
BUGMINER: Software Reliability Analysis Via Data Mining of Bug Reports

Leon Wu Boyi Xie Gail Kaiser Rebecca Passonneau
Department of Computer Science

Columbia University
New York, NY 10027 USA

{leon,xie,kaiser,becky}@cs.columbia.edu

Abstract

Software bugs reported by human users and automatic
error reporting software are often stored in some bug track-
ing tools (e.g., Bugzilla and Debbugs). These accumulated
bug reports may contain valuable information that could
be used to improve the quality of the bug reporting, reduce
the quality assurance effort and cost, analyze software re-
liability, and predict future bug report trend. In this paper,
we present BUGMINER, a tool that is able to derive useful
information from historic bug report database using data
mining, use these information to do completion check and
redundancy check on a new or given bug report, and to es-
timate the bug report trend using statistical analysis. Our
empirical studies of the tool using several real-world bug
report repositories show that it is effective, easy to imple-
ment, and has relatively high accuracy despite low quality
data.

1 Introduction

Finding and fixing the faults in software is an indispens-
able while time-consuming quality assurance task in soft-
ware development. Our definition of fault is a programming
error that leads to an erroneous result in some programs dur-
ing execution. A software bug is the common term used to
describe a fault, error, flaw, mistake, or failure in a program
that produces an incorrect or unexpected result, or causes
it to behave in unintended ways. When a software bug is
identified, it is often reported and recorded into a bug re-
port database using some bug tracking tools so that further
analysis or fix can be performed, possibly by a developer
or tester. For some real-world software, their bug report
databases have accumulated a large amount of historic bug
reports. For example, as of February 2011, Debbugs, i.e.,
Debian bug tracking system, has accumulated 615,000 bug
reports [6, 5].

These accumulated bug reports may contain valuable in-

formation that could be used to improve the quality of the
bug reporting, reduce the cost of quality assurance, analyze
software reliability, and predict future bug report trend. One
of the challenges in bug reporting is that the bug reports are
often incomplete (e.g., missing data fields such as product
version or operating system details). Another challenge is
that there are often many duplicate bug reports for the same
bug. Software developers or testers normally have to re-
view these redundant bug reports manually, which is time-
consuming and cost inefficient.

We developed a tool named BUGMINER that is able to
derive useful information from historic bug reports using
data mining techniques, including machine learning (e.g.,
SVM [16, 3]) and natural language processing, and use
these information to do completion check through classi-
fication and redundancy check through similarity ranking
on a new or given bug report. BUGMINER can also per-
form bug report trend analysis using Weibull distribution
[14]. We implemented the tool and experimented it using
three real-world bug report repositories including Apache
Tomcat [1], Eclipse [7], and Linux Kernel [12]. Our exper-
iments demonstrate that it is effective, easy to implement,
and has relatively high accuracy despite low quality data.

The rest of the paper is organized as follows. In the fol-
lowing section, we give background information on bug re-
porting. In Section 3, we present the details of our approach,
followed by our empirical studies in Section 4. Lastly, we
compare related work in Section 5, before we conclude in
Section 6.

2 Background on Bug Reporting

Bug tracking tools are often developed as a database-
driven web application. The web interface allows multiple
geographically distributed users to enter the bug reports si-
multaneously. The backend database stores the records for
the reported bugs. Table 1 lists some main attributes (i.e.,
data fields or columns) of a typical bug report for Apache
Tomcat using Bugzilla [1, 2]. These attributes are meta in-

formation of the bug report. The field bug id is an unique
identifier for a distinct bug instance. A bug report is often
modified by subsequent reviewers or developers who are
trying to verify or fix the bug. Table 2 lists the additional
commentary entries related to the same bug listed in Table
1. Each new entry (i.e., new long desc record) records the
author name, entry date and time, and the free text descrip-
tion. The entry date and time for the first and last long desc
record, along with the first author’s name, are also stored
in the main attributes list of the same bug (i.e., creation ts,
delta ts, and reporter). There is no predefined limit on how
many additional commentary entries a bug report can hold.
Bug report datasets will be further explained in Section 4.2.

Table 1. Main attributes of a bug report
Attribute Name Sample Value Attribute Name Sample Value
bug id 48892 component Connectors
creation ts 2010-03-11

12:10:09 -0500
delta ts 2010-12-14

14:30:22 -0500
short desc Use URIEncoding... rep platform All
cclist accessible 1 op sys All
classification id 1 bug status NEW
classification Unclassified bug severity enhancement
product Tomcat 7 priority P2
reporter reporter 1 assigned to dev

Table 2. Additional attributes
Attribute Name long desc 1 long desc 2 long desc 3
isprivate 0 0 0
who reporter 1 reporter 2 reporter 3
bug when 2010-03-11

12:10:09 -0500
2010-04-04
10:18:48 -0400

2010-12-14
14:30:22 -0500

thetext Here is a ... There are ... For encoding ...

3 Approach

3.1 Architecture

Figure 1 illustrates the architecture of BUGMINER.
There are two types of bug reporters: human users such as
software developers, testers, and end users; automatic error
reporting processes that run as a service on users’ comput-
ers. The bug reporters generate new bug reports and enter
the related information via the bug tracking tool’s interface.
The bug tracking tool then store the new bug report into the
bug report database.

BUGMINER consists of three data mining and statistical
processing engines: automatic completion check engine;
automatic redundancy check engine; and bug report trend
analysis engine. These three engines process the historic
data stored in the bug report database and the new bug re-
port coming in. The results from these engines are then
directed to the bug tracking tool so that these results can be
reviewed and stored. In the following subsections, we will
describe each engine in detail.

3.2 Attributes and Feature Selection

BUGMINER analyzes bug report data based on two sets
of attributes: 1) static meta information, and 2) bag-of-

Bug Tracking Tool

Auto-reporting

Process

Bug Report Databse

Completion Check Engine

Redundancy Check Engine

Trend Analysis Engine

BUGMINER

New

Bug

Report

Figure 1. BUGMINER architecture

words (i.e., a collection of distinct free text words) at-
tributes. For each bug report in Bugzilla, users need to fill
in a predefined set of bug information, as shown in Table
1. This set of attributes has two characteristics: 1) static:
the list of fields is fixed for all types of software products,
and those fields are available for all bug reports; 2) meta in-
formation: they describe the general information about the
bug report but doesn’t go to the details of the problem. Bug
report analysis based solely on the static and meta informa-
tion is very limited. In BUGMINER, we further include the
free text data of a bug report in our analysis.

The free text data usually describes a bug scenario in nat-
ural language followed by some sample code. We represent
the textual data as a bag-of-words. Each data instance is a
high dimensional vector with words being attributes. The
values of the attributes are Term Frequency-Inverse Docu-
ment Frequency (TF-IDF) weight [13], which gives a higher
weight on words that are frequent in certain data records but
not too common across all records. Stemming, a process
of reducing inflected (or sometimes derived) words to their
stem or root form, is not necessary because the vocabulary
usually doesn’t have a variety of morphed forms, and im-
perfect stemming may bring in additional noisy content un-
necessarily. Our feature selection also bases on inverse doc-
ument frequency (IDF) and global term frequency. Words
with a low IDF (e.g., stopwords such as ‘the’ and ‘a’) are
removed because they are too common and lack discrimi-
native power. Words with a very low global term frequency
are also removed because they are rare and their inclusion
leads to a high dimensionality, which may cause “curse of
dimensionality” problem in machine learning.

3.3 Automatic Completion Check Engine

When a bug report is filed, the bug information submitted
are sometimes incomplete (e.g., missing data fields). BUG-
MINER’s automatic completion check engine derives these
missing data fields through mining historic data and classifi-
cation using the partially filled information. It reduces man-
ual effort, keeps the bug report complete, and helps devel-
opers and testers to analyze the bug report more precisely.

3.3.1 Classification Using Support Vector Machine

Missing field autocompletion can be solved as a supervised
learning problem. By training a classification model on ex-
isting data, we can predict the missing values. In BUG-
MINER, we use Support Vector Machines (SVM) as the
classifier. SVM is a popular machine learning method be-
cause of its high performance. It formulates the classifica-
tion modeling process as a quadratic minimization problem,
and finds hyperplanes in a high dimensional space that sepa-
rate data instances of different categories, while maximizing
the margins between categories.

We first use a set of historic bug reports (e.g., each one
with n attributes) as training data to build a linear SVM
model. For a new or given bug report with one missing data
field a (i.e., n − 1 attributes filled and 1 attribute missing),
we use the trained SVM model as a classifier and the filled
n − 1 attributes to predict the value of the missing a field
for this bug report. In the case of multiple data fields are
missing for a report (e.g., n − m attributes filled and m
attributes missing), we use the SVM model and the n −m
filled attributes to predict the missing fields one by one.

3.4 Automatic Redundancy Check Engine

A common way of searching a bug report database to
find out whether a new or given bug report already exists
or not is to use keyword search, which normally uses key-
word in combination with some wildcat characters such as
‘%’ and ‘?’ to construct database query string that can be
executed on the database table. This kind of search based
on keyword matching is often imprecise and may generate
a large amount of useless or irrelevant results. The simi-
larity ranking used by BUGMINER’s automatic redundancy
check engine is able to tell whether the new bug report is a
duplicate or not more precisely. Furthermore, the similarity
ranking can find out the most similar prior bug reports and
sort them for the user.

3.4.1 Similarity Ranking Using Cosine Similarity

We represent bug report dataset in a vector space model
(i.e., term vector model), an algebraic model for represent-
ing text documents as vectors of identifiers, such as index

terms [15]. Each bug report is a vector that consists of a list
of feature values. As described in Section 3.2, BUGMINER
uses two sets of features: 1) static meta information; 2) bag-
of-words attributes with TF-IDF values.

We measure the similarity between two bug reports
based on Cosine similarity, i.e., the Cosine of the angle be-
tween the two vectors that represent these two bug reports,
as shown in the following formula:

DistanceCOS(a, b) =

∑
i ai × bi√∑

i a
2
i ×

√∑
i b

2
i

,

where a and b represent two vectors. Its result equals 1
when the angle between two vectors is 0 (i.e., two vectors
are pointing in the same direction), and its result is less than
1 otherwise.

For a new or given bug report, we compute the Cosine
similarity value (i.e., csv) between this new bug report’s
vector and all the prior bug reports’ vectors, and then rank
the csv values in an descending order. The historic bug re-
port with the highest csv value (i.e., the closest one to 1) is
the most similar prior record.

3.4.2 Similarity Ranking Using KL Divergence

In addition to Cosine similarity, we rank all prior bug re-
ports based on their relevance to the new bug report using
probability distribution. Kullback-Leibler (i.e., KL) diver-
gence [4, 13] is an effective relevance metric that assumes
each data instance in a high dimensional feature space is
characterized by a probability distribution. KL divergence
measures the dissimilarity between two probability distri-
butions, as shown in the following formula:

DKL(a||b) =
∑
t∈V

P (t|Ma)log
P (t|Ma)

P (t|Mb)
,

where Ma and Mb represent the probability distributions
for vector a and b respectively. V is the vocabulary of all
terms and t is a term in V . KL divergence measures how
bad the probability distribution Ma is at modeling Mb. Pre-
vious work [11] presents results suggesting that model com-
parison approach outperforms both query-likelihood and
document-likelihood approaches. However, this metric is
asymmetric, i.e., DKL(a||b) 6= DKL(b||a). In order to use
it as a distance metric, we adopt a symmetrized KL diver-
gence method for similarity ranking, which is defined as:

DistanceKL(a, b) =
1

2
DKL(a||b) +

1

2
DKL(b||a).

The result is symmetric and nonnegative. It equals 0 when
two distributions are identical. It is bigger than 0 otherwise,
and the larger the value the greater their dissimilarity.

For a new or given bug report, we compute the sym-
metrized KL divergence value (i.e., kld) between this new
bug report’s vector and all the prior bug reports’ vectors,

and then rank the kld values in an ascending order. The his-
toric bug report with the lowest kld value (i.e., the closest
one to 0) is the most similar prior record.

3.4.3 Is the New Bug Report a Duplicate? What are
the Similar Bugs Reported before?

We categorize a new or given bug report into one of the
three categories according to the ranked csv and kdl values,
along with the value ranges they fall into:
• If a prior report exists with csv ≥ c r2 and kld ≤ k r1,

it is highly likely to be a duplicate (or repeat) of a prior
report.
• If a prior report exists with c r1 < csv < c r2 or
k r1 < kld < k r2, it has similar prior report.
• If all prior reports have csv ≤ c r1 and kld ≥ k r2, it

does not have any similar prior report.
The value range parameters (i.e., c r1, c r2, k r1, and k r2)
can be determined based on heuristics obtained from exper-
iments.

3.5 Bug Report Trend Analysis Engine

After major software releases, the number of software
bugs tend to increase initially. As these bugs are fixed, the
number of bugs gradually decreases, which resembles the
“bathtub curve” in reliability engineering. The increase and
decrease of the number of bugs normally lead to the similar
trend of the number of bug reports. Weibull distribution can
be used to model this kind of pattern and provide the basis
for trend analysis.

3.5.1 Report Incidence Distribution

For the Weibull distribution, the incidence (e.g., failure or
bug report) density function f(t) and cumulative incidence
distribution function F (t) are

f(t;λ, k) =
k

λ
(
t

λ
)k−1e−(t/λ)

k

, t ≥ 0,

F (t;λ, k) = 1− e−(t/λ)
k

, t ≥ 0,

where k > 0 is the shape parameter and λ > 0 is the scale
parameter of the distribution. The instantaneous incidence
rate (or hazard function) when t ≥ 0 can be derived as

h(t;λ, k) =
f(t;λ, k)

1− F (t;λ, k)
=
k

λ

(
t

λ

)k−1
.

A value of k < 1 indicates that the incidence rate decreases
over time. A value of k = 1 indicates that the incidence rate
is constant (i.e., k/λ) over time. In this case, the Weibull
distribution becomes an exponential distribution. A value
of k > 1 indicates that the incidence rate increases with
time.

3.5.2 Estimation of Coming Bug Report

We first use historic data to fit the Weibull function and de-
rive the λ and k parameters. Then for any given time t,
which is the number of weeks (or other chosen time units
such as days or hours) after the starting date, the number of
bug reports that may happen during that week can be esti-
mated using the Weibull’s density function f(t). The result
is an estimate of how many bug reports may happen during
the t-th week after the starting event, e.g., a new software
release. Similarly, the instantaneous incidence rate can be
estimated using the hazard function h(t). These estimates
give software developers or testers a baseline for designing
the software testing and maintenance plan.

4 Empirical Studies

4.1 Implementation

We implemented BUGMINER in Java using some exist-
ing machine learning and statistical analysis tools, including
Weka [18] and MATLAB [9].

4.2 Bug Report Datasets and Data Processing

We experiment BUGMINER on the bug report reposito-
ries of three real-world software applications (Apache Tom-
cat [1], Eclipse [7], and Linux Kernel [12]). Table 3 lists
some statistics of these bug report repositories. For ex-
ample, the Apache Tomcat dataset contains two product
versions—Tomcat 3 and Tomcat 7. The OS is the operat-
ing system the software runs on. The components are the
functional components of the software.

Table 3. Software and bug report datasets
Software Name # bug reports # product # OS # components
Apache Tomcat 1525 2 16 16
Eclipse 1674 2 17 13
Linux Kernel 1692 16 1 106

We first apply pattern matching to extract static meta in-
formation, as listed in Table 1. Then we process free text
descriptions using tokenization and bag-of-words feature
selection as described in section 3.2. The dimensionalities
of the term feature space range from 4000 to 13,000 de-
pending on the dataset. After the attribute data sources are
combined, the final vector space to represent bug report in-
stances includes static meta information and bag-of-words
features.

4.3 Results and Analysis

Our experimental results show that BUGMINER is effec-
tive in automatic completion check, automatic redundancy
check, and bug report trend analysis. The following subsec-
tions present the detailed results and analysis.

4.3.1 Classification for Missing Field Autocompletion
For missing field autocompletion, we train classification
model on 80% of the data and do blind-test on the remaining
20% of the data. For example, for Apache Tomcat, we use
1220 (or 80%) bug reports as training data and use 305 (or
20%) bug reports as the testing data. Table 4 lists the classi-
fication results for the Tomcat version. The accuracy of the
classification on testing instances is 99.02%. This means
the automatic completion check engine can determine the
product version highly accurately in this case.

Table 4. Classification results of products
TP
Rate

FP
Rate

Precision Recall F-
Measure

ROC
Area

Class

0.991 0.014 0.996 0.991 0.993 0.989 tomcat 3
0.986 0.009 0.973 0.986 0.98 0.989 tomcat 7
0.99 0.012 0.99 0.99 0.99 0.989 Weighted Avg.

Table 5 lists the classification results for the operating
system version for Tomcat. The accuracy of the classifica-
tion on testing instances is 68.52%.

Table 5. Classification results of OS versions
TP
Rate

FP
Rate

Precision Recall F-
Measure

ROC
Area

Class

0.888 0.449 0.758 0.888 0.818 0.719 all
0.356 0.081 0.432 0.356 0.39 0.637 linux
0.087 0.018 0.286 0.087 0.133 0.535 other
0.176 0.014 0.429 0.176 0.25 0.581 solaris
0.786 0.047 0.629 0.786 0.698 0.869 windows xp
0.685 0.294 0.632 0.685 0.647 0.696 Weighted Avg.

Table 6 lists the classification results for the software
component related to the bug report. The accuracy of the
classification on testing instances is 53.11%. The results
show that it is relatively difficult to accurately determine
the problematic component based on the bug reports in this
case.

Table 6. Classification results of components
TP
Rate

FP
Rate

Precision Recall F-
Measure

ROC
Area

Class

0.5 0.007 0.714 0.5 0.588 0.747 auth
0.868 0.067 0.73 0.868 0.793 0.9 catalina
0.2 0.039 0.313 0.2 0.244 0.58 config
0.368 0.037 0.583 0.368 0.452 0.665 connectors
0.5 0.003 0.5 0.5 0.5 0.748 encoding
0.622 0.041 0.676 0.622 0.648 0.79 jasper
0.667 0.003 0.667 0.667 0.667 0.832 manager
0.6 0.154 0.513 0.6 0.553 0.723 servlet
0.1 0.007 0.333 0.1 0.154 0.547 webapps
0.531 0.091 0.535 0.531 0.518 0.72 Weighted Avg.

We also did some experiments on the bug report datasets
of Eclipse and Linux Kernel. Table 7 shows the summary
of classification accuracy rates for the datasets tested. As
the number of classes increases, the accuracy rate tends to
decrease; nevertheless, the accuracy rates (e.g., 53.11% for
Tomcat’s components) are relatively high if they are com-
pared to the chance baseline (i.e., probability is 1/n if there
are n possible components).

4.3.2 Similarity Ranking
We first transform the historic training bug reports and the
testing bug report to vectors using the vector space model.

Table 7. Summary of classification accuracy
Software Name product OS components
Apache Tomcat 99.02% 68.52% 53.11%
Eclipse 97.90% 66.47% 67.37%
Linux Kernel 76.33% N/A 58.88%

After the csv and kld value for each training bug report are
calculated, all the training bug reports are then sorted in an
descending order based on the csv value and in an ascend-
ing order based on the kld value. The bug reports at the top
of the ranked lists are the most similar ones to the testing
bug report.

Based on the heuristics from the experiments, we de-
termine the value range parameters as c r1 = 0.2, c r2 =
0.9, k r1 = 2.0, and k r2 = 10.0 for Tomcat. Table 8 lists
some sample results for a given bug report #393. From the
results, the bug report #393 is highly likely to be a dupli-
cate of some prior reports because there exists historic bug
reports with csv ≥ 0.9 and kld ≤ 2.0 (i.e., bug report #330
and #296). Furthermore, bug report #228 is likely to be a
similar bug report of #393 because it has 0.7 < csv < 0.9
or 2.0 < kld < 10.0. To determine whether a new or
given bug report is in fact a duplicate usually requires hu-
man judgment. Our manual verification shows that the sim-
ilarity ranking results produced by BUGMINER are highly
accurate despite the low quality data.

Table 8. Similarity ranking results
bug id csv kld
330 0.928 1.940
296 0.917 0.816
228 0.717 9.868

4.3.3 Trend Analysis

We implement the bug report trend analysis based on the
Weibull distribution. We first aggregate the historic data to
compute a vector of the time (i-th week) and the number of
bug reports whose first reporting date falls in the i-th week.
Then a result vector returns the 95% confidence intervals
for the estimates of the parameters of the Weibull distribu-
tion given the historic vector data. The two-element row
vector estimates the Weibull parameter λ and k. The first
row of the 2-by-2 matrix contains the lower bounds of the
confidence intervals for the parameters, and the second row
contains the upper bounds of the confidence intervals.

Table 9 shows the estimates of the Weibull parameters
for Apache Tomcat 3. The value of k is less than 1, which
indicates that the incidence rate decreases over time. The
related curve fit is illustrated in Figure 2. The starting time,
(i.e., the 0 on the x-axis) is the week of August 25, 2000.
The curve fit shows that the Weibull distribution closely re-
sembles the actual bug report incidence distribution.

Table 9. Weibull parameter estimates
Software λ λlow λhigh k klow khigh

Tomcat 3 0.3885 0.2280 0.6621 0.2241 0.2041 0.2461

Figure 2. Weibull fit for Tomcat 3

5 Related Work
Some prior studies have been done on applying data min-

ing on software engineering. [10] described the concept of
software intelligence and the future of mining software en-
gineering data. [19] presented a general overview of data
mining for software engineering and described an example
of duplicate bug detection using vector space-based similar-
ity. [17] also described an approach to detect duplicate bug
reports using both natural language and execution informa-
tion. Our redundancy check engine uses both probability
distribution-based KL divergence and vector space-based
Cosine similarity ranking, instead of only vector space-
based similarity. Furthermore, our approach provides a sim-
ilarity ranking list that can be used for search, instead of
only Yes and No on duplication check. [8] presented text
mining of bug reports to identify security issues. Their work
aims to identify security problems such as buffer overflow
through mining the bug reports. Their purpose and tech-
niques are different from our approach.

6 Conclusion
In this paper, we presented BUGMINER, a tool that is

able to derive useful information from historic bug report
database via data mining, use these information to do com-
pletion check and redundancy check on a new or given bug
report, and to estimate the bug report trend using statistical
analysis. We did empirical studies of the tool using sev-
eral real-world bug report repositories. The experimental
results show that BUGMINER is effective, easy to imple-
ment, and has relatively high accuracy despite low quality
data. BUGMINER can be integrated into some existing bug
tracking tools or software testing suites for more intelligent
and cost-efficient software reliability analysis.

7 Acknowledgments
Wu and Kaiser are members of the Programming

Systems Laboratory, funded in part by NSF CNS-

0717544, CNS-0627473 and CNS-0426623, and NIH 2
U54 CA121852-06.

References

[1] Apache Project. http://issues.apache.org/bugzilla/, 2011.
[2] Bugzilla. http://www.bugzilla.org, 2011.
[3] C. Cortes and V. Vapnik. Support-Vector Networks. Ma-

chine Learning, 20, Springer, 1995.
[4] T. M. Cover and J. A. Thomas. Elements of Information

Theory, Wiley, 1991.
[5] Debian Bug Tracking System. http://www.debian.org/Bugs,

2011.
[6] Debian Project. Debian Bug report logs – #615000.

http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=615000,
retrieved 2011-03-03.

[7] Eclipse. http://bugs.eclipse.org/bugs/, 2011.
[8] M. Gegick, P. Rotella, and T. Xie. Identifying security bug

reports via text mining: An industrial case study. In Proc.
of the 7th IEEE Working Conference on Mining Software
Repositories (MSR), Cape Town, pp. 11–20, May 2010.

[9] A. Gilat. MATLAB: An Introduction with Applications 2nd
Edition, John Wiley & Sons., July 2004.

[10] A. E. Hassan and T. Xie. Software Intelligence: Future
of Mining Software Engineering Data. In Proc. of the
FSE/SDP Workshop on the Future of Software Engineer-
ing Research (FoSER 2010), Santa Fe, NM, pp. 161–166,
November 2010.

[11] J. Lafferty and C. Zhai. Document language models, query
models, and risk minimization for information retrieval. In
Proc. of the 24th Annual International ACM SIGIR Con-
ference on Research and Development in Information Re-
trieval, pp. 111–119, 2001.

[12] Linux Kernel. http://bugzilla.kernel.org/, 2011.
[13] C. D. Manning, P. Raghavan, and H. Schütze. Introduction

to Information Retrieval, Cambridge University Press, 2008.
[14] S. E. Rigdon and A. P. Basu. Estimating the intensity func-

tion of a Weibull process at the current time: Failure trun-
cated case. Journal of Statistical Computation and Simula-
tion (JSCS), vol. 30, pp. 17–38, 1988.

[15] G. Salton, A. Wong, and C. S. Yang. A vector space model
for automatic indexing. Communications of the ACM, v. 18
n. 11, pp. 613–620, November 1975.

[16] V. N. Vapnik. The nature of statistical learning theory,
Springer-Verlag, New York, 1995.

[17] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An Ap-
proach to Detecting Duplicate Bug Reports Using Natural
Language and Execution Information. In Proc. of the 30th
International Conference on Software Engineering (ICSE),
pp. 461–470, ACM Press, 2008.

[18] I. H. Witten, E. Frank, L. Trigg, M. Hall, G. Holmes, and
S. J. Cunningham. Weka: Practical Machine Learning
Tools and Techniques with Java Implementations. In Proc.
of the ICONIP/ANZIIS/ANNES’99 Workshop on Emerging
Knowledge Engineering and Connectionist-Based Informa-
tion Systems, pp. 192–196, 1999.

[19] T. Xie, S. Thummalapenta, D. Lo, and C. Liu. Data Mining
for Software Engineering. Computer, vol. 42, no. 8, pp. 55–
62, IEEE Computer Society, Los Alamitos, CA, USA, 2009.

