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Abstract

Background: Several reviews have noted shortcomings regarding the quality and reporting of network meta-analyses

(NMAs). We suspect that this issue may be partially attributable to limitations in current NMA software which

do not readily produce all of the output needed to satisfy current guidelines.

Results: To better facilitate the conduct and reporting of NMAs, we have created an R package called “BUGSnet” (Bayesian

inference Using Gibbs Sampling to conduct a Network meta-analysis). This R package relies upon Just Another

Gibbs Sampler (JAGS) to conduct Bayesian NMA using a generalized linear model. BUGSnet contains a suite of functions

that can be used to describe the evidence network, estimate a model and assess the model fit and convergence, assess

the presence of heterogeneity and inconsistency, and output the results in a variety of formats including league

tables and surface under the cumulative rank curve (SUCRA) plots. We provide a demonstration of the functions

contained within BUGSnet by recreating a Bayesian NMA found in the second technical support document composed

by the National Institute for Health and Care Excellence Decision Support Unit (NICE-DSU). We have also mapped these

functions to checklist items within current reporting and best practice guidelines.

Conclusion: BUGSnet is a new R package that can be used to conduct a Bayesian NMA and produce all of the necessary

output needed to satisfy current scientific and regulatory standards. We hope that this software will help to improve the

conduct and reporting of NMAs.

Keywords: Network meta-analysis, Indirect treatment comparison, Systematic review, Bayesian inference, Knowledge

synthesis, Health technology assessment, Clinical efficacy, R package, Reporting guidelines

Background
Indirect treatment comparisons (ITC) and network

meta-analysis (NMA) are approaches for quantitatively

summarizing an evidence base in which there are more

than two treatments of interest. Unlike traditional pair-

wise meta-analysis, ITC/NMA can incorporate indirect

evidence that arises when a group of studies evaluating

different treatments share a common comparator. The

incorporation of such evidence within an NMA has sev-

eral advantages over pairwise meta-analysis [1, 2]. Unlike

pairwise meta-analysis, an NMA allows for the compari-

son of two or more treatments that have never been

directly compared provided that the studies examining

such treatments are linked via a common comparator

(i.e. an indirect comparison) [1, 2]. Another important

advantage of NMA over pairwise meta-analysis is that it

may provide greater statistical precision through its

incorporation of indirect evidence which is not taken

into account within pairwise meta-analysis [1, 2]. Lastly,

an NMA can be used to rank a set of treatments for a

given disease indication with respect to their clinically

efficacy or harm and can be used to quantify the uncer-

tainty surrounding such which is useful when determin-

ing policies, guidelines, and costs surrounding the choice

of treatment [2].

The number of publications using NMA has increased

dramatically within the past decade [3]. Despite this

increase, several reviews have noted shortcomings with

respect to the quality of the conduct and reporting of

NMAs [4–9]. In particular, several authors have noted
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that a considerable proportion of NMAs do not provide

a descriptive overview of the network or its structure,

fail to adequately describe the statistical methods

employed and whether or not their underlying assump-

tions were assessed and met, and lack a comprehensive

summary of the results including effect estimates and

measures of uncertainty regarding treatment ranks [4–9].

To improve the conduct, reporting, and appraisal of

NMAs, a number of guidelines have been published which

include the International Society of Pharmacoeconomics

and Outcomes – Academy of Managed Care Pharmacy –

National Pharmaceutical Council (ISPOR-AMCP-NPC)

questionnaire for assessing the relevance and credibility of

an NMA [10], the Preferred Reporting Items for Systematic

Reviews and Meta-Analyses (PRISMA) extension for

reporting systematic reviews incorporating NMAs of health

care interventions [11], and the National Institute for

Health and Care Excellence Decision Support Unit (NICE-

DSU) reviewer’s checklist for appraising the synthesis of

evidence within a submission to a health technology assess-

ment agency (technical support document 7) [12].

Although the dissemination and uptake of such guide-

lines will hopefully help to address some of the foregoing

issues, we suspect that the such issues may, in part, be

related to limitations in current user-friendly software

and tools used to conduct NMA. As previously noted,

current software packages do not readily produce all of

the output necessary to satisfy current reporting guide-

lines in a format that is suitable for submission to a jour-

nal or health technology assessment agency [13, 14].

Individuals must therefore rely upon multiple software

packages, modify existing software, or generate code de

novo in order to adhere to scientific and regulatory stan-

dards [14]. The resulting increase in time, effort, and

expertise has likely impacted the quality and reporting of

NMAs done to date. Furthermore, we have found that

the documentation and help files of current software

packages sometimes suffer from a lack of clarity regard-

ing their implementation and use. In addition, the

current lack of approachable tutorials that demonstrate

how to use current NMA software could be a hindrance

to users with limited programming expertise. To address

these limitations, we have developed an R package called

“BUGSnet” (Bayesian inference Using Gibbs Sampling to

conduct a Network meta-analysis) aimed at improving

the reporting and conduct of NMA/ITC. BUGSnet

improves over its two main competing software packages

for conducting a contrast-based Bayesian NMA: GeMTC

[15] and NetMetaXL [16]. While NetMetaXL does pro-

duce much of the output necessary to satisfy reporting

guidelines, it is limited in the types of analyses it can

carry out. Specifically, one cannot use NetMetaXL to

analyze outcomes that are not dichotomous, to conduct

meta-regression, or to analyzing evidence bases with

more than 15 treatments [16]. While GeMTC provides

an enhanced suite of functions for conducting NMA

relative to NetMetaXL, its reporting capabilities are lim-

ited. For example, GeMTC does not readily produce key

reporting items for an NMA such as tabular overview of

the evidence base or a SUCRA plot and league table of

the NMA results on the original scale.

Implementation

BUGSnet is a suite of functions that will carry out a

Bayesian NMA while generating all items needed to sat-

isfy the statistical components of the PRISMA, ISPOR-

AMCP-NPC, and NICE-DSU checklists in a format that

is suitable for publication or submission to a decision-

making organization. These statistical components can

be broadly categorized into: description of network

(graphical and tabular), detection of heterogeneity, net-

work meta-analysis (including meta-regression), model

assessment, detection of inconsistency and reporting of

the results. An overview of BUGSnet’s functions and the

corresponding checklist items that they address is pre-

sented in Table 1.

BUGSnet is implemented within R software. BUGSnet

requires that the user have installed Just Another Gibbs

Sampler (JAGS) on their computer [18, 19]. Information

as to how to install JAGS can be found at the program’s

sourceforge homepage: http://mcmc-jags.sourceforge.

net/. BUGSnet is hosted and can be accessed at the

following URL: https://bugsnetsoftware.github.io/. We

encourage users to submit feedback on existing code

and to provide suggestions for additional functions that

should be added to BUGSnet at the aforementioned

homepage. Detailed vignettes describing the step-by-step

use of BUGSnet to conduct an NMA on various types of

outcomes are currently available in the R package docu-

mentation and on the BUGSnet homepage and add-

itional applied examples are forthcoming.

Data preparation

The first step to using BUGSnet is to process the data

using the data.prep() function where the user specifies

the name of the columns variables that correspond to

the study IDs and treatment arms. This way, the user

does not have to enter this information over and over in

subsequent functions.

Description of network

Current guidelines recommend that authors report plot

of the evidence network [10–12]. The net.plot() and the

net.tab() functions allow the user to describe the net-

work of studies in a graphical and tabular format

respectively.

With respect to the network graph, the size of the

nodes and edges within the network plot are scaled such
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that they reflect the number of studies examining a spe-

cific treatment and the number of comparisons between

any two given treatments respectively as per current

recommendations. In addition, we have introduced an

option that allows the user to highlight specific interven-

tions of interest within the network graph and to label

the edges with the names of the studies that have inves-

tigated these particular treatments. The colour, size, and

layout of the network graph is highly customizable to

ensure that the resulting figure will meet industry and

journal standards.

The net.tab() function produces descriptive tables

that are based on the tables produced by NetMetaXL

– an excel-based software for conducting Bayesian

NMAs [16]. While the tables produced by NetMetaXl

are excellent descriptors of the network geometry,

this software is currently only capable of handling di-

chotomous outcomes and is limited to 15 treatments

[16]. We have expanded upon the tabular reporting

of NetMetaXL by allowing such tables to summarize

other types of outcomes including continuous, dichot-

omous, and count outcomes. An additional feature of

our function is a report on whether the network is

connected or not.

Homogeneity

Current guidelines recommend a careful exploration of

heterogeneity within the network, typically prior to con-

ducting the NMA [10–12]. Researchers should identify

which characteristics are likely to be important modifiers

of the treatment effects a priori using content expertise

or a literature review [20]. Once identified, one can use

the data.plot() function within BUGSnet to assess the

heterogeneity of these modifiers within an evidence net-

work. Specifically, this function generates a graph that

allows the user to display a characteristic of interest within

each treatment arm, grouped by study ID or treatment.

In addition, BUGSnet also provides an option within the

pma() function to produce a table summarizing a Cochrane

chi-square test, the tau-squared statistic, and the I-squared

statistic for assessing between-study heterogeneity within

each possible pairwise comparison within the network in

which there is direct evidence [21].

Table 1 List of functions within the BUGSnet package and corresponding items on guidelines that they address

Domain Function Brief description Checklist Item No.

PRISMA
[11]

ISPOR-AMPC-NCA
[10]

NICE-DSU [12]

Data preparation data.prep() Prepares data for further processing N/A N/A N/A

Description of
network

net.tab() Descriptive statistics of evidence network S4, 20 2, 14 A9.1, C3.1

net.plot() Plot of evidence network S3 2, 14 A9.1, C3.1,
C4.1

Homogeneity
assessment

data.plot() Graph of characteristics by study or treatment 18 5, 6 A7.2,
B2.5, C4.2

pma() Heterogeneity statistics for all direct comparisons - 5, 6 B2.1, B4.1,
C4.2

Network meta-
analysis

nma.model() Specifies the NMA model (including meta-regression) 23 7, 9
10, 12, 13, 19

A6.3,
A7.2, B2.3, B3.1,
C2.1

nma.run() Runs the NMA N/A N/A N/A

Model assessment nma.diag() Trace plots and other convergence diagnostics – – B1.1

nma.fit() Leverage plots and deviance information criterion
(DIC) values

23, S5 8, 11, 12 B2.2

Output results nma.forest() A forest plot of the NMA results 21 17 B4.1

nma.league() League table of the NMA results 21 17 B4.1

nma.rank() Tabular and graphical results for treatment ranking
including Surface under the cumulative ranking curve
(SUCRA) plot

21 18 B4.1

nma.regplot() Meta-regression only. Plot of estimated relative treatment
effects (on the linear scale) as a function of covariate values

23 10, 13, 19 A6.3, A7.2, B2.3

pma() Results from pairwise comparisons 20 16 B4.1

Consistency
assessment

nma.compare() Comparison of consistency and inconsistency models [17] S5 8 C4.3
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Network meta-analysis

BUGSnet implements a Bayesian contrast-based NMA

using a generalised linear model as described in the

NICE-DSU technical support document 2 [17]. The

BUGS code used to generate these models within the

BUGSnet package borrows heavily from this source [17].

Within BUGSnet, the nma.model() function is used to

generate the BUGS model that one wishes to fit which

includes aspects such as the link function and the likeli-

hood distribution appropriate for the outcome of inter-

est, the choice of using a fixed effects or a random

effects model, and the inclusion of covariates if one

wishes to conduct a meta-regression. After the NMA

model has been generated, one can run a Bayesian net-

work meta-analysis with the function nma.run(). In the

nma.run() function, the user can specify the number of

burn-ins, iterations, and adaptations for the Markov

Chain Monte Carlo (MCMC) algorithm and which vari-

ables they wish to monitor.

Bayesian inference

BUGSnet conducts NMA using Bayesian inference.

There were several practical and theoretical reasons for

choosing to implement the package within a Bayesian as

opposed to a frequentist framework as noted by others:

1) Bayesian methods are more popular among researchers

who conduct network meta-analyses; 2) Bayesian methods

for network meta-analysis have been developed to a fur-

ther degree; 3) Bayesian methods allow one to better han-

dle data from trials with multiple arms and trials in which

there are arms with zero events; 4) Bayesian methods are

currently better suited for modeling uncertainty surround-

ing the heterogeneity between studies; 5) Bayesian

methods present results as probabilities and are thus more

suitable for ranking treatment efficacy and for incorpor-

ation into health-economic decision modeling [1, 22].

NMA models

BUGSnet can handle continuous, dichotomous, and

count data (with or without varying follow-up times) as

well as data from studies with more than two treatment

arms. In what follows, we describe the NMA models that

are implemented within BUGSnet. Suppose that we have

data from studies i = 1, …, M. In arm k of study i, treat-

ment tik ∈ {1,…, T} was used. The set {1,…, T} represents

the set of treatments that were assessed across the M

studies, where treatment 1 is a reference treatment. Let

a1, …, aM represent the number of arms in studies 1, …,

M. Let Rik be the measured aggregate response in arm k

of study i (e.g. proportion of individuals who were alive

at one-year, average blood pressure, etc.). Those re-

sponses are modeled as conditionally independent using

an appropriate distribution F which is chosen based on

the type of outcome at hand. For continuous outcomes,

where the aggregate responses take the from of the sam-

ple mean and standard error in each arm, the distribu-

tion F is the normal distribution; Rik�Normalðφik ; se
2
ik Þ,

where φik is the mean and se2ik is the observed standard

error of the responses in arm k of study i. When out-

come is dichotomous, the distribution F is the binomial

distribution; Rik~Binomial(nik, φik ), where φik is the

probability of experiencing the event and nik is the sam-

ple size in arm k of study i. When outcomes take the

form of counts and the event rates can be assumed to be

constant over the duration of follow-up, one can use the

Poisson distribution; Rik~Poisson(eikφik ), where eik is the

observed person-time at risk and φik is the event rate in

arm k of study i. The latent parameters φik ’s are trans-

formed using an appropriate link function g(·) so g(φik) ≡

θik can be modeled with a linear model. Table 2 sum-

marizes the link functions g(·) and family distributions F

implemented within BUGSnet based on the type of out-

come data. Following the NICE-DSU technical support

document 2 [17], the linear model used is generally of

the contrast-based form:

θik ¼ μi þ δik ;

where μi represents the fixed effect of the treatment

from arm 1 in study i (a control treatment) and δik rep-

resents the (fixed or random) effect of the treatment

from arm k of study i relative to the treatment in arm 1

and δi1 = 0 for i = 1, …,M. In BUGSnet, two exceptions

to this model occur. First, when exploring a dichotom-

ous outcome from studies with differing lengths of

follow-up time, one can use a binomial family distribu-

tion with the complementary log-log link and the linear

model includes the observed follow-up time fi in trial i:

θik = log(fi) + μi + δik [17]. Second, when exploring a di-

chotomous outcome with a binomial family distribution

and a log link, the linear model takes the form θik =

min(μi + δik, −10
−16) to ensure that θik is negative and

the probabilities φik are between 0 and 1.

In a random effect model, the δi’s ¼ ðδi2;…; δiaiÞ
⊤ are

modeled as conditionally independent with distributions

δijdi;Σ½ � � MVNormal di;Σð Þ; ð1Þ

where di ¼ ðdðti1;ti2Þ;…; dðti1;tiai Þ
Þ⊤ and dðti1;tikÞ ¼ dð1;tikÞ−

dð1;ti1Þ is the difference in the treatment effect of treat-

ments ti1 and tik on the g(·) scale and d(1, 1) = 0. For Σ we

adopt the usual compound symmetry structure described

in (16), with variances σ2 and covariances 0.5σ2, where σ2

represents the between-trial variability in treatment effects

(heterogeneity). Independent priors are used on σ, d(1, 2),

…. ,d(1,T) and μ1, …, μM. For ease of implementation, in

BUGSnet, the distribution (1) is decomposed into a series

of conditional distributions [17].
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δik jδi2;…;δik−1;di;Σ½ � � Normal d ti1;tikð Þ þ
1

k−1

Xk−1

j¼1
δij−d ti1;tikð Þ

� �

;

k

2 k−1ð Þ
σ2

� �

:

In a fixed effect model, the δik ’ s are treated as “fixed”

(to use frequentist jargon) and are defined as δik
¼ dðti1;tik Þ ¼ dð1;tik Þ−dð1;ti1Þ with d(1, 1) = 0. Independent

priors are used on d(1, 2), …. ,d(1, T) and μ1, …, μM. In

both the fixed and random-effects model, the posterior

quantities of interest are all the mean treatment con-

trasts dðti1;tik Þ which can be determined from d(1, 2), ….

,d(1, T) through the transitivity relation dðti1;tik Þ ¼ dð1;tik Þ−

dð1;ti1Þ:

Meta-regression

Let xik be a continuous covariate available in arms k = 1,

…, ai of studies i = 1, …, M. Network meta-regression is

implemented in BUGSnet via the linear model

θik ¼ μi þ δik þ β ti1;tikð Þ xik−xð Þ;

where x is the average of the xik ’s across studies and the

βðti1;tik Þ
¼ βð1;tik Þ

−βð1;ti1Þ
are regression coefficients for the

effect of the covariate on the relative effect of treatments

ti1 and tik, with β(1, 1) =… = β(T, T) = 0. A prior is used on

β(1, 2), …, β(1, K). When conducting a meta-regression

analysis, the output plots and tables described in the

Output section (league heat plot, league table, etc.) can

also be produced but the user will need to specify a

value for the covariate at which to produce treatment

comparisons. Those treatment comparisons are calculated

internally within BUGSnet by computing posterior quan-

tities of interest at a specific covariate value x0 as dðti1;tikÞ

þβðti1;tikÞ
ðx0−xÞ; and using the transitivity relations dðti1;tikÞ

¼ dð1;tikÞ−dð1;ti1Þ and βðti1;tikÞ
¼ βð1;tikÞ

−βð1;ti1Þ
:

Choice of priors

By default, BUGSnet implements the vague priors de-

scribed in Table 3. Our choice of priors was based on

the justifications made by van Valkenhoef et al. (2012)

[15] which allow a prior variance to be easily calculated

from the data without any user input. These priors are

the same as the ones implemented in the GeMTC R

package [15]. The user also has the option within the

nma.model() function to specify their own prior which is

useful for conducting sensitivity analyses, namely for the

comparison of prior distributions on the random effects

standard deviation, σ, to insure that they do not have a

significant effect on the posterior estimates.

The variances 15u are taken from van Valkenhoef

(2012) et al., where u is the largest maximum likelihood

estimator of treatment differences on the linear scale in

Table 2 Types of outcomes and corresponding link functions and likelihood distributions available within BUGSnet

Type of Outcome Arm-Level
Data Required

Distribution Family Link function Measure of effect Assumption on follow-up time

Continuous Mean & Standard Error Normal Identity Mean Difference Outcome is unrelated to follow-up time

Dichotomous Events &
Sample Size

Binomial Logit Odds Ratio

Log Risk Ratio

Events &
Sample Size &
Median
Follow-Up Time

Complementary
log-log

Hazard Ratio Event rates are constant over the duration
of follow-up

Count Events & Person-Time at Risk Poisson Log Rate Ratio

Table 3 Priors implemented by default in BUGSnet

Consistency Model Inconsistency Model

Parameters Random effect Fixed effect Random effect Fixed effect

μ1, …, μM iid N(0,(15u)2)
Except when a log link is used with a binomial
family, in which case
μi = log(pi), pi~ iid U(0,1) as per Warn et al. [23]

d1, 2, …. ,d1, T iid N(0,(15u)2) NA

d1, 2, …. ,d1, T, …,
dT − 2, T − 1, dT − 2, T, dT − 1, T

NA iid N(0,(15u)2)

σ U(0,u) NA U(0,u) NA

β(1, 2), …, β(1, K)
(meta-regression only)

Unrelated: iid t(0, u2, df = 1)
Exchangeable: iid N(b, γ2), b~ t(0, u2, df = 1),
γ~U(0, u)
Equal: β2 =… = βT = B, B~ t(0, u2, df = 1)
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single trials [15]. Note that t denotes Student’s t distri-

bution with parameters: location, variance and degrees

of freedom.

Model assessment

After the NMA model has been run, guidelines recom-

mend that one assesses the convergence and fit of the

model [10–12]. In BUGSnet, convergence can be

assessed using trace plots and other convergence diag-

nostics produced by the nma.diag() function. Lastly, the

fit of the model and the identification of potential out-

liers can be carried out using the nma.fit() function

which will produce a plot of the leverage values and also

display the corresponding effective number of parame-

ters, total residual deviance, and deviance information

criterion (DIC). These latter values can be used to help

determine or justify model choice when considering two

or more competing models (e.g. between a fixed- or

random-effects model) and to help identify data points

that contribute heavily to the DIC and/or that are

influential.

Consistency

A fundamental assumption of an NMA is the assump-

tion of transitivity [2]. Under this assumption, one as-

sumes that one can estimate the difference in the effect

of two treatments by subtracting the difference in the

effects of the two treatments relative to a common

comparator as follows: dðti1;tik Þ ¼ dð1;tik Þ−dð1;ti1Þ [2]. Aside

from exploring clinical heterogeneity of treatment defini-

tions and modifiers within the network using the data.-

plot() function, one can also detect violations of the

assumption of transitivity by examining statistical

consistency within the network. Statistical consistency

refers to the statistical agreement between indirect and

direct evidence within an evidence network [2]. Evidence

of inconsistency would indicate a violation of the transitiv-

ity assumption. As noted by Efthimiou et al. (2015), statis-

tical consistency can only be explored if there are closed

loops within the network [2]. A variety of methods have

been proposed to assess consistency within a network

meta-analysis [2, 24, 25]. Such methods are often catego-

rized as being “global” or “local” depending upon whether

they examine inconsistency within the entire network or

within particular segments thereof [2]. BUGSnet currently

implements the inconsistency model (or unrelated mean

effects model) as described in the NICE-DSU TSD 4 [26].

An inconsistency model is an NMA model similar to the

consistency models described above but transitivity

dðti1;tikÞ ¼ dð1;tikÞ−dð1;ti1Þ is not assumed. Instead, independ-

ent priors are defined on each of the dðti1;tikÞ ’s.

Inconsistency models therefore have more parameters

than consistency models, which needs to be weighted

against how well they fit the data compared to the

consistency model to determine if there is evidence of

inconsistency. The inconsistency model can be speci-

fied using the type = "inconsistency" option in the nma.-

model(). To examine inconsistency at the global level,

the fit of the inconsistency model can be compared

against a model in which consistency is assumed using

the nma.fit() function and comparing the DICs. Local

inconsistency can be explored on the leverage plots

produced by nma.fit() and also using the nma.com-

pare() function which produces a plot comparing the

posterior mean deviance of each data point between the

consistency and the inconsistency model.

We chose to implement the inconsistency model

method for assessing inconsistency in BUGSnet because

it easily handles different network structures and multi-

arm trials, which is not the case with other methods for

assessing inconsistency such as the Bucher method [26,

27]. More options for assessing inconsistency at both the

global and local levels will be considered in further

BUGSnet releases.

Output

We provide several functions for displaying the results

of the NMA in both graphical and tabular formats

(league tables, league heat plots, SUCRA plots, SUCRA

tables, rankograms and forest plots) to satisfy current

guidelines. With respect to plotting the magnitude and

uncertainty of the treatment effects, users can the use

the nma.forest() function to graph the effect estimates

from the NMA against a comparator specified by the

user. The effect estimates can also be presented within a

league table using the nma.league() function. An import-

ant presentation feature in BUGSnet, particularly for

large league tables, is that the user can specify an option

to colour and arrange the league table into a heatmap

that highlights the magnitude of the effect estimates.

Users can also graphically display the probability of the

ranking of each treatment within a surface under the

cumulative ranking curve (SUCRA) plot which can be

specified within the nma.rank() function. This function

can also be used to present treatment ranks in a tabular

format, extract SUCRA values and produce a rankogram.

All of the plots produced by these three reporting func-

tions are produced with the ggplot2 package. As such,

the user can easily customize the plots (e.g. change the

background, add a title) by adding layers using the +

command. Also, for reporting relative treatment effects

the user can specify whether they want to plot the

results on the the linear scale (log scale) or the original

scale.

When meta-regression is conducted, the nma.rank(),

nma.forest() and nma.league() functions allow the user
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to specify for which value of the covariate they wish to

present the results. Even though the covariate is cen-

tered for meta-regression, the user does not have to do

any conversion and results are provided on the original

non-centered scale. Another function, nma.regplot()

outputs a plot of relative treatment effects on the linear

scale across the range of covariate values used in the

meta-regression, as in the NICE-DSU TSD 3 [28].

It is sometimes recommended that users present re-

sults from the direct evidence where available [29]. To

accommodate this, we have also incorporated the pma()

function within BUGSnet which will perform pairwise

meta-analysis using the meta package in R and automat-

ically output the results into a tabular format [30].

Results
The following is a demonstration of some of the func-

tions contained within BUGSnet (Table 1) and some of

the possible outputs. To accomplish this task, we have

recreated an analysis of a dichotomous outcome where

studies had variable follow-up times described in the

NICE-DSU technical support document 2 (referred to as

“Data Example 3”) [17]. The BUGSnet code used to

produce this analysis is available in the vignette titled

survival in the BUGSnet documentation, and appended

as a supplement to this article (see Additional file 1).

Additional outputs are presented in the vignette as well

as a more detailed description of how to conduct and re-

port network meta-analysis, which is only presented here

in brief.

The evidence network used in this analysis consists of

22 randomized trials (including multi-arm trials) that

examined the effects of six antihypertensive treatments on

the risk of developing diabetes [31]. The outcome for this

data is the number of new diabetes cases observed during

the trial period. The data is organized in the long format

(i.e. one row per treatment arm), with variables indicating

the study ID, the treatment ID, the number of patients,

the number of events, and the mean age (and standard

deviation) of participants for each treatment arm (see

Table 4). The results of our package are concordant with

those reported in the TSD as well results obtained with

GeMTC (code and outputs provided as supplement to this

article (see Additional files 2, 3, 4 and 5) and NetMetaXL.

Data preparation, description of network and

homogeneity

After the data was prepared using the data.prep() function,

the net.plot() and the net.tab() functions were used to de-

scribe the network of studies in a graphical (Fig. 1) and

tabular format respectively (Table 5). As previously dis-

cussed, the assumptions of network meta-analysis will be

violated when an effect modifier is heterogeneously distrib-

uted throughout an evidence base [20]. Prior to conducting

the network meta-analysis, analysts can use the data.plot()

function to examine the distribution of an effect modifier

within the network. The determination of whether or not a

variable is an effect modifier and whether or not the ob-

served differences in its distribution are clinically meaning-

ful is determined according to expert opinion and prior

evidence. To demonstrate this function, we have simulated

a patient characteristic that may modify the treatment effect

(i.e. the age of participants). To mimic a lack of reporting,

we have omitted the standard deviation for a few of the

studies. As observed in Fig. 2, the mean age of participants

within each treatment arm (the individual points) is simi-

lar to the overall mean age of participants within the evi-

dence base (the red dotted line). According to the

standard deviation (the +/− error bars), the variability of

ages within each treatment arm appear to be similar as

well (where available). Based on this analysis, one would

conclude that there is no meaningful heterogeneity in the

distribution of age. This analysis would be repeated for all

potentially important effect modifiers identified a priori by

clinical opinion and a review of previous studies. If no het-

erogeneity is detected, then one may proceed to conduct-

ing the network meta-analysis. If heterogeneity is

detected, one can attempt to adjust for imbalances by

Table 4 Organization of diabetes dataset used to demonstrate the capabilities of BUGSnet

Study ID Treatment Number of Participants Number of Events Age (Mean) Age (SD)

MRC-E Diuretic 1081 43 60.7 14.3

MRC-E Placebo 2213 34 59.2 13.1

MRC-E blocker 1102 37 60.2 14.0

EWPH Diuretic 416 29 59.0 15.2

EWPH Placebo 424 20 57.0 14.8

.

.

.

VALUE CCB 5074 845 56.4 13.1

VALUE ARB 5087 690 57.8 13.0
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using meta-regression (if there are an adequate number of

studies) or by using alternative statistical techniques that

leverage individual patient data (e.g. matching-adjusted in-

direct comparison or simulated treatment comparison)

[20].

Network meta-analysis

We conducted an NMA on the Diabetes dataset by fitting a

generalized linear model with a complementary log-log link

function and binomial likelihood function to account for

the dichotomous outcome and differing follow-up times

between studies, which was specified through the use of

nma.model(). To be consistent with the NICE-DSU tech-

nical support document, we specified a burn-in of 50,000 it-

erations followed by 100,000 iterations with 10,000

adaptations in the nma.run() function. We compared the fit

of both a fixed- and random-effects model. According to a

visual examination of the leverage plots and comparison of

the DIC values produced by the nma.fit(), the random ef-

fects model would be preferred over the fixed effects model

for this particular dataset because the DIC value is lower

and because there are fewer outliers in the leverage plot

(Fig. 3).

Output

We present results from the generalized linear model that

we previously fit to the Diabetes dataset. As visualized in

the SUCRA plot obtained from nma.rank(), the

angiotensin-receptor blockers’ (ARB) curve is consistently

above the other treatments’ curves suggesting that it is the

most beneficial treatment with respect to the outcome

among the treatments included in the Diabetes evidence

network (Fig. 4). The effect estimates and credible inter-

vals produced by the foregoing model are displayed in a

league heat plot (Fig. 5) obtained using nma.league(). In

Fig. 5, one can see that the difference between ARB and

other treatments are all statistically significant at the 95%

level except for the ACE inhibitor and Placebo treatments.

Consistency

To assess the presence of inconsistency, we fit an NMA

model similar to the one previously described but as-

suming inconsistency. We obtain leverage plots similar

Fig. 1 Network plots produced by the net.plot() Function in BUGSnet

Table 5 Network characteristics produced by the net.tab()

function in BUGSnet

Characteristic Value

Number of Interventions 6

Number of Studies 22

Total Number of Patients in Network 154,176

Total Possible Pairwise Comparisons 15

Total Number of Pairwise Comparisons
With Direct Data

14

Is the network connected? TRUE

Number of Two-arm Studies 18

Number of Multi-Arms Studies 4

Total Number of Events in Network 10,962

Number of Studies With No Zero Events 22

Number of Studies With At Least One
Zero Event

0

Number of Studies with All Zero Events 0

Mean person follow up time 4.06
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to Fig. 3 using the nma.fit() function where we find that

the DIC for the consistency model is marginally smaller

than for the inconsistency mode. We also use the nma.-

compare() function to plot the individual data points’ pos-

terior mean deviance contributions for the consistency

model vs the inconsistency model (Fig. 6) as recommended

in the NICE-DSU TSD 4 [26]. Overall, we conclude that

there is a lack of evidence to suggest inconsistency within

the network.

Discussion
BUGSnet is intended to be used by researchers when

assessing the clinical efficacy of multiple treatments

within the context of a submission to a journal or a

health technology assessment agency. For conducting a

contrast-based Bayesian NMA, the two main competing

software packages that one may consider are GeMTC

[15] and NetMetaXL [16], for which we have discussed

limitations in the introduction. With BUGSnet, we

Fig. 2 Graph of patient characteristic by treatment using the data.plot() function in BUGSnet

Fig. 3 Leverage plots and fit statistics produced by the nma.fit() Function in BUGSnet
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aimed to create a single tool that would compete with

the reporting capabilities of NetMetaXL and the analytic

capabilities of GeMTC. We have also aimed to provide

users with enhanced reporting options not included in

existing software such as a function to produce graphs

that show the distribution of effect modifiers by trial or

by treatment arm and an option to print study names

and highlight certain treatment comparisons within the

network plot. To help facilitate the use of BUGSnet

among new users, we have provided three vignettes

(with more vignettes forthcoming) in the R help files

that walk users through conducting an NMA using

BUGSnet by providing detailed R code and interpreta-

tions of the statistical output. Despite these benefits,

there are limitations of BUGSnet. BUGSnet is currently

limited to exclusively analyzing arm-level data. In

Fig. 4 SUCRA plot produced by the nma.rank() Function in BUGSnet

Fig. 5 League Table Heatmap Produced by the nma.league() Function in BUGSnet. Legend: The values in each cell represent the relative treatment

effect (and 95% credible intervals) of the treatment on the top, compared to the treatment on the left. A double asterisk indicates statistical significance
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contrast, GeMTC can be used to conduct an NMA using

entirely arm-level or entirely contrast-level data [22].

Relative to GeMTC, another limitation of BUGSnet is

that GeMTC currently provides a broader range of

methods of assessing inconsistency such as the node-

splitting method and a broader range of meta-regression

analyses such as subgroup meta-analysis. Since it is

implemented within the R environment, some users may

find BUGSnet more difficult to use relative to NetMe-

taXL, which is implemented within Microsoft Excel. At

this point, arm-based models [22] have not been imple-

mented in BUGSnet; the R package pcnetmeta allows

such analyses, although it does not readily provide a

complete suite of outputs like BUGSnet. We plan to

address these shortcomings in future iterations of BUGS-

net and interested users should check the previously men-

tioned URL for updates.

Network meta-analysis is a rapidly evolving area of re-

search with new methods constantly being developed [32].

While the work presented within this paper provides the

essential tools required to conduct an NMA in accordance

with current guidelines, we plan to implement additional

functions and features within this package, based on user

feedback, to provide enhanced flexibility and to ensure

relevance. Some of the preliminary requests for short-

term additions include: 1) additional functions for detect-

ing inconsistency within the network such as the Bucher

method [27]; 2) an option to allow the user to conduct an

NMA using study-level effect estimates; 3) allowing for

the relaxation of the proportional hazards assumption

when analyzing time-to-event outcomes; 4) allowing for

sub-group meta-regression and the inclusion of more than

one covariate into the meta-regression model; 5) a func-

tion that will automatically generate a report or slide deck

presentation of the results that could be saved as a pdf,

html or Word.

As detailed in Table 1, the functions contained within

BUGSnet can be used to address the items within the

PRISMA, ISPOR-AMCP-NPC, and NICE-DSU reporting

guidelines that are related to the statistical analysis

component of an NMA [11, 12, 29]. However, it should

be emphasised that there are several non-statistical

issues described within these guidelines that BUGSnet is

not meant to address such as the identification of the

research question, the specification of the study popula-

tion and competing interventions, the development of

the search strategy, and the assessment of the risk of bias

within each study [10–12]. Researchers are urged to

consult with these guidelines when planning their NMA

to ensure that all aspects of the NMA, both statistical

and non-statistical, adhere to current reporting and

methodologic standards.

Conclusions
Here we present a new JAGS-based R package for con-

ducting Bayesian NMA called BUGSnet. Relative to exist-

ing NMA software, BUGSnet provides an enhanced set of

tools for conducting and reporting results according to

Fig. 6 Posterior mean deviance comparison plot produced by the nma.compare() Function in BUGSnet.][Legend: Each data point represents a

treatment arm’s contribution to posterior mean deviance for the consistency model (horizontal axis) and the inconsistency model (vertical axis)
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published best-practice guidelines to help overcome the

lack of quality identified within this body of literature. In

addition to these features, we have attempted to provide

ample documentation describing the use and implementa-

tion of BUGSnet to help promote the understanding and

uptake of this software. Lastly, we plan to monitor the

literature and to implement new features within BUGSnet

based on the NMA analyst community to ensure that the

package remains up-to-date with the latest advances in

this rapidly developing area of research.

Availability and requirements
Project name: BUGSnet

Project home page: https://bugsnetsoftware.github.io/

Operating system(s): Windows 10 v1809 and Mac OS

10.14 (may work on earlier versions but not tested)

Programming language: R

Other requirements: JAGS 4.3.0

License: Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 International

Any restriction to use by non-academics: Contact

authors for non-academic use.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.

1186/s12874-019-0829-2.

Additional file 1. Vignette on network meta-analysis of survival data. A

vignette detailing how to obtain the outputs in the Results section using

BUGSnet version 1.0.2. The vignette includes all the necessary R code as

well as additional outputs and explanations that were not presented in

this manuscript for the sake of brevity.

Additional file 2. R code to compare BUGSnet with GeMTC for the

analysis of the diabetes data.

Additional file 3. Diabetes dataset to accompany the R code in

Additional file 2.

Additional file 4. BUGSnet league table obtained from the R code in

Additional file 2.

Additional file 5. GeMTC league table obtained from the R code in

Additional file 2.

Abbreviations

ISPOR-AMCP-NPA: International Society for Pharmacoeconomics and

Outcomes Research - Academy of Managed Care Pharmacy - National

Pharmaceutical Council; ITC: Indirect Treatment Comparisons; JAGS: Just

Another Gibbs Sampler; NICE-DSU: National Institute for Health and Care

Excellence Decision Support Unit; NMA: Network Meta-Analysis;

PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analysis;

SUCRA: Surface Under the Cumulative Ranking Curve

Acknowledgements

We would like to thank the two reviewers for their feedback which helped

improve this manuscript. We would also like to thank the attendees of our

2019 CADTH Symposium workshop and UBC Network Meta-Analysis Work-

shop for providing valuable feedback regarding the implementation and

ease of use of BUGSnet. AB acknowledges the support of a start-up grant

from the University of Waterloo and DBo acknowledges the support of the

Barrie I Strafford Doctoral Scholarship for Interdisciplinary Studies on Aging.

Authors’ contributions

All five authors (AB, DBo, PA, JS and DBr) contributed to the conception and

design of the work. AB designed the software architecture. AB, DBo and JS

coded the software. DBo and AB drafted the first version of the manuscript

and all five authors (AB, DBo, PA, JS and DBr) substantially revised it. All five

authors (AB, DBo, PA, JS and DBr) have read and approved the manuscript.

Funding

The author(s) received no financial support for the research, authorship, and/

or publication of this article.

Availability of data and materials

All of the datasets and material contained within the manuscript can be

accessed within the BUGSnet package via the BUGSnet homepage: https://

bugsnetsoftware.github.io/

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

AB and DBo are consultants for Lighthouse Outcomes. JS is employed by

Lighthouse Outcomes. PA and DBr are partners at Lighthouse Outcomes.

Author details
1Department of Statistics and Actuarial Science, University of Waterloo, 200

University Avenue West, Waterloo, Ontario N2L 3G1, Canada. 2Division of

Analytics, Lighthouse Outcomes, 1 University Avenue (3rd Floor), Toronto,

Ontario M5J 2P1, Canada. 3Department of Community Health Sciences,

University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4,

Canada. 4Department of Oncology, University of Calgary, 2500 University

Drive NW, Calgary, Alberta T2N 1N4, Canada. 5Dalla Lana School of Public

Health, University of Toronto, Health Sciences Building, 155 College Street

(6th Floor), Toronto, Ontario M5T 3M7, Canada.

Received: 26 April 2019 Accepted: 6 September 2019

References

1. Jansen JP, Fleurence R, Devine B, Itzler R, Barrett A, Hawkins N, Lee K,

Boersma C, Annemans L, Cappelleri JC. Interpreting indirect treatment

comparisons and network meta-analysis for health-care decision making:

report of the ISPOR task force on indirect treatment comparisons good

research practices: part 1. Value Health. 2011;14(4):417–28.

2. Efthimiou O, Debray TP, van Valkenhoef G, Trelle S, Panayidou K, Moons KG,

Reitsma JB, Shang A, Salanti G. GetReal in network meta-analysis: a review

of the methodology. Res Synth Methods. 2016;7(3):236–63.

3. Lee AW. Review of mixed treatment comparisons in published systematic

reviews shows marked increase since 2009. J Clin Epidemiol. 2014;67(2):138–43.

4. Bafeta A, Trinquart L, Seror R, Ravaud P. Reporting of results from network

meta-analyses: methodological systematic review. BMJ. 2014;348:g1741.

5. Hutton B, Salanti G, Chaimani A, Caldwell DM, Schmid C, Thorlund K, Mills E,

Catala-Lopez F, Turner L, Altman DG, et al. The quality of reporting methods

and results in network meta-analyses: an overview of reviews and

suggestions for improvement. PLoS One. 2014;9(3):e92508.

6. Song F, Loke YK, Walsh T, Glenny AM, Eastwood AJ, Altman DG.

Methodological problems in the use of indirect comparisons for evaluating

healthcare interventions: survey of published systematic reviews. BMJ. 2009;

338:b1147.

7. Donegan S, Williamson P, Gamble C, Tudur-Smith C. Indirect comparisons: a

review of reporting and methodological quality. PLoS One. 2010;5(11):

e11054.

8. Kovic B, Zoratti MJ, Michalopoulos S, Silvestre C, Thorlund K, Thabane L.

Deficiencies in addressing effect modification in network meta-analyses: a

meta-epidemiological survey. J Clin Epidemiol. 2017;88:47–56.

9. Zarin W, Veroniki AA, Nincic V, Vafaei A, Reynen E, Motiwala SS, Antony

J, Sullivan SM, Rios P, Daly C, et al. Characteristics and knowledge

synthesis approach for 456 network meta-analyses: a scoping review.

BMC Med. 2017;15(1):3.

Béliveau et al. BMC Medical Research Methodology          (2019) 19:196 Page 12 of 13

https://bugsnetsoftware.github.io/
https://doi.org/10.1186/s12874-019-0829-2
https://doi.org/10.1186/s12874-019-0829-2
https://bugsnetsoftware.github.io/
https://bugsnetsoftware.github.io/


10. Jansen JP, Trikalinos T, Cappelleri JC, Daw J, Andes S, Eldessouki R, Salanti G.

Indirect treatment comparison/network meta-analysis study questionnaire

to assess relevance and credibility to inform health care decision making:

an ISPOR-AMCP-NPC good practice task force report. Value Health. 2014;

17(2):157–73.

11. Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C,

Ioannidis JP, Straus S, Thorlund K, Jansen JP, et al. The PRISMA extension

statement for reporting of systematic reviews incorporating network meta-

analyses of health care interventions: checklist and explanations. Ann Intern

Med. 2015;162(11):777–84.

12. Ades A, Caldwell DM, Reken S, Welton NJ, Sutton AJ, Dias S. NICE DSU

technical support document 7: evidence synthesis of treatment efficacy in

decision making: a reviewer’s checklist. Decision Support Unit London UK.

2012;27905719.

13. Neupane B, Richer D, Bonner AJ, Kibret T, Beyene J. Network meta-analysis

using R: a review of currently available automated packages. PLoS One.

2014;9(12):e115065.

14. Xu C, Niu Y, Wu J, Gu H, Zhang C. Software and package applicating for

network meta-analysis: a usage-based comparative study. J Evid Based Med.

2018;11(3):176–83.

15. van Valkenhoef G, Lu G, de Brock B, Hillege H, Ades AE, Welton NJ.

Automating network meta-analysis. Res Synth Methods. 2012;3(4):285–99.

16. Brown S, Hutton B, Clifford T, Coyle D, Grima D, Wells G, Cameron C. A

Microsoft-excel-based tool for running and critically appraising network

meta-analyses--an overview and application of NetMetaXL. Systematic

Reviews. 2014;3:110.

17. Dias S, Welton NJ, Sutton AJ, Ades A. NICE DSU technical support

document 2: a generalised linear modelling framework for pairwise and

network meta-analysis of randomised controlled trials; 2011.

18. Plummer M: JAGS: a program for analysis of Bayesian graphical models

using Gibbs sampling. In: Proceedings of the 3rd international workshop on

distributed statistical computing: 2003: Vienna; 2003.

19. Plummer M: JAGS version 4.3.0 user manual. https://sourceforge.net/

projects/mcmc-jags/files/Manuals/. Accessed 30 Aug 2019.

20. Jansen JP, Naci H. Is network meta-analysis as valid as standard pairwise

meta-analysis? It all depends on the distribution of effect modifiers. BMC

Med. 2013;11:159.

21. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis.

Stat Med. 2002;21(11):1539–58.

22. Dias S, Ades A, Welton NJ, Jansen JP, Sutton AJ. Network meta-analysis for

decision-making. Hoboken: Wiley; 2018.

23. Warn DE, Thompson SG, Spiegelhalter DJ. Bayesian random effects meta-

analysis of trials with binary outcomes: methods for the absolute risk

difference and relative risk scales. Stat Med. 2002;21(11):1601–23.

24. Veroniki AA, Vasiliadis HS, Higgins JP, Salanti G. Evaluation of inconsistency

in networks of interventions. Int J Epidemiol. 2013;42(1):332–45.

25. Donegan S, Williamson P, D'Alessandro U, Tudur Smith C. Assessing key

assumptions of network meta-analysis: a review of methods. Res Synth

Methods. 2013;4(4):291–323.

26. Dias S, Welton NJ, Sutton AJ, Caldwell DM, Lu G, Ades A. NICE DSU

technical support document 4: inconsistency in networks of evidence based

on randomised controlled trials; 2011.

27. Bucher HC, Guyatt GH, Griffith LE, Walter SD. The results of direct and

indirect treatment comparisons in meta-analysis of randomized controlled

trials. J Clin Epidemiol. 1997;50(6):683–91.

28. Dias S, Sutton AJ, Welton NJ, Ades A. NICE DSU technical support

document 3: heterogeneity: subgroups, meta-regression, bias and bias-

adjustment; 2011.

29. Jaime Caro J, Eddy DM, Kan H, Kaltz C, Patel B, Eldessouki R, Briggs AH.

Questionnaire to assess relevance and credibility of modeling studies for

informing health care decision making: an ISPOR-AMCP-NPC good practice

task force report. Value Health. 2014;17(2):174–82.

30. Schwarzer G. Meta: an R package for meta-analysis. R News. 2007;7(3):40–5.

31. Elliott WJ, Meyer PM. Incident diabetes in clinical trials of antihypertensive

drugs: a network meta-analysis. Lancet. 2007;369(9557):201–7.

32. Nikolakopoulou A, Mavridis D, Furukawa TA, Cipriani A, Tricco AC, Straus SE,

Siontis GCM, Egger M, Salanti G. Living network meta-analysis compared

with pairwise meta-analysis in comparative effectiveness research: empirical

study. BMJ. 2018;360:k585.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Béliveau et al. BMC Medical Research Methodology          (2019) 19:196 Page 13 of 13

https://sourceforge.net/projects/mcmc-jags/files/Manuals/
https://sourceforge.net/projects/mcmc-jags/files/Manuals/

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Data preparation
	Description of network
	Homogeneity
	Network meta-analysis
	Bayesian inference
	NMA models
	Meta-regression
	Choice of priors

	Model assessment
	Consistency
	Output

	Results
	Data preparation, description of network and homogeneity
	Network meta-analysis
	Output
	Consistency

	Discussion
	Conclusions
	Availability and requirements
	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

