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Abstract. Clarithmetics are number theories based on computability logic. Formulas of
these theories represent interactive computational problems, and their “truth” is under-
stood as existence of an algorithmic solution. Various complexity constraints on such
solutions induce various versions of clarithmetic. The present paper introduces a param-
eterized/schematic version CLA11

P1,P2,P3

P4
. By tuning the three parameters P1, P2, P3 in

an essentially mechanical manner, one automatically obtains sound and complete theories
with respect to a wide range of target tricomplexity classes, i.e., combinations of time (set
by P3), space (set by P2) and so called amplitude (set by P1) complexities. Sound in
the sense that every theorem T of the system represents an interactive number-theoretic
computational problem with a solution from the given tricomplexity class and, further-
more, such a solution can be automatically extracted from a proof of T . And complete
in the sense that every interactive number-theoretic problem with a solution from the
given tricomplexity class is represented by some theorem of the system. Furthermore,
through tuning the 4th parameter P4, at the cost of sacrificing recursive axiomatizability
but not simplicity or elegance, the above extensional completeness can be strengthened to
intensional completeness, according to which every formula representing a problem with
a solution from the given tricomplexity class is a theorem of the system. This article is
published in two parts. The previous Part I has introduced the system and proved its
completeness, while the present Part II is devoted to proving soundness.
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1. Getting started

Being a continuation of [5], this article fully relies on the terminology and notation intro-
duced in its predecessor, with which — or, at least, with the first two sections of which
— the reader is assumed to be already familiar. Just like [5], this article further relies on
[3], and familiarity with that self-contained, tutorial-style paper (with proofs omitted) is
another prerequisite for reading the present piece of writing.

The sole purpose if the present article is to prove the soundness of the system CLA11
introduced in [5]. Specifically, the goal is to prove clause 3 of Theorem 2.6 of [5], which,
slightly paraphrased, reads:

If a theory CLA11RA is regular, then there is an effective procedure that

takes an arbitrary extended CLA11RA!-proof of an arbitrary sentence X and
constructs an R tricomplexity solution for X.

Our soundness proof is written so that it can be read independently of the completeness
proof given in [5].

Let us get started right now. Assuming that a theory CLA11RA is regular, the above-
displayed statement can be verified by induction on the number of steps in an extended
CLA11RA!-proof of X. The basis of this induction is a rather straightforward observation
that all axioms have R tricomplexity solutions. Namely, in the case of Peano axioms
such a “solution” is simply a machine that does nothing. All axioms from A have R
tricomplexity solutions by condition 1 of Definition 2.5 of [5]; furthermore, according to the
same condition, such solutions can be effectively obtained even when A is infinite. Finally,
the Successor, Log and Bit axioms can be easily seen to have linear amplitude, logarithmic
space and polynomial (in fact, linear) time solutions and, in view of conditions 2 and 3 of
Definition 2.2 of [5], such solutions are automatically also R tricomplexity solutions. As for
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the inductive step, it will be taken care of by the later-proven Theorems 2.1, 3.1 and 5.1,
according to which the rules of Logical Consequence, R-Comprehension and R-Induction
preserve — in a constructive sense — the property of having an R tricomplexity solution.

2. Soundness of Logical Consequence

As we remember from [3], CoL understands algorithmic strategies as interactive Turing
machines called HPMs (Hard-Play Machines).

Theorem 2.1. Consider any regular boundclass triple R. There is an (R-independent) ef-
fective procedure1 that takes an arbitrary CL12-proof P of an arbitrary L-sequent E1, . . . , En

◦–F , arbitrary HPMs N1, . . . ,Nn and constructs an HPM M such that, if N1, . . . ,Nn are
R tricomplexity solutions of E1, . . . , En, respectively, then M is an R tricomplexity solution
of F .

Proof. Such an effective procedure is nothing but the one whose existence is stated in Theo-
rem 11.1 of [3]. Consider an arbitraryCL12-proof P of an arbitrary L-sequent E1, . . . , En ◦– F ,
and arbitrary HPMs N1, . . . ,Nn. Let M be the HPM constructed for/from these parame-
ters by the above procedure.

Assume R is a regular boundclass triple, and N1, . . . ,Nn are R tricomplexity solutions
of E1, . . . , En, respectively. All three components of R are linearly closed by condition 3 of
Definition 2.2 of [5] and, being boundclasses, they are also closed under syntactic variation.
This means that, for some common triple

(

a(x), s(x), t(x)
)

∈ Ramplitude ×Rspace ×Rtime of
unary bounds, all n machines run in tricomplexity (a, s, t). That is, we have:

(i) For each i ∈ {1, . . . , n}, Ni is an a amplitude, s space and t time solution of Ei.

In view of conditions 2 and 5 of Definition 2.2 of [5], we may further assume that:

(ii) For any x, a(x) ≥ x.
(iii) For any x, s(x) ≥ log(x).
(iv) For any x, t(x) ≥ x and t(x) ≥ s(x).

Now, remembering that Ei stands for E
†
i , our condition (i) is the same as condition (i) of

Theorem 11.1 of [3] with † in the role of ∗. Next, taking into account that 0 is the only
constant that may appear in the L-sequent E1, . . . , En ◦– F and hence the native magnitude
of the latter is 0, our condition (ii) is the same as condition (ii) of Theorem 11.1 of [3]. Finally,
our conditions (iii) and (iv) are the same as conditions (iii) and (iv) of Theorem 11.1 of [3].

Then, according to that theorem, there are numbers b and d such that M is an ab(ℓ)
amplitude, O

(

s(ab(ℓ))
)

space and O
(

(t
(

ab(ℓ)))d
)

time solution of F . But, by condition 2

(if b = 0) or 4 (if b > 0) of Definition 2.2 of [5], we have ab(ℓ) � Ramplitude , meaning

that M runs in amplitude Ramplitude . The fact ab(ℓ) � Ramplitude , again by condition

4 of Definition 2.2 of [3], further implies that s
(

ab(ℓ)
)

� Rspace and t
(

ab(ℓ)
)

� Rtime .

The fact t
(

ab(ℓ)
)

� Rtime , in turn, by condition 3 of Definition 2.2 of [3], further implies

that
(

t(ab(ℓ))
)d

� Rtime . Now, by Remark 2.4 of [3], the facts s
(

ab(ℓ)
)

� Rspace and
(

t(ab(ℓ))
)d

� Rtime , together with the earlier observation that M runs in O
(

s(ab(ℓ))
)

space

and O
(

(t
(

ab(ℓ)))d
)

time, imply that M runs in space Rspace and time Rtime . To summarize,
M runs in tricomplexity R, as desired.

1Here and later in the similar Theorems 3.1 and 5.1, as one can easily guess, R-independence of a
procedure means that the procedure is the same regardless of what particular value R assumes.
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3. Soundness of Comprehension

Theorem 3.1. Consider any regular boundclass triple R. There is an (R-independent)
effective procedure that takes an arbitrary application2 of R-Comprehension, an arbitrary
HPM N and constructs an HPM M such that, if N is an R tricomplexity solution of the
premise, then M is an R tricomplexity solution of the conclusion.

The rest of this section is devoted to a proof of the above theorem. Consider a regular
boundclass triple R. Further consider an HPM N , and an application

p(y) ⊔ ¬p(y)

⊔|x| ≤ b|~s|∀y < b|~s|
(

Bit(y, x) ↔ p(y)
) (3.1)

of R-Comprehension. Let ~v = v1, . . . , vn be a list of all free variables of p(y) other than y,
and let us correspondingly rewrite (3.1) as

p(y,~v) ⊔ ¬p(y,~v)

⊔|x| ≤ b|~s|∀y < b|~s|
(

Bit(y, x) ↔ p(y,~v)
) . (3.2)

By condition 1 of Definition 2.2 of [5], from the bound b(~s) we can effectively extract an R
tricomplexity solution of ⊓⊔z(z = b|~s|). Fix such a solution/algorithm and call it Algo.

Assume N is an (a, s, t) ∈ Ramplitude × Rspace × Rtime tricomplexity solution of the
premise of (3.2). We want to construct an R tricomplexity solution M for the conclusion
of (3.2). It should be noted that, while our claim of M’s being an R tricomplexity solution
of the conclusion of (3.2) relies on the assumption that we have just made regarding N , our
construction of M itself does not depend on that assumption. It should also be noted that
we construct M as a single-work-tape machine.

This is how M works. At the beginning, it puts the symbol # into its buffer. Then

it waits till Environment specifies constants ~a and ~b for the free variables ~s and ~v of the
conclusion of (3.2). If Environment never does so, then M is an automatic winner. Other-

wise, the game is brought down to ⊔|x| ≤ b|~a|∀y < b|~a|
(

Bit(y, x) ↔ p(y,~b)
)

. Now, using
Algo, M computes and remembers the value c of b|~a|. Condition 5 of Definition 2.2 of [5]
guarantees that c can be remembered with Rspace space. Thus, recalling that Algo runs in
R tricomplexity, the steps taken by M so far do not take us beyond R and hence, in view
of Remark 2.4 of [5], can be ignored in our asymptotic analysis when arguing that M runs
in R tricomplexity. After these initial steps, M starts acting according to the following
procedure:

Procedure Routine:
Step 1. If c = 0, enter a move state and retire. Otherwise, if c ≥ 1, simulate the play

of the premise of (3.2) by N in the scenario where, at the very beginning of the play, N ’s

adversary chose the same constants ~b for the variables ~v as Environment did in the real play
of the conclusion and, additionally, chose j for y, where j = c− 1. If (when) the simulation

shows that, at some point, N chose the ⊔ -disjunct ¬p(j,~b), decrement the value of c by 1
and repeat the present step. And if (when) the simulation shows that, at some point, N

chose the ⊔ -disjunct p(j,~b), decrement the value of c by 1, put the bit 1 into the buffer,
and go to Step 2.

2Here and elsewhere in similar contexts, an “application” means an “instance”, i.e., a particular premise-
conclusion pair. In the case of R-Comprehension, it is fully determined by the comprehension formula and
the comprehension bound.



BUILD YOUR OWN CLARITHMETIC II 5

Step 2. If c = 0, enter a move state and retire. Otherwise, if c ≥ 1, simulate the play
of the premise of (3.2) by N in the scenario where, at the very beginning of the play, N ’s

adversary chose the same constants ~b for the variables ~v as Environment did in the real play
of the conclusion and, additionally, chose j for y, where j = c− 1. If (when) the simulation

shows that, at some point, N chose the ⊔ -disjunct ¬p(j,~b) (resp. p(j,~b)), decrement the
value of c by 1, put the bit 0 (resp. 1) into the buffer, and repeat the present step.

It is not hard to see that, what M did while following the above routine was that it

constructed, in its buffer, the constant d with |d| ≤ b|~a| ∧ ∀y < b|~a|
(

Bit(y, d) ↔ p(y,~b)
)

,
and then made #d as its only move in the play. This means that M is a solution of the
conclusion of (3.2), as desired. And, of course, our construction of M is effective. It thus
remains to see that M runs in R tricomplexity. In what follows, we implicitly rely on
Remark 2.4 of [5], the monotonicity of bounds and the obvious fact that the background
of any cycle of the simulated N does not exceed the background of (the cycles of) M
throughout its work within Routine. The latter is the case because all moves that reside

on N ’s imaginary run tape — namely, the moves (containing) ~b — also reside on M’s run
tape.

Since #d is the only move that M makes, our earlier observation |d| ≤ b|~a| immediately
implies that M runs in amplitude b ∈ Ramplitude , as desired.

Next, observe that the space that M consumes while performing Routine is just the
space needed to remember the value of the variable c, plus the space needed to simulate N .
The value of c never exceeds b|~a|, remembering which, as we have already observed, does
not take us beyond the target Rspace . In order to simulate N , on its work tape M does
not need to keep track of N ’s run tape, because information on that content is available on
M’s own run tape. So, M (essentially) only needs to keep track of N ’s work-tape contents.
By our assumption, N runs in space s. Therefore, keeping track of its work-tape contents
takes O(s) space, which is again within Rspace . To summarize, M runs in space Rspace , as
desired.

Finally, taking into account that N runs in time t and space s, it is clear that the time
needed for any given iteration of either step of Routine is O(t × s). This is so because
simulating each step of N takes O(s) time, and there are O(t) steps to simulate. Altogether,
there are O(b) iterations of either Step 1 or Step 2 of Routine. So, M runs in time
O(t× s× b). Then, in view of the fact that both s ∈ Rspace � Rtime and b ∈ Ramplitude �
Rtime (condition 5 of Definition 2.2 of [5]), we find that M runs in time O(t × t1 × t2) for
some t1, t2 ∈ Rtime . But Rtime is polynomially closed (condition 3 of Definition 2.2 of [5]),
thus containing t× t1 × t2. So, M runs in time Rtime , as desired.

4. Providence, prudence, quasilegality and unconditionality

In this section we establish certain terminology and facts necessary for our subsequent proof
of the soundness of the induction rule.

A numeric (lab)move means a (lab)move ending in #b for some constant b. We shall
refer to such a b as the numer of the (lab)move. To make the “numer” function total, we
stipulate that the numer of a non-numeric move is 0 (is the empty string ǫ, that is).

Consider a bounded formula F . Let n be the number of occurrences of choice quantifiers
in F , and b1(~z1), . . . , bn(~zn) be the bounds used in those occurrences. Let f(z) be the unar-
ification (cf. [3], Section 12) of max(b1(~z1), . . . , bn(~zn)). Here and elsewhere, as expected,
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max(x1, . . . , xn) stands for the greatest of the numbers x1, . . . , xn, and is understood as 0 if
n = 0. Finally, let G be the function defined by G(z) = max(f(z), f2(z), . . . , fn(z)). Here,
as in Section 2, f i(z) denotes the n-fold composition of f with itself, i.e., f(f(. . . (f(z)) . . .)),
with “f” repeated i times. Then we call the functions f and G the subaggregate bound
and the superaggregate bound of F , respectively. As an aside, for our purposes, a “much
smaller” function could have been taken in the role of superaggregate bound, but why try
to economize.

Lemma 4.1. Assume R is a regular boundclass triple, F is an Rspace -bounded formula,
and G is the superaggregate bound of F . Then G � Rspace .

Proof. Assume the conditions of the lemma. Further let n, b1(~z1), . . . , bn(~zn), f be as in the
paragraph preceding Lemma 4.1. Take a note of the fact that b1(~z1), . . . , bn(~zn) ∈ Rspace .
If all tuples ~z1, . . . , ~zn are empty, then (f and hence) G is a constant function and, by the
linear closure of Rspace , G � Rspace . Suppose now at least one of the tuples ~z1, . . . , ~zn is
nonempty. Pick one variable z among ~z1, . . . , ~zn, and consider the pterm u(z) obtained from
b1(~z1)+. . .+bn(~zn) as a result of replacing all variables ~z1, . . . , ~zn by z. SinceRspace is closed
under syntactic variation as well as under +, we have u(z) ∈ Rspace . But obviously f(z) �
u(z). Thus, f(z) � Rspace . In view of condition 4 of Definition 2.2 of [5], f(z) � Rspace

can be seen to imply f2(z) � Rspace , f
3(z) � Rspace , . . . . Consequently, by the closure of

Rspace under +, f(z)+ f2(z)+ . . .+ fn(z) � Rspace . But G(z) � f(z)+ f2(z)+ . . .+ fn(z).
Thus, G � Rspace .

Recall from [3] that a provident computation branch of a given HPM M is one con-
taining infinitely many configurations with empty buffer contents (intuitively meaning that
M has actually made all moves that it has ever started to construct in its buffer). Then,
given a constant game G, M is said to play G providently iff every computation branch
of M that spells a ⊥-legal run of G is provident. And M is a provident solution of G iff
M is a solution of G and plays it providently.

Let H(~y) = H(y1, . . . , yn) be a bounded formula with all free variables displayed, G be
the superaggregate bound of H(~y), and ~c = c1, . . . , cn be an n-tuple of constants. We say
that a move α is a prudent move of H(~c) iff the size of the numer of α does not exceed
G|max(~c)|. The H(~c)-prudentization of α is defined as the following move α′. If α is a
prudent move of H(~c), then α′ = α. Suppose now α is not a prudent move of H(~c), meaning
that α is a numeric move β#b with an “oversized” numer b. In this case we stipulate that
α′ = β#a, where a (as a bitstring) is the longest initial segment of b such that β#a is a
prudent move of H(~c).

Further consider any run Γ and either player ℘ ∈ {⊤,⊥}. We say that Γ is a ℘-prudent
run of H(~c) iff all ℘-labeled moves of Γ are prudent moves of H(~c). When we simply say
“prudent” without indicating a player, it means both ⊤-prudent and ⊥-prudent.

Further consider any machine M. By saying that M plays H(~c) prudently, we shall
mean that, whenever 〈⊥c1, . . . ,⊥cn,Γ〉 is a ⊥-legal run of ⊓H(~y) generated by M, Γ is a ⊤-
prudent run of H(~c). On the other hand, when we say that M plays H(~y) prudently, we
mean that, for any n-tuple ~c of constants, M plays H(~c) prudently. A prudent solution of
H(~y) means an HPM that wins H(~y) — wins ⊓H(~y), that is — and plays H(~y) prudently.

Lemma 4.2. There is an effective procedure that takes an arbitrary bounded formula H(~y),
an arbitrary HPM N and constructs an HPM L such that, for any regular boundclass triple
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R, if H(~y) is Rspace -bounded and N is an R tricomplexity solution of H(~y), then L is a
provident and prudent R tricomplexity solution of H(~y).

Proof idea. L is a machine that waits till ⊓H(~y) is brought down to H(~c) for some
constants ~c and then, through simulating and mimicking N within the specified complexity
constraints, plays H(~c) just as N would play it, with essentially the only difference that
each (legal) move α made by N is made by L in the prudentized form α′. This does not
decrease the chances of L (compared with those of N ) to win: imprudent moves are at
best inconsequential and at worst disadvantageous (resulting in a loss of the corresponding
subgame) for a player, so, if the machine wins the game while it makes the imprudent move
α, it would just as well (and “even more so”) win the game if it had made the prudent move
α′ instead. This is how prudence is achieved. As for providence, L achieves it by never
putting anything into its buffer unless it has already decided to make a move, after seeing
that the simulated N has moved.

Of course, the above strategy may yield some discrepancies between the contents of L’s
run tape and N ’s imaginary run tape: it is possible that the latter is showing a (⊤-labeled)
move α while the former is showing only a properly smaller part (prudentization) α′ of α.
To neutralize this problem, every time the simulated N is trying to read some symbol b of
α on its run tape, L finds b through resimulating the corresponding portion of the work of
N . This, of course, results in L’s being slower than N ; yet, due to R’s being regular, things
can be arranged so that the running time of L still remains within the admissible limits.

A detailed proof of Lemma 4.2, which materializes the above idea, is given in Appen-
dix B. It can be omitted rather safely by a reader so inclined. The same applies to the
forthcoming Lemma 4.4, whose proof idea is presented in this section and whose relatively
detailed proof is given in Appendix A.

When Γ is a run, we let
Γ⊤ (resp. Γ⊥)

denote the result of deleting in Γ all ⊥-labeled (resp. ⊤-labeled) moves.
For a constant game A and run Γ, we say that Γ is a ⊤-quasilegal (resp. ⊥-quasilegal)

run of A iff there is a legal run ∆ of A such that ∆⊤ = Γ⊤ (resp. ∆⊥ = Γ⊥). If we say
“quasilegal” without the prefix “⊤-” or “⊥-”, it is to be understood as “both ⊤-quasilegal
and ⊥-quasilegal”. We say that an HPM M plays A quasilegally iff every run generated
by M is a ⊤-quasilegal run of A. A quasilegal solution of A is a solution of A that plays
A quasilegally.

Our definitions of “M plays . . . providently” and “M plays . . . prudently”, just like
our earlier [3] definitions of running within given complexity bounds, only look at (com-
putation branches that spell) ⊥-legal runs of a given game. Below we define stronger —
“unconditional” — versions of such concepts, where the adversary’s having made an illegal
move is no longer an excuse for the player to stop acting in the expected manner. Namely:

We say that an HPM M plays unconditionally providently, or that M is uncondi-
tionally provident, iff all computation branches of M are provident (note that the game
that is being played is no longer relevant).

Consider an HPM M, a bounded formula H = H(~y) = H(y1, . . . , yn) with all free
variables displayed, and an n-tuple ~c = c1, . . . , cn of constants. We say that M plays H(~c)
unconditionally prudently iff, whenever 〈⊥c1, . . . ,⊥cn,Γ〉 is a run (whether it be ⊥-legal
or not) generated by M, Γ is a ⊤-prudent run of H(~c). Next, when we say that M plays
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H(~y) unconditionally prudently, we mean that, for any n-tuple ~c of constants, M plays
H(~c) unconditionally prudently.

The following definition of the unconditional versions of our complexity concepts is
obtained from Definition 5.2 of [3] by simply dropping the condition “⊥-legal” on the plays
considered, and also removing any mention of a game A that is being played because the
latter is no longer relevant.

Definition 4.3. Let M be an HPM, and h a unary arithmetical function (if h is not unary,
then it should be replaced by its unarification according to Convention 12.2 of [3]). We say
that:

1. M runs (plays) in unconditional amplitude h iff, in every computation branch of
M, whenever M makes a move α, the magnitude of α does not exceed h(ℓ), where ℓ is
the background of α;

2. M runs (plays) in unconditional space h iff, in every computation branch of M,
the spacecost of any given clock cycle c does not exceed h(ℓ), where ℓ is the background
of c;

3. M runs (plays) in unconditional time h iff, in every computation branch of M,
whenever M makes a move α, the timecost of α does not exceed h(ℓ), where ℓ is the
background of α.

The above definition and the related concepts naturally — in the same way as in the old,
“conditional” cases — extend from bounds (as functions) to boundclasses, as well as bound
triples or boundclass triples. For instance, where C is a boundclass, we say that M runs
(plays) in unconditional time C iff it runs in unconditional time h for some h ∈ C; whereR
is a boundclass triple, we say that M runs (plays) in unconditional tricomplexity R iff
it runs in unconditional amplitude Ramplitude , unconditional space Rspace and unconditional
time Rtime ; etc.

Lemma 4.4. There is an effective procedure that takes an arbitrary bounded formula H(~y),
an arbitrary HPM L and constructs an HPM M such that, as long as L is a provident
solution of H(~y), the following conditions are satisfied:

1. M is a quasilegal and unconditionally provident solution of H(~y).
2. If L plays H(~y) prudently, then M plays H(~y) unconditionally prudently.
3. For any arithmetical functions a, s, t, if L plays H(~y) in tricomplexity (a, s, t), then M

plays in unconditional tricomplexity (a, s, t).

Proof idea. In our preliminary attempt of constructing M, we let it be a machine that
works exactly like L, except that M retires as soon as it detects that the play has gone
illegal. This way, unlike L, M is precluded from using Environment’s illegal actions as
an excuse for some undesirable behavior of its own, such as making inherently illegal or
oversized moves, or using excessive resources. That is, while L “behaves well” only on the
condition of Environment playing legally, M is guaranteed to “behave well” unconditionally,
because in legal cases M’s behavior coincides with that of L, and in illegal cases M simply
does not “behave” at all. An unretired or not-yet-retired M consumes exactly the same
amount of time and space as L does, because keeping track of whether the play has gone
illegal only requires maintaining a certain bounded amount of information, which can be
done through state (rather than work-tape) memory and hence done without any time or
space overhead whatsoever. The only problem with the above solution is that M’s buffer



BUILD YOUR OWN CLARITHMETIC II 9

may not necessarily be empty at the time we want it to retire, and if so, then M is not
unconditionally provident. This minor complication is neutralized by letting M, before
retiring, extend (if necessary) the buffer content to a shortest possible move adding which
to the already generated run does not destroy its ⊤-quasilegality, and then empty the buffer
by making such a move in the play.

In what follows, we will be using the word “reasonable” (“reasonably”) as an abbre-
viation of “quasilegal(ly) and unconditionally prudent(ly)”. “Unreasonable” (“unreason-
ably”), as expected, means “not reasonable” (“not reasonably”). We can now strengthen
Lemma 4.2 as follows:

Lemma 4.5. There is an effective procedure that takes an arbitrary bounded formula H(~y),
an arbitrary HPM N and constructs an HPM M such that, for any regular boundclass
triple R, if H(~y) is Rspace -bounded and N is an R tricomplexity solution of H(~y), then M
is a reasonable, unconditionally provident and unconditionally R tricomplexity solution of
H(~y).

Proof. Immediately from Lemmas 4.2 and 4.4.

5. Soundness of Induction

Theorem 5.1. Consider any regular boundclass triple R. There is an (R-independent)
effective procedure that takes an arbitrary application of R-Induction, arbitrary HPMs N ,K
and constructs an HPM M such that, if N and K are R tricomplexity solutions of the two
premises, then M is an R tricomplexity solution of the conclusion.

The rest of this long section is devoted to a proof of the above theorem. It should be
noted that some ideas used in our proof are borrowed from [4].

Consider any regular boundclass triple R and any application

F (0) F (x)→F (x ′)

x ≤ b|~s|→F (x)
(5.1)

of R-Induction. Assume
~v = v1, . . . , vv

— fix this number v — are exactly the free variables of F (x) other than x listed in the
lexicographic order, and let us correspondingly rewrite (5.1) as

F (0, ~v) F (x,~v)→F (x ′, ~v)

x ≤ b|~s|→F (x,~v)
. (5.2)

Further, assume thatN and K areR tricomplexity solutions of the left and the right premise
of (5.2), respectively. In view of Lemma 4.5, we may and will assume that N and K are
reasonable, unconditionally provident and unconditionally R tricomplexity solutions of the
corresponding premises. In view of the closure of all three components of R under syntactic
variation, in combination with the other relevant closure conditions from Definition 2.2 of
[5], there is one common triple

(a, s, t) ∈ Ramplitude ×Rspace ×Rtime

of unary bounds such that both N and K run in unconditional (a, s, t) tricomplexity. Fix
these a, s, t for the rest of this section.
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We want to construct an R tricomplexity solution M of the conclusion of (5.2). It is
important to point out that, as in the case of Comprehension, our construction of M does
not rely on the assumptions on N and K that we have just made. Also, the pathological
case of F (x,~v) having no free occurrences of x is trivial and, for the sake of simplicity, we
exclude it from our considerations. M will be designed as a machine with a single work
tape.

As usual in such cases, we adopt the Clean Environment Assumption (cf. Section 8
of [3]), according to which M’s adversary never makes illegal moves of the game under
consideration.

At the beginning, ourM waits for Environment to choose constants for all free variables
of the conclusion of (5.2). We rule out the possibility that the adversary never does so,
because then M is an automatic winner trivially running in zero amplitude, zero space and
zero time unless it deliberately tries not to. For the rest of this section, assume k is the

constant chosen for the variable x, ~c = ~c1, . . . ,~cv are the constants chosen for ~v, and ~d are
the constants chosen for ~s. Since the case of k = 0 is straightforward and not worth paying
separate attention, for further simplicity considerations we will assume for the rest of this
section that k ≥ 1. From now on, we shall write F ′(x) as an abbreviation of F (x,~c).

The above event of Environment’s initial choice of constants brings the conclusion of

(5.2) down to k ≤ b|~d|→F (k,~c), i.e., to k ≤ b|~d|→F ′(k). M computes b|~d| and compares
it with k. By condition 1 of Definition 2.2 of [5], this can be done in space Rspace and time

Rtime . If k ≤ b|~d| is false, M retires, obviously being the winner and satisfying the expected
complexity conditions. For the rest of this section, we rule out this straightforward case

and, in the scenarios that we consider, assume that k ≤ b|~d| is true.
We shall write H0 as an abbreviation of the phrase “N in the scenario where the

adversary, at the beginning of the play, has chosen the constants ~c for the variables ~v ”.
So, for instance, when saying that H0 moves on cycle t, it is to be understood as that,
in the above scenario, N moves on cycle t. As we see, strictly speaking, H0 is not a
separate “machine” but rather it is just N in a certain partially fixed scenario.3 Yet, for
convenience and with some abuse of language, in the sequel we may terminologically and
even conceptually treat H0 as if it was a machine in its own right — namely, the machine
that works just like N does in the scenario where the adversary, at the beginning of the
play, has chosen the constants ~c for the variables ~v. Similarly, for any n ≥ 1, we will write
Hn for the “machine” that works just like K does in the scenario where the adversary, at
the beginning of the play, has chosen the constants ~c for the variables ~v and the constant
n − 1 for the variable x. So, H0 (thought of as a machine) wins the constant game F ′(0)
and, for each n ≥ 1, Hn wins the constant game F ′(n− 1)→F ′(n).

In the same style as the notation Hn is used, we write Mk for the “machine” that works

just like M does after the above event of Environment’s having chosen k, ~c and ~d for x, ~v
and ~s, respectively. So, in order to complete our description of M, it will suffice to simply
define Mk and say that, after Environment has chosen constants for all free variables of
the conclusion of (5.2), M continues playing like (“turns itself into”) Mk. Correspondingly,
in showing that M wins ⊓

(

x ≤ b|~s|→F (x,~v)
)

, it will be sufficient to show that Mk wins

k ≤ b|~d|→F ′(k).

3The beginning of that scenario is fixed but the continuations may vary.
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Remark 5.2. It should be noted that our treating of H0, . . . ,Hk and Mk as “machines”
may occasionally generate some ambiguity or terminological inconsistencies, for which the
author wants to apologize in advance. For instance, when talking about the content of
H0’s run tape or the run spelled by a given computation branch of H0, N ’s adversary’s
initial moves ⊥c1, . . . ,⊥cv may or may not be meant to be included. Such ambiguities or
inconsistencies, however, can usually be easily resolved based on the context.

In the informal description below, we use the term “synchronizing” to mean applying
copycat between two (sub)games of the form A and ¬A. This means mimicking one player’s
moves in A as the other player’s moves in ¬A, and vice versa. The effect achieved this way
is that the games to which A and ¬A eventually evolve (the final positions hit by them,
that is) will be of the form A′ and ¬A′ — that is, one will remain the negation of the other,
so that one will be won by a given player iff the other is lost by the same player.

The idea underlying the work of Mk can be summarized by saying that what Mk does
is a synchronization between k + 2 games, real or imaginary (simulated). Namely:

• It synchronizes the imaginary play of F ′(0) by H0 with the antecedent of the imaginary
play of F ′(0)→F ′(1) by H1.

• For each n with 1 ≤ n < k, it synchronizes the consequent of the imaginary play of
F ′(n− 1)→F ′(n) by Hn with the antecedent of the imaginary play of F ′(n)→F ′(n+ 1)
by Hn+1.

• It (essentially) synchronizes the consequent of the imaginary play of F ′(k−1)→F ′(k) by

Hk with the real play in the consequent of k ≤ b|~d|→F ′(k).

Therefore, since H0 wins F ′(0) and each Hn with 1 ≤ n ≤ k wins F ′(n − 1)→F ′(n), Mk

wins k ≤ b|~d|→F ′(k) and thus M wins (the ⊓-closure of) x ≤ b|~s|→F (x,~v), as desired.
If space complexity was of no concern, a synchronization in the above-outlined style

could be achieved by simulating all imaginary plays in parallel. Our general case does
not allow us doing so though, and synchronization should be conducted in a very careful
way. Namely, a parallel simulation of all plays is not possible, because there are up to
b|~s| simulations to perform, and there is no guarantee that this does not take us beyond
the Rspace space limits. So, instead, simulations should be performed is some sequential
rather than parallel manner, with subsequent simulations recycling the space used by the
previous ones, and with the overall procedure keeping forgetting the results of most previous
simulations and recomputing the same information over and over many times. We postpone
our description of howMk exactly works to Section 5.4, after having elaborated all necessary
preliminaries in Sections 5.1-5.3.

5.1. Soon enough or never.

Notation 5.3. We agree that throughout the rest of Section 5:

1. l denotes the length |a| of the greatest constant a among k,~c, ~d.
2. e⊤ (resp. e⊥) is the maximum number of ⊤-labeled (resp. ⊥-labeled) moves in any legal

run of F ′(0), and e = e⊤ + e⊥.
3. G is the superaggregate bound of F (x,~v).
4. L(w, u) abbreviates

r× (u+ 1)g ×
(

(v + 1)× (w + 2) + 2e
(

G(w) + h+ 2
)

+ 1
)

× qgu × 2e,

where v, as we remember, is the number of variables in ~v, and:
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• r is the maximum number of states of the two machines N and K;
• g is the maximum number of work tapes of the two machines N and K;
• q is the maximum number of symbols that may ever appear on any of the tapes of the
two machines N and K;

• h is the length of the longest string β containing no # such that β is a prefix of some
move of some legal run of F ′(0).

In the sequel, we may say about a machine or its adversary that it plays so and so (rea-
sonably, prudently, etc.) without mentioning the context-setting game that is played. As
expected, it will be understood that, in such cases, the game is: ⊓

(

x ≤ b|~s|→F (x,~v)
)

if

the machine is M; ⊓F (0, ~v) if the machine is N ; ⊓
(

F (x,~v)→F (x ′, ~v)
)

if the machine is
K; F ′(0) if the machine is H0; F

′(n− 1)→F ′(n) if the machine is Hn with 1 ≤ n ≤ k; and

k ≤ b|~d|→F ′(k) if the machine is Mk.
Below, Υ0 denotes the sequence of v ⊥-labeled moves signifying the choice of the con-

stants ~c for the free variables ~v of F (0, ~v) — that is, Υ0 = 〈⊥#c1, . . . ,⊥#cv〉. And Υn, for
n ∈ {1, . . . , k}, denotes the sequence of v + 1 ⊥-labeled moves signifying the choice of the
constants n− 1 and ~c for the free variables x and ~v of F (x,~v)→F (x ′, ~v), respectively.

Whenever we say that Hn’s adversary plays quasilegally, we shall mean that we are
only considering the runs Γ generated by Hn (i.e., runs 〈Υ0,Γ〉 generated by N and runs
〈Υn,Γ〉 generated by K) such that Γ is a ⊥-quasilegal run of F ′(0) (if n = 0) or F ′(n −
1)→F ′(n) (if n ≥ 1). Similarly for the adversary’s playing unconditionally prudently
or reasonably. By the symbolwise length of a position Φ we shall mean the number of
cells that Φ takes when spelled on the run tape. Similarly for labmoves.

Lemma 5.4. For any n ∈ {0, . . . , k}, at any time in any play by Hn, as long as Hn’s
adversary plays reasonably, the symbolwise length of the position spelled on the run tape of
Hn does not exceed (v+ 1)× (l+ 2) + 2e

(

G(l) + h+ 2
)

.

Proof. Any position spelled on the run tape of Hn looks like 〈Υn,Γ〉. The symbolwise length
of the Υn part is at most (v + 1) × (l + 2), with v + 1 being the (maximum) number of
labmoves in Υn and l+2 being the maximum symbolwise length of each labmove, including
the prefix ⊥#. By our assumption, Hn

4 plays reasonably. The present lemma additionally
assumes that so does Hn’s adversary. If so, it is obvious that the symbolwise length of no
labmove in the Γ part can exceed G(l)+h+2; and there are at most 2e such labmoves. The
symbolwise length of the Γ part is thus at most 2e

(

G(l) + h+ 2
)

.

The following lemma states that the Hn’s move soon enough or never, with L acting as
a “statute of limitations” function:

Lemma 5.5. Consider any machine Hn ∈ {H0, . . . ,Hk}, and any cycle (step, time) c of
any play by Hn. Assume that u is the spacecost of cycle c + L(l, u). Further assume that
the adversary of Hn plays reasonably, and it does not move at any time d with d > c. Then
Hn does not move at any time d with d > c+ L(l, u).

Proof. Assume the conditions of the lemma and, remembering that (not onlyHn’s adversary
but also) Hn plays reasonably, answer the following question: How many different config-
urations of Hn — ignoring the buffer content component — are there that may emerge in
the play between (including) steps c and c + L(l, u)? We claim that this quantity cannot

4N (if n ≥ 1) or K (if n = 0), to be more precise.
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exceed L(l, u). Indeed, there are at most r possibilities for the state component of such a
configuration. These possibilities are accounted for by the 1st of the five factors of L(l, u).
Next, clearly there are at most (u + 1)g possibilities for the locations of the work-tape
heads,5 which is accounted for by the 2nd factor of L(l, u). Next, in view of Lemma 5.4,
there are at most (v+ 1)× (l+ 2) + 2e

(

G(l) + h+ 2
)

+ 1 possible locations of the run-tape
head, and this number is accounted for by the 3rd factor of L(l, u). Next, there are at most
qgu possibilities for the contents of the g work tapes, and this number is accounted for by
the 4th factor of L(l, u). Finally, the run-tape content can change (be extended) at most
2e times, and this number is accounted for by the 5th factor of L(l, u). Thus, there are at
most L(l, u) possible configurations (ignoring the buffer content component), as promised.
If so, some configuration repeats itself between steps c and c + L(l, u), meaning that Hn

is in a loop which will be repeated again and again forever. Within that loop Hn makes
no moves, for otherwise the run-tape-content component of the configurations would keep
changing (expanding).

5.2. The procedure Sim. We define an organ to be a pair O = (~α, p), where ~α, called
the payload of O, is a (possibly empty) finite sequence of moves, and p, called the scale
of O, is a positive integer.

A signed organ S is −O or +O, where O is an organ. In the first case we say that S
is negative, and in the second case we say that it is positive. The payload and the scale
of such an S mean those of O.

A body is a tuple B = (O1, . . . , Os) of organs. The number s is said to be the size of
such a body B.

A Sim-appropriate triple is (A,B, n), where n ∈ {0, . . . , k}, B is a nonempty body,
and A is a body required to be empty if n = 0.

Our Mk simulates the work of the machines H0, . . . ,Hk through running the procedure
Sim defined below. This procedure takes a Sim-appropriate triple (A,B, n) as an argument,
and returns a pair (S, u), where S is a signed organ and u is a natural number. We indicate
this relationship by writing Simn(A,B) = (S, u). We usually understand Simn as the two-
argument procedure — and/or the corresponding function — resulting from fixing the third
argument of Sim to n. Similarly for the later-defined Sim•n, Sim

←
n , Sim→n .

We first take a brief informal look at Simn with 1 ≤ n ≤ k (Sim0 needs to be considered

separately). Assume A =
(

(~α1, p1), . . . , (~αa, pa)
)

and B =
(

(~β1, q1), . . . , (~βb, qb)
)

. The
argument (A,B) determines the scenario of the work of Hn that needs to be simulated.
In this scenario, the moves made by Hn’s adversary in the antecedent (resp. consequent)

of F ′(n − 1)→F ′(n) come from ~α1, . . . , ~αa (resp. ~β1, . . . , ~βb). The simulation starts by

“fetching” the organ (~β1, q1) from B and tracing the first q1 steps of Hn in the scenario
where, at the very beginning of the play, i.e., on clock cycle 0, the adversary made the

moves ~β1 in the consequent of F ′(n − 1)→F ′(n), all at once. Which organ is fetched
next depends on how things have evolved so far, namely, on whether within the above q1
steps Hn has responded by a nonempty or empty sequence ~ν of moves in the consequent
of F ′(n − 1)→F ′(n). If ~ν 6= 〈〉, then the next organ to be fetched will be the first not-

yet-fetched organ of B, i.e., (~β2, q2); and if ~ν = 〈〉, then the next organ to be fetched
will be the first not-yet-fetched organ of A, i.e., (~α1, p1). After fetching such an organ

5Remember that a scanning head of an HPM can never move beyond the leftmost blank cell.
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(~δ, r) ∈ {(~β2, q2), (~α1, p1)}, the simulation of Hn rolls back to the point w at which Hn

made its last move (if there are no such moves, then w = 0), and continues from there for
additional r steps in the scenario where, at the very beginning of the episode, i.e., at step

w, Hn’s imaginary adversary responded by the moves ~δ, all at once, in the corresponding
component (consequent if ~ν 6= 〈〉 and antecedent if ~ν = 〈〉) of F ′(n− 1)→F ′(n). As in the
preceding case, what to fetch next — the leftmost not-yet-fetched organ of B or that of A
— depends on whether within the above r steps (i.e., steps w through w + r) Hn responds
by a nonempty or an empty sequence of moves in the consequent of F ′(n−1)→F ′(n). And

similarly for the subsequent steps: whenever Hn responds to the last series ~βi (resp. ~αi) of
the imaginary adversary’s moves with a nonempty sequence ~ν of moves in the consequent

of F ′(n − 1)→F ′(n) within qi (resp. pi) steps, the next organ (~δ, r) to be fetched will be

the first not-yet-fetched organ of B; otherwise such a (~δ, r) will be the first not-yet-fetched
organ of A. In either case, the simulation of Hn rolls back to the point w at which Hn made
its last move, and continues from there for additional r steps in the scenario where, at step

w, Hn’s imaginary adversary responded by the moves ~δ in the corresponding component
(consequent if ν 6= 〈〉 and antecedent if ν = 〈〉) of the game. The overall procedure ends
when it tries to fetch the next not-yet-fetched organ of A (resp. B) but finds that there are
no such organs remaining. Then the S part of the output (S, u) of Simn(A,B) is stipulated
to be−(~σ, r) (resp. +(~σ, r)), where ~σ is the sequence of moves made byHn in the antecedent
(resp. consequent) of F ′(n − 1)→F ′(n) since the last organ of A (resp. B) was fetched,
and r is the scale of that organ. As for the u part of the output (S, u), in either case it is
simply the maximum number of non-blank cells on any (any one) work tape of Hn at the
end of the simulated episode.

The case of Sim0((), B) is similar but simpler. In fact, Sim0((), B) is a special case
of Simn(A,B) if we think of F ′(0) as the implication F ′(−1)→F ′(0) with the dummy
antecedent F ′(−1) = ⊤.

In order to be able to define Sim0 or Simn (1 ≤ n ≤ k) more formally, we need a couple
of notational conventions.

When ~α = 〈α1, . . . , αs〉 is a sequence of moves, ω is a string over the keyboard alphabet
(such as, say, “0.”, “1.” or the empty string) and ℘ is one of the players ⊤ or ⊥, we shall
write ℘ω~α for the run 〈℘ωα1, . . . , ℘ωαs〉.

Next, when W is a configuration of Hn (0 ≤ n ≤ k) and Θ is a finite sequence of lab-
moves, we shall write W ⊕Θ to denote the configuration that results from W by appending
Θ to the (description of the) run-tape content component of W .

In precise terms, this is how the procedure Sim0((), B) works. It creates two integer-
holding variables b and u, with b initialized to 1 and u to 0. It further creates a variable ~ν to
hold move sequences, initialized to the empty sequence 〈〉. It further creates a configuration-
holding variable W , initialized to the start configuration of H0 where the run tape is empty
(and, of course, so are the work tapes and the buffer). Finally, it creates two signed-organ-
holding variables S and R, with S having no initial value and R initialized to +O, where
O is the first organ of B (remember that B is required to be nonempty).6 After this
initialization step, the procedure goes into the following loop Loop0. Each iteration of

6The presence of the variable S may seem redundant at this point, as Sim0((), B) (and likewise Simn(A,B)
with n ≥ 1) could be defined in a simpler way without it. The reason why we want to have S will become
clear in Section 5.5. Similarly, in the present case we could have done without the variable R as well — it
merely serves the purpose of “synchronizing” the cases of n = 0 and n ≥ 1.
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the latter simulates a certain number of steps of H0 starting from a certain configuration
(namely, the then-current value ofW ) in the scenario whereH0’s imaginary adversary makes
no moves other than those already present in configuration W (i.e., already made by the
time W was reached).

Procedure Loop0: Let +(~ω, p) be the value of R (R never takes negative values when
n = 0). Change the value ofW toW⊕⊥~ω. Then simulate/trace p steps of H0 starting from
configuration W . While performing this simulation, keep track of the maximum number of
non-blank cells on any (any one) of the work tapes of H0, and increment u to that number
every time the latter exceeds u. Also, every time H0 makes a move µ, update ~ν by adding
µ at the end of it, and, additionally, update W to the configuration in which such a move
µ was made. Once the simulation of p steps is complete, do the following. If ~ν is empty, set
the value of S to −(~ν, p) and return (S, u). Suppose now ~ν is nonempty. In this case set the
value of S to +(~ν, p). Then, if b equals the size of B, return (S, u). Otherwise, increment b
to b+ 1, set R to the bth organ of B prefixed with “+”, and repeat Loop0.

Next, this is how the procedure Simn(A,B) exactly works when n ≥ 1. It creates
three integer-holding variables a, b, u, with b initialized to 1 and a, u to 0.7 It further creates

two move-sequence-holding variables ~ψ and ~ν, both initialized to the empty sequence 〈〉. It
further creates a configuration-holding variable W , initialized to the start configuration of
Hn where the run tape is empty. Finally, it creates two signed-organ-holding variables S
and R, with S having no initial value and R initialized to +O, where O is the first organ
of B. After this initialization step, the procedure goes into the following loop Loopn. As
before, each iteration of the latter simulates a certain number of steps of Hn starting from
a certain configuration (namely, W ) in the scenario where the imaginary adversary makes
no new moves.

Procedure Loopn: Let +(~ω, p) (resp. −(~ω, p)) be the value of R. Change the value
of W to W ⊕ ⊥1.~ω (resp. W ⊕ ⊥0.~ω). Then simulate/trace p steps of Hn starting from
configuration W . While performing this simulation, keep track of the maximum number
of non-blank cells on any of the work tapes of Hn, and increment u to that number every
time the latter exceeds u. Also, every time Hn makes a move µ in the antecedent (resp.

consequent) of the game, update ~ψ (resp. ~ν) by adding µ at the end of it, and, additionally,
update W to the configuration in which such a move µ was made. Once the simulation of
p steps is complete, do the following.

• If ~ν is nonempty, set the value of S to +(~ν, p). Then, if b equals the size of B, return
(S, u); otherwise, increment b to b + 1, set R to the bth organ of B prefixed with “+”,
reset ~ν to 〈〉, and repeat Loopn.

• If ~ν is empty, set the value of S to −(~ψ, p). Then, if a equals the size of A, return (S, u).

Otherwise, increment a to a+ 1, set R to the ath organ of A prefixed with “−”, reset ~ψ
to 〈〉, and repeat Loopn.

For a Sim-appropriate triple (A,B, n), we shall write

Sim•n(A,B)

to refer to the signed organ S such that Simn(A,B) = (S, u) for some (whatever) u.

7Intuitively, b keeps track of how many organs of B have been fetched so far, and a does the same for A.
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Later, we may write Simn(A,B) to refer to either the procedure Simn applied to argu-
ments A and B, or to the output (S, u) of that procedure on the same arguments. It will be
usually clear from the context which of these two is meant. The same applies to Sim•n(A,B)
which, seen as a procedure, runs exactly like Simn(A,B), and only differs from the latter
in that it just outputs S rather than (S, u).

Consider any two bodies B = (O1, . . . , Ot) and B
′ = (O′1, . . . , O

′
t′). We say that B′ is

an extension of B, and that B is a restriction of B′, iff t ≤ t′ and O1 = O′1, . . . , Ot = O′t.
As expected, “proper extension” means “extension but not restriction”. Similarly for
“proper restriction”.

Lemma 5.6. Consider any Sim-appropriate triple (A,B, n).

1. If Sim•n(A,B) is negative, then, for every extension B′ of B, Simn(A,B
′) = Simn(A,B).

2. If Sim•n(A,B) is positive and n 6= 0, then, for every extension A′ of A, Simn(A
′, B) =

Simn(A,B).
3. Whenever Sim•n(A,B) is positive, the size of B does not exceed e⊤.

Proof. Clauses 1-2 can be verified through a straightforward analysis of the work of Simn.
For clause 3, assume Simn(A,B) = +(~ω, p), and let s be the size of B. Observe that, in the
process of computing Simn(A,B), the payloads of all positive values that the variable S ever
takes, including its last value +(~ω, p), are nonempty. All such payloads consist of moves
made by Hn in the consequent of F ′(n−1)→F ′(n). From the work of Simn we can see that
altogether there are s positive values taken by S. Now, remembering our assumption that
Hn plays quasilegally, implying that it does not make more than e⊤ moves in the consequent
of F ′(n− 1)→F ′(n), it is clear that s cannot exceed e⊤.

By a saturated triple we shall mean a Sim-appropriate triple (A,B, n) such that:

1. If Sim•n(A,B) is negative, then, for every nonempty proper restriction B′ ofB, Sim•n(A,B
′)

is positive.
2. If Sim•n(A,B) is positive, then, for every proper restriction A′ of A, Sim•n(A

′, B) is nega-
tive.

For a body B = (O1, . . . , Os), we will write Bodd (resp. Beven) to denote the body
(O1, O3, . . .) (resp. (O2, O4, . . .)) obtained from B by deleting each Oi with an even (resp.
odd) i.

Definition 5.7. Consider a saturated triple (A,B, n). Let A = (A1, . . . , Aa) and B =
(B1, . . . , Bb). Further let −P1, . . . ,−Pp be the (sequence of the) negative values that
the variable S of the procedure Simn goes through when computing Simn(A,B), and let
+Q1, . . . ,+Qq be the (sequence of the) positive values that S goes through. Observe that
a ≤ p ≤ a+ 1 and q ≤ b ≤ q + 1.

1. We define Sim←n (A,B) as the body (P1, A1, P2, A2, . . .) — that is, the (unique) body C
such that Codd = (P1, . . . , Pp) and C

even = (A1, . . . , Aa).
2. We define Sim→n (A,B) as the body (B1, Q1, B2, Q2, . . .) — that is, the (unique) body C

such that Codd = (B1, . . . , Bb) and C
even = (Q1, . . . , Qq).

Let B =
(

(~α1, p1), . . . , (~αs, ps)
)

be a body. We define B as the run 〈⊥~α1,⊤~α2, . . .〉 obtained
from 〈~α1, . . . , ~αs〉 by replacing each ~αi (1 ≤ i ≤ s) with ⊥~αi if i is odd, and with ⊤~αi if i is
even.
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Some more notation and terminology. When Γ and ∆ are runs, we write Γ � ∆ to
mean that Γ is a (not necessarily proper) initial segment of ∆. Next, as always in CoL, ¬Γ
means the result of changing in Γ each label ⊤ to ⊥ and vice versa. Γ0. means the result
of deleting from Γ all moves (together with their labels, of course) except those of the form
0.α, and then further deleting the prefix “0.” in the remaining moves. Similarly for Γ1..
Intuitively, when Γ is a play of a parallel disjunction G0 ∨G1 or conjunction G0 ∧G1 of
games, Γ0. (resp. Γ1.) is the play that has taken place — according to the scenario of Γ —
in the G0 (resp. G1) component.

Lemma 5.8. Consider any saturated Sim-appropriate triple (A,B, n). Let Simn(A,B) =
(

±(~ω, v), u
)

, where ± ∈ {+,−}.

1. The case of n = 0 (and hence A = ()):

(a) There is a run Υ generated by H0 such that Sim→0 ((), B) � Υ.

(b) Furthermore, if Sim→0 ((), B) is a reasonable run of F ′(0) and v ≥ L(l, u), then, for

such an Υ, we simply have Sim→0 ((), B) = Υ.
2. The case of 1 ≤ n ≤ k:

(a) There is a run Υ generated by Hn such that Sim→n (A,B) � Υ1. and ¬Sim←n (A,B) �
Υ0..

(b) Furthermore, if Sim•n(A,B) is negative, Sim→n (A,B) is a reasonable run of F ′(n),

Sim←n (A,B) is a reasonable run of F ′(n − 1) and v ≥ L(l, u), then, for such an Υ,

we simply have Sim→n (A,B) = Υ1. and ¬Sim←n (A,B) = Υ0..

Proof. Assume the conditions of the lemma. Let A =
(

(~α1, p1), . . . , (~αa, pa)
)

and B =
(

(~β1, q1), . . . , (~βb, qb)
)

. Further let −(~γ1, r1), . . . , −(~γc, rc) be the negative values that
the variable S of the procedure Simn goes through when computing Simn(A,B), and let

+(~δ1, s1), . . . , +(~δd, sd) be the positive values that S goes through.

1. Assume n = 0, and thus A = (), i.e., a = 0. Analyzing the definitions of Sim0 and Sim→0
and taking into account that

(

(), B, 0
)

is saturated, we see that, what the procedure

Sim0

(

(), B
)

does is that it simulates the first t steps of a certain computation branch C
of H0 for a certain t with v = qb ≤ t ≤ q1 + . . . + qb, and the position spelled on H0’s
imaginary run tape by the end of this episode (without counting the initial moves ⊥~c —

see Remark 5.2) is nothing but Sim→0
(

(), B
)

. Let Υ be the run spelled by C. Then Υ
satisfies the promise of clause 1(a) of the lemma. For clause 1(b), additionally assume

that Sim→0
(

(), B
)

is a reasonable run of F ′(0) and v ≥ L(l, u). We may assume that, in
the above branch C, H0’s adversary makes no moves after (beginning from) time t − v.
Then, by Lemma 5.5, H0 makes no moves after (beginning from) time t. Thus, the
run Υ contains no labmoves in addition to those that are in Sim→n (A,B), meaning that
Sim→n (A,B) = Υ, as desired.

2. Assume 1 ≤ n ≤ k. Again, taking into account that (A,B, n) is saturated, we can see
that, what the procedure Simn

(

A,B
)

does is that it simulates the first t steps of a certain
computation branch C of Hn for a certain number t with v ≤ t ≤ p1+. . .+pa+q1+. . .+qb.
Note that here v is either pa or qb. Let Φ be the position spelled on Hn’s imaginary run

tape by the end of this episode. It is not hard to see that Φ1. = Sim→n
(

A,B
)

. Further, if

Sim•n(A,B) is negative, then we also have Φ0. = ¬Sim←n
(

A,B
)

. Otherwise, if Sim•n(A,B)

is positive, Φ0. is a (not necessarily proper) extension of ¬Sim←n
(

A,B
)

through some
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⊤-labeled moves. Let Υ be the run spelled by C. Then, in view of the observations that
we have just made, Υ satisfies the promise of clause 2(a) of the lemma.

For clause 2(b), additionally assume that Sim•n(A,B) is negative, Sim→n (A,B) is a

reasonable run of F ′(n), ¬Sim←n (A,B) is a reasonable run of F ′(n − 1), and v ≥ L(l, u).
As observed in the preceding paragraph, on our present assumption of Sim•n(A,B)’s being

negative, we have Φ0. = ¬Sim←n
(

A,B
)

and Φ1. = Sim→n
(

A,B
)

. We may assume that, in
the above branch C, Hn’s adversary makes no moves after (beginning from) time t− v.
Then, by Lemma 5.5, Hn makes no moves after (beginning from) time t. Thus, the
run Υ contains no labmoves in addition to those that are (after removing the prefixes

“0.” and “1.”) in ¬Sim←n (A,B) and Sim→n (A,B), meaning that ¬Sim←n (A,B) = Υ0. and

Sim→n (A,B) = Υ1., as desired.

5.3. Aggregations. By an entry we shall mean a pair E = [n,B], where n, called the
index of E, is an element of {0, . . . , k}, and B, called the body of E, is a body. The
size of an entry E should be understood as the size of its body. By saying that an entry is
n-indexed we shall mean that n is the index of that entry.

An aggregation is a nonempty finite sequence ~E of entries such that:

(i) The last entry of ~E is k-indexed, and its body is odd-size. We call it the master

entry of ~E, and call all other entries (if there are any) common entries.

(ii) The indices of the entries of ~E are strictly increasing. That is, the index of any given
entry is strictly smaller than the index of any entries to the right of it.

(iii) Each even-size entry (if there are such entries) is to the left of each odd-size entry.
(iv) The sizes of the even-size entries are strictly decreasing. That is, the size of any

even-size entry is strictly smaller than the size of any (even-size) entry to the left of
it.

(v) The sizes of the odd-size common entries are strictly increasing. That is, the size of
any odd-size common entry is strictly smaller than the size of any (odd-size) common
entry to the right of it.

(vi) There are no entries of size 0.

The central triple of an aggregation ~E is (L,R, n), where:

(1) n is the index of the leftmost odd-size entry of ~E.

(2) R is the body of the above n-indexed entry of ~E.

(3) If ~E does not have an entry whose index is n−1,8 then L is the empty body (). Otherwise,

L is the body of the (n− 1)-indexed entry of ~E.

Consider any aggregation ~E. The master body of ~E is the body of the master entry of

E; the master organ of ~E is the last organ of the master body of ~E; and the master

payload (resp. master scale) of ~E is the payload (resp. scale) of the master organ of ~E.

8This condition is always automatically satisfied when n = 0.
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5.4. The procedure Main. We are now ready to finalize our description of the work of
Mk. This is a machine that creates an aggregation-holding variable ~E and an integer-

holding variable U , with ~E initialized to the aggregation 〈[k, ((〈〉, 1))]〉9 and U initialized to
0. After this initialization step, Mk goes into the below-described loop Main. As already
noted, our description of M and hence of Main and our subsequent analysis of its work
relies on the Clean Environment Assumption.

Terminology: In our description of Main, whenever we say Repeat, it is to be

understood as repeating (going to) Main without changing the values of U and ~E. On the
other hand, whenever we say Restart, it is to be understood as resetting U to 0, modifying
~E by deleting all common entries in it (but leaving the master entry unchanged), and then
repeating Main. Finally, when we say “Environment has made a new move”, we mean that
the run tape of Mk contains a (q + 1)th ⊥-labeled move (which we refer to as “the new
move”), where q is the total number of moves in (all moves in the payloads of the organs

of) Bodd, where B is the master body of ~E.

Procedure Main. Let (L,R, n) be the central triple of ~E. Start running the procedure
Simn on (Leven, Rodd) while, in parallel, at some constant rate, polling the run tape to see
if Environment has made a new move.10 Then act depending on which of the following two
cases is “the case”:

Case 1: Before Simn terminates, one of the calls of the polling routine detects a new move

1.θ (i.e., the move θ in the consequent of k ≤ b|~d|→F ′(k)) by Environment. Let θ′

be the F ′(k)-prudentization of θ. Modify ~E by adding θ′ to its master payload, and
resetting the master scale to 1. Then Restart.

Case 2: Simn terminates without any of the calls of the polling routine meanwhile de-
tecting a new move by Environment. Let (S, u) be the value computed/returned by
Simn(L

even, Rodd). Update U to max(u,U). Then act depending on whether S is posi-
tive or negative.

Subcase 2.1: S is positive, namely, S = +(~ω, s). Let B be the body of the n-indexed

entry of ~E. Act depending on whether n < k or not.

Subsubcase 2.1.1: n < k. Update ~E by adding (~ω, s) as a new organ to B. Further

modify ~E by deleting all (< n)-indexed entries whose size does not exceed that of the
n-indexed entry, if such entries exist. Then Repeat.

Subsubcase 2.1.2: n = k. Update ~E by adding (~ω, s) and (〈〉, s) as two new organs to B.

Then make the moves ~ω in the consequent of (the real play of) k ≤ b|~d|→F ′(k). Finally,
Repeat.

Subcase 2.2: S is negative, namely, S = −(~ω, s). Act depending on whether n > 0 or not.

Subsubcase 2.2.1: n > 0. Then, if ~E has an (n−1)-indexed entry E, modify ~E by adding

(~ω, s) as a new organ to the body of E; otherwise modify ~E by inserting into it the entry
E = [n−1, ((~ω, s))] immediately on the left of the n-indexed entry. In either case, further

modify ~E by deleting all ≥ n-indexed common entries whose size does not exceed that
of the (n− 1)-indexed entry, if such entries exist. After that Repeat.

9I.e., the single-entry aggregation where the master body is of size 1, the master payload is empty and
the master scale is 1.

10Clarifying: the polling routine is called, say, after every 1000 steps of performing Simn; such a call —
which, itself, may take more than a constant amount of time — interrupts Simn, saves its state, checks the
run tape to see if a new move is made and, if not, returns control back to the caller.
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Subsubcase 2.2.2: n = 0. Let v be the master scale of ~E. Act depending on whether
v < L(l, U) or not.11

Subsubsubcase 2.2.2.1: v < L(l, U). Then modify ~E by doubling its master scale v, and
Restart.

Subsubsubcase 2.2.2.2: v ≥ L(l, U). Keep polling the run tape of Mk to see if Envi-

ronment has made a new move 1.θ. If and when such a move is detected, modify ~E by

adding the F ′(k)-prudentization θ′ of θ to the master payload of ~E, and resetting the
master scale to 1. Then Restart.

5.5. M is a solution of the target game. In this subsection we want to verify that

Mk indeed wins k ≤ b|~d|→F ′(k) and hence M wins x ≤ b|~s|→F (x,~v). For this purpose,
when analyzing the work and behavior of Mk, we will implicitly have some arbitrary but
fixed computation branch (“play”) of Mk in mind. So, for instance, when we say “the ith
iteration of Main”, it should be understood in the context of that branch.

Notation 5.9. In what follows, I will stand for the set of positive integers i such that

Main is iterated at least i times. Also, for each i ∈ I, ~Ei will stand for the value of the

aggregation/variable ~E at the beginning of the ith iteration of Main.

Lemma 5.10. For any i ∈ I and any entry E of ~Ei, the size of E does not exceed 2e⊤ + 1.

Proof. For a contradiction, assume i ∈ I, and ~Ei has an entry of size greater than 2e⊤ + 1.
Let n be the index of such an entry.

First, consider the case n < k. Let j ≤ i be the smallest number in I such that ~Ej

has a (2e⊤ + 2)-size, n-indexed entry [n, (O1, . . . , O2e⊤+2)] — it is not hard to see that

such a j exists, and j > 1 because ~E1 has no common entries. The only way the above

entry could have emerged in ~Ej is that ~Ej−1 contained the entry [n, (O1, . . . , O2e⊤+1)], and

its body “grew” into (O1, . . . , O2e⊤+2) on the transition from ~Ej−1 to ~Ej according to
the prescriptions of Subsubcase 2.1.1 of the description of Main. This in turn means

that the central triple of ~Ej−1 was (A, (O1, . . . , O2e⊤+1), n) for a certain body A, and
Sim•n(A

even, (O1, . . . , O2e⊤+1)
odd) = +O2e⊤+2. This, however, is impossible by clause 3 of

Lemma 5.6, because the size of (O1, . . . , O2e⊤+1)
odd is e⊤ + 1, exceeding e⊤.

The case n = k is similar, only with “k” instead of “n”, and “2e⊤ + 3” instead of
“2e⊤ + 2”.

Lemma 5.11. There is a bound z(w) ∈ Rtime such that the cardinality of I does not exceed
z(l).

Proof. In this proof we will be using d as an abbreviation of 2e⊤ + 1. Whenever we say

“~E always (never, etc.) so and so”, it is to be understood as that, throughout the work of

Main, the value of the variable ~E always (never, etc.) so and so. Similarly for U . “Case”,
“Subcase”, etc. mean those of the description of Main.

According to Lemma 5.10, we have:

The size of no entry of ~E ever exceeds d. (5.3)

11For L, remember clause 4 of Notation 5.3.
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Our next claim is the following:

The number of moves in the payload of no organ

of the master body of ~E ever exceeds max(e⊤, e⊥).
(5.4)

Indeed, let (O1, . . . , Oa) be the master body of ~E at a given stage of the work of Main, and
consider any organ Oi = (~α, s) (1 ≤ i ≤ a) of this body. From an analysis of the work of
Main we can see that, if i is odd, then ~α are moves made by Environment within the F ′(k)
component in the real play. Therefore, in view of the Clean Environment Assumption, the
number of such moves is at most e⊥. If i is even, then ~α are moves made by Hk in a certain
play simulated through Simk. As in the preceding case, the number of such moves cannot
exceed e⊤ because, as we have agreed, Hk plays quasilegally.

Taking into account that each Hn (N and K, that is) plays unconditionally prudently
and that Environment’s moves in F ′(k) are also prudentized when copied byMain according
to the prescriptions of Case 1 or Subsubsubcase 2.2.2.2 (and that every move that emerges

in ~E originates either from Environment or from one of Hi), one can see that the run tape
of any simulated machine does not contain moves whose magnitude is greater than G(l)
where, as we remember, G is the superaggregate bound of F (x,~v). Since the Hns (N and
K, to be more precise) play in unconditional space s, we then find that the value of the
variable U of Main never exceeds s

(

G(l)
)

. Thus, the maximum value of L(l, U) is bounded

by L
(

l, s(G(l))
)

. The master scale v of ~E increases — namely, doubles — only according
to the prescriptions of Subsubsubcase 2.2.2.1, and such an increase happens only when v is
smaller than L(l, U). For this reason, we have:

The master scale of ~E is always smaller than 2L
(

l, s(G(l))
)

. (5.5)

Let f be the unarification of the bound b ∈ Rtime from (5.2). Note that, since k ≤ b|~d|,
we have k ≤ f(l).

Let K(w) be the unary function defined by

K(w) = max
(

|L
(

w, s(G(w))
)

|, f(w), d, e⊥
)

+ 1, (5.6)

and let k be an abbreviation of K(l).
With each element i of I we now associate an integer Rank(i) defined as follows:

Rank(i) = c0 × k0 + c1 × k1 + c2 × k2 + . . .+ cd × kd + cd+1 × kd+1 + cd+2 × kd+2 + cd+3 × kd+3,

where:

• c0 = 0. Take a note of the fact that c0 < k.
• For each even j ∈ {1, . . . , d}: If ~Ei contains a common entry of size j, then cj is n + 1,
where n is the index of that entry; otherwise cj = 0. Thus, cj cannot exceed k and, since
k ≤ f(l), from (5.6) we can see that cj < k.

• For each odd j ∈ {1, . . . , d}: If ~Ei contains a common entry of size j, then cj is k − n,
where n is the index of that entry; otherwise cj = 0. Again, we have cj < k.

• cd+1 is |v|, where v is the master scale of ~Ei. In view of (5.5), we find cd+1 < k.

• cd+2 is the number of moves in the master payload of ~Ei. From (5.4), we see that cd+2 < k.

• cd+3 is the size of the master body of ~Ei. The fact (5.3) guarantees that cd+3 < k.
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As we have observed in each case above, all of the factors c0, c1, . . . , cd+3 from Rank(i) are
smaller than k. This allows us to think of Rank(i) as a k-ary numeral of length d+ 4, with
the least significant digit being c0 and the most significant digit being cd+3.

With some analysis of the work of Main, which we here leave to the reader, one can
see that

For any i with (i+ 1) ∈ I, Rank(i) < Rank(i+ 1). (5.7)

But, by our observation c0, c1, . . . , cd+3 < k, no rank can exceed the (generously taken)
number

(k− 1)× k0 + (k− 1)× k1 + (k− 1)× k2 + . . .+ (k− 1)× kd+3,

i.e., the number M(l), where M(w) is the unary function

(K(w)−1)×(K(w))0+(K(w)−1)×(K(w))1+(K(w)−1)×(K(w))2+. . .+(K(w)−1)×(K(w))d+3 .

Thus:
For any i ∈ I, Rank(i) ≤ M(l). (5.8)

By the conditions ofR-Induction, F (x,~v) isRspace -bounded. Hence, by Lemma 4.1, G(w) �
Rspace . This, by condition 4 of Definition 2.2 of [5], implies s(G(w)) � Rspace . The two
facts G(w) � Rspace and s(G(w)) � Rspace , by condition 5 of Definition 2.2 of [5], further
yield G(w) � Rtime and s(G(w)) � Rtime . Looking back at our definition of L in Notation
5.3(4), we see that

|L(w, u)| = O(|w|+ |G(w)| + u) (5.9)

and thus |L(w, s(G(w)))| = O(|w| + |G(w)| + s(G(w))). This, together with G(w) � Rtime

and s(G(w)) � Rtime , by the linear closure of Rtime , implies

|L(w, s(G(w)))| � Rtime . (5.10)

Since f is the unarification of b ∈ Rtime , we obviously have f � Rtime . This, together
with (5.10), (5.6) and the fact of Rtime ’s being linearly closed, implies that K � Rtime . The
latter, in turn, in view of Rtime ’s being polynomially closed, implies that M � Rtime . So,
there is a bound z(w) in Rtime with M(w) � z(w) and hence M(l) ≤ z(l). In view of (5.8),
no rank can thus ever exceed z(l). But, by (5.7), different elements of I have different ranks.
Hence, the cardinality of I does not exceed z(l) either, as desired.

For a number h ∈ I, we define the set Ih by

I
h = {i | i ∈ I and i ≤ h} = {1, . . . , h}.

We say that a given iteration of Main is restarting (resp. repeating) iff it terminates
and calls the next iteration through Restart (resp. Repeat). The repeating iterations are
exactly those that proceed according to Subcase 2.1 or Subsubcase 2.2.1 of Main; and the
restarting iterations are those that proceed according to Case 1 or Subsubsubcase 2.2.2.1,
as well as the terminating iterations that proceed according to Subsubsubcase 2.2.2.2. Next,
we say that a given iteration of Main is locking iff it proceeds according to Subsubcase
2.1.2 of Main.

Consider any h ∈ I and any i ∈ I
h. We say that the ith iteration ofMain is Ih-transient

iff there is a j ∈ I
h such that the following three conditions are satisfied:

• i ≤ j < h.
• The jth iteration of Main restarting.
• There is no e with i ≤ e < j such that the eth iteration of Main is locking.
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For a number h ∈ I, we define

I
h
! = {i | i ∈ I

hand the i’th iteration of Main is not Ih-transient}.

We say that two bodies are consistent with each other iff one is an extension of the
other. This, of course, includes the case of their being simply equal.

Lemma 5.12. Consider any n ∈ {0, . . . , k}, h ∈ I and i, j ∈ I
h
! . Suppose ~Ei has an entry

[n,Bi], and ~Ej has an entry [n,Bj]. Then Bi and Bj are consistent with each other.

Proof. Assume the conditions of the lemma. The case i = j is trivial, so we shall assume
that i < j.

First, consider the case n = k. We thus want to show that the master bodies of ~Ei

and ~Ej are consistent with each other. Notice that only those iterations of Main affect the

master body of (the evolving) ~E that are either restarting or locking. So, if no iteration

between12 i and j is either restarting or locking, then the master entry of ~Ej is the same

as that of ~Ei, and we are done. Now suppose there is an e with i ≤ e ≤ j such that the
eth iteration is restarting or locking. We may assume that e is the smallest such number.
Then the eth iteration cannot be restarting, because this would make the ith iteration I

h-
transient. Thus, the eth iteration is locking. Such an iteration “locks” the master body of
~Ei, in the sense that no later iterations can destroy what is already there — such iterations

will only extend the master body. So, the master body of ~Ej is an extension of that of ~Ei,
implying that, as desired, the two bodies are consistent with each other.

Now, for the rest of this proof, assume n < k. Note that i, j > 1, because ~E1 has no
common (n-indexed) entries. Further note that the (i − 1)th and (j − 1)th iterations are
not restarting ones, because Restart erases all common entries. Hence, obviously, both
i− 1 and j − 1 are in I

h
! .

The case of either Bi or Bj being empty is trivial, because the empty body is consistent
with every body. Thus, we shall assume that

Bi looks like
(

(~α1, p1), . . . , (~αa, pa), (~α, p)
)

and Bj looks like
(

(~β1, q1), . . . , (~βb, qb), (~β, q)
)

for some a, b ≥ 0. In what follows, we will be using ~P and ~Q as abbreviations of “(~α1, p1),

. . . , (~αa, pa)” and “(~β1, q1), . . . , (~βb, qb)”, respectively. Thus, Bi =
(

~P , (~α, p)
)

and Bj =
(

~Q, (~β, q)
)

.

We prove the lemma by complete induction on i + j. Assume the aggregation ~Ei−1

contains the entry [n,Bi]. Since (i− 1) + j < i+ j and (as we established just a while ago)
(i − 1) ∈ I

h
! , the induction hypothesis applies, according to which Bi is consistent with Bj,

as desired. The case of ~Ej−1 containing the entry [n,Bj] is similar. Now, for the rest of the
present proof, we assume that

~Ei−1 does not have the entry [n,Bi], and ~Ej−1 does not have the entry [n,Bj]. (5.11)

Assume a < b. Then b ≥ 1. In view of this fact and (5.11), it is easy to see that ~Ej−1

contains an n-indexed entry whose body is ( ~Q). By the induction hypothesis,
(

~P , (~α, p)
)

is

consistent with ( ~Q), meaning (as a + 1 ≤ b) that the latter is an extension of the former.

Hence,
(

~P , (~α, p)
)

is just as well consistent with
(

~Q, (~β, q)
)

, as desired. The case of b < a
will be handled in a similar way.

12Here and later, we may terminologically identify iterations with their ordinal numbers.
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Now, for the rest of this proof, we further assume that a = b. We claim that

~P = ~Q, i.e.,
(

(~α1, p1), . . . , (~αa, pa)
)

=
(

(~β1, q1), . . . , (~βb, qb)
)

. (5.12)

Indeed, the case of a, b = 0 is trivial. Otherwise, if a, b 6= 0, in view of (5.11), obviously ~Ei−1

contains the entry [n, (~P )] and ~Ej−1 contains the entry [n, ( ~Q)]. Hence, by the induction

hypothesis, the two bodies (~P ) and ( ~Q) are consistent, which, as a = b, simply means that
they are identical. (5.12) is thus verified. In view of (5.12), all that now remains to show is

that (~α, p) = (~β, q).
Assume a is odd. Analyzing the work of Main and keeping (5.11) in mind, we see

that the (i− 1)th iteration of Main proceeds according to Subsubcase 2.1.1, where the cen-

tral triple of ~Ei−1 is
(

C, (~P ), n
)

for a certain even-size body C, and Sim•n
(

Ceven, (~P )odd
)

=
+(~α, p). Similarly, the (j − 1)th iteration of Main proceeds according to Subsubcase 2.1.1,

where the central triple of ~Ej−1 is
(

D, ( ~Q), n
)

— which, by (5.12), is the same as (D, (~P ), n)

— for a certain even-size body D, and Sim•n
(

Deven, (~P )odd
)

= +(~β, q). Here, if one of the
bodies C,D is empty, the two bodies are consistent with each other. Otherwise obviously

n > 0, ~Ei−1 contains the entry [n−1, C], and ~Ej−1 contains the entry [n−1,D]. Then, by the
induction hypothesis, again, C is consistent withD. Thus, in either case, C andD are consis-

tent. Then clause 2 of Lemma 5.6 implies that Simn

(

Ceven, (~P )odd
)

= Simn

(

Deven, (~P )odd
)

.

Consequently, (~α, p) = (~β, q), as desired.
The case of a being even is rather similar. In this case, the (i− 1)th iteration of Main

deals with Subsubcase 2.2.1, where the central triple of ~Ei−1 is
(

(~P ), C, n+1
)

for a certain

odd-size body C, with Sim•n+1

(

(~P )even, Codd
)

= −(~α, p). And the (j − 1)th iteration of

Main also deals with Subsubcase 2.2.1, where the central triple of ~Ej−1 is
(

(~P ),D, n + 1
)

for a certain odd-size body D, with Sim•n+1

(

(~P )even,Dodd
)

= −(~β, q). So, ~Ei−1 contains

the entry [n + 1, C] and ~Ej−1 contains the entry [n + 1,D]. Therefore, by the induc-
tion hypothesis, C and D are again consistent. Then clause 1 of Lemma 5.6 implies that

Simn+1

(

(~P )even, Codd
)

= Simn+1

(

(~P )even,Dodd
)

, meaning that, as desired, (~α, p) = (~β, q).

Consider any n ∈ {0, . . . , k} and h ∈ I. We define

B
h
n (5.13)

as the smallest-size body such that, for every i ∈ I
h
! , whenever

~Ei has an n-indexed entry,

B
h
n is a (not necessarily proper) extension of that entry’s body. In view of Lemma 5.12,

such a B
h
n always exists. We further define the bodies B

h
n ↑ and B

h
n ↓ as follows. Let

B
h
n = (O1, . . . , Os). We agree that below and later, where t is 0 or a negative integer, the

denotation of an expression like (P1, . . . , Pt) should be understood as the empty tuple ().
Then:

B
h
n↑=

{

(O1, . . . , Os) if s is even;
(O1, . . . , Os−1) if s is odd.

B
h
n↓=

{

(O1, . . . , Os) if s is odd;
(O1, . . . , Os−1) if s is even.

Assume h ∈ I, n ∈ {0, . . . , k}, and (P1, . . . , Pp) is a nonempty, not necessarily proper, re-

striction of the body B
h
n. By the (h, n)-birthtime of (P1, . . . , Pp) we shall mean the smallest

number i ∈ I
h
! such that, for some (not necessarily proper) extension B of (P1, . . . , Pp), ~Ei
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has the entry [n,B]. We extend this concept to the case p = 0 by stipulating that the (h, n)-
birthtime of the empty body () is always 0. In informal discourses we may say “(O1, . . . , Op)
was (h, n)-born at time i” to mean that i is the (h, n)-birthtime of (O1, . . . , Op). When h
and n are fixed or clear from the context, we may omit a reference to (h, n) and simply say
“birthtime” or “born”.

Lemma 5.13. Consider any h ∈ I and n ∈ {1, . . . , k}. Let B
h
n−1 ↓= (P1, . . . , Pp) and

B
h
n ↑= (Q1, . . . , Qq), where q > 0. Further let iP be the (h, n − 1)-birthtime of (P1, . . . , Pp)

and iQ be the (h, n)-birthtime of (Q1, . . . , Qq).

1. If iQ > iP , then we have:

Sim•n
(

(Bh
n−1)

even, (Q1, . . . , Qq−1)
odd

)

= +Qq; (5.14)

The triple
(

(Bh
n−1)

even, (Q1, . . . , Qq−1)
odd, n

)

is saturated; (5.15)

Sim→n
(

(Bh
n−1)

even, (Q1, . . . , Qq−1)
odd

)

= B
h
n↑; (5.16)

Sim←n
(

(Bh
n−1)

even, (Q1, . . . , Qq−1)
odd

)

= B
h
n−1. (5.17)

2. If iP > iQ, then we have:

Sim•n
(

(P1, . . . , Pp−1)
even, (Bh

n)
odd

)

= −Pp; (5.18)

The triple
(

(P1, . . . , Pp−1)
even, (Bh

n)
odd, n

)

is saturated; (5.19)

Sim→n
(

(P1, . . . , Pp−1)
even, (Bh

n)
odd

)

= B
h
n; (5.20)

Sim←n
(

(P1, . . . , Pp−1)
even, (Bh

n)
odd

)

= B
h
n−1↓ . (5.21)

Proof. Assume the conditions of the lemma. Take a note of the fact that iP , iQ ∈ I
h
! .

1. Assume iQ > iP . Note that, by the definition of Bh
n↑, q is even.

Since (q > 0 and) q is even, at time iQ the body (Q1, . . . , Qq) obviously must have
been “born” — i.e., the transition from the (iQ−1)th iteration to the iQth iteration must
have happened — according to the scenario of Subcase 2.1 of Main. Namely, in that

scenario, the central triple of ~EiQ−1 was
(

C, (Q1, . . . , Qq−1), n
)

for a certain even-size

body C, and Sim•n
(

Ceven, (Q1, . . . , Qq−1)
odd

)

= +Qq. Since the (iQ − 1)th iteration of

Main was not a restarting one, iQ− 1 is in I
h
! just like iQ is. Therefore, by the definition

(5.13) of Bh
n−1, B

h
n−1 is an extension of C. Now, (5.14) holds by clause 2 of Lemma 5.6.

To verify claim (5.15), deny it for a contradiction. That is, assume there is a proper
restriction D of (Bh

n−1)
even such that Sim•n

(

D, (Q1, . . . , Qq−1)
odd

)

is positive. Since

(Bh
n−1)

even has a proper restriction, the size of Bh
n−1 is at least 2, and therefore, by the defi-

nition of Bh
n−1↓, p is an odd positive integer. Since D is a proper restriction of (Bh

n−1)
even,

it is also a (not necessarily proper) restriction of (P1, . . . , Pp)
even. Furthermore, since

p is odd, (P1, . . . , Pp)
even = (P1, . . . , Pp−1)

even. Consequently, D = (P1, . . . , Pr)
even

for some r strictly smaller than p. We may assume that r is even, for otherwise
(P1, . . . , Pr)

even = (P1, . . . , Pr−1)
even and we could have taken r − 1 instead of r. Thus,

for the nonnegative even integer r with r < p,

Sim•n
(

(P1, . . . , Pr)
even, (Q1, . . . , Qq−1)

odd
)

is positive. (5.22)

Let j be the (h, n − 1)-birthtime of (P1, . . . , Pr+1). Note that j ≤ iP , and hence
j < iQ. Since r + 1 is odd, (P1, . . . , Pr+1) must have been born according to the sce-
nario of Subsubcase 2.2.1 of Main. Namely, in that scenario, (j > 1 and) j − 1 ∈
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I
h
! , the central triple of ~Ej−1 is

(

(P1, . . . , Pr), A, n
)

for some odd-size body A, and

Sim•n
(

(P1, . . . , Pr)
even, Aodd

)

= −Pr+1. By definition (5.13), the body B
h
n is an exten-

sion of A. But, since j < iQ, (Q1, . . . , Qq) was not yet (h, n)-born at time j. So, we must
have A = (Q1, . . . , Qs) for some s ≤ q − 1. Therefore, by clause 1 of Lemma 5.6,

Sim•n
(

(P1, . . . , Pr)
even, (Q1, . . . , Qq−1)

odd
)

= −Pr+1.

The above, however, contradicts (5.22). Claim (5.15) is thus proven.
To justify (5.16), assume Sim→n

(

(Bh
n−1)

even, (Q1, . . . , Qq−1)
odd

)

= (U1, . . . , Uu). We
want to show that (U1, . . . , Uu) = (Q1, . . . , Qq). With (5.14) and the evenness of q in

mind, we can see directly from the definition of Sim→n that u = q, and that (U1, . . . , Uq)
odd =

(Q1, . . . , Qq−1)
odd. q’s being even further implies that (Q1, . . . , Qq−1)

odd = (Q1, . . . , Qq)
odd.

So, (U1, . . . , Uu)
odd = (Q1, . . . , Qq)

odd. It remains to show that we have (U1, . . . , Uu)
even =

(Q1, . . . , Qq)
even as well, i.e., (U1, . . . , Uq)

even = (Q1, . . . , Qq)
even. Consider any even

r ∈ {1, . . . , q}. Let j be the (h, n)-birthtime of (Q1, . . . , Qr). Obviously this body must
have been born according to the scenario of Subcase 2.1 of Main in which j − 1 ∈ I

h
! ,

~Ej−1 has the entry [n, (Q1, . . . , Qr−1)] and, with
(

C, (Q1, . . . , Qr−1), n
)

being the central

triple of ~Ej−1 for some even-size body C, we have Sim•n
(

Ceven, (Q1, . . . , Qr−1)
odd

)

= +Qr.

By definition (5.13), Bh
n−1 is an extension of C. So, by clause 2 of Lemma 5.6,

Sim•n
(

(Bh
n−1)

even, (Q1, . . . , Qr−1)
odd

)

= +Qr. (5.23)

But how does the computation of (5.23) differ from the computation of (5.14)? The
two computations proceed in exactly the same ways, with the variable S of Sim•n going
through exactly the same values in both cases, with the only difference that, while the
computation of (5.23) stops after S takes its (r/2)th positive value +Ur and returns that
value as +Qr, the computation of (5.14) continues further (if r 6= q) until the value of
S becomes +Uq. As we see, we indeed have Ur = Qr as desired. Claim (5.16) is now
verified.

Claim (5.17) can be verified in a rather similar way. Assume

Sim←n
(

(Bh
n−1)

even, (Q1, . . . , Qq−1)
odd

)

= (V1, . . . , Vv).

We want to show that (V1, . . . , Vv) = B
h
n−1. By the definition of Sim←n , (V1, . . . , Vv)

even =

(Bh
n−1)

even. It remains to show that we also have (V1, . . . , Vv)
odd = (Bh

n−1)
odd. Notice

that (Bh
n−1)

odd = (Bh
n−1 ↓)

odd = (P1, . . . , Pp)
odd, and that (p ≤ v and) (V1, . . . , Vv)

odd =

(V1, . . . , Vp)
odd. So, what we want to show is (V1, . . . , Vp)

odd = (P1, . . . , Pp)
odd. Consider

any odd r ∈ {1, . . . , p}. Let j be the (h, n − 1)-birthtime of (P1, . . . , Pr). Note that
j ≤ iP and hence j < iQ. The birth of (P1, . . . , Pr) should have occurred according to

Subsubcase 2.2.1 of Main, in a situation where 1 ≤ j − 1 ∈ I
h
! , the central triple of ~Ej−1

is
(

(P1, . . . , Pr−1), C, n
)

for some odd-size body C, and Sim•n
(

(P1, . . . , Pr−1)
even, Codd

)

=

−Pr. But (Q1, . . . , Qq) is an extension of C because so is B
h
n. In fact, it is a proper

extension, because (Q1, . . . , Qq) was not yet (h, n)-born at time j. So, (Q1, . . . , Qq−1)
odd

is a (not necessarily proper) extension of Codd. Hence, by clause 1 of Lemma 5.6,

Sim•n
(

(P1, . . . , Pr−1)
even, (Q1, . . . , Qq−1)

odd
)

= −Pr. (5.24)

But how does the computation of (5.24) differ from the computation of (5.14)? The
two computations proceed in exactly the same ways, with the variable S of Sim•n going
through exactly the same values in both cases, with the only difference that, while
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the computation of (5.24) stops after S takes its ((r + 1)/2)th negative value −Vr and
returns that value as −Pr, the computation of (5.14) continues further until the value
of S becomes +Qq. As we see, we indeed have Vr = Pr as desired. This completes our
proof of clause 1 of the lemma.

2. Assume iP > iQ. Note that p is odd, q is even and q 6= 0.

The way (P1, . . . , Pp) was born is that the central triple of ~EiP−1 had the form
(

(P1, . . . , Pp−1), C, n
)

for a certain odd-size bodyC, and Sim•n
(

(P1, . . . , Pp−1)
even, Codd

)

=

−Pp. But B
h
n is an extension of C. Therefore (5.18) holds by Lemma 5.6.

To verify (5.19), deny it for a contradiction: assume there is a proper restriction D of
(Bh

n)
odd such that Sim•n

(

(P1, . . . , Pp−1)
even,D

)

is negative. D’s being a proper restriction

of (Bh
n)

odd implies that D = (Q1, . . . , Qr)
odd for some odd r — fix it — strictly smaller

than q. Thus,

Sim•n
(

(P1, . . . , Pp−1)
even, (Q1, . . . , Qr)

odd
)

is negative. (5.25)

Let j be the birthtime of (Q1, . . . , Qr+1). Note that j ≤ iQ, and hence j < iP .

(Q1, . . . , Qr+1)’s birth must have happened in a situation where 1 ≤ j − 1 ∈ I
h
! , the

central triple of ~Ej−1 happens to be
(

A, (Q1, . . . , Qr), n
)

for some even-size body A, and

Sim•n
(

Aeven, (Q1, . . . , Qr)
odd

)

= +Qr+1. B
h
n−1 is an extension of A. But since j < iP ,

(P1, . . . , Pp) was not yet born at time j. So, A = (P1, . . . , Ps) for some s ≤ p − 1.
Therefore, by Lemma 5.6,

Sim•n
(

(P1, . . . , Pp−1)
even, (Q1, . . . , Qr)

odd
)

= +Qr+1.

The above, however, contradicts (5.25). Claim (5.19) is thus proven.
For (5.20), assume Sim→n

(

(P1, . . . , Pp−1)
even, (Bh

n)
odd

)

= (U1, . . . , Uu). We want to

show (U1, . . . , Uu) = B
h
n. Directly from the definition of Sim→n , (U1, . . . , Uu)

odd = (Bh
n)

odd.
It remains to show that (U1, . . . , Uu)

even = (Bh
n)

even. Note that (Bh
n)

even = (Bh
n ↑)

even =
(Q1, . . . , Qq)

even, and that (q ≤ u and) (U1, . . . , Uu)
even = (U1, . . . , Uq)

even. So, what we
want to show is (U1, . . . , Uq)

even = (Q1, . . . , Qq)
even. For this purpose, consider any even

r ∈ {1, . . . , q}. Let j be the (h, n)-birthtime of (Q1, . . . , Qr). Obviously (Q1, . . . , Qr)
must have been born according to the scenario of Subcase 2.1 of Main in which j − 1 ∈
I
h
! ,

~Ej−1 has the entry [n, (Q1, . . . , Qr−1)] and, with
(

C, (Q1, . . . , Qr−1), n
)

being the

central triple of ~Ej−1 for some even-size body C, Sim•n
(

Ceven, (Q1, . . . , Qr−1)
odd

)

=

+Qr. By definition (5.13), B
h
n−1 is an extension of C. Therefore, by Lemma 5.6,

Sim•n
(

(Bh
n−1)

even, (Q1, . . . , Qr−1)
odd

)

= +Qr. However, (Bh
n−1)

even = (Bh
n−1 ↓)even =

(P1, . . . , Pp)
even; further, since p is odd, (P1, . . . , Pp)

even = (P1, . . . , Pp−1)
even, and hence

(Bh
n−1)

even = (P1, . . . , Pp−1)
even. Thus we have:

Sim•n
(

(P1, . . . , Pp−1)
even, (Q1, . . . , Qr−1)

odd
)

= +Qr. (5.26)

Comparing the computations of (5.18) and (5.26), we see that the two computations
proceed in exactly the same ways, with the only difference that, while the computation
of (5.26) stops after variable S of Sim•n takes its (r/2)th positive value +Ur and returns
that value as +Qr, the computation of (5.18) continues further until the value of S
becomes −Pp. As we see, we indeed have Ur = Qr as desired. Claim (5.20) is verified.

For (5.21), assume Sim←n
(

(P1, . . . , Pp−1)
even, (Bh

n)
odd

)

= (V1, . . . , Vv). We want to show

that (V1, . . . , Vv) = B
h
n−1 ↓. With (5.18) and the oddness of p in mind, we see from the

definition of Sim←n that v = p, and that (V1, . . . , Vp)
even = (P1, . . . , Pp−1)

even. The fact
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that p is odd additionally implies (P1, . . . , Pp−1)
even = (P1, . . . , Pp)

even. Consequently,

(V1, . . . , Vv)
even = (P1, . . . , Pp)

even = (Bh
n−1 ↓)

even. So, it remains to show that we also

have (V1, . . . , Vv)
odd = (Bh

n−1 ↓)
odd, i.e., (V1, . . . , Vp)

odd = (P1, . . . , Pp)
odd. Consider any

odd r ∈ {1, . . . , p}. Let j be the (h, n − 1)-birthtime of (P1, . . . , Pr). Note that j ≤ iP .
The birth of (P1, . . . , Pr) should have occurred according to Subsubcase 2.2.1 of Main,

in a situation where 1 ≤ j − 1 ∈ I
h
! , the central triple of ~Ej−1 is

(

(P1, . . . , Pr−1), C, n
)

for some odd-size body C, and Sim•n
(

(P1, . . . , Pr−1)
even, Codd

)

= −Pr. But B
h
n is an

extension of C. Hence, by Lemma 5.6,

Sim•n
(

(P1, . . . , Pr−1)
even, (Bh

n)
odd

)

= −Pr. (5.27)

Compare the computations of (5.27) and (5.18). The two computations proceed in exactly
the same ways, with the only difference that, while the computation of (5.27) stops after S
takes its ((r+1)/2)th negative value −Vr and returns that value as −Pr, the computation
of (5.18) continues further (if r 6= p) until the value of S becomes −Pp. Thus Vr = Pr,
as desired.

We agree for the rest of Section 5 that ~ is the greatest element of I. The existence of such
an element is guaranteed by Lemma 5.11.

Lemma 5.14. The following statements are true (with ~ as above):

1. For every n ∈ {0, . . . , k}, the size of B~
n is odd.

2. For every n ∈ {1, . . . , k}, the (~, n − 1)-birthtime of B
~
n−1 is greater than the (~, n)-

birthtime of B~
n.

3. For every n ∈ {0, . . . , k}, the scale of the last organ of B~
n is the same as the master scale

of ~E~.

Proof.

1. Assume n ∈ {0, . . . , k}, B~
n = (Q1, . . . , Qq), and iQ is the (~, n)-birthtime of B~

n. If n ≥ 1,

further assume that B~
n−1 = (P1, . . . , Pp), and iP is the (~, n− 1)-birthtime of B~

n−1.
We first verify that

If n = 0, then q is odd. (5.28)

Indeed, assume n = 0. Consider the last, i.e., ~th, iteration of Main. This must be
an iteration that proceeds according to Subsubsubcase 2.2.2.2, because all other sorts
of iterations always either Repeat or Restart. Namely, the central triple of ~E~ is
(

(), B, 0
)

for some odd-size body B, and Sim•0
(

(), Bodd
)

is negative. Of course the ~th

iteration is not ~-transient, so ~ ∈ I
~

! . By definition (5.13), B~
0 is an extension of B.

So, B = (Q1, . . . , Qa) for some odd a with a ≤ q. Suppose a < q. Let i be the (~, 0)-
birthtime of (Q1, . . . , Qa+1). Obviously the birth of (Q1, . . . , Qa+1) must have occurred

according to the scenario of Subcase 2.1 of Main in which i > 1, ~Ei−1 contains the entry
[0, (Q1, . . . , Qa)], i.e., [0, B], and Sim•0

(

(), Bodd
)

= +Qa+1. This, however, contradicts

with our earlier observation that Sim•0
(

(), Bodd
)

is negative. From this contradiction we
conclude that a = q. If so, (5.28) holds, because, as already noted, a is odd.

We next verify that
If n ∈ {1, . . . , k}, then q is odd. (5.29)

Our proof of (5.29) is, in fact, by induction on n ≥ 1. Assume n ∈ {1, . . . , k}. By
(5.28) if n = 1 (i.e., if we are dealing with the basis of induction), and by the induction
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hypothesis if n > 1 (i.e., if we are dealing with the inductive step), we have:

p (the size of B~
n−1) is odd. (5.30)

Obviously, (5.30) implies that (P1, . . . , Pp) was born according to the scenario of Subsub-

case 2.2.1 ofMain in which iP−1 ∈ I
~

! , the central triple of
~EiP−1 is

(

(P1, . . . , Pp−1), C, n
)

for a certain odd-size body C, and

Sim•n
(

(P1, . . . , Pp−1)
even, Codd

)

= −Pp.

By definition (5.13), B~
n is an extension of C. Hence, by clause 1 of Lemma 5.6,

Sim•n
(

(P1, . . . , Pp−1)
even, (Q1, . . . , Qq)

odd
)

= −Pp. (5.31)

For a contradiction suppose (5.29) is false, i.e., assume q is even. Then q ≥ 2, because
B
~
n = (Q1, . . . , Qq) is an extension of the odd-size C. Remember that iQ is the (~, n)-

birthtime of (Q1, . . . , Qq). Since q is even, (Q1, . . . , Qq) must have been born according

to the scenario of Subcase 2.1 of Main in which iQ − 1 ∈ I
~

! ,
~EiQ−1 contains the entry

[n, (Q1, . . . , Qq−1)] and, with
(

D, (Q1, . . . , Qq−1), n
)

being the central triple of ~EiQ−1 for
some even-size restriction D of (P1, . . . , Pp),

Sim•n
(

Deven, (Q1, . . . , Qq−1)
odd

)

= +Qq.

But since — by (5.30) — p is odd, (P1, . . . , Pp−1) is an extension of D. Hence, by clause
2 of Lemma 5.6,

Sim•n
(

(P1, . . . , Pp−1)
even, (Q1, . . . , Qq−1)

odd
)

= +Qq,

which, as q is even and hence (Q1, . . . , Qq)
odd = (Q1, . . . , Qq−1)

odd, is the same as to say
that

Sim•n
(

(P1, . . . , Pp−1)
even, (Q1, . . . , Qq)

odd
)

= +Qq. (5.32)

Comparing (5.31) with (5.32), we see a desired contradiction. This completes our proof
of (5.29) and hence of clause 1 of the lemma, because the latter is nothing but (5.28) and
(5.29) put together.

2. Assume n ∈ {1, . . . , k}, B
~
n−1 = (P1, . . . , Pp), iP is the (~, n − 1)-birthtime of B

~
n−1,

B
~
n = (Q1, . . . , Qq), and iQ is the (~, n)-birthtime of B~

n. For a contradiction, further
assume iP ≤ iQ. From the already verified clause 1 of the present lemma, we know
that both p and q are odd. The oddness of p implies that, at time iP , (P1, . . . , Pp)
was born according to the scenario of Subsubcase 2.2.1 of Main in which iP − 1 ∈
I
~

! , the central triple of ~EiP−1 is
(

(P1, . . . , Pp−1), C, n
)

for some odd-size body C, and

Sim•n
(

(P1, . . . , Pp−1)
even, Codd

)

= −Pp. By definition (5.13), (Q1, . . . , Qq) is an extension
of C. Further, since q is odd and the body (Q1, . . . , Qq) was not yet born at time iP − 1,
we have q ≥ 3, with (Q1, . . . , Qq−2) being an extension of C. Then, by clause 1 of Lemma
5.6,

Sim•n
(

(P1, . . . , Pp−1)
even, (Q1, . . . , Qq−2)

odd
)

= −Pp. (5.33)

Let j be the (~, n)-birthtime of (Q1, . . . , Qq−1). The birth of (Q1, . . . , Qq−1) should have

occurred according to the scenario Subcase 2.1 of Main in which j − 1 ∈ I
~

! , the central

triple of ~Ej−1 is
(

Deven, (Q1, . . . , Qq−2)
odd, n

)

for some even-size body D, and

Sim•n
(

Deven, (Q1, . . . , Qq−2)
odd

)

= +Qq−1.
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By definition (5.13), (P1, . . . , Pp) is an extension of D. So, by clause 2 of Lemma 5.6,

Sim•n
(

(P1, . . . , Pp)
even, (Q1, . . . , Qq−2)

odd
)

= +Qq−1. But, since p is odd, we have

(P1, . . . , Pp)
even = (P1, . . . , Pp−1)

even.

Thus,
Sim•n

(

(P1, . . . , Pp−1)
even, (Q1, . . . , Qq−2)

odd
)

= +Qq−1.

The above is in contradiction with (5.33).

3. We start with the following claim:

Claim 1. Consider any n ∈ {0, . . . , k}. Assume B
~
n = (Q1, . . . , Qq+1), and t is an even

number with 2 ≤ t ≤ q. Then the scale of Qt is the same as that of Qt−1.

To verify this claim, assume its conditions. We proceed by induction on n = 0, 1, . . . , k.
For the basis of induction, consider the case of n = 0. Let i be the (~, 0)-birthtime of

(Q1, . . . , Qt). Obviously the (i − 1)th iteration of Main follows the scenario of Subcase

2.1 where i− 1 ∈ I
~

! , the central triple of ~Ei−1 is
(

(), (Q1, . . . , Qt−1), 0
)

, and

Sim•0
(

(), (Q1, . . . , Qt−1)
odd

)

= +Qt. (5.34)

Looking back at the description of the procedure Sim•0, we see that, in computing (5.34),
the procedure simply lets the scale of the output +Qt be a copy of the scale of the
“last-fetched” organ Qt−1. Done.

For the inductive step, assume n ≥ 1. Let B
~
n−1 = (P1, . . . , Pp). From clause 1 of

the present lemma we know that both p and q + 1 are odd. Note that, for this reason,
B
~
n−1 ↓= (P1, . . . , Pp) and B

~
n ↑= (Q1, . . . , Qq). Let iP be the (~, n − 1)-birthtime of

B
~
n−1 ↓, and iQ be the (~, n)-birthtime of B~

n ↑. Clause 2 of the present lemma implies
that iP > iQ. Hence the statements (5.18)-(5.21) of Lemma 5.13, with ~ in the role of
h, are true. Let us again remember the work of Sim• and imagine the computation of
(5.18) (with h = ~). With some thought and with (5.18)-(5.21) in mind, we can see the
following scenario. At some point — by the end of one of the iterations of Loopn, to be
more specific — the variable R of Sim•n takes the value +Qt−1. Let g be the scale of Qt−1.
By the end of the next iteration of Loopn, the variable S of Sim•n becomes either +Qt, or
−Pj−1 for some even j ∈ {1, . . . , p}, with the scale of S in either case being the same as
the scale g of the latest (by that time) value of R. Thus, if S becomes +Qt, the scale of
Qt is the same as that of Qt−1, and we are done. If S becomes −Pj−1, then, immediately
after that (on the same iteration of Loopn), R takes the value −Pj. By the induction
hypothesis, the scale of Pj is the same as the scale g of Pj−1. On the iterations of Loopn
that follow, S and R may take several (possibly zero) consecutive values from the series
−Pj+1,−Pj+3, . . . and −Pj+2,−Pj+4, . . ., respectively, and the scales of all these values
will remain to be g for the same reasons as above. Sooner or later, after this series of
negative values, S becomes +Qt. The scale of this signed organ, as before, will be the
same as the scale g of the latest value of R. The scale of Qt is thus the same as that of
Qt−1, which ends our proof of Claim 1.

Now, we prove clause 3 of the lemma by induction on k − n. Let m be the master

scale of ~E~. The basis case of k − n = 0, i.e., n = k, is straightforward. Next, consider
any n ∈ {1, . . . , k}. By the induction hypothesis, the scale of the last organ of B~

n is
m. Let, as in the inductive step of the above proof of Claim 1, B~

n−1 = (P1, . . . , Pp) and

B
~
n = (Q1, . . . , Qq+1). Arguing as in that proof — with q+1 in the role of t−1, m in the
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role of g and relying on Claim 1 itself where the proof of the inductive step of the proof
of Claim 1 relied on its induction hypothesis — we find that, in the process of computing
(5.18) (with h = ~), at some point, the variable R of the procedure Sim•n takes the value
+Qq+1 (its last positive value) and that, beginning from that point, the scale m will be
inherited by all subsequent negative values that the variables S and R assume, which (in
the present case) include the final value −Pp assumed by S. Thus, as desired, the scale

of the last organ Pp of B~
n−1 is the same as the master scale m of ~E~.

Lemma 5.15. Consider an arbitrary member h of I.

1. (a) There is a run Γh
0 generated by H0 such that Bh

0 � Γh
0 .

(b) Furthermore, if h is the greatest element of I and Bh
0 is a reasonable run of F ′(0),

then, for such a Γh
0 , we simply have Bh

0 = Γh
0 .

2. Consider any n ∈ {1, . . . , k}.

(a) There is a run Γh
n generated by Hn such that Bh

n↑ � (Γh
n)

1. and ¬Bh
n−1↓ � (Γh

n)
0..

(b) Furthermore, if h is the greatest element of I, Bh
n is a reasonable run of F ′(n)

and Bh
n−1 is a reasonable run of F ′(n − 1), then, for such a Γh

n, we simply have

Bh
n = (Γh

n)
1. and ¬Bh

n−1 = (Γh
n)

0..

Proof. Fix an arbitrary h ∈ I.

1. Let Bh
0 = (T1, . . . , Tt).

If t = 0, then the position Bh
0 is empty, and is thus an initial segment of any run. So,

an arbitrarily selected run Γh
0 generated by H0 — such as, for instance, the run in which

Environment made no moves at all — satisfies subclause (a). As for subclause (b), it is
trivially satisfied because, by clause 1 of Lemma 5.14, h is not the greatest element of I,
for otherwise t would have to be odd.

Now, for the rest of our proof of clause 1, assume t ≥ 1. This automatically makes
(

(), (Bh
0 )

odd, 0
)

a Sim-appropriate triple. We first claim that

For any nonempty proper restriction C of (Bh
0)

odd, Sim•0
(

(), C
)

is positive. (5.35)

For a contradiction suppose (5.35) if false, and assume that, for some nonempty proper
restriction C of (Bh

0)
odd, Sim•0

(

(), C
)

is negative. Obviously C = (T1, . . . , Ts)
odd for some

odd s with s < t. Fix such an s. Thus,

Sim•0
(

(), (T1, . . . , Ts)
odd

)

is negative. (5.36)

Let i be the (h, 0)-birthtime of (T1, . . . , Ts+1). This means that i − 1 ∈ I
h
! , the (i −

1)th iteration of Main proceeds according to Subcase 2.1, ~Ei−1 contains the entry

[0, (T1, . . . , Ts)] and, with
(

(), (T1, . . . , Ts), 0
)

being the central triple of ~Ei−1, we have

Sim•0
(

(), (T1, . . . , Ts)
odd

)

= +Ts+1. This, however, contradicts (5.36). Claim (5.35) is
thus verified.

Now we observe that

The triple
(

(), (Bh
0 )

odd, 0
)

is saturated. (5.37)

Indeed, if Sim•0
(

(), (Bh
0 )

odd
)

is positive, then (5.37) automatically holds because the empty

body () has no proper restrictions; and if Sim•0
(

(), (Bh
0 )

odd
)

is negative, then (5.37) is an
immediate consequence of (5.35).
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Our next claim is that

Sim→0
(

(), (Bh
0 )

odd
)

is an extension of Bh
0 . (5.38)

To justify this claim, assume Sim→0
(

(), (Bh
0 )

odd
)

= (W1, . . . ,Ww). From the defini-

tion of Sim→0 , we have (W1, . . . ,Ww)
odd = (Bh

0)
odd. So, we only need to show that

(W1, . . . ,Ww)
even is an extension of (Bh

0)
even, i.e., of (T1, . . . , Tt)

even. But indeed, consider
any even r ∈ {1, . . . , t}. Let i be the (h, 0)-birthtime of (T1, . . . , Tr). This means that
i−1 ∈ I

h
! , the (i−1)th iteration of Main proceeds according to the scenario of Subcase 2.1

where ~Ei−1 has the entry [0, (T1, . . . , Tr−1)] and, with
(

(), (T1, . . . , Tr−1), 0
)

being the cen-

tral triple of ~Ei−1, Sim
•
0

(

(), (T1, . . . , Tr−1)
odd

)

= +Tr. But how does the computation of

Sim•0
(

(), (T1, . . . , Tr−1)
odd

)

differ from the computation of Sim•0
(

(), (T1, . . . , Tt)
odd

)

(from

which the value (W1, . . . ,Ww) of Sim
→
0

(

(), (Bh
0 )

odd
)

is extracted)? Both computations pro-
ceed in exactly the same way, with the variable S of Sim•0 going through exactly the same
values, with the only difference that, while the computation of Sim•0

(

(), (T1, . . . , Tr−1)
odd

)

stops after S takes its (r/2)th value +Wr and returns that value as +Tr, the computa-
tion of Sim•0

(

(), (T1, . . . , Tt)
odd

)

continues further until that value becomes +Ww (if the

output is positive) or −
(

(), s
)

for some s (if the output is negative). Thus Wr = Tr,
which completes our proof of claim (5.38).

Since, by (5.37), the triple
(

(), (Bh
0 )

odd, 0
)

is saturated, clause 1(a) of Lemma 5.8

guarantees that there is a run Υ — let us rename it into Γh
0 — generated by H0 such

that Sim→0
(

(), (Bh
0 )

odd
)

� Γh
0 . This, by (5.38), implies that Bh

0 � Γh
0 , as promised in

clause 1(a) of the present lemma.
For clause 1(b) of the present lemma, let us additionally assume that h is the greatest

element of I and Bh
0 is a reasonable run of F ′(0). Note that the last, hth iteration of

Main deals with Subsubsubcase 2.2.2.2, for any other case causes a next iteration to

occur. Let
(

(), B, 0
)

be the central triple of ~Eh. So,

Sim0

(

(), Bodd
)

=
(

−
(

(), v
)

, u
)

(5.39)

for some numbers v, u. Fix these numbers. By definition (5.13), B is a restriction of
B
h
0 . And, by clause 1 of Lemma 5.14, the size of Bh

0 is odd. Consequently, B is not a
proper restriction of Bh

0 , because otherwise B
odd would be a proper restriction of (Bh

0)
odd,

making the statements (5.35) and (5.39) contradictory. We thus find that B = B
h
0 , which

allows us to re-write (5.39) as

Sim0

(

(), (Bh
0 )

odd
)

=
(

−
(

(), v
)

, u
)

. (5.40)

In view of Sim•0
(

(), (Bh
0 )

odd
)

’s being negative, one can see immediately from the definition

of Sim→0 that the size of Sim→0 ((), (Bh
0 )

odd) does not exceed the size of B
h
0 . This, in

combination with (5.38), means that

Sim→0
(

(), (Bh
0 )

odd
)

= B
h
0 . (5.41)

Imagine the work of Sim0 when computing (5.40). Taking (5.37) into account, we can
see that v is just a copy of the scale of the last organ of (Bh

0)
odd and hence, by clause 1

of Lemma 5.14, of the last organ of (Bh
0). Consequently, by clause 3 of Lemma 5.14, v

is the master scale of ~Eh. Then, since the hth iteration of Main proceeds according to
Subsubsubcase 2.2.2.2, we have v ≥ L(l, Uh), where Uh is the value that the variable U
of Main assumes on the hth iteration as a result of updating the old value to max(u,U).
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We thus have u ≤ Uh. And the function L is, of course, monotone. Consequently, from
the fact v ≥ L(l, Uh), we find that v ≥ L(l, u). But then, by (5.41) and clause 1(b) of
Lemma 5.8, there is a run Υ generated by H0 — let us rename it into Γh

0 — such that

Bh
0 = Γh

0 . Done.

2. Fix any n ∈ {1, . . . , k}, and assume

B
h
n−1↓= (P1, . . . , Pp); B

h
n↑= (Q1, . . . , Qq);

B
h
n−1 = (P1, . . . , Pp′); B

h
n = (Q1, . . . , Qq′).

For clause 2(a), we want to show the existence of a run Γh
n generated by Hn such that

(Q1, . . . , Qq) � (Γh
n)

1. and ¬(P1, . . . , Pp) � (Γh
n)

0. (5.42)

It is not hard to see that, if q is 0, then so is p, because there is no way for (P1) to

be ever (h, n − 1)-born. Then the runs (P1, . . . , Pp) and (Q1, . . . , Qq) are empty and,

therefore, any run Γh
n generated by Hn satisfies (5.42). Now, for the rest of this proof,

assume q is non-zero, which, in view of q’s being even, means that q ≥ 2. In what
follows, we use iP to denote the (h, n− 1)-birthtime of (P1, . . . , Pp) and iQ to denote the
(h, n)-birthtime of (Q1, . . . , Qq). We claim that

iP 6= iQ. (5.43)

Indeed, it is easy to see that two bodies have identical birthtimes only if they are both
empty (and hence their birthtimes are both 0). However, as we have already agreed,
(Q1, . . . , Qq) is nonempty. In view of (5.43), it is now sufficient to consider the two cases
iQ > iP and iP > iQ.

Case of iQ > iP : In this case, according to clause 1 of Lemma 5.13, the triple
(

(P1, . . . , Pp′)
even, (Q1, . . . , Qq−1)

odd, n
)

is saturated, and we have:

Sim→n
(

(P1, . . . , Pp′)
even, (Q1, . . . , Qq−1)

odd
)

= (Q1, . . . , Qq);
Sim←n

(

(P1, . . . , Pp′)
even, (Q1, . . . , Qq−1)

odd
)

= (P1, . . . , Pp′).

Therefore, by clause 2(a) of Lemma 5.8, there is a run Υ — let us rename it into Γh
n —

generated by Hn such that (Q1, . . . , Qq) � (Γh
n)

1. and ¬(P1, . . . , Pp′) � (Γh
n)

0.. Of course,

¬(P1, . . . , Pp′) � (Γh
n)

0. implies ¬(P1, . . . , Pp) � (Γh
n)

0.. So, (5.42) holds, which takes
care of clause 2(a) of the present lemma. As for clause 2(b), it is satisfied vacuously
because h is not the greatest element of I. To see why h is not the greatest element of
I, assume the opposite. Let iP ′ be the (h, n − 1)-birthtime of (P1, . . . , Pp′) and iQ′ be
the (h, n)-birthtime of (Q1, . . . , Qq′). By clause 1 of Lemma 5.14, p is odd, implying that
p′ = p and hence iP ′ = iP . Next, the fact q′ ≥ q obviously implies that iQ′ ≥ iQ. So, the
condition iQ > iP of the present case implies iQ′ > iP ′ . But this is in contradiction with
clause 2 of Lemma 5.14.

Case of iP > iQ: In this case, according to clause 2 of Lemma 5.13, we have:

Sim→n
(

(P1, . . . , Pp−1)
even, (Q1, . . . , Qq′)

odd
)

= −Pp; (5.44)

The triple
(

(P1, . . . , Pp−1)
even, (Q1, . . . , Qq′)

odd, n
)

is saturated; (5.45)

Sim→n
(

(P1, . . . , Pp−1)
even, (Q1, . . . , Qq′)

odd
)

= (Q1, . . . , Qq′); (5.46)

Sim←n
(

(P1, . . . , Pp−1)
even, (Q1, . . . , Qq′)

odd
)

= (P1, . . . , Pp). (5.47)
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From (5.45)-(5.47), by clause 2(a) of Lemma 5.8 with (P1, . . . , Pp−1)
even in the role of

A and (Q1, . . . , Qq′)
odd in the role of B, there is a run Υ — let us rename it into Γh

n

— generated by Hn such that (Q1, . . . , Qq′) � (Γh
n)

1. and ¬(P1, . . . , Pp) � (Γh
n)

0.. But

(Q1, . . . , Qq′) � (Γh
n)

1. implies (Q1, . . . , Qq) � (Γh
n)

1.. So, (5.42) holds, which takes care
of clause 2(a) of the present lemma.

For clause 2(b), let us assume moreover that h is the greatest element of I, (Q1, . . . , Qq′)

is a reasonable run of F ′(n), and ¬(P1, . . . , Pp′) is a reasonable run of F ′(n−1). By clause
1 of Lemma 5.14, p′ is odd, implying that p = p′. So, (5.44)-(5.47) can be re-written as

Sim•n
(

(P1, . . . , Pp′−1)
even, (Q1, . . . , Qq′)

odd
)

= −Pp′ ; (5.48)

The triple
(

(P1, . . . , Pp′−1)
even, (Q1, . . . , Qq′)

odd, n
)

is saturated; (5.49)

Sim→n
(

(P1, . . . , Pp′−1)
even, (Q1, . . . , Qq′)

odd
)

= (Q1, . . . , Qq′); (5.50)

Sim←n
(

(P1, . . . , Pp′−1)
even, (Q1, . . . , Qq′)

odd
)

= (P1, . . . , Pp′). (5.51)

Let Pp′ = (~ω, v). In view of (5.48), there is a number u (fix it) such that

Simn

(

(P1, . . . , Pp′−1)
even, (Q1, . . . , Qq′)

odd
)

=
(

−(~ω, v), u
)

. (5.52)

As observed earlier when verifying clause 2(b) of the lemma in the case of iQ > iP ,

we have p = p′, meaning that iP is the (h, n − 1)-birthtime of Bh
n−1 = (P1, . . . , Pp′). In

addition, let iL be the (h, k)-birthtime of Bh
k. By clause 2 of Lemma 5.14, iP > iL. This

means that, for any j ∈ {iP , . . . , h}, the jth iteration of Main is not locking, because
a locking iteration always gives birth to a new, “bigger” master body. But the absence
of locking iterations between iP and h implies the following, because otherwise iP would
be h-transient:

For any j ∈ {iP , . . . , h}, the j’th iteration of Main is not restarting. (5.53)

Since h is the greatest element of I, according to clause 3 of Lemma 5.14, v is the

master scale of ~Eh. Also, as observed earlier in the proof of clause 1(b), the hth iteration
of Main deals with Subsubsubcase 2.2.2.2, implying that v ≥ L(l, Uh), where Uh is the
final value of the variable U of Main (assumed on the hth iteration). But note that
UiP — the value of U assumed on the iP th iteration of Main — does not exceed Uh.
That is because only restarting iterations of Main can decrease the value of U , but, by
(5.53), there are no such iterations between iP and h. Also, it is clear that, on the iP th
iteration, (P1, . . . , Pp′) was born according to the scenario of Subsubcase 2.2.1 due to
(5.52), implying that UiP ≥ u, because, at the beginning of that iteration, the variable
U was updated to UiP = max(u,U). Thus, Uh ≥ u and hence, due to the monotonicity
of L and the earlier-established fact v ≥ L(l, Uh), we have

v ≥ L(l, u). (5.54)

From (5.49), (5.52), (5.50), (5.51) and (5.54), using clause 2(b) of Lemma 5.8, with
(P1, . . . , Pp′−1)

even in the role of A and (Q1, . . . , Qq′)
odd in the role of B, there is a run Υ—

let us rename it into Γh
n — such that (Q1, . . . , Qq′) = (Γh

n)
1. and ¬(P1, . . . , Pp′) = (Γh

n−1)
0.,

as desired.
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Lemma 5.16. For every n ∈ {0, . . . , k} and every h ∈ I, Bh
n is a reasonable run of F ′(n).

Proof. Fix an n ∈ {0, . . . , k} and an h ∈ I. Below, whenever we say that a player ℘ has
made — or is responsible for making — a given run unreasonable, it is to be (or, at least,
can be) understood as that the last move of the shortest unreasonable initial segment of
the run is ℘-labeled.

First, consider the case n = 0. For a contradiction, assume Bh
0 is not a reasonable

run of F ′(0). By clause 1(a) of Lemma 5.15, Bh
0 is an initial segment of a certain run Γh

0

generated by H0. Therefore, in view of our assumption that H0 plays F ′(0) reasonably, the

only way Bh
0 could be unreasonable is if ⊥ (H0’s adversary) made it so. But, according to

clause 2(a) of Lemma 5.15, a certain extension (Γh
1)

0. of ¬Bh
0 ↓ is a run generated by H1

(with H1 playing as ⊤) in the component ¬F ′(0) of ¬F ′(0) ∨F ′(1). Therefore, as — by

our assumption — H1 = ⊤ plays reasonably, ⊤ cannot be responsible for making ¬Bh
0 ↓

unreasonable. Then ⊤ cannot be responsible for ¬Bh
0 ’s being unreasonable either, because

¬Bh
0 differs from ¬Bh

0 ↓ only in that the former perhaps has some additional ⊥-labeled moves
at the end. Contradiction.

Next, consider the case 0 < n < k. It is rather similar to the preceding one. For a

contradiction, assume Bh
n is not a reasonable run of F ′(n). By clause 2(a) of Lemma 5.15,

there is a run Γh
n generated by Hn such that Bh

n↑ is an initial segment of (Γh
n)

1.. Bh
n only

differs from Bh
n↑ in that the former perhaps has some additional ⊥-labeled moves at the

end. For this reason, as Hn plays F ′(n − 1)→F ′(n) reasonably, the only way Bh
n could

be unreasonable is if ⊥ (Hn’s adversary) made it so. Then ¬Bh
n is an unreasonable run of

¬F ′(n), with player ⊤ being responsible for making it so. But, (again) according to clause

2(a) of Lemma 5.15, a certain extension (Γh
n+1)

0. of ¬Bh
n↓ is a run generated by Hn+1 in

the component ¬F ′(n) of ¬F ′(n) ∨F ′(n + 1). As Hn+1 = ⊤ plays this game reasonably,

it cannot be responsible for making ¬Bh
n↓ an unreasonable run of ¬F ′(n). Then ⊤ cannot

be responsible for making ¬Bh
n unreasonable either, because ¬Bh

n only differs from ¬Bh
n↓ in

that the former perhaps has some additional ⊥-labeled moves at the end. Contradiction.
Finally, consider the case n = k. Just as in the preceding cases, Hk cannot be re-

sponsible for making Bh
k an unreasonable run of F ′(k). Looking at Case 1, Subsubcase

2.1.2 and Subsubsubcase 2.2.2.2 of the description of Main, it is clear that Hk’s imaginary

adversary does not make Bh
k unreasonable either. This is so because, in F ′(k), Main lets

Hk’s adversary mimic Mk’s real environment’s play. The latter, by the Clean Environment
Assumption, plays (legally and hence) quasilegally. And even if it does not play prudently,

Main prudentizes Mk’s environment’s moves before copying and adding them to Bh
k as

Hk’s imaginary adversary’s moves.

Recall that ~ is the greatest element of I.

Lemma 5.17. For every n ∈ {0, . . . , k}, B~
n is a ⊤-won run of F ′(n).

Proof. Induction on n. According to clause 1(b) of Lemma 5.15, in conjunction with Lemma

5.16, B~
0 is a run generated by H0. So, since H0 wins F ′(0), B~

0 is a ⊤-won run of F ′(0).
Next, consider any n with 0 < n ≤ k. According to clause 2(b) of Lemma 5.15, in

conjunction with Lemma 5.16, there is a run Γ~
n generated by Hn such that (Γ~

n)
0. = ¬B~

n−1

and (Γ~
n)

1. = B~
n. Note that, since Hn plays quasilegally, every move of Γ~

n has one of the
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two prefixes “0.” or “1.”. But we know that Hn wins ¬F ′(n− 1) ∨F ′(n). So, Γ~
n has to be

a ⊤-won run of ¬F ′(n− 1) ∨F ′(n), meaning that either (Γ~
n)

0., i.e. ¬B~
n−1, is a ⊤-won run

of ¬F ′(n− 1), or (Γ~
n)

1., i.e. B~
n, is a ⊤-won run of F ′(n). But, by the induction hypothesis,

B~
n−1 is a ⊤-won run of F ′(n− 1). This obviously means that ¬B~

n−1 is a ⊥-won (and thus

not ⊤-won) run of ¬F ′(n− 1). Therefore, B~
n is a ⊤-won run of F ′(n).

According to Lemma 5.17, B~

k is a ⊤-won run of F ′(k). Therefore, by the known
property of static games and delays (see the end of Section 3 of [3]) we have:

Whenever a run Π is a ⊤-delay of B~

k, Π is a ⊤-won run of F ′(k). (5.55)

Let Θ be the run generated by Mk that took place in the real play of k ≤ b|~d|→F ′(k).

How does Θ1. relate to B~

k? As promised earlier, the real play in the consequent of k ≤

b|~d|→F ′(k) — that is, the run Θ1. — would be “essentially synchronized” with the play

B~

k by Hk in the consequent of F ′(k−1)→F ′(k), meaning that Θ1. is “essentially the same”

as B~

k. The qualification “essentially” implies that the two runs, while being similar, may
not necessarily be strictly identical.

One reason why B~

k may differ from Θ1. is that, as seen from Case 1 and Subsubsubcase
2.2.2.2 of the description of Main, if Θ1. contains a (legal but) imprudent (with respect to

F ′(k)) move by ⊥, then such a move appears in B~

k in the prudentized form. Namely, if
Hk’s adversary chose some “oversized” constant a for z in a subcomponent ⊓zG of F ′(k),

then the same move will appear in B~

k as if a′ was chosen instead of a, where a′ is a certain
“small” constant. Note, however, that having made the above imprudent choice makes ⊥
lose in the ⊓zG component. So, prudentizing ⊥’s imprudent moves can only increase rather
than decrease ⊥’s chances to win the overall game. That is, if ⊤ (i.e., Mk) wins the game
even after such moderation of the adversary’s imprudent moves, it would also win (“even
more so”) without moderation. For this reason, we can and will safely assume that Mk’s
environment plays not only legally, but also prudently.

But even if Mk’s adversary has played Θ1. prudently, there is another reason that could

make B~

k “somewhat” different from Θ1.. Namely, with some thought, one can see that Θ1.

may be a proper ⊤-delay of (rather than equal to) B~

k. Luckily, however, by (5.55), Θ1. is
still a ⊤-won run of F ′(k).

Thus, as desired, Mk wins k ≤ b|~d|→F ′(k), and hence M wins the conclusion of (5.2).

5.6. M runs in target amplitude. M plays x ≤ b|~s|→F (x,~v) prudently, and the latter
is an Rspace -bounded formula. By condition 5 of Definition 2.2 of [5], Rspace � Ramplitude .
This, of course, implies that M runs in amplitude Ramplitude , as desired.

5.7. M runs in target space. As we agreed earlier, (a, s, t) ∈ Ramplitude ×Rspace ×Rtime

is a common tricomplexity in which the machines N and K — and hence the Hns — run.
All three bounds are unary.

Remember from Section 5.1 that l is the size of the greatest of the constants chosen by
M’s environment for the free variables of x ≤ b|~s|→F (x,~v). This, of course, means that
the background of any clock cycle of Mk in any scenario of its work is at least l. For this
reason and with Remark 2.4 of [5] in mind, in order to show that M runs in space Rspace ,
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it is sufficient to show that the spacecost of any clock cycle of Mk is bounded by O
(

p(l)
)

for some p(z) ∈ Rspace . In what follows, we shall write Rspace (l) as an abbreviation of the
phrase “O

(

p(l)
)

for some p(z) ∈ Rspace”. Similarly for Rtime(l).
In asymptotic terms, the space consumed by Mk — namely, by any given hth (h ∈ I)

iteration of Main — is the sum of the following two quantities:

the space needed to hold the value of the aggregation ~E; (5.56)

the space needed to update ~E = ~Eh to ~E = ~Eh+1 (if (h+ 1) ∈ I). (5.57)

Here we did not mention the space needed to hold the value of the variable U , and to update
it to its next value. That is because, as it is easy to see, the space taken by U or its updates
does not exceed the maximum possible value of the quantity (5.57) (in fact, the logarithm
of the latter). So, this component of Mk’s space consumption, being superseded by another
component, can be safely ignored in an asymptotic analysis. Consider any h ∈ I.

In verifying that (5.56) is bounded by Rspace (l), we observe that, by conditions (iv) and
(v) of Section 5.3, an aggregation cannot contain two same-size entries. Next, by Lemma

5.10, the size of an entry never exceeds 2e⊤ + 1. Thus, the number of entries in ~Eh is
bounded by the constant 2e⊤ + 1. For this reason, it is sufficient for us to just show that

any given entry [n,C] of ~Eh can be held with Rspace (l) space. This is done in the following
two paragraphs.

The component n of an entry [n,C] never exceeds k. As observed in the proof of Lemma
5.11, we have k ≤ f(l), where f(z) is the unarification of b. As further observed near the
end of the same proof, f(z) � Rtime . This, by condition 5 of Definition 2.2 of [5], implies
that |f(z)| � Rspace . So, |n|, which asymptotically is the amount of space needed to hold
n, is bounded by Rspace (l).

As for the component C of an entry [n,C], it is a restriction of (and hence not “bigger”
than) B

h
n, so let us talk about B

h
n instead. Let B

h
n =

(

(~α1, p1), . . . , (~αm, pm)
)

. By Lemma

5.16, Bh
n is a reasonable run of F ′(n). Consequently, the overall number of moves in it cannot

exceed the constant bound e. Remembering the work of Sim•n, we see that only negative
values of this procedure’s output may have empty payloads. With this fact in mind, a look
back at the work of Main — its Subcase 2.1 in particular — easily reveals that, for each
even i ∈ {2, . . . ,m}, ~αi is nonempty. Therefore m ≤ 2e+ 1. That is, the number of organs
in B

h
n is bounded by a constant. So, asymptotically, B

h
n does not take more space than

any organ (~αi, pi) of it, which allows us now to just focus on (~αi, pi). Due to Bh
n’s being

reasonable, there is only a constant (≤ e) number of moves in the payload ~αi of (~αi, pi), and
the size of no such move exceeds O

(

G(l)
)

, where G, as we remember, is the superaggregate
bound of the formula F (x,~v) and hence, by Lemma 4.1, G � Rspace . Thus, Rspace (l) space
is sufficient to record ~αi. It now remains to show that the same holds for pi. An analysis
of Main reveals that, during its work, the only case when a new scale (as opposed to an
old, inherited scale) greater than 1 of whatever organ of whatever entry is ever created is
Subsubsubcase 2.2.2.1, and when such a creation takes place, the new scale is smaller than
2L(l, U). As observed earlier in this proof when we agreed to ignore U , the value of U is
bounded by s′(l) for some s′ ∈ Rspace . So, pi < 2L(l, s′(l)) and thus |pi| ≤ |2L(l, s′(l))|.
In view of our earlier observation (5.9), |2L(l, s′(l))| = O(|l| + |G(l)| + s′(l)). This fact, in
conjunction with G ∈ Rspace and condition 2 of Definition 2.2 of [5], implies that |pi|, which
asymptotically is the amount of memory needed to hold pi, does not exceed Rspace(l).
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Now about the quantity (5.57). Let us only consider the case n > 0, with the case n = 0

being similar but simpler. Updating ~Eh to ~Eh+1 happens through running Simn(A
even, Bodd),

where (A,B, n) is the central triple of ~Eh. So, we just need to show that the space consumed
by Simn(A

even, Bodd) is bounded by Rspace(l). This quantity, with asymptotically irrelevant
technicalities suppressed, is the sum of (I) the space needed for simulating Hn, and (II) the

space needed for maintaining (the contents of) the variables a, b, u, ~ψ, ~ν,W, S,R of Simn, as
well as the space needed to keep track of how many steps of Hn have been simulated so far
within the present iteration of Loopn.

(I): There are two groups of moves on the simulated Hn’s run tape. The first group,
that we here shall refer to as the early moves, comprises the ⊥-labeled moves signifying the
initial choices of the constants n−1 and ~c for the free variables x and ~v of F (x,~v)→F (x ′, ~v).
All other moves constitute the second group, which we shall refer to as the late moves.
The information that Mk needs to keep track of (and whose size is asymptotically relevant)
in order to simulate Hn consists of the contents (here also including the scanning head
locations) of Hn’s run and work tapes, and the content of Hn’s buffer. Since (A,B, n) is the

central triple of ~Eh, A is a restriction of Bh
n−1 and B is a restriction of Bh

n. This, in view of
Lemma 5.16 and in view of Hn’s playing reasonably, obviously implies that the run spelled
by the simulated Hn’s run tape is reasonable. As a result, there is only a constant number
of late moves, and the magnitude of each such move is obviously bounded by G(l). In view
of Lemma 4.1, this means that the combined size of all late moves is bounded by Rspace(l).
Since Hn is unconditionally provident, everything written in its buffer will sooner or later
mature into a late move, so, whatever we said about the sizes of the late moves, also applies
to the maximum possible size of Hn’s buffer content. As for the early moves, they reside
on Mk’s own run tape, and hence Mk does not need to utilize any of its work-tape space
to keep track of them. Thus, keeping track of the contents of Hn’s imaginary run tape and
buffer does not take Mk beyond the target Rspace (l) space limits. It remains to see that
the same holds for the contents of Hn’s work tapes. But indeed, the magnitude of no (early
or late) move on Hn’s imaginary run tape exceeds max(l,G(l)) and hence (as Ramplitude

is linearly closed and G ∈ Rspace � Ramplitude) a′(l) for some a′ ∈ Ramplitude . But then,
since Hn runs in unconditional space s ∈ Rspace , it consumes at most s(a′(l)) space of its
work tapes. Mk can keep track of the contents of those tapes with asymptotically the same
amount s(a′(l)) of its own work-tape space. And the latter, by condition 4 of Definition 2.2
of [5], does not exceed Rspace (l).

(II): The sizes of the variables a and b of Sim are bounded by a constant (namely,

|2e + 1|). As for the sizes of the remaining variables u, ~ψ, ~ν,W, S,R, as well as the space
needed to keep track of how many steps of Hn have been simulated so far within the present
iteration of Loopn, can be easily seen to be superseded by (5.56) or (I).

5.8. M runs in target time. We agree that, for an h ∈ I, I
h
• denotes the set of all

numbers i ∈ I
h satisfying the condition that there is no j with i ≤ j < h such that the jth

iteration of Main proceeds according to the scenario of Case 1 or Subsubsubcase 2.2.2.2.
Next, Ih•• denotes the set of all numbers i ∈ I

h
• (additionally) satisfying the condition that

there is no j with i ≤ j < h such that the jth iteration of Main proceeds according to
the scenario of Subsubsubcase 2.2.2.1. Finally, Ih••• denotes the set of all numbers i ∈ I

h
••

(additionally) satisfying the condition that there is no j with i ≤ j < h such that the jth
iteration of Main proceeds according to the scenario of Subsubsubcase 2.1.2.
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Lemma 5.18. Consider any h ∈ I such that the h’th iteration of Main is locking. Then
the master scale of ~Eh is bounded by Rtime(l).

Proof. Throughout this proof, w will be an abbreviation of the constant e⊤+1. Consider any

h ∈ I such that the hth iteration of Main is locking. Let m be the master scale of ~Eh. We
claim that m is smaller than 2w−1t(max(l,G(l))) and hence, by Lemma 4.1 and conditions 2,
3 and 4 of Definition 2.2 of [5],m is bounded byRtime(l). Indeed, for a contradiction, assume
m ≥ 2w−1t(max(l,G(l))). We (may) additionally assume that t(max(l,G(l))) 6= 0. Let b1
be the smallest element of Ih••. So, there are no restarting iterations between b1 (including)
and h (not including). But only restarting iterations of Main modify the master scale

of ~E. Thus, the master scale of ~Eb1 is the same m as that of ~Eh. Since m > 1 and b1
is the smallest element of Ih••, the (b1 − 1)th iteration of Main (exists and) is restarting.
Besides, that iteration does not proceed by the scenario of Case 1 or Subsubsubcase 2.2.2.2

of Main, because in either case the master scale of the resulting aggregation ~Eb1 would
be reset to 1. Hence, the (b1 − 1)th iteration of Main proceeds according to the scenario
of (the master-scale-doubling) Subsubsubcase 2.2.2.1. This means that the master scale of
~Eb1−1 is m/2. Let b2 be the smallest element of Ib1−1•• . Reasoning as above but this time

with b2 and b1 − 1 instead of b1 and h, respectively, we find that the master scale of ~Eb2

is m/2 and the master scale of ~Eb2−1 is m/4. Continuing this pattern, we further define
b3 > b4 > . . . > bw in the same style as we defined b1, b2 and find that the master scales

of ~Eb3 ,
~Eb3−1,

~Eb4 ,
~Eb4−1, . . . ,

~Ebw ,
~Ebw−1 are m/4, m/8, m/8, m/16, . . . , m/2w−1, m/2w,

respectively. Each iteration of Main that proceeds according to Subsubcase 2.1.2 results

in Mk making a move in the real play of h ≤ b|~d|→F ′(k). Since Mk plays (quasi)legally,
altogether it makes fewer than w moves. This means that, altogether, there are fewer than
w iterations of Main that proceed according to Subsubcase 2.1.2. Besides, one of such
iterations is the hth iteration. Therefore there is at least one i with 1 ≤ i < w such that
I
bi−1
•• = I

bi−1
••• and hence bi+1 ∈ I

bi−1
••• . Pick the smallest such i (fix it!), and let us rename

bi into c and bi+1 into a. Further, let d be the smallest element of Ih such that c ≤ d and
the dth iteration of Main is locking. It is not hard to see that such a d exists. Namely,
d ∈ {b1, . . . , h} if i = 1 and d ∈ {bi, . . . , bi−1 − 1} if 1 < i < w.

In what follows, we shall say that two organs (~α, p) and (~β, q) are essentially the

same iff ~α = ~β and either p = q or p, q ∈ {m/2i,m/2i−1}, where i is as above. This
extends to all pairs X,Y of organ-containing objects/structures (such as signed organs,
bodies, aggregations, etc.) by stipulating that X and Y are essentially the same iff they
only differ from each other in that where X has an organ P , Y may have an essentially
the same organ Q instead. For instance, two signed organs are essentially the same iff they
are both in {+P,+Q} or both in {−P,−Q} for some essentially the same organs P and
Q; two bodies (P1, . . . , Ps) and (Q1, . . . , Qt) are essentially the same iff s = t and, for each
r ∈ {1, . . . , s}, the organs Pr and Qr are essentially the same; etc.

Claim 2. For any j ∈ {0, . . . , d − c + 1}, the aggregations ~Ea+j and ~Ec+j are essentially
the same.

This claim can be proven by induction on j. We give an outline of such a proof, leaving
more elaborate details to the reader. For the basis of induction, we want to show that

the aggregations ~Ea and ~Ec are essentially the same. To see that this is so, observe that
the master entry is the only entry of both aggregations. Also, the only iteration of Main

between a (including) and c that modifies the master entry of ~E is the (c − 1)th iteration,
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which proceeds according to Subsubsubcase 2.2.2.1 and the only change that it makes in
the master body of ~E is that it doubles ~E’s master scale m/2i, turning it into m/2i−1.

For the inductive step, consider any j ∈ {0, . . . , d − c} and make the following obser-

vations. Updating ~Ec+j to ~Ec+j+1 happens through running Sim•n
13 (for a certain n) on

certain arguments A,B. The same is the case with updating ~Ea+j to ~Ea+j+1, where, by the
induction hypothesis, the arguments A′ and B′ on which Hn is run are essentially the same
as A and B, respectively. So, the only difference between the two computations Sim•n(A,B)
and Sim•n(A

′, B′) is that, occasionally, one traces m/2i−1 steps of Hn’s work beginning from
a certain configuration W while the other only traces m/2i steps in otherwise virtually the
same scenario. This guarantees that the outcomes of the two computations — and hence

the ways ~Ec+j and ~Ea+j are updated to their next values — are essentially the same. The
point is that, since Hn runs in time t and since — as observed near the end of the pre-
ceding subsection — the magnitude of no move on the simulated Hn’s run tape exceeds
max(l,G(l)), all moves that Hn makes within m/2i−1 ≥ 2t(max(l,G(l))) Steps are in fact
made within the first m/2i ≥ t(max(l,G(l))) steps of the simulated interval, so the com-
putations of Sim•n(A,B) and Sim•n(A

′, B′) proceed in “essentially the same” ways, yielding
essentially the same outcomes.

Taking j = d − c + 1, Claim 2 tells us that the master body of ~Ec+(d−c+1) — i.e., of
~Ed+1 — and the master body of ~Ea+(d−c+1) are essentially the same. This is however a
contradiction, because the size of the former, as a result of the dth iterations’ being locking,

is greater than the size of the master body of any earlier aggregations ~E1, . . . , ~Ed.

Lemma 5.19. Consider any h ∈ I such that the h’th iteration of Main is locking. Assume

e ∈ I
h
• , and (A,B, n) is the central triple of ~Ee. Then the scales of all organs of A and B

are bounded by Rtime(l).

Proof. Assume h is an element of I such that the hth iteration of Main is locking. Let C

be the master body of ~Eh. It is not hard to see (by induction on e − e0, where e0 is the
smallest element of Ih•) that, for any e ∈ I

h
• , the scale of any organ of the body of any entry

of ~Ee is either the same as the scale of one of the organs of C, or one half, or one quarter,
or. . . of such a scale. Thus, the scales of the organs of C (at least, the greatest of such scales)

are not smaller that the scales of the organs of the entries of ~Ee, including the scales of the
organs of A and B. For this reason, it is sufficient to prove that the scales of all organs of
C are bounded by Rtime(l).

Let C = (O1, . . . , O2m, O2m+1), and let p1, . . . , p2m, p2m+1 be the corresponding scales.
Note that, since the hth iteration of Main is locking, we have h ∈ I

~

! and, consequently, C

is a restriction of B~

k. Therefore, according to Claim 1 from the proof of Lemma 5.14, we
have p1 = p2, p3 = p4, . . . , p2m−1 = p2m. So, it is sufficient to consider pi where i is an odd
member of {1, . . . , 2m+1}. The case of i = 2m+1 is immediately taken care of by Lemma
5.18. Now consider any odd member i of {1, . . . , 2m − 1}. Let j be the (h, k)-birthtime of
(O1, . . . , Oi+1). Thus, the (j − 1)th iteration of Main is locking. But note that pi is the

master scale of ~Ej−1. Then, according to Lemma 5.18, pi is bounded by Rtime(l).

13Of course, Main runs Simn rather than Sim•
n, but this is only relevant to the value of the variable U of

Main. The latter may only become relevant to the way the variable ~E is updated when a given iteration of
Main proceeds according to Subsubcase 2.2.2. However, no iterations between (including) c and d proceed
according to that Subsubcase. So, it is safe to talk about Sim•

n instead of Simn here.
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Now we are ready to argue that M runs in target time. We already know from Lemma
5.11 that, for a certain bound z ∈ Rtime , Main is iterated only z(l) times. In view of Rtime ’s
being at least polynomial as well as polynomially closed, it remains to see that each relevant
iteration takes a polynomial (in l) amount of time. Here “relevant” means an iteration that
is followed (either within the same iteration or in some later iteration) by an Mk-made
move without meanwhile being interrupted by Environment’s moves. In other words, this
is an eth iteration with e ∈ I

h
• for some h ∈ I such that the hth iteration of Main is locking.

Consider any such e.
There are two asymptotically relevant sources/causes of the time consumption of the

eth (as well as any other) iteration of Main: running Simn(A
even, Bodd), where (A,B, n) is

the central triple of ~Ee, and periodically polling Mk’s run tape to see if Environment has
made any new moves.

Running Simn(A
even, Bodd) requires simulating the corresponding machine Hn in the

scenario determined byAeven andBodd. With asymptotically irrelevant or superseded details
suppressed, simulating a single step of Hn requires going, a constant number of times,
through Mk’s work and run tapes to collect the information necessary for updating Hn’s
“current” configuration to the next one, and to actually make such an update. As we already
know from Section 5.7, the size of (the non-blank, to-be-scanned portion of) Mk’s work tape
is bounded byRspace .

14 And the size of Mk’s run tape is O(l) (the early moves) plus O(G(l))
(the late moves). Everything together, in view of the linear closure of Rtime (condition 3 of
Definition 2.2 of [5]) and the facts G ∈ Rspace (Lemma 4.1) and Rspace � Rtime (condition
5 of Definition 2.2 of [5]), is well within the target Rtime(l).

The amount of steps of Hn to be simulated when running Simn(A
even, Bodd) is obviously

at most a constant times the greatest of the scales of the organs of A and B, which, in view
of Lemma 5.19, is Rtime(l).

Thus, the time T needed for running Simn(A
even, Bodd) is the product of the twoRtime(l)

quantities established in the preceding two paragraphs. By the polynomial closure of Rtime ,
such a product remains Rtime(l). How much time is added to this by the polling routine?
Obviously the latter is repeated at most T times. Any given repetition does not require
more time than it takes to go from one end of the run tape of Mk to the other end. And this
quantity, as we found just a while ago, is Rtime(l). Thus, the eth iteration of Main takes
Rtime(l) +Rtime(l) × Rtime(l) time, which, by Rtime ’s being polynomially closed, remains
Rtime(l) as promised.

6. Final remarks

In writing this paper and its predecessor, the author has tried to keep balance between
generality and simplicity, often sacrificing the former for the sake of the latter. Among the
ways that the present results could be strengthened is relaxing the concept of a regular theory
CLA11RA . Specifically, the condition of Ramplitude ’s being linearly closed can be removed
as long as Definition 2.2 of [5] is correspondingly refined/readjusted. This condition, in
fact, amounts to adopting an asymptotic view of amplitude complexity, which significantly
simplifies the completeness proofs, allowing us to avoid numerous annoying exceptions and
details one would need to otherwise deal with. As noted in [3], however, unlike time and

14Of course, a tape is infinite in the rightward direction, but in contexts like the present one we treat the
leftmost blank cell of a tape as its “end”.
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space complexities, we may not always be willing to — and it is almost never really necessary
to — settle for merely asymptotic analysis when it comes to amplitude complexity. A non-
asymptotic approach to amplitude complexity would make it possible to consider much
finer amplitude complexities, such as “strictly ℓ” (“non-size-increasing”, as studied in [1]),
“ℓ plus a constant”, etc.

Appendix A. Proof of Lemma 4.4

Lemma 4.4 states:

There is an effective procedure that takes an arbitrary bounded formula H(~y),
an arbitrary HPM L and constructs an HPM M such that, as long as L is
a provident solution of H(~y), the following conditions are satisfied:
1. M is a quasilegal and unconditionally provident solution of H(~y).
2. If L plays H(~y) prudently, then M plays H(~y) unconditionally prudently.
3. For any arithmetical functions a, s, t, if L plays H(~y) in tricomplexity

(a, s, t), then M plays in unconditional tricomplexity (a, s, t).

Consider an arbitrary HPM L and an arbitrary bounded formulaH(~y) with all free variables
displayed. We want to (show how to) construct an HPM M — with the same number of
work tapes as L— satisfying the above conditions 1-3. From our construction of M it will
be immediately clear that M is built effectively from H(~y) and L. As usual, we may not
always be very careful about the distinction between H(~y) and ⊓H(~y), but which of these
two is really meant can always easily be seen from the context.

We agree on the following terminology. A semiposition is a string S of the form
℘1α1 . . . ℘nαnω, where each ℘i is a label ⊤ or ⊥, each αi is a string over the keyboard
alphabet, and ω ∈ {ǫ,Blank} (remember that ǫ stands for the empty string). When ω is
Blank, we say that S is complete; otherwise S is incomplete. We say that a semiposition
S′ is a completion of S iff (1) either S is complete and S′ = S, or (2) S is incomplete
and S′ = SβBlank for some (possibly empty) string β over the keyboard alphabet. When
S is complete — namely, is ℘1α1 . . . ℘nαnBlank — then the position spelled by S, as
expected, is the position 〈℘1α1, . . . , ℘nαn〉. We say that a semiposition S is legitimate
(resp. quasilegitimate) iff there is a completion S′ of S such that the position spelled
by S′ is a legal (resp. quasilegal) position of ⊓H(~y). The compression of a legitimate
or quasilegitimate semiposition S is the expression S resulting from S through replacing
the numer of every numeric move by the symbol ⋆. Note that, while generally there are
infinitely many possible legitimate or quasilegitimate semipositions, the number of their
compressions is finite. The reason is that an infinite variety of legal runs of ⊓H(~y) exists
only due to numer variations within numeric moves; in compressions, however, all numers
degenerate into ⋆.

In the context of a given step i of a given computation branch of a given HPM, by
the so-far-seen semiposition we shall mean the semiposition W written at time i on the
initial section of the run tape that has ever been visited (at steps ≤ i) by the run-tape
scanning head, except that the last symbol of W should be Blank if the corresponding cell
contained a Blank at the time when it was last seen by the scanning head, even if the
content of that cell changed (namely, became ⊤ or ⊥) later. Intuitively, such aW is exactly
what the machine knows at time i about its run-tape content based on what it has seen
there so far. Next, let Z be the semiposition ⊤δ1 . . .⊤δm, where δ1, . . . , δm are the moves
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made by the machine so far (at steps ≤ i). And let π be the string residing in the buffer
at time i. Then by the so-far-authored semiposition we shall mean the (complete)
semiposition ZBlank if π is empty, and the (incomplete) semiposition Z⊤π if π is nonempty.
The windup of a quasilegitimate yet incomplete semiposition V of the form ⊤δ1 . . .⊤δm⊤π
is the lexicographically smallest string ω such that 〈⊤δ1, . . . ,⊤δm,⊤πω〉 is a ⊤-quasilegal
position of ⊓H(~y). Note that there is only a constant number of strings that are windups
of some incomplete quasilegitimate semipositions. Also note that knowing the compression
V of an (incomplete quasilegitimate) semiposition V is sufficient to determine V ’s windup.

We let M keep partial track of the so-far-authored quasilegitimate semiposition V
through remembering its compression V . Similarly, M keeps track of the so-far-seen legiti-
mate semiposition W through remembering its compression W ; besides, one of the symbols
of W is marked to indicate (keep track of) the current location of M’s run-tape scanning
head.15 With appropriately arranged details that are not worth discussing here, it is possi-
ble for M, this way, to be able to immediately detect if and when W becomes illegitimate.
If and when this happens, we let M retire; besides, if V is quasilegitimate yet incomplete at
the time of this event, then M puts V ’s windup into the buffer and, simultaneously, enters
a move state before retiring. We shall refer to a move made this way as a retirement
move. Maintaining the above W (together with its mark) and V only requires a constant
amount of memory, so this can be fully done through M’s state rather than tape memory.
This means that, as long as W remains legitimate, M can follow the work of L step-by-step
without having any time or space overhead, and act (reposition heads, put things into the
buffer, move, etc.) exactly like L, with the only difference between the two machines being
that M has a greater number of states than L does, with any given state of L being imitated
by one of many “counterpart” states of M, depending on the present values of V and the
marked W that each such state “remembers” (e.g., is labeled with).

For the rest of this appendix, assume L is a provident solution of H(~y). Fix an arbitrary
computation branch B of M, and let ΓB

∞ be the run spelled by B. From now on, whenever
a context requires a reference to a computation branch but such a reference is missing, it
should be understood as that we are talking about B. For simplicity, we shall assume that,
in B, Environment made (legal) initial moves that brought ⊓H(~y) down to H(~c) for some
constants ~c. Fix these ~c. The case of B violating this assumption is not worth our attention
for the reason of being trivial or, at least, much simpler than the present case.

We also fix arbitrary arithmetical functions a, s, t. We may assume that all three func-
tions are unary, or else replace them with their unarifications. Since the parameters B, ΓB

∞,
~c, a, s, t are arbitrary, it is sufficient for us to focus on them and just show that the three
conditions of the lemma are satisfied in the context of these particular parameters. For
instance, to show that M plays ⊓H(~y) quasilegally, it is sufficient to show that ΓB

∞ is a
⊤-quasilegal run of ⊓H(~y).

We extend the notation ΓB
∞ from B to any computation branch C of either M or L,

stipulating that ΓC
∞ is the run spelled by C. We further agree that, for any i ≥ 0, ΓC

i stands
for the position spelled on the run tape of the corresponding machine at step i of branch C,
and ℓCi stands for the background of that step. We also agree that WC

i denotes the so-far-
seen semiposition at step i of branch C, and V C

i denotes the so-far-authored semiposition
at step i of C. Finally, since ⊓H(~y) and H(~c) are the only formulas/games we deal with in

15Namely, a marked symbol of W other than ⋆ indicates that the head is looking at the corresponding
symbol of W , and a marked ⋆ indicates that the head is looking at one of the bits of the corresponding
numer.
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this appendix, without risk of ambiguity we will often omit references to them when saying
“legal”, “quasilegal”, “prudent” etc.

Consider any i such that WB
i is legitimate. The legitimacy of WB

i means it has a
completion U = ℘1α1 . . . ℘nαnβBlank such that the position Ω = 〈℘1α1, . . . , ℘nαnβ〉 spelled
by U is legal. Let k be the number of ⊥-labeled moves in Ω. And let C be the computation
branch of M in which Environment acts exactly as it does in B, with only the following two
differences: (1) Environment stops making any moves after it makes its kth move (meaning
that, if k = 0, Environment simply never moves); (2) If ℘n = ⊥, Environment’s kth move
(i.e., the nth move of the play) is αnβ. Of course, C spells a legal run. For this reason, in
this branchM behaves just like L in the branchD where the environment makes exactly the
same moves, in exactly the same order and at exactly the same times, as in C. We call such
a D the WB

i -induced branch of L. The following two lemmas are simple observations,
hardly requiring any proofs:

Lemma A.1. Consider any j ≥ 0 such that ΓB
j is legitimate, and let D be the WB

j -induced
branch of L. We have:

1. In D, L’s environment makes no moves at any step e with e > j.
2. ΓD

∞ is a legal run of ⊓H(~y).
3. The initial segment of ΓB

∞ that brings ⊓H(~y) down to H(~c) is also an initial segment of
ΓD
∞.

4. V D
j+1 = V B

j+1, and hence also (ΓD
j+1)

⊤ = (ΓB
j+1)

⊤.

5. For any e ≥ 0, ℓDe ≤ ℓBe .

Lemma A.2. There is a number s such that, for every j ≥ s, Wj = Ws. The smallest of
such numbers s we call the W -stabilization point.

Having set up the above preliminaries, we prove the lemma clause by clause.

CLAUSE 1: Our goal is to show that:

ΓB
∞ is ⊤-won (so, M is a solution of ⊓H(~y)); (A.1)

ΓB
∞ is ⊤-quasilegal (so, M plays quasilegally); (A.2)

B is provident (so, M plays unconditionally providently). (A.3)

(A.1): From the description of M we can see that, if ΓB
∞ is ⊥-legal and thus the so-

far-seen semiposition always remains legitimate, M interacts with its environment
exactly like L interacts with its environment in the corresponding scenario16 and,
since L is a solution of ⊓H(~y), ΓB

∞ is ⊤-won. And if ΓB
∞ is ⊥-illegal, then ΓB

∞ is
automatically ⊤-won.

(A.2): For a contradiction, suppose ΓB
∞ is not ⊤-quasilegal. Let i be the smallest

number such that the position ΓB
i is not ⊤-quasilegal. Let φ be the (“offending”)

move that M made at step i of B.
Assume Wi−1 is legitimate. Let D be the Wi−1-induced branch of L. According
to clause 4 of Lemma A.1, (ΓD

i )
⊤ = (ΓB

i )
⊤. So, ΓD

i is not ⊤-quasilegal, and then
the same holds for the extension ΓD

∞ of ΓD
i . Of course, ΓD

∞’s not being ⊤-quasilegal
implies that it is simply illegal. But this contradicts clause 2 of Lemma A.1, according
to which ΓD

∞ is legal.

16Namely, in the computation branch where L’s environment makes exactly the same moves at exactly
the same times and in exactly the same order as in B.
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Now assume Wi−1 is not legitimate. Note that i ≥ 2, because, at the initial step 0,
M would not be able to see an illegitimate semiposition (at best, M would only see
the label ⊥ in the leftmost cell, nothing else). Further note that the semiposition
Wi−2 is legitimate, because otherwise M would have retired right after seeing it and
thus would not have moved at step i. As soon as M sees the illegitimate Wi−1, it
retires. Thus, the move φ made at step i is a retirement move. Looking back at the
conditions under which M makes a retirement move, we see that the so-far-authored
semiposition V B

i should be complete and quasilegitimate. Let ΣB
i be the position

spelled by V B
i . So, ΣB

i is ⊤-quasilegal. But note that (ΣB
i )
⊤ = (ΓB

i )
⊤, and thus we

are facing a contradiction because, as we remember, ΓB
i is not ⊤-quasilegal.

(A.3): As already noted in the proof of (A.1), if the run ΓB
∞ is ⊥-legal, M and its

environment behave exactly like L and its environment in the corresponding scenario.
Then, since L plays providently, B is a provident branch. Suppose now ΓB

∞ is ⊥-
illegal.
First, assume the so-far-seen semiposition in B becomes illegitimate at some step i.
Note that (i > 0 and) WB

i−1 is legitimate. Let D be the WB
i−1-induced branch of L.

By clauses 2 and 4 of Lemma A.1, ΓD
∞ is ⊥-legal and V D

i = V B
i . The semiposition

V D
i must be quasilegitimate because otherwise, as can be seen with a little thought,

(the provident) L will have to make an illegal move in branch D at some point. But,
in branch B, M retires immediately after seeing the non-legitimate Wi. The only
possibility for the buffer content of M to remain nonempty after retirement would
be if V B

i was not quasilegitimate. However, as just observed, this is not the case.
Now assume the so-far-seen semiposition in B never becomes illegitimate. Let i be
the W -stabilization point (which exists according to Lemma A.2). And let D be the
WB

i -induced branch of L. It is not hard to see that, throughout the entire play, M
behaves — makes moves, puts strings into the buffer, repositions scanning heads —
the same way in B as L behaves in D. From clause 2 of lemma A.1, we also know
that D spells a ⊥-legal run and hence, due to L’s playing providently, D contains
infinitely many steps with empty buffer contents. Then so does B. That is, B is
provident.

CLAUSE 2: Assume L is a prudent solution of H(~y). We want to show that the run ΓB
∞ is

⊤-prudent. For a contradiction, deny this. Let i be the smallest number such that ΓB
i

is not ⊤-prudent. Note that i > 0. It is obvious that a move is made in B at step i. Let
us call that move φ.

Assume WB
i−1 is legitimate. Let D be the WB

i−1-induced branch of L. Clauses 3 and 4

of Lemma A.1 imply that ΓD
i is not ⊤-prudent, and then the same holds for the extension

ΓD
∞ of ΓD

i . At the same time, by clause 2 of the same lemma, ΓD
∞ is legal. This is a

contradiction, because L is a prudent solution of H(~y) and, as such, it could not have
generated a (⊥-)legal run (ΓD

∞) that is not ⊤-prudent.
Now assumeWB

i−1 is not legitimate. Then, just as in the last paragraph of our proof of

(A.2), i ≥ 2, WB
i−2 is legitimate, and φ is a retirement move. Let D be theWB

i−2-induced
branch of L. Analyzing the conditions under which M makes a retirement move, we see
that φ (rather than some proper prefix of it) was the content of M’s buffer at step i− 1
of B. Then, by clause 4 of Lemma A.1, the same is the case for L’s buffer in branch
D. But, since L plays providently and (by clause 2 of Lemma A.1) ΓD

∞ is legal, in D,
sooner or later L will have to make a move φ′ such that φ is a prefix of φ′. Obviously
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such a move φ′, if legal, will inherit the imprudence of φ. This, together with clause 2
of Lemma A.1, contradicts our assumption that L is a prudent solution of H(~y).

CLAUSE 3: : Assume L is a (a, s, t) tricomplexity solution of H(~y).

Amplitude: Assume M makes a move φ at a step i. Let mφ be the magnitude of φ.

We want to show that mφ ≤ a(ℓBi ).

First, suppose WB
i−1 is legitimate. Let D be the WB

i−1-induced branch of L. In view
of clause 4 of Lemma A.1, in D, L makes the same move φ at the same time i. Since L
plays in amplitude a and since, by clause 2 of Lemma A.1, the run ΓD

∞ is legal, we have
mφ ≤ a(ℓDi ). The desired mφ ≤ a(ℓBi ) follows from here by clause 5 of Lemma A.1.

Now suppose WB
i−1 is not legitimate. Then, as in the last paragraph of our proof of

(A.2) i ≥ 2, WB
i−2 is legitimate, and φ is a retirement move. Let D be the WB

i−2-induced
branch of L. And let β be the content of M’s buffer at step i − 1 of B. By clause
4 of Lemma A.1, the same β is in the buffer of L at step i − 1 of D. At some step
s ≥ i of D, the provident L should make a move γ such that β is a prefix of γ. Let
mγ be the magnitude of that move. Since the run spelled by D is legal (clause 2 of

Lemma A.1) and L plays in amplitude a, we have mγ ≤ a(ℓDs ). But, in view of clause
1 of Lemma A.1, ℓDs = ℓDi . Thus, mγ ≤ a(ℓDi ). This, in view of clause 5 of Lemma
A.1, implies mγ ≤ a(ℓBi ). From the way we measure magnitudes and from the way the
windup operation is defined, it is clear that mφ ≤ mγ . Consequently, mφ ≤ a(ℓBi ).

Space: Let i be the W -stabilization point, and let D be the WB
i -induced branch of L.

If WB
i is legitimate, then, as observed in the last paragraph of our proof of (A.3), M’s

behavior throughout B is indistinguishable from that of L in D; this, in view of clause
5 of Lemma A.1, means that B, just like D, does not violate the s space limits. Now
supposeWB

i is not legitimate. Whatever we said above still applies to the behavior of M
up to (including) step i−1. After that it makes a transition to step i and retires without
consuming any additional space. So, the space consumption again remains within the
limits of s.

Time: Again, let i be the stabilization point, and let D be the WB
i -induced branch

of L. If WB
i is legitimate, then, for the same reasons as in the case of space, B does

not violate the t time limits. Now suppose WB
i is not legitimate. Whatever we said in

the preceding sentence still applies to the behavior of M in B up to (including) step
i − 1. Then M makes a transition to step i and retires. If no move is made upon this
transition, all is fine. And if a move is made, then, in view of the relevant clauses of
Lemma A.1, it can be seen that the timecost of that move does not exceed the timecost
of the move that the provident L would have to make in D sooner or later after time
i− 1. So, the time bound t is not violated.

Appendix B. Proof of Lemma 4.2

Lemma 4.2, to a proof of which this appendix is exclusively devoted, reads:

There is an effective procedure that takes an arbitrary bounded formula H(~y),
an arbitrary HPM N and constructs an HPM K such that, for any regular
boundclass triple R, if H(~y) is Rspace -bounded and N is an R tricomplexity
solution of H(~y), then K is a provident and prudent R tricomplexity solution
of H(~y).
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B.1. Getting started. Pick and fix an HPM N and a bounded formula H = H(~y) =
H(y1, . . . , yu) with all free variables displayed. The case of H(~y) being elementary is trivial,
so we assume that H(~y) contains at least one choice operator. Fix D as the maximum
number of labmoves in any legal run of ⊓H. Further fix S as the superaggregate bound of
H.

Assume R is a regular boundclass triple such that the formula H(~y) is Rspace -bounded
and N is an R tricomplexity solution of H(~y). Note that, by Lemma 4.1, S ∈ Rspace . It
is important to point out that our construction of K below does not depend on R or any
assumptions on it.

In view of Lemma 10.1 of [3] and with Remark 2.4 of [5] in mind, we may and will
assume that N plays H providently. Then Lemma 4.4 (whose proof does not rely on the
present lemma) allows us to further assume that N is a quasilegal, unconditionally provident
and unconditionally R tricomplexity solution of H.

Following the notational practice of Section 5.7, we shall write Rspace(ℓ) as an ab-
breviation of the phrase “O

(

p(ℓ)
)

for some p(z) ∈ Rspace”. Similarly for Rtime(ℓ) and
Ramplitude (ℓ).

The technique that we employ below is very similar to the one used in Section 11 of
[3]. Our goal is to construct a machine K such that K is a provident and prudent R-
tricomplexity solution of H(~y). From our construction it will be immediately clear that the
construction is effective as required.

In both our description of the work of K and our subsequent analysis of it, we shall rely —
usually only implicitly — on the Clean Environment Assumption. Making this assumption
is safe because the desired properties of K are (1) being a solution of H(~y), (2) playing
H(~y) providently, (3) playing H(~y) prudently and (4) playing H(~y) in R tricomplexity.
The definitions of all four of these properties, unlike, for instance, the definitions of the
unconditional versions of the last three (cf. Section 4), only look at the ⊥-legal plays of ⊓H
by K. This means that it virtually does not matter what happens if K’s adversary starts
playing illegally.

We design K as a single-work-tape HPM. At the beginning of the play, as usual, it
waits — without consuming any space — till Environment chooses constants ~c for all u free
variables ~y of H. If this never happens, K is an automatic winner trivially complying with
the providence, prudence and R tricomplexity conditions. Having said that, for the rest of
this construction and our subsequent analysis of it, we shall assume that, in the scenario
that we are considering, Environment indeed chose the constants ~c (fix them!) for ~y during
an initial episode of the play.

Let us agree that a quasilegal move (of H(~c)) means a move that may appear, with
either label, in some quasilegal run of H(~c). And the truncation of a move α is the H(~c)-
prudentization of the longest prefix α′ of α such that α′ is also a prefix of some quasilegal
move Note that, in view of our earlier assumption that H is not elementary, every move
has a (possibly empty) truncation.

Once all constants ~c are chosen by Environment, K computes the value of S|max(~c)|
and remembers it for possible use in the future. It is not hard to see that, in view of the
basic closure properties of boundclasses and the relevant conditions of Definition 2.2 of [5],
S|max(~c)| can be computed and recorded in space Rspace |max(~c)| and time Rtime |max(~c)|.
For this reason, when trying to show that K runs in tricomplexity R, the present episode
of computing and remembering S|max(~c)| can (and will) be safely ignored.
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Upon the completion of the above step, K starts simulating N in the scenario where, at
the very beginning of the play — on cycle 0, that is — the imaginary adversary of the latter
chose the same constants ~c for the free variables of H as (K’s real) Environment did. A
simulation would generally require maintaining and continuously updating configurations of
N . However, the challenge is that K cannot afford to fully represent such configurations on
its work tape. For instance, if all bounds in Rspace are sublinear, representing the run tape
content of N would require more than Rspace space. Similarly, the size of the content of the
buffer of N could occasionally go beyond the Rspace bound. For the above reasons, when
dealing with a jth computation step of the simulated N , we let K, on its work tape, only keep
representations of the other (and some additional, previously redundant) components of the
corresponding configuration of N . Namely, with “current” below referring to an arbitrary
given jth computation step of N , on its work tape K maintains the following pieces of
information17 — call them together the sketch of the jth configuration (computation step)
of N :

1st component: The current state of N .
2nd component: The current contents of the work tapes of N .
3rd component: The current locations of the work-tape heads of N .
4th component: The current location of the run-tape head of N .
5th component: The number of moves that N has made so far (at steps ≤ j) in the play.
6th component: The current number of symbols in the buffer of N .
7th component: The (possibly empty) string α that has been added to the buffer of N

when it made a transition to the jth step from the preceding, (j − 1)th, step; here we
stipulate that, if j = 0, i.e., if there is no preceding step, then such a string α is empty.

8th component: The truncation α′ of the move α currently written in the buffer.

Lemma B.1. For any j, with ℓ standing for the background of the j’th step of the simulated
N , maintaining the sketch for that step takes Rspace (ℓ) space.

Proof. It is sufficient to verify that each of the eight components of the sketch, individually,
can be maintained/recorded with Rspace(ℓ) space. Below we shall implicitly rely on Remark
2.4 of [5].

1st component: Recording this component, of course, takes a constant and hence Rspace(ℓ)
amount of space.

2nd component: Since N runs in unconditional space Rspace , this component can be repre-
sented with Rspace (ℓ) space.

3rd component: The amount of space needed for recording this component obviously does
not exceed the preceding amount — in fact, it is logarithmic in Rspace (ℓ).

4th component: By our definition of HPMs from [3], the run-tape head can never go beyond
the leftmost blank cell. So, how many non-blank cells may be on the imaginary run
tape of N ? Since N plays in unconditional amplitude Ramplitude , and since it plays H
quasilegally and hence makes at most D moves, the ⊤-labeled moves residing on N ’s
run tape only take Ramplitude (ℓ) space. Next, as we are going to see later, all ⊥-labeled
moves residing on N ’s run tape are copies (made by K) of ⊥-labeled moves residing
on K’s run tape, by the Clean Environment Assumption meaning that their quantity is

17 Together with the never-changing representation of the transition function of N , as well as the earlier
computedS|max(~c)|. Whenever possible, we prefer not to mention explicitly these or similar, asymptotically
irrelevant/superseded, pieces of information or events.
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bounded by D, and also implying that those moves are quasilegal, due to which (not
only their magnitudes but also) their sizes do not exceed O(ℓ). For this reason, the
⊥-labeled moves of N ’s run tape, just like the ⊤-labeled moves, only take Ramplitude (ℓ)
of total space. Thus, there are at most Ramplitude(ℓ) different possible locations of N ’s
run-tape head. Representing any of such locations takes |Ramplitude (ℓ)| and hence — by
clause 5 of Definition 2.2 of [5] — Rspace (ℓ) space.

5th component: Since N plays H quasilegally, the number of moves that N has made so
far can never exceed D, so holding the 5th component in memory only takes a constant
amount of space.

6th component: Let m be the number of symbols currently in N ’s buffer. Assume m > 0,
for otherwise holding it takes no space. Consider the scenario where N ’s adversary
does not make any moves beginning from the current point. Since N is unconditionally
provident, sooner or later it should make a move α that is an extension of the move
currently in the buffer, so the number of symbols in α is at least m. But, since N plays
H quasilegally and runs in unconditional Ramplitude amplitude, the number of symbols
in α cannot exceed Ramplitude (ℓ). That is, m does not exceed Ramplitude (ℓ). Holding
such an m therefore requires at most |Ramplitude (ℓ)| space, and hence — again by clause
5 of Definition 2.2 of [5] — Rspace space.

7th component: Recording this component, of course, only takes a constant amount of space.
8th component: With a moment’s thought and with Lemma 4.1 in mind, it can be seen that,

since α′ is a truncation, the number of symbols in it does not exceed Rspace(ℓ).

Unfortunately, the sketch of a given computation step j of N alone is not sufficient to fully
trace the subsequent steps of N and thus successfully conduct simulation. The reason is
that, in order to compute (the sketch of) the (j + 1)th step of N , one needs to know the
content of the cell scanned by the run-tape head of N . However, sketches do not keep track
of what is on N ’s run tape, and that information — unless residing on the run tape of K itself
by good luck — is generally forgotten. We handle this difficulty by letting the simulation
routine recompute the missing information every time such information is needed. This is
done through recursive calls to the routine itself. Properly materializing this general idea
requires quite some care though. Among the crucial conditions for our recursive procedure
to work within the required space limits is to make sure that the depth of the recursion
stack never exceeds a certain constant bound.

To achieve the above goal, we let K, in addition to the sketches for the simulated steps
of N , maintain what we call the global history. The latter is a list of all moves made by
N and its adversary throughout the imaginary play of H “so far”. More precisely, this is
not a list of moves themselves, but rather entries with certain partial information on those
moves. Namely, the entry for each move α does not indicate the actual content of α (which
could require more than Rspace space), but rather only the label of α (⊤ or ⊥, depending on
whether α was made by N or its adversary) and the size of α, i.e., the number of symbols in
α. Recording this information only takes |Ramplitude (ℓ)| and hence Rspace(ℓ) space. Further,
according to the forthcoming observation (B.3), the number of entries in the global history
never exceeds 2D (in fact D, but why bother). Since D is a constant, we find that K only
consumes an Rspace(ℓ) amount of space for maintaining the overall global history. While
a move α is not the same as the entry for it in the global history, in the sequel we may
terminologically identify these two.



50 G. JAPARIDZE

What do we need the global history for? As noted earlier, during its work, K will
often have to resimulate some already simulated portions of the work of N . To make
such a resimulation possible, it is necessary to have information on the times at which the
adversary of N has made its moves in the overall scenario that we are considering and
re-constructing. Recording the actual move times as they were detected during the initial
simulation, however, could take us beyond our target space limits. After all, think of a
situation where N waits “very long” before its environment makes a move. So, instead,
we only keep track — via the global history — of the order of moves. Then we neutralize
the problem of not remembering the “actual” times of N ’s adversary’s moves by simply
assuming that N ’s adversary always makes its moves instantaneously in response to N ’s
moves. The point is that, if N wins H, it does so in all scenarios, including the above
scenario of instantaneously responding adversary.

It is important to note that, as will be immediately seen from our description of the
work of K, the moves recorded in the global history at any step of the work of K are the
same as the moves on the run tape of N . And the latter, in turn, are copies of moves on the
run tape of K, with the only difference that, on K’s run tape, the ⊤-labeled moves appear
in truncated forms. The orders of moves in the global history and on the run tape of N are
exactly the same. As for the run spelled on the run tape of K, even if truncation did not
really modify N ’s moves, it may not necessarily be the same as the run spelled on the run
tape of N . Instead, the former is only guaranteed to be a ⊤-delay of the latter (see Section
3 of [3]). However, this kind of a difference, just like having the ⊤-labeled moves truncated,
for our purposes (for K’s chances to win) is just as good as — or “even better than” — if
the two runs were exactly the same.

The work of K relies on the three subprocedures called Update Sketch, Fetch Sym-

bol and Make History. We start with Update Sketch.

B.2. Procedure Update Sketch. In the context of a given global history H, this proce-
dure takes the sketch Sj of a given computation step j of N , and returns the sketch Sj+1

of the next computation step j + 1 of N .
Let m be the 5th component of Sj. The number m tells us how many moves N had

made by time j. In most cases, Update Sketch will be used while re-constructing some
past episode of N ’s work. It is then possible that the global history contains an (m+ 1)th
move by N (i.e., with label ⊤). If so, then such a move, as well as all subsequent moves of
H, are “future moves” from the perspective of the jth step of N that Update Sketch is
currently dealing with. This means that, when “imagining” the situation at the jth step
of N , those moves should be discarded. So, let H

′ be the result of deleting from H the
(m+1)th ⊤-labeled move and all subsequent, whatever-labeled moves (if there are no such
moves, then simply H′ = H). Thus, H′ is exactly a record of the moves that N would see
— in the same order as they appear in H

′ — on its run tape at step j.
The information contained in Sj is “almost” sufficient for Update Sketch to calculate

the sought value of Sj+1. The only missing piece of information is the symbol s scanned
by the run-tape head of N on step j. Update Sketch thus needs, first of all, to figure
out what that symbol s is. To do this, Update Sketch computes the sum p of the sizes
of all moves (including their labels) of H′. Next, let q (found in the 4th component of Sj)
be the number indicating the location of the run-tape head of N on step j. Note that, in
the scenario that Update Sketch is dealing with, the length of the “active” content of
N ’s run tape is p, with cell #(p + 1) and all subsequent cells being blank. So, Update
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Sketch compares q with p. If q > p, it concludes that s is Blank. Otherwise, if q ≤ p, s
should be one of the symbols of one of the moves α recorded in H

′. From H, using some
easy logarithmic-space arithmetic, Update Sketch figures out the author/label ℘ of α,
and also finds two integers k and n. Here k is the number of moves made by ℘ before it
made the move α. And n is the number such that the sought symbol s is the nth symbol
of α. If ℘ = ⊥, using k and n, Update Sketch finds the sought symbol s on the run tape
of K. Otherwise, if ℘ = ⊤, Update Sketch calls the below-described procedure Fetch

Symbol on (k, n). As will be seen later, Fetch Symbol then returns the sought symbol
s. Thus, in any case, Update Sketch now knows the symbol s read by the run-tape head
of N on step j.

Keeping the above s as well as the earlier computed valueS|max(~c)| in mind,18 Update

Sketch now additionally consults Sj and finds (all 8 components of) the sought sketch Sj+1

using certain rather obvious logarithmic space calculations, details of which we omit.

B.3. Procedure Fetch Symbol. In the context of a given global historyH, this procedure
takes two numbers k, n, where k is smaller than the number of ⊤-labeled moves in H, and
n is a positive integer not exceeding the length of the (k+ 1)th ⊤-labeled move there. The
goal of Fetch Symbol is to return, through rerunning N , the nth symbol of the (k+1)th
⊤-labeled move of H.

To achieve the above goal, Fetch Symbol creates a sketch-holding variable S, and
sets the initial value of S to the initial sketch. By the latter we mean the sketch of the
initial configuration of N , i.e., the configuration where N is in its start state, the buffer
and the work tapes are empty,19 and all scanning heads are looking at the leftmost cells of
their tapes.

After the above initialization step, Fetch Symbol performs the following subproce-
dure:

(1) Perform Update Sketch on S. Let S
′ be the resulting sketch, and let σ be the 7th

component of S′. Below, as always, |σ| means the length of (number of symbols in) σ.
(2) Let a and b be the 5th and 6th components of S, respectively. If a = k and b < n ≤ b+|σ|,

then return the (n − b)th symbol of σ. Otherwise, update the value of S to S
′, and go

back to step 1.

Before proceeding, the reader may want to convince himself or herself that, as promised,
Fetch Symbol indeed returns the nth symbol of the (k + 1)th ⊤-labeled move of H.

B.4. Procedure Make History. This procedure takes a global history H as an argument
and, treating H as a variable that may undergo updates, acts according to the following
prescriptions:

Stage 1: Create a variable S and initialize its value to the initial sketch of N . Proceed to
Stage 2.

Stage 2: Check out K’s run tape to see if Environment has made a new move (this can
be done, say, by counting the ⊥-labeled moves on the run tape, and comparing their
number with the number of ⊥-labeled moves recorded in the global history). If yes,
update H by adding to it a record for that move, and repeat Make History. If not,
go to Stage 3.

18This value is (could be) needed for determining the 8th component of Sj+1.
19As for the run tape, what is on it is irrelevant because a sketch has no record of the run-tape content

anyway.
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Stage 3:
(a) Perform Update Sketch on S. Let T be the resulting sketch.
(b) If N did not make a globally new move on its transition from S to T,20 change

the value of the variable S to T, and go back to Stage 2. Here and later in similar
contexts, by a “globally new” move we mean a move not recorded in the global
history H. Figuring out whether N made a globally new move is easy. Technically,
N made a globally new move if and only if, firstly, it did make a move, i.e., the 1st
component of T is a move state; and secondly, such a move is not recorded in H,
meaning that the 5th component of T exceeds the total number of ⊤-labeled moves
recorded in H.

(c) Suppose now N made a globally new move α. Let α′ be the 8th component of S.
Thus, α′ is the truncation of α. Copy α′ to the buffer (of K) symbol by symbol,
after which go to a move state. This results in K making the move α′ in the real
play. Now update the global history H by adding to it a record for the move α, and
repeat Make History.

B.5. The overall strategy and an example of its run. We continue our description of
the overall work K, started on page 47 but interrupted shortly thereafter. As we remember,
at the very beginning of the play, K waited till Environment specified the u constants
~c = c1, . . . , cu for all free variables of H. What K does after that is that it creates the
variable H, initializes its value to record the sequence 〈⊥c1, . . . ,⊥cu〉, and then switches to
running Make History forever. This completes our description of K.

Here we look at an example scenario to make sure we understand the work of K. Let

H = ⊓y
(

|y| ≤ |x|→⊔z
(

|z| ≤ |x| ∧ p(z, y)
)

)

∨⊓u
(

|u| ≤ |x|→⊔v
(

|v| ≤ |x| ∧ q(u, v)
)

)

.

Note that the superaggregate bound of this formula is the identity function S(w) = w.
At the beginning of its work, K waits till Environment specifies a value for x. Let us

say 1001 is that value. After calculating S|1001|, which in the present case is 4, K creates
the variable H and sets its value to contain a record for the (single) labmove ⊥#1001. The
rest of the work of K just consists in running Make History. So, in what follows, we can
use “K” and “Make History” as synonyms.

During its initialization Stage 1, Make History creates the variable S and sets its
value to the initial sketch of N . The result of this step reflects the start situation, where
“nothing has yet happened” in the mixture of the real play of H by K and the simulated
play of H by N , except for Environment’s initial move #1001.

Now Make History starts performing, over and over, Stages 2 and 3. The work
in those two stages can be characterized as “global simulation”. This is a routine that
keeps updating, one step at a time, the sketch S (Stage 3) to the sketch of the “next
configurations” of N in the scenario where the imaginary adversary of N has made the
move #1001 at the very beginning of the play; every time the simulated N is trying to read
some symbol of this move, K finds that symbol on its own run tape and feeds it back to
the simulation. Simultaneously, Make History keeps checking (Stage 2) the run tape of
K to see if Environment has made a new move. This will continue until either Environment
or the simulated N is detected to make a new move. In our example, let us imagine that

20Here and later in similar contexts, we terminologically identify sketches with the corresponding steps
of N .
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Environment makes the move 0.#10, signifying choosing the constant 10 for y in H. What
happens in this case?

Make History simply restarts the global simulation by resetting the sketch S to the
initial sketch of N . The earlier-described “Stage 2 and Stage 3 over and over” routine will
be repeated, with the only difference that the global history H is now showing the presence
of both ⊥#1001 and ⊥0.#10. This means that the simulation of N will now proceed in the
scenario where, at the very beginning of the play, N ’s adversary had made the two moves
#1001 and 0.#10. So, every time the simulated N tries to read one of the symbols of either
move on its imaginary run tape, Make History— K, that is — looks that symbol up
on its own run tape. By switching to this new scenario, Make History, in fact, deems
the previous scenario invalid, and simply forgets about it. This routine will continue until
either Environment or N , again, is detected to make a move.

Let us say it is now N , which makes the imprudent move 0.1.#1111111, signifying
choosing the “oversized” (of size > 4) constant 1111111 for z in H. In this event, Make

History — K, that is — assembles the truncation 0.1.#1111 of 0.1.#1111111 in its buffer
copying it from the 8th component of S, and then makes the move 0.1.#1111 in the real play.
After that, as always when a new (lab)move is detected, the global simulation restarts. Now
the global history H is showing records for the sequence 〈⊥#1001,⊥0.#10,⊤0.1.#1111111〉
of three moves. In the present, 3rd attempt of global simulation, just like in the 2nd
attempt, N is resimulated in the scenario where, at the beginning of the play, its adversary
had made the moves #1001 and 0.#10. The only difference between the present attempt
of global simulation and the previous one is that, once N is detected to make the expected
move 0.1.#1111111, nothing special happens. Namely, the global history is not updated (as
0.1.#1111111 is already recorded there); the move 0.1.#1111 is not made in the real play
(as it already has been made); and the global simulation continues in the ordinary fashion
rather than restarts. The present attempt of global simulation, again, will be interrupted if
and when either Environment or the simulated N is detected to make a globally new move,
i.e., a move not recorded in the global history.

Let us say it is again Environment, which makes the move 1.#1, signifying choosing the
constant 1 for u in H. As always, a record for the new move is added to H, and the global
simulation restarts. The resimulation of N will start in the scenario where, at the beginning
of the play, its adversary had made the moves #1001 and 0.#10. We already know that,
in this scenario, sooner or later, N will make its previously detected move 0.1.#1111111.
Once this event is detected, N ’s simulation continues for the scenario where its adversary
responded by the move 1.#1 immediately after N made the move 0.1.#1111111.

Imagine that the final globally new move detected is one by N , and such a move is
1.1.#0, signifying choosing the constant 0 for v in H. Make History copies this move in
the truncated form — which remains the same 1.1.#0 because this move is quasilegal and
prudent — in the real play. Then, as always, H is correspondingly updated, and the global
simulation is restarted with that updated H.

The last attempt of global simulation (the one that never got discarded/reconsidered)
corresponds to the “ultimate” scenario that determined K’s real play. Namely, in our present
example, the “ultimate” scenario in which N was simulated is that, at the very beginning of
the play, N ’s adversary had made the moves #1001 and 0.#10, to which N later responded
with 0.1.#1111111, to which N ’s adversary immediately responded with 1.#1, to which,
some time later, N responded with 1.1.#0, and no moves were made ever after. While the



54 G. JAPARIDZE

imaginary run generated by N in this scenario is

〈⊥#1001, ⊥0.#10, ⊤0.1.#1111111, ⊥1.#1, ⊤1.1.#0〉, (B.1)

the real run generated by K is

〈⊥#1001, ⊥0.#10, ⊤0.1.#1111, ⊥1.#1, ⊤1.1.#0〉, (B.2)

with (B.2) being nothing but the result of replacing in (B.1) all ⊤-labeled moves by their
truncations. Since it is our assumption that N wins H, (B.1) is a ⊤-won run of H. But
then so is (B.2) because, as noted earlier, truncating a given player’s moves can (increase
but) never decrease that player’s chances to win.

Why do we need to restart the global simulation every time a globally new move is
detected? The reason is that otherwise we generally would not be able to rely on calls of
Fetch Symbol for obtaining required symbols. Going back to our example, imagine we
did not restart the global simulation (Make History) after the moves #1001 and 0.#10
were made by Environment. Perhaps (but not necessarily), as before, N would still make its
move 0.1.#1111111 sometime after 0.#10. Fine so far. But the trouble starts when, after
that event, N tries to read some symbol of 0.1.#1111111 from its imaginary run tape. A
way to provide such a symbol is to invoke Fetch Symbol, which will resimulate N to find
that symbol. However, in order to properly resimulate N up to the moment when it made
the move 0.1.#1111111 (or, at least, put the sought symbol of the latter into its buffer),
we need to know when (on which computation steps of N ), exactly, the labmoves ⊥#1001
and ⊥0.#10 emerged on N ’s run tape. Unfortunately, we do not remember this piece of
information, because, as noted earlier, remembering the exact times (as opposed to merely
remembering the order) of moves may require more space than we possess. So, instead, we
assume that the moves #1001 and 0.#10 were made right at the beginning of N ’s play. This
assumption, however, disagrees with the scenario of the original simulation, where #1001
was perhaps only made at step 888, and 0.#10 perhaps at step 77777. Therefore, there is
no guarantee that N will still generate the same move 0.1.#1111111 in response to those
two moves. Restarting the global simulation — as we did — right after #1001 was made,
and then restarting it again after 0.#10 was detected, neutralizes this problem. If N made
its move 0.1.#1111111 after 0.#10 in this new scenario (the scenario where its imaginary
adversary always acted instantaneously), then every later resimulation, no matter how many
times Make History is restarted, will again take us to the same move 0.1.#1111111 made
after 0.#10, because the global history, which “guides” resimulations, will always be showing
the first three labmoves in the order ⊥#1001,⊥0.#10,⊤0.1.#1111111. To see this, note
that all updates of the global history only add some moves to it, and otherwise do not affect
the already recorded moves or their order.

We also want to understand one remaining issue. As we should have noticed, Fetch
Symbol always calls Update Sketch, and the latter, in turn, may again call Fetch
Symbol. Where is a guarantee that infinitely many or “too many” nested calls will not
occur? Let us again appeal to our present example, and imagine we (Update Sketch, that
is) are currently simulating a step of N sometime after it already has made the move 1.1.#0.
Whenever N tries to read a symbol of ⊤1.1.#0, Fetch Symbol is called to resimulate N
and find that symbol. While resimulating N , however, we may find that, at some point, its
run-tape head is trying to read a symbol of the earlier labmove ⊤0.1.#1111111. To get that
symbol, Fetch Symbol will be again called to resimulate N and find that symbol. Can
this process of mutual calls go on forever? Not really. Notice that, when Fetch Symbol is



BUILD YOUR OWN CLARITHMETIC II 55

called to find the sought symbol of ⊤0.1.#1111111, Fetch Symbol, guided by the global
history, will resimulate N only up to the moment when it made the move 0.1.#1111111.
But during that episode of N ’s work, the labmove ⊤1.1.#0 was not yet on its run tape.
So, Fetch Symbol will not have to be called further. Generally, as we are going to see
in Section B.7.2, there can be at most a constant number of nested invocations of Fetch
Symbol or Update Sketch.

B.6. K is a provident and prudent solution of H. Consider an arbitrary play by
(computation branch of) K, and fix it for the rest of this appendix.

As seen from the description of Make History, the ⊥-labeled moves recorded in H

are the moves made by (K’s real) Environment. Since the latter is assumed to play legally,
the number of ⊥-labeled moves in H cannot exceed D. Similarly, the ⊤-labeled moves of H
are the moves made by N in a certain play. Therefore, as N is a quasilegal solution of ⊓H,
the number of such moves cannot exceed D, either. Thus, with “never” below meaning “at
no stage of the work of K”, we have:

The number of labmoves in H never exceeds 2D.21 (B.3)

Since every iteration of Make History increases the number of labmoves in H, an imme-
diate corollary of (B.3) is that

Make History is iterated at most 2D times. (B.4)

Since Make History is restarted only finitely many times, the last iteration of it never
terminates. Let Γ be the sequence of labmoves recorded in the final value of H (i.e., the
value of H throughout the last iteration of Make History). This is the run generated
by the simulated N in what we referred to as the “ultimate scenario” in the preceding
subsection (scenario = computation branch). Next, let ∆ be the run generated by K in
the real play that we are considering. Since N is a solution of ⊓H, Γ is a ⊤-won run of
⊓H. We want to verify that then ∆ is also a ⊤-won run of ⊓H, meaning that K, too, is a
solution of ⊓H.

How do Γ and ∆ differ from each other? As noted at the end of Section B.1, an analysis
of the work of K, details of which are left to the reader, reveals that there are only two
differences.

The first difference is that the ⊤-labeled moves of Γ appear in ∆ in truncated forms.
This is so because, whenever K makes a move (according to the prescriptions of Stage 3(c)
of Make History), it copies that move from the 8th component of the sketch of the step
of N on which the latter made a move α; but the 8th component of a sketch always holds
the truncation of the move residing in N ’s buffer; thus, the move α′ made by K in the real
play/run ∆ is the truncation of the move α made by N in the imaginary play/run Γ.

Let us use Ω to denote the result of changing in Γ all ⊤-labeled moves to their trunca-
tions.

The second difference between Γ and ∆ is that, even if we ignore the first difference —
that is, even if we consider Ω instead of Γ — the run is still not guaranteed to be exactly
the same as ∆; rather, we only know that the latter is a ⊤-delay of the former. The reason
for this discrepancy is that, while performing Make History, K may notice a move δ by
Environment with some delay, only after it has first noticed a move γ by N and made the
truncation γ′ of γ as a move in the real play; if this happens, ⊤γ will appear before ⊥δ in

21In fact, with some additional analysis, 2D can be lowered to D here, but why bother.
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Γ but after ⊥δ in ∆. But the game ⊓H is static, as are all games studied in CoL. And, by
the very definition of static games (cf. Section 3 of [3]), ∆’s being a ⊤-delay of Ω implies
that, if Ω is a ⊤-won run of ⊓H, then so is ∆. This means that, in order to achieve our
goal of proving that ∆ is a ⊤-won run of ⊓H, it is sufficient to simply show that Ω is a
⊤-won of ⊓H. This is what the rest of this subsection is devoted to, for the exception of
the last paragraph of it.

We may and will assume that different occurrences of quantifiers in ⊓H bind different
variables. This is a legitimate assumption, because, if it is false, we can rename variables
in ⊓H so as to make it true, with the new sentence, as a game, being virtually the same as
the old sentence.

By a unit we shall mean a subformula U of H of the form ⊓r(|r| ≤ b|~s|→E) (a ⊓-unit)
or ⊔r(|r| ≤ b|~s|∧E) (a ⊔-unit). Here r is said to be the master variable of U , and |r| ≤
b|~s| is said to be the master condition of U . “Subunit” and “superunit”, applied to units,
mean the same as “subformula” and “superformula”. The depth of a unit U is the number
of its superunits (including U itself). A unit U is resolved iff Γ contains a move signifying
choosing a constant for U ’s master variable. For instance, if H is ⊔x(|x| ≤ |y| ∧ x =
0) ∧⊓z(|z| ≤ |y|→⊔t(|t| ≤ |z| ′ ∧ t = z + z)) and Γ is 〈⊥#1000,⊥1.#11,⊤1.1.#110〉, then
the units ⊓z(|z| ≤ |y|→⊔t(|t| ≤ |z| ′ ∧ t = z + z)) and ⊔t(|t| ≤ |z| ′ ∧ t = z + z) are resolved
while ⊔x(|x| ≤ |y|∧ x = 0) is not. When w is a free variable of H or the master variable of
some resolved unit, then the resolvent of w is the constant chosen for w in (according to)
Γ. For instance, if H and Γ are as above, 1000 is the resolvent of y, 11 is the resolvent of
z and 110 is the resolvent of t. A unit U is well-resolved iff U is resolved and the result
of replacing all free variables by their resolvents in U ’s master condition is true. A unit is
ill-resolved iff it is resolved but not well-resolved. A critical unit is an ill-resolved unit
all of whose proper superunits are well-resolved.

Let f be the subaggregate bound of H. For i ∈ {1, 2, . . .}, we define

Si(z) = max(f(z), f2(z), . . . , f i(z)).

Note that the superaggregate boundS of H is nothing but SH, where H is the total number
of all units. For this reason, taking into account that the depth of no unit can exceed H,
we have:

Whenever i is the depth of some unit, Si � S. (B.5)

Lemma B.2. Consider an arbitrary resolved unit U . Let i be its depth, and a be the
resolvent of its master variable. If all superunits of U (including U itself) are well-resolved,
then |a| ≤ Si|max(~c)|.

Proof. Induction on i. Assume the conditions of the lemma. Let w be the master variable
of U , and let |w| ≤ b(|x1|, . . . , |xk|, |z1|, . . . , |zm|) be the master condition of U , with all free
variables displayed, where x1, . . . , xk are from among the free variables of H, and z1, . . . , zm
are from among the master variables of the proper superunits of U . Let d1, . . . , dk, e1, . . . , em
be the resolvents of x1, . . . , xk, z1, . . . , zm, respectively. Below we shall use c, d and e as
abbreviations of max(~c), max(d1, . . . , dk) and max(e1, . . . , em), respectively. Let b′ be the
unarification of b.

U ’s being well-resolved means that |a| does not exceed b(|d1|, . . . , |dk|, |e1|, . . . , |em|).
Hence, by the monotonicity of b, we have |a| ≤ b′|max(d, e)|. But, of course, b′ � f (recall
that f is the subaggregate bound of H). Thus, |a| ≤ f |max(d, e)|. This means that, in
order to verify our target |a| ≤ Si|c|, it is sufficient to show that both f |d| ≤ Si|c| and
f |e| ≤ Si|c|.
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That f |d| ≤ Si|c| follows from the straightforward observations that d ≤ c and f � Si.
As for f |e| ≤ Si|c|, first assume i = 1. Then m = 0 and hence e = 0; also, Gi is f .

Thus, we want to show that f |0| ≤ f |c|. But this is immediate from the monotonicity of f .
Now assume i > 1. By the induction hypothesis, |e| ≤ Si−1|c|. So, f |e| ≤ f(Si−1|c|). But,
of course, f(Si−1|c|) ≤ Si|c|. Thus, f |e| ≤ Si|c|.

We are now in the position to see that Ω inherits Γ’s being a ⊤-won run of ⊓H. Let

⊓u1
(

|u1| ≤ p1|~r1|→A1

)

, . . . , ⊓ua
(

|ua| ≤ pa|~ra|→Aa

)

be all the critical ⊓-units, and let u◦1, ~r
◦
1 , . . . , u

◦
a, ~r
◦
a be the resolvents of u1, ~ri, . . . , ua, ~ra,

respectively. Similarly, let

⊔v1
(

|v1| ≤ q1|~s1| ∧B1

)

, . . . ,⊔vb
(

|vb| ≤ qb|~sb| ∧Bb

)

be all the critical ⊔-units, and let v◦1 , ~s
◦
1 , . . . , v

◦
b , ~s
◦
b be the resolvents of v1, ~s1, . . . , vb, ~sa,

respectively.
It is not hard to see that, following the notational conventions of Section 5.3 of [5] and

Section 7 of [3], the paraformula 〈Γ〉!⊓H can be written as

X
[

|u◦1| ≤ p1|~r
◦
1 |→A◦1, . . . , |u

◦
a| ≤ pa|~r

◦
a |→A◦a,

|v◦1 | ≤ q1|~s
◦
1 |∧B

◦
1 , . . . , |v

◦
b | ≤ qb|~s

◦
b | ∧B

◦
b

] (B.6)

for some X, A◦1, . . . , A
◦
a, B

◦
1 , . . . , B

◦
b . With some additional analysis of the situation and

with (B.5) and Lemma B.2 in mind, one can see that the paraformula 〈Ω〉!⊓H can then be
written as

X
[

|u◦1| ≤ p1|~r
◦
1 |→A•1, . . . , |u

◦
a| ≤ pa|~r

◦
a |→A•a,

|v•1 | ≤ q1|~s
◦
1 |∧B

•
1 , . . . , |v

•
b | ≤ qb|~s

◦
b | ∧B

•
b

] (B.7)

for some v•1 , . . . , v
•
b , A

•
1, . . . , A

•
a, B

•
1 , . . . , B

•
b (and with all other parameters the same as in

(B.6)).
By the definition of the prefixation operation (Definition 2.2 of [3]), the fact that Γ is

a ⊤-won run of ⊓H — written as 〈Γ〉⊓H = ⊤ — implies (in fact, means the same as) that
the empty run 〈〉 is a ⊤-won run of 〈Γ〉⊓H, which, since 〈Γ〉⊓H = (B.6), can be written as

〈〉X
[

|u◦1| ≤ p1|~r
◦
1 |→A◦1, . . . , |u

◦
a| ≤ pa|~r

◦
a |→A◦a,

|v◦1 | ≤ q1|~s
◦
1 | ∧B

◦
1 , . . . , |v

◦
b | ≤ qb|~s

◦
b |∧B

◦
b

]

= ⊤.
(B.8)

Consider any i ∈ {1, . . . , b}. Since the unit ⊔vi
(

|vi| ≤ qi|~si| ∧Bi

)

is critical and hence

ill-resolved, |v◦i | exceeds qi|~s
◦
i |. Hence 〈〉

(

|v◦i | ≤ qi|~s
◦
i | ∧B

◦
i

)

= ⊥. This clearly allows us to
rewrite (B.8) as

〈〉X
[

|u◦1| ≤ p1|~r
◦
1 |→A◦1, . . . , |u

◦
a| ≤ pa|~r

◦
a |→A◦a, ⊥, . . . , ⊥

]

= ⊤.

The monotonicity of the operators (∧,∨,∀,∃) of X, just as in classical logic, allows us
to replace the ⊥s by whatever games in the above equation, so the latter can be further
rewritten as

〈〉X
[

|u◦1| ≤ p1|~r
◦
1 |→A◦1, . . . , |u

◦
a| ≤ pa|~r

◦
a |→A◦a,

|v•1 | ≤ q1|~s
◦
1 | ∧B

•
1 , . . . , |v

•
b | ≤ qb|~s

◦
b |∧B

•
b

]

= ⊤.
(B.9)
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Next, for similar reasons, for every i ∈ {1, . . . , a} we have |u◦i | > pi|~r
◦
i | and hence 〈〉

(

|u◦i | ≤

pi|~r
◦
i |→A•i

)

= ⊤, which allows us to rewrite (B.9) as

〈〉X
[

|u◦1| ≤ p1|~r
◦
1 |→A•1, . . . , |u

◦
a| ≤ pa|~r

◦
a |→A•a,

|v•1 | ≤ q1|~s
◦
1 | ∧B

•
1 , . . . , |v

•
b | ≤ qb|~s

◦
b |∧B

•
b

]

= ⊤.
(B.10)

However, the X[. . .] part of (B.10) is identical to (B.7), which, in turn, is nothing but
〈Ω〉⊓H. If so, the target 〈Ω〉⊓H = ⊤ is an immediate consequence of (B.10).

Thus, K is a solution of H, as desired. As such, it is both provident and prudent. K
is provident because, as a simple examination shows, it only puts something into its buffer
while acting according to clause 3(c) of the description of Make History; however, at the
end of the same clause, we see a prescription for K to move, and thus empty the buffer. As
for prudence, it is automatically achieved because K only makes truncated moves, and such
moves are always prudent.

B.7. K plays in target tricomplexity. It remains to show that K plays H in tricom-
plexity R. Our analysis is going to be asymptotic, implicitly relying on Remark 2.4 of
[5].

B.7.1. Amplitude. Since K merely mimics — perhaps in the truncated form and perhaps
with some delay — N ’s moves, it is obvious that the amplitude complexity of the former
does not exceed that of the latter.

In fact, K’s running in the target amplitude is also guaranteed by the facts thatRspace �
Ramplitude (clause 5 of Definition 2.2 of [5]), H is Rspace -bounded and K plays H prudently.

B.7.2. Space. Let H be a global history, and m a natural number. We define the H-index
of m as the number of moves in H

′, where H′ is the result of deleting from H the (m+1)th
⊤-labeled move and all subsequent whatever-labeled moves; if here H does not contain more
than m ⊤-labeled moves, then H

′ is simply H. Next, where S is a sketch, we define the
H-index of S as the H-index of m, where m is the value of the 5th component of S. We
extend the concept of H-index to particular runs/iterations of Update Sketch and Fetch

Symbol in the process of performing Make History. Namely, Update Sketch is always
run on a sketch S, and we define the H-index of that run of Update Sketch to be the
H-index of S. Similarly, Fetch Symbol is always called on a pair (k, n) for some numbers
k and n, and we define the H-index of such a call/run of Update Sketch as the H-index
of k (n is thus irrelevant here). If H is fixed or clear from the context, we may omit “H-”
and simply say “index”.

Lemma B.3. In the process of any given iteration of Make History and in the context
of the then-current value of the global history variable H, we have:

1. The index of any run of Update Sketch does not exceed 2D.
2. Whenever a given run of Update Sketch calls Fetch Symbol, the index of the callee

is strictly smaller than that of the caller.
3. Whenever a given run of Fetch Symbol calls Update Sketch, the index of the callee

does not exceed that of the caller.
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Proof. Clause 1 is immediate from the obvious fact that an index can never exceed the
number of moves in the global history, and the latter, according to (B.3), is bounded by 2D.
Clauses 2 and 3 can be verified through a rather straightforward (albeit perhaps somewhat
long) analysis of the two procedures Update Sketch and Fetch Symbol; details of such
an analysis are left to the reader.

We are now ready to examine the space complexity of K. The space consumption of
K comes from the need to simultaneously maintain the global history and various sketches.
As observed earlier, maintaining the global history consumes Rspace space, and, by Lemma
B.1, each sketch also consumes Rspace space. At any given time, the global history is kept
in memory in a single copy. So, to show that the overall space consumption is Rspace , we
need to show that, at any given time, the number of sketches simultaneously kept in the
memory of K does not exceed a certain constant. But this is indeed so. Looking back at the
work of Make History, we see that, at any time, its top level maintains a single sketch. It
also keeps going through this sketch and updating it through Update Sketch, one step at
a time. Since updates are done sequentially, space used for them can be recycled, so space
consumptions for updating different sketches (this includes not only the top-level sketch of
Make History, but also many additional sketches that will emerge during calls to Fetch

Symbol when updating each individual sketch) do not add together unless those sketches
happen to be on a same branch of nested recursive calls that Update Sketch and Fetch

Symbol make to each other. In view of Lemma B.3, however, the depth of recursion (the
height of the recursion stack at any time) is bounded, because the index of Update Sketch

in the topmost level of recursion does not exceed 2D, and every pair of successor levels of
recursion strictly decreases the index of the corresponding call of Update Sketch.

B.7.3. Time. As we observed in (B.4), during the entire work of K, Make History is
iterated at most 2D times. The last iteration runs forever, but K is not billed for that
time because it makes no moves during that period. Likewise, K will not be billed for the
time spent on an iteration of Make History that was terminated at Stage 2, because a
move by Environment resets K’s time counter to 0. Call the remaining sorts of iterations of
Make History — namely, the iterations that terminate according to the scenario of case
(c) of Stage 3 — time-billable. So, it is sufficient for us to understand how much time a
single time-billable iteration of Make History takes. Pick any such iteration and fix it
throughout the context of the rest of this section, including the forthcoming Lemma B.4.
We will use ℓ to denote the background of the last clock cycle of that iteration.

Lemma B.4. The time consumed by any single run of Update Sketch or Fetch Symbol

is Rtime(ℓ).

Proof. We verify this lemma by induction on the index i ∈ {0, . . . , 2D} of the corresponding
call/run of Update Sketch or Fetch Symbol. Assume i ≥ 0 is the index of a given run
of Update Sketch. Looking back at our description of Update Sketch, we see that
this routine makes at most one call of Fetch Symbol. First, assume no such call is made.
Due to K’s playing prudently, max(ℓ,S(ℓ)) is the maximum magnitude of any move that
may appear on K’s run tape at any given time of the iteration. We also know from Lemma
4.1 that S � Rspace . So, K’s run-tape size (by which, as usual, we mean the size of the
non-blank segment of the tape) is O(ℓ) + Rspace (ℓ) and hence, by the relevant clauses of
Definition 2.2 of [5], is Rtime(ℓ). We also know that the sketch and the global history are
both of size Rspace(ℓ) and hence Rtime(ℓ). Keeping these facts in mind, with some analysis it
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is obvious that, in this case, Update Sketch spends Rtime(ℓ) time. Now assume Update

Sketch does call Fetch Symbol. By clause 2 of Lemma B.3, the index j of such a call is
less than i. Hence, by the induction hypothesis, the time taken by the latter is Rtime(ℓ). In
addition to this, Update Sketch only spends the same amount Rtime(ℓ) of time as in the
preceding case to complete its work. Thus, in either case, the time consumption of Update

Sketch is Rtime(ℓ).
Now consider a run of Fetch Symbol, and let i ≥ 0 be its index. By clause 3 of Lemma

B.3, the index of any call of Update Sketch that the given run of Fetch Symbol makes
is at most i. By the induction hypothesis, each such call of Update Sketch consumes
at most Rtime(ℓ) time. Processing any such call (doing additional work related to it), in
turn, obviously takes at most Rtime(ℓ) time. So, each call of Update Sketch costs our
run of Fetch Symbol at most Rtime(ℓ) time. How many such calls of Update Sketch

will Fetch Symbol make? Since N runs in time Rtime , with a little thought one can see
that the number of calls of Update Sketch is at most Rtime(ℓ). So, the overall time cost
of the run of Fetch Symbol is Rtime(ℓ)×Rtime(ℓ), which, in view of the closure of Rtime

under ×, remains Rtime(ℓ).

We are now ready to look at the time consumption of the single time-billable iteration
of Make History fixed earlier.

Stage 1 of Make History obviously takes a constant amount of time, and this stage is
iterated only once. So, asymptotically, it contributes nothing to the overall time consump-
tion of the procedure.

Stage 2 checks out the run tape, which may require moving the run-tape head of K
from one end of the (non-blank segment of the) run tape to the other end. Additionally,
the global history needs to be updated, but this can be done even faster. So, this stage
obviously takes as much time as the size of K’s run tape, which, as observed in the proof of
Lemma B.4, is Rtime(ℓ).

Stage 3 starts with performing Update Sketch (Substage 1), and this, by Lemma
B.4, takes Rtime(ℓ) time. With a little thought, the time taken by Substages (b) and (c) of
Stage 3 can be seen to be at most quadratic in the size of K’s run tape. We know that the

latter is Rspace (ℓ). Hence so is
(

Rspace(ℓ)
)2
, because Rtime is closed under ×.

To summarize, none of the 3 stages of Make History takes more than Rtime(ℓ) time.
Stage 1 is repeated only once, and the remaining two stages are repeated at most Rtime(ℓ)
times as can be seen with a little thought, keeping in mind that the iteration of Make

History that we are dealing with is a time-billable one. If so, due to Rtime ’s closure under
×, the overall time consumption is Rtime(ℓ), which obviously implies that K plays ⊓H in
time Rtime , as desired.
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