5500.15) 

mail 
(5755.93) 

Rank#3 
site 

(2603.86) 

element 
(2802.06) 

error 
(3053.88) 

browser 
(3778.00) 

folder 

(5749.46) 

Rank#4 
user 

(2524.96) 

attribute 
(2368.51) 

name 
(2765.44) 

time 
(3170.30) 

new 
(4712.45) 

Rank#5 
cookie 

(2422.88) 

document 
(2252.56) 

url 
(2746.93) 

cause 
(3084.26) 

email 
(4314.72) 

Rank Topic-6 Topic-7 Topic-8 Topic-9 Topic-10 

Rank#1 
plugin 

(4235.35) 
link 

(6126.31) 

text 
(6366.98) 

assertion 
(4521.22) 

menu 
(9627.80) 

Rank#2 
install 

(3208.89) 

click 
(5537.99) 

table 
(5971.91) 

failure 
(4064.81) 

bookmark 
(8941.51) 

Rank#3 
update 

(3183.16) 

can 
(5092.39) 

display 
(4276.05) 

test 
(4056.28) 

bar 

(7680.90) 

Rank#4 
mozillum 
(2920.24) 

not 
(4965.95) 

render 
(4110.07) 

code 
(2780.43) 

button 
(4728.85) 

Rank#5 
build 

(2510.09) 

text 
(4930.85) 

font 
(3890.85) 

fail 
(2721.50) 

toolbar 
(4708.79) 

 
TABLE Ⅲ 

EXAMPLE OF TOPIC CLASSIFICATION IN ECLIPSE 

Topic-1 Topic-2 Topic-3 Topic-4 Topic-5 

23334 36141 70167 207148 285282 

74354 80076 23464 83367 245707 

75811 158334 10933 4951 14709 

119414 197421 220609 26218 15642 

Topic-6 Topic-7 Topic-8 Topic-9 Topic-10 

822 197605 166449 84152 4602 

85625 31321 124550 26079 64530 

98420 276732 6924 39488 74515 

147615 129725 46148 83705 296708 

 
TABLE Ⅳ 

EXAMPLE OF TOPIC TERM DISTRIBUTION IN ECLIPSE 

Rank Topic-1 Topic-2 Topic-3 Topic-4 Topic-5 

Rank#1 
code 

(2870.37) 
search 

(3476.93) 

preference 
(3759.44) 

eclipse 
(4997.15) 

key 
(2235.00) 

Rank#2 
javadoc 
(2780.66) 

help 
(3233.03) 

text 
(3199.47) 

can 
(2900.97) 

perspective 
(2131.75) 

Rank#3 
wizard 

(2505.60) 

update 
(2007.35) 

page 
(2331.46) 

not 
(2886.97) 

open 
(2125.04) 

Rank#4 
import 

(2165.76) 

plugin 
(1799.29) 

color 
(1360.91) 

crash 
(1820.56) 

window 
(1807.10) 

Rank#5 
new 

(2155.10) 

property 
(1691.22) 

font 
(1228.30) 

browser 
(1732.74) 

show 
(1685.02) 

Rank Topic-6 Topic-7 Topic-8 Topic-9 Topic-10 

Rank#1 
menu 

(3117.50) 
need 

(2743.51) 

build 
(3983.34) 

npe 
(2904.08) 

method 
(4963.73) 

Rank#2 
set 

(2733.52) 

test 
(2729.77) 

source 
(2570.61) 

exception 
(1778.28) 

class 
(3525.86) 

Rank#3 
package 
(2553.41) 

apus 
(2195.19) 

launch 
(2098.56) 

compare 
(1655.72) 

assist 
(2717.85) 

Rank#4 
action 

(2042.72) 

junit 
(1963.54) 

path 
(1958.65) 

change 
(1652.24) 

content 
(1995.42) 

Rank#5 
select 

(1831.73) 

breakpoint 
(1497.58) 

folder 
(1789.92) 

resource 
(1543.80) 

refactor 
(1964.99) 
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C.  Feature Selection Algorithm 

The feature selection algorithm [9] selects useful features from 

data, filters out duplicate or unrelated features, and 

automatically selects the most relevant feature subset. This 

study extracts features by the severity of topics using the 

feature selection algorithm. First, duplicate features are 

filtered through a feature subset, and a subset selected with the 

highest classification performance or correlation is created. 

Then, features are all input variables of the data model, and a 

subset (subgroup) of existing features is maintained to reduce 

the dimension of the data. A subset with a high score to be 

obtained creates a feature subset. Finally, we combine the 

feature subset of features with high performance. Therefore, 

we extract the features of bug reports by topic severity. 

D.  CNN-LSTM Algorithm 

This study applies the features to the CNN-LSTM algorithm, 

as shown in Figure 3. We put the feature extraction result of 

topic-based severity as the input of the CNN algorithm [10] 

and the output again as the input of the LSTM algorithm [10]. 

The output of LSTM is severity. 

FIGURE 3. Overview of the CNN-LSTM Algorithm. 

The CNN algorithm comprises a convolution layer that 

extracts features, a repeating pool layer that compresses the 

extracted features, and a multilayer perceptron layer. The 

convolution layer is called a convolutional neural network, 

and the output data of the current location is a value obtained 

by multiplying an adjacent cell by a convolution filter. The 

pooling layer receives the output data of the convolution layer 

and reduces the output data size (Activation Map) or 

emphasizes specific data. Pooling layer methods include max 

pooling, min pooling, and average pooling. In this study, using 

Max Pooling, the value of the largest feature is used as a 

representative value of other features. The LSTM algorithm, 

as one of the leading models of Recurrent Neural 

Networks(RNN), predicts future data considering previous 

and past data. LSTM has a structure similar to RNN, but 

instead of having one neural network layer, there is an 

interactive 4-way gate. LSTM also has gates between input 

and output so that situation control can be performed 

according to the data structure. In addition, since the sequence 

vector can be modeled identically, the F-measure can be 

improved when predicting severity. Therefore, we predict the 

severity of the bug by putting the feature subset into the CNN-

LSTM algorithm. 

In general, CNN extracts data features well, and LSTM 

shows good classification characteristics when the correlation 

of the time series data is large. However, LSTM rather 

degrades performance when the length of input data is long, 

and CNN does not solve the long-distance dependence 

between the data spread out on the time axis. Therefore, in this 

paper, we input the severity features for each topic into the 

CNN model and extract the features of the text, taking 

advantage of both algorithms. The LSTM model is trained by 

putting the output of the CNN algorithm. The results showed 

that CNN-LSTM algorithms performed better than existing 

CNN and LSTM algorithms. 

V. EXPERIMENTAL RESULT 

To proceed with the experiment, CPU i9-12K, RAM 64 GB, 

GPU 3090 equipment was used, and the following process is 

performed. First, we sort bug reports from the bug repository. 

Build topic modeling using classified bug reports. We apply 

the feature selection algorithm based on the bug severity 

criteria for each topic and extract the feature subset. We put 

the extracted features as the input of the CNN algorithm and 

the output again as the input of the LSTM algorithm. Finally, 

we predict the severity. In the model, the hyperparameter is 

following: embedding = 200, conv1 = 128, max_pooling = 2, 

lstm = 512, learning_rate = 1e-4. The detailed LSTM 

hyperparameters are shown in Figure 4. 

 
Figure 4. Our Model the Hyperparameter. 

A. Our Dataset 

In this paper, we used Eclipse and Mozilla projects. The total 

number of Eclipse bug reports was 165,547 (October 10, 2001, 

to June 14, 2005), and the total number of Mozilla bug reports 

was 394,878 (July 16, 1999 to September 16, 1999). Also, the 

severity ratio is the same as that of DeepSeverity [11]. 
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B. Evaluation Metrics 

The formula (1) is used to evaluate the proposed model's 

performance. We note that S_TP means that the actual correct 

answer (True) is predicted as the correct answer (True). S_TN 

means that the actual correct answer (False) is predicted to be 

not the correct answer (False). S_FN means that the actual 

correct answer (True) is predicted to be not the correct answer 

(False). S_TP means that the actual correct answer (False) is 

predicted as the correct answer (True). The formula (2) 

represents the ratio of quality to how well it predicted a result 

related to the actual ‘positive’. The formula (3) represents the 

positive measure of how well the predicted result predicted in 

relation to the correct answer. The formula (4) shows the 

harmonic mean of the formula (2) and (3). 

𝑆_𝐴𝑐𝑐 =  
𝑆_𝑇𝑃 +  𝑆_𝑇𝑁

𝑆_𝑇𝑃 +  𝑆_𝐹𝑁 +  𝑆_𝐹𝑃 +  𝑆_𝑇𝑁
 (1) 

𝑆_𝑃𝑟𝑒 =  
𝑆_𝑇𝑃

𝑆_𝑇𝑃 +  𝑆_𝐹𝑃
 (2) 

𝑆_𝑅𝑒𝑐 =  
𝑆_𝑇𝑃

𝑆_𝑇𝑃 +  𝑆_𝐹𝑁
 (3) 

𝑆_𝐹 =  
2 ×  𝑆_𝑃𝑟𝑒 ×  𝑆_𝑅𝑒𝑐

𝑆_𝑃𝑟𝑒 +  𝑆_𝑅𝑒𝑐
 (4) 

To avoid the data bias, we use 10-fold cross validation in 

the experiment. The experimental results show the average 

value for 10 times. 

C. Baseline 

To evaluate the model performance in this paper, the 

following baselines and performance are compared. This 

study uses DeepSeverity [11] as the baseline. DeepSeverity 

runs Word2Vector on the text and predicts bug severity by 

applying a CNN algorithm based on text sentiment analysis. 

In the proposed model, applying the severity feature selection 

and CNN-LSTM algorithms in the topic has the same logic as 

the baseline called DeepSeveirty, and predicting the 

appropriate severity is similar, so it is set as the baseline. Also, 

we adopt the EWD-Multinomial algorithm [12] as a baseline. 

They analyze the text based on emotional text analysis. Then, 

they utilize a Naïve Bayes Multinomial to predict the bug 

severity. 

D. Research Questions 

The research experiment is conducted with the following 

research questions. In this study, research questions are 

established as follows. 

 

RQ1: Does the proposed model perform adequately in 

predicting bug severity? 

 

Before comparing with the baselines, we first evaluate the 

proposed model's performance. If the proposed model shows 

adequate performance, the performance is compared with the 

baselines in severity prediction. 

 

RQ2: Can the proposed model be applied in predicting 

bug severity? 

 

If the proposed model shows good performance by 

comparing the performance with the baselines, it can be 

applied in predicting the severity of bugs. This study plans to 

verify significant differences in bug severity prediction 

between the proposed model and baseline by performing 

statistical verification [32] between baselines and simple 

performance comparison. 

E. Result 

1) RESULT OF OUR APPROACH 

We present the performance of our model in Figure 5. 

FIGURE 5. Performance of the Proposed Model. 

We note that the X axis represents Precision and Recall, and 

F-Measure. In this paper uses Eclipse and Mozilla projects, 

and overall, it shows performance of about 91% or more. 

Therefore, our model predicts the severity of bug report well 

(90.62% in Eclipse and 93.22% in Mozilla). We also 

compared our model with CNN and LSTM algorithms. The 

results are shown in Figure 6. 

FIGURE 6. Comparison of Our Model and CNN and LSTM. 

We note that the X axis represents models including our 

approach CNN and LSTM, and the Y axis represents F-

measure. The proposed CNN-LSTM model predicts the bug 

severity well (Eclipse 90.62% and Mozilla 93.22%). In this 

paper, when simple CNN and LSTM algorithms were trained, 
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Eclipse 48.33% and Mozilla 54.96% came out for CNN model, 

and Eclipse 31.97% and Mozilla 53.23% for LSTM model 

came out. Therefore, the proposed CNN-LSTM was shown to 

be good in predicting the bug severity. 

Also, we compared the performance of those with and 

without the feature selection algorithm by topic-based severity, 

as shown in the Figure 7. The performance of the algorithm 

without applying the topic-based feature selection is about 

59%. However, our model predicted the severity of about 91%. 

Therefore, in this paper, we compare with the baseline by 

applying the topic-based severity feature selection.  

FIGURE 7. Comparison of Our Model and Non-Algorithm (without topic-

based feature selection). 

2) COMPARISON RESULTS 

The performance comparison between the proposed model 

and baseline (Deep Severity and EWD-Multinomial) is shown 

in Figure 8. The X axis represents the algorithms including our 

approach, Deepseverity and EWD-Multinomial, and the Y 

axis represents F-measure. The proposed model shows the 

performance of Eclipse 90.62% and Mozilla 93.22%, and the 

baseline DeepSeverity shows Eclipse 84.79% and Mozilla 

84.04%. Also, EWD-Multinomial shows Eclipse 80.97% and 

Mozilla 76.09%. Therefore, the proposed model predicts 

better than the baseline (Deep Severity and EWD-

Multinomial). 

FIGURE 8. Performance Comparison between Baselines. 

In addition, statistical verification performs that the 

proposed model has a statistically significant difference from 

the baseline. 

The null hypothesis for statistical verification is as follows. 

H10: There is no significant difference between DeepSeveirty 

and Eclipse, where the proposed model is the baseline.  

H20: There is no significant difference between EWD-

Multinomial and Eclipse, where the proposed model is the 

baseline. 

H30: There is no significant difference between DeepSeveirty 

and Mozilla, where the proposed model is the baseline. 

H40: There is no significant difference between EWD-

Multinomial and Mozilla, where the proposed model is the 

baseline. 

 
The alternative hypothesis to the null hypothesis is as 

follows. 

H1a: There is a significant difference between DeepSeveirty 

and Eclipse, where the proposed model is the baseline. 

H2a: There is a significant difference between EWD-

Multinomial and Eclipse, where the proposed model is the 

baseline. 

H3a: There is a significant difference between DeepSeveirty 

and Mozilla, where the proposed model is the baseline. 

H4a: There is a significant difference between EWD-

Multinomial and Mozilla, where the proposed model is the 

baseline. 

 
In details, for statistical verification, we check the results of 

the data normal distribution. To test for normality, the 

Shapiro–Wilk test [33] is used. The Shapiro–Wilk test states 

that the null hypothesis of any test is that the population 

follows a normal distribution. If the p-value is less than the 

selected alpha level (0.05), the null hypothesis is rejected and 

the tested data do not follow a normal distribution. If the result 

of the normal distribution was 0.05 or more, the t-test [34] 

statistical verification method was used, and if the result was 

0.05 or less, the Wilcoxon signed-rank test [35] statistical 

verification method was used. 

 
TABLE Ⅴ 

STATISTICAL VERIFICATION RESULTS. 

Hypothesis P-Value Result 

H10 (T test) 4.885e-16 H1a: Accept 

H20 (T test) 2.106e-12 H2a: Accept 

H30 (T test) 1.874e-14 H3a: Accept 

H40 (T test) 4.062e-12 H4a: Accept 

 

The null hypothesis H10 means that the proposed model 

does not significantly differ from DeepSeverity. However, 

because of the null hypothesis test, a value of 4.885e-16 was 

obtained, below 0.05, so the null hypothesis was rejected, and 
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the alternative hypothesis was accepted. Therefore, the 

proposed model has a significant difference in Eclipse than 

DeepSeverity. The proposed model rejects the entire null 

hypothesis and accepts the alternative hypothesis. 

VI. DISCUSSION 

A. Experiment Results 

We compared the proposed model with baselines 

(DeepSeverity and EWD-Multinomial) and severity 

prediction performance, and the proposed method showed 

better prediction performance. There was a statistically 

significant difference. The proposed method applied the 

feature selection algorithm for each severity in the topic and 

improved the severity prediction performance with the CNN-

LSTM algorithm. It shows the following differences: 

 

• Feature selection by the severity of each topic was 

performed, and severity was predicted by learning the 

CNN-LSTM model. It showed better performance than 

DeepSeverity using CNN algorithm. In addition, the 

performance of the simple CNN algorithm and LSTM 

algorithm was compared, and the proposed model 

showed better performance. 

• This study compared performance with that of not 

applying feature selection by the severity of each topic, 

and it was confirmed that the application improved the 

performance. Words characterized by features within the 

severity of the topic were extracted, and performance 

was improved. 

B. Threats and Validity 

This study used the Eclipse, Mozilla open source project with 

approximately 560,000 data. Since we used some data rather 

than the whole data, the proposed method cannot always show 

good performance. Moreover, bug management for business 

and open source projects is clearly different, such as data 

structure and severity levels. Therefore, we will further verify 

other business projects' applicability before performance 

verification. In the proposed model, the K value is set to 1 in 

the feature selection algorithm, and the topic modeling 

hyperparameter is set as the default value. Even when 

verifying open source projects with different hyperparameters 

and K values, it cannot always be guaranteed to show good 

performance. In the future, we plan to improve the model by 

using various datasets to find K values and optimal 

hyperparameters. 

VII. CONCLUSION 

The user's subjective judgment is included in setting the bug 

severity of the software. If automatic bug severity setting is 

possible, severity resetting can be improved from the project 

manager's perspective, and the bug report author must write 

specifically for the expression of the bug. Therefore, the 

severity is assigned as an objective element, reducing software 

maintenance costs and improving software quality. To resolve 

this problem, in this paper, we applied the feature selection 

algorithm of each topic severity and put the extracted features 

as the input of the CNN algorithm. Then, the output is input to 

the LSTM algorithm to predict the severity. To evaluate the 

proposed model, performance was compared with the 

baselines (DeepSeverity and EWD-Multinomial), achieving 

superior predictions. Additionally, through statistical 

verification, the proposed model showed a significant 

difference from the baseline. In the future, we plan to validate 

the model using various datasets and expand the research 

using automatic parameter adjustment and various features. 
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