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Abstract

We introduce tools and methodologies to collect high

quality, large scale fine-grained computer vision datasets

using citizen scientists – crowd annotators who are passion-

ate and knowledgeable about specific domains such as birds

or airplanes. We worked with citizen scientists and domain

experts to collect NABirds, a new high quality dataset con-

taining 48,562 images of North American birds with 555

categories, part annotations and bounding boxes. We find

that citizen scientists are significantly more accurate than

Mechanical Turkers at zero cost. We worked with bird ex-

perts to measure the quality of popular datasets like CUB-

200-2011 and ImageNet and found class label error rates

of at least 4%. Nevertheless, we found that learning algo-

rithms are surprisingly robust to annotation errors and this

level of training data corruption can lead to an acceptably

small increase in test error if the training set has sufficient

size. At the same time, we found that an expert-curated high

quality test set like NABirds is necessary to accurately mea-

sure the performance of fine-grained computer vision sys-

tems. We used NABirds to train a publicly available bird

recognition service deployed on the web site of the Cornell

Lab of Ornithology.1

1. Introduction

Computer vision systems – catalyzed by the availabil-

ity of new, larger scale datasets like ImageNet [6] – have

recently obtained remarkable performance on object recog-

nition [17, 32] and detection [10]. Computer vision has en-

tered an era of big data, where the ability to collect larger

datasets – larger in terms of the number of classes, the num-

ber of images per class, and the level of annotation per im-

age – appears to be paramount for continuing performance

improvement and expanding the set of solvable applica-

tions.

Unfortunately, expanding datasets in this fashion intro-

duces new challenges beyond just increasing the amount of
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human labor required. As we increase the number of classes

of interest, classes become more fine-grained and difficult

to distinguish for the average person (and the average anno-

tator), more ambiguous, and less likely to obey an assump-

tion of mutual exclusion. The annotation process becomes

more challenging, requiring an increasing amount of skill

and knowledge. Dataset quality appears to be at direct odds

with dataset size.

In this paper, we introduce tools and methodologies for

constructing large, high quality computer vision datasets,

based on tapping into an alternate pool of crowd annota-

tors – citizen scientists. Citizen scientists are nonprofes-

sional scientists or enthusiasts in a particular domain such as

birds, insects, plants, airplanes, shoes, or architecture. Citi-

zen scientists contribute annotations with the understanding

that their expertise and passion in a domain of interest can

help build tools that will be of service to a community of

peers. Unlike workers on Mechanical Turk, citizen scien-

tists are unpaid. Despite this, they produce higher quality

annotations due to their greater expertise and the absence of

spammers. Additionally, citizen scientists can help define

and organically grow the set of classes and its taxonomic

Figure 1: Merlin Photo ID: a publicly available tool for bird

species classification built with the help of citizen scientists. The

user uploaded a picture of a bird, and server-side computer vision

algorithms identified it as an immature Cooper’s Hawk.
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structure to match the interests of real users in a domain of

interest. Whereas datasets like ImageNet [6] and CUB-200-

2011 [35] have been valuable in fostering the development

of computer vision algorithms, the particular set of cate-

gories chosen is somewhat arbitrary and of limited use to

real applications. The drawback of using citizen scientists

instead of Mechanical Turkers is that the throughput of col-

lecting annotations maybe lower, and computer vision re-

searchers must take the time to figure out how to partner

with different communities for each domain.

We collected a large dataset of 48,562 images over 555

categories of birds with part annotations and bounding

boxes for each image, using a combination of citizen scien-

tists, experts, and Mechanical Turkers. We used this dataset

to build a publicly available application for bird species

classification. In this paper, we provide details and analysis

of our experiences with the hope that they will be useful and

informative for other researchers in computer vision work-

ing on collecting larger fine-grained image datasets. We ad-

dress questions like: What is the relative skill level of dif-

ferent types of annotators (MTurkers, citizen scientists, and

experts) for different types of annotations (fine-grained cat-

egories and parts)? What are the resulting implications in

terms of annotation quality, annotation cost, human annota-

tor time, and the time it takes a requester to finish a dataset?

Which types of annotations are suitable for different pools

of annotators? What types of annotation GUIs are best for

each respective pools of annotators? How important is an-

notation quality for the accuracy of learned computer vision

algorithms? How significant are the quality issues in exist-

ing datasets like CUB-200-2011 and ImageNet, and what

impact has that had on computer vision performance?

We summarize our contributions below:

1. Methodologies to collect high quality, fine-grained

computer vision datasets using a new type of crowd

annotators: citizen scientists.

2. NABirds: a large, high quality dataset of 555 cate-

gories curated by experts.

3. Merlin Photo ID: a publicly available tool for bird

species classification.

4. Detailed analysis of annotation quality, time, cost, and

throughput of MTurkers, citizen scientists, and experts

for fine-grained category and part annotations.

5. Analysis of the annotation quality of the popular

datasets CUB-200 and ImageNet.

6. Empirical analysis of the effect that annotation qual-

ity has when training state-of-the-art computer vision

algorithms for categorization.

A high-level summary of our findings is: a) Citizen sci-

entists have 2-4 times lower error rates than MTurkers at

fine-grained bird annotation, while annotating images faster

and at zero cost. Over 500 citizen scientists annotated im-

ages in our dataset – if we can expand beyond the domain

of birds, the pool of possible citzen scientist annotators is

massive. b) A curation-based interface for visualizing and

manipulating the full dataset can further improve the speed

and accuracy of citizen scientists and experts. c) Even when

averaging answers from 10 MTurkers together, MTurkers

have a more than 30% error-rate at 37-way bird classifi-

cation. d) The general high quality of Flickr search re-

sults (84% accurate when searching for a particular species)

greatly mitigates the errors of MTurkers when collecting

fine-grained datasets. e) MTurkers are as accurate and fast

as citizen scientists at collecting part location annotations.

f) MTurkers have faster throughput in collecting annota-

tions than citizen scientists; however, using citizen scien-

tists it is still realistic to annotate a dataset of around 100k

images in a domain like birds in around 1 week. g) At least

4% of images in CUB-200-2011 and ImageNet have incor-

rect class labels, and numerous other issues including in-

consistencies in the taxonomic structure, biases in terms of

which images were selected, and the presence of duplicate

images. h) Despite these problems, these datasets are still

effective for computer vision research; when training CNN-

based computer vision algorithms with corrupted labels, the

resulting increase in test error is surprisingly low and signif-

icantly less than the level of corruption. i) A consequence

of findings (a), (d), and (h) is that training computer vision

algorithms on unfiltered Flickr search results (with no an-

notation) can often outperform algorithms trained when fil-

tering by MTurker majority vote.

2. Related Work

Crowdsourcing with Mechanical Turk: Amazon’s Me-

chanical Turk (AMT) has been an invaluable tool that has

allowed researchers to collect datasets of significantly larger

size and scope than previously possible [31, 6, 20]. AMT

makes it easy to outsource simple annotation tasks to a large

pool of workers. Although these workers will usually be

non-experts, for many tasks it has been shown that repeated

labeling of examples by multiple non-expert workers can

produce high quality labels [30, 37, 14]. Annotation of fine-

grained categories is a possible counter-example, where the

average annotator may have little to no prior knowledge to

make a reasonable guess at fine-grained labels. For exam-

ple, the average worker has little to no prior knowledge as

to what type of bird a ”Semipalmated Plover” is, and her

ability to provide a useful guess is largely dependent on the

efforts of the dataset collector to provide useful instructions

or illustrative examples. Since our objective is to collect

datasets of thousands of classes, generating high quality in-

structions for each category is difficult or infeasible.

Crowdsourcing with expertise estimation: A possible so-

lution is to try to automatically identify the subset of work-



ers who have adequate expertise for fine-grained classifica-

tion [36, 38, 28, 22]. Although such models are promis-

ing, it seems likely that the subset of Mechanical Turkers

with expertise in a particular fine-grained domain is small

enough to make such methods impractical or challenging.

Games with a purpose: Games with a purpose target al-

ternate crowds of workers that are incentivized by construc-

tion of annotation tasks that also provide some entertain-

ment value. Notable examples include the ESP Game [33],

reCAPTCHA [34], and BubbleBank [7]. A partial inspira-

tion to our work was Quizz [13], a system to tap into new,

larger pools of unpaid annotators using Google AdWords to

help find and recruit workers with the applicable expertise.2

A limitation of games with a purpose is that they require

some artistry to design tools that can engage users.

Citizen science: The success of Wikipedia is another ma-

jor inspiration to our work, where citizen scientists have

collaborated to generate a large, high quality web-based

encyclopedia. Studies have shown that citizen scientists

are incentivized by altruism, sense of community, and reci-

procity [18, 26, 39], and such incentives can lead to higher

quality work than monetary incentives [11].

Datasets: Progress in object recognition has been accel-

erated by dataset construction. These advances are fu-

eled both by the release and availability of each dataset

but also by subsequent competitions on them. Key

datasets/competitions in object recognition include Caltech-

101 [9], Caltech-256 [12], Pascal VOC [8] and Ima-

geNet/ILSVRC [6, 29].

Fine-grained object recognition is no exception to this

trend. Various domains have already had datasets intro-

duced including Birds (the CUB-200 [35] and recently

announced Birdsnap [2] datasets), Flowers [25, 1], Dogs

and Cats [15, 27, 21], Stoneflies [24], Butterflies [19]

and Fish [4] along with man-made domains such as Air-

planes [23], Cars [16], and Shoes[3].

3. Crowdsourcing with Citizen Scientists

The communities of enthusiasts for a taxon are an un-

tapped work force and partner for vision researchers. The

individuals comprising these communities tend to be very

knowledgeable about the taxon. Even those that are novices

make up for their lack of knowledge with passion and ded-

ication. These characteristics make these communities a

fundamentally different work force than the typical paid

crowd workers. When building a large, fine-grained dataset

they can be utilized to curate images with a level of accu-

racy that would be extremely costly with paid crowd work-

ers, see Section 5. There is a mutual benefit as the taxon

communities gain from having a direct influence on the con-

struction of the dataset. They know their taxon, and their

2The viability of this approach remains to be seen as our attempt to test

it was foiled by a misunderstanding with the AdWords team.

community, better than vision researchers, and so they can

ensure that the resulting datasets are directed towards solv-

ing real world problems.

A connection must be established with these communi-

ties before they can be utilized. We worked with ornithol-

ogists at the Cornell Lab of Ornithology to build NABirds.

The Lab of Ornithology provided a perfect conduit to tap

into the large citizen scientist community surrounding birds.

Our partners at the Lab of Ornithology described that the

birding community, and perhaps many other taxon commu-

nities, can be segmented into several different groups, each

with their own particular benefits. We built custom tools to

take advantage of each of the segments.

3.1. Experts

Experts are the professionals of the community, and our

partners at the Lab of Ornithology served this role. Figure 4

is an example of an expert management tool (Vibe3) and

was designed to let expert users quickly and efficiently cu-

rate images and manipulate the taxonomy of a large dataset.

Beyond simple image storage, tagging, and sharing, the

benefit of this tool is that it lets the experts define the dataset

taxonomy as they see fit, and allows for the dynamic chang-

ing of the taxonomy as the need arises. For NABirds, an

interesting result of this flexibility is that bird species were

further subdivided into “visual categories.” A “visual cate-

gory” marks a sex or age or plumage attribute of the species

that results in a visually distinctive difference from other

members within the same species, see Figure 2. This type

of knowledge of visual variances at the species level would

have been difficult to capture without the help of someone

knowledgeable about the domain.

3.2. Citizen Scientist Experts

After the experts, these individuals of the community are

the top tier, most skilled members. They have the confi-

dence and experience to identify easily confused classes of

the taxonomy. For the birding community these individuals

3vibe.visipedia.org

Figure 2: Two species of hawks from the NABirds dataset are

separated into 6 categories based on their visual attributes.



(a) Quiz Annotation GUI
(b) Part Annotation GUI

Figure 3: (a) This interface was used to collect category labels on images. Users could either use the autocomplete box or scroll through

a gallery of possible birds. (b) This interface was used to collect part annotations on the images. Users were asked to mark the visibility

and location of 11 parts. See Section 3.2 and 3.3

Figure 4: Expert interface for rapid and efficient curation of im-

ages, and easy modification of the taxonomy. The taxonomy is

displayed on the left and is similar to a file system structure. See

Section 3.1

were identified by their participation in eBird, a resource

that allows birders to record and analyze their bird sight-

ings.4 Figure 3a shows a tool that allows these members to

take bird quizzes. The tool presents the user with a series of

images and requests the species labels. The user can sup-

ply the label using the autocomplete box, or, if they are not

sure, they can browse through a gallery of possible answers.

At the end of the quiz, their answers can be compared with

other expert answers.

3.3. Citizen Scientist Turkers

This is a large, passionate segment of the community

motivated to help their cause. This segment is not nec-

essarily as skilled in difficult identification tasks, but they

are capable of assisting in other ways. Figure 3b shows a

part annotation task that we deployed to this segment. The

task was to simply click on all parts of the bird. The size

of this population should not be underestimated. Depend-

ing on how these communities are reached, this population

could be larger than the audience reached in typical crowd-

4ebird.org

sourcing platforms.

4. NABirds

We used a combination of experts, citizen scientists, and

MTurkers to build NABirds, a new bird dataset of 555

categories with a total of 48,562 images. Members from

the birding community provided the images, the experts of

the community curated the images, and a combination of

CTurkers and MTurkers annotated 11 bird parts on every

image along with bounding boxes. This dataset is free to

use for the research community.

The taxonomy for this dataset contains 1011 nodes, and

the categories cover the most common North American

birds. These leaf categories were specifically chosen to

allow for the creation of bird identification tools to help

novice birders. Improvements on classification or detection

accuracy by vision researchers will have a straightforward

and meaningful impact on the birding community and their

identification tools.

We used techniques from [5] to baseline performance on

this dataset. Using Caffe and the fc6 layer features extracted

from the entire image, we achieved an accuracy of 35.7%.

Using the best performing technique from [5] with ground

truth part locations, we achieved an accuracy of 75%.

5. Annotator Comparison

In this section we compare annotations performed by

Amazon Mechanical Turk workers (MTurkers) with citizen

scientists reached through the Lab of Ornithology’s Face-

book page. The goal of these experiments was to quantify

the followings aspects of annotation tasks. 1) Annotation

Error: The fraction of incorrect annotations., 2) Annota-

tion Time: The average amount of human time required per

annotation. 3) Annotation Cost: The average cost in dol-

lars required per annotation. 4) Annotation Throughput:

The average number of annotations obtainable per second,

this scales with the total size of the pool of annotators.

In order to compare the skill levels of different annotator

groups directly, we chose a common user interface that we



considered to be appropriate for both citizen scientists and

MTurkers. For category labeling tasks, we used the quiz

tool that was discussed in section 3.2. Each question pre-

sented the user with an image of a bird and requested the

species label. To make the task feasible for MTurkers, we

allowed users to browse through galleries of each possible

species and limited the space of possible answers to < 40

categories. Each quiz was focused on a particular group of

birds, either sparrows or shorebirds. Random chance was 1

/ 37 for the sparrows and 1 / 32 for the shorebirds. At the

end of the quiz, users were given a score (the number of cor-

rect answers) and could view their results. Figure 3a shows

our interface. We targeted the citizen scientist experts by

posting the quizzes on the the eBird Facebook page.

Figure 5 shows the distribution of scores achieved by

the two different worker groups on the two different bird

groups. Not surprisingly, citizen scientists had better per-

formance on the classification task than MTurkers; however

we were uncertain as to whether or not averaging a large

number of MTukers could yield comparable performance.

Figure 6a plots the time taken to achieve a certain error rate

by combining multiple annotators for the same image us-

ing majority voting. From this figure we can see that citi-

zen scientists not only have a lower median time per image

(about 8 seconds vs 19 seconds), but that one citizen sci-

entist expert label is more accurate than the average of 10

MTurker labels. We note that we are using a simple-as-

possible (but commonly used) crowdsourcing method, and

the performance of MTurkers could likely be improved by

more sophisticated techniques such as CUBAM [36]. How-

ever, the magnitude of difference in the two groups and

overall large error rate of MTurkers led us to believe that

the problem could not be solved simply using better crowd-

sourcing models.

Figure 6c measures the raw throughput of the workers,

highlighting the size of the MTurk worker pool. With citi-

zen scientists, we noticed a spike of participation when the

annotation task was first posted on Facebook, and then a

quick tapering off of participation. Finally, Figure 6b mea-

sures the cost associated with the different levels of error–

citizen scientists were unpaid.

We performed a similar analysis with part annotations.

For this task we used the tool shown in Figure 3b. Work-

ers from the two different groups were given an image and

asked to specify the visibility and position of 11 different

bird parts. We targeted the citizen scientist turkers with this

task by posting the tool on the Lab of Ornithology’s Face-

book page. The interface for the tool was kept the same be-

tween the workers. Figures 7a, 7b, and 7c detail the results

of this test. From Figure 7a we can see there is not a dif-

ference between the obtainable quality from the two worker

groups, and that MTurkers tended to be faster at the task.

Figure 7c again reveals that the raw throughput of Mturk-

(a) Sparrow Quiz Scores (b) Shorebird Quiz Scores

Figure 5: Histogram of quiz scores. Each quiz has 10 images, a

perfect score is 10. (a) Score distributions for the sparrow quizzes.

Random chance per image is 2.7%. (b) Score distributions for

the shorebird quizzes. Random chance per image is 3.1%. See

Section 5

ers is larger than that of the citizen scientists. The primary

benefit of using citizen scientists for this particular case is

made clear by their zero cost in Figure 7b.

Summary: From these results, we can see that there

are clear distinctions between the two different worker

pools. Citizen scientists are clearly more capable at labeling

fine-grained categories than MTurkers. However, the raw

throughput of MTurk means that you can finish annotating

your dataset sooner than when using citizen scientists. If

the annotation task does not require much domain knowl-

edge (such as part annotation), then MTurkers can perform

on par with citizen scientists. Gathering fine-grained cat-

egory labels with MTurk should be done with care, as we

have shown that naive averaging of labels does not converge

to the correct label. Finally, the cost savings of using citizen

scientists can be significant when the number of annotation

tasks grows.

6. Measuring the Quality of Existing Datasets

CUB-200-2011 [35] and ImageNet [6] are two popular

datasets with fine-grained categories. Both of these datasets

were collected by downloading images from web searches

and curating them with Amazon Mechanical Turk. Given

the results in the previous section, we were interested in an-

alyzing the errors present in these datasets. With the help

of experts from the Cornell Lab of Ornithology, we exam-

ined these datasets, specifically the bird categories, for false

positives.

CUB-200-2011: The CUB-200-2011 dataset has 200

classes, each with roughly 60 images. Experts went through

the entire dataset and identified a total of 494 errors, about

4.4% of the entire dataset. There was a total of 252 images

that did not belong in the dataset because their category was

not represented, and a total of 242 images that needed to be

moved to existing categories. Beyond this 4.4% percent er-

ror, an additional potential concern comes from dataset bias
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Figure 6: Category Labeling Tasks: workers used the quiz interface (see Figure 3a) to label the species of birds in images. (a) Citizen

scientists are more accurate and faster for each image than MTurkers. If the citizen scientists use an expert interface (Vibe), then they

are even faster and more accurate. (b) Citizen scientists are not compensated monetarily, they donate their time to the task. (c) The total

throughput of MTurk is still greater, meaning you can finish annotating your dataset sooner, however this comes at a monetary cost. See

Section 5
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Figure 7: Parts annotation tasks: workers used the interface in Figure 3b to label the visibility and location of 11 parts. (a): For this task,

as opposed to the category labeling task, citizen scientists and MTurkers perform comparable on individual images. (b): Citizen scientists

donate their time, and are not compensated monetarily. (c): The raw throughput of MTurk is greater than that of the citizen scientists,

meaning you can finish your total annotation tasks sooner, but this comes at a cost. See Section 5

issues. CUB was collected by performing a Flickr image

search for each species and using MTurkers to filter results.

A consequence is that the most difficult images tended to

be excluded from the dataset altogether. By having experts

annotate the raw Flickr search results, we found that on av-

erage 11.6% of correct images of each species were incor-

rectly filtered out of the dataset. See Section 7.2 for addi-

tional analysis.

ImageNet: There are 59 bird categories in ImageNet, each

with about 1300 images in the training set. Table 1 shows

the false positive counts for a subset of these categories.

In addition to these numbers, it was our general impres-

sion that error rate of ImageNet is probably at least as high

as CUB-200 within fine-grained categories; for example,

the synset “ruffed grouse, partridge, Bonasa umbellus” had

overlapping definition and image content with the synset

“partridge” beyond what was quantified in our analysis.

Category Training Images False Positives

magpie 1300 11

kite 1294 260

dowitcher 1298 70

albatross, mollymark 1300 92

quail 1300 19

ptarmigan 1300 5

ruffed grouse, partridge,

Bonasa umbellus

1300 69

prairie chicken, prairie

grouse, prairie fowl

1300 52

partridge 1300 55

Table 1: False positives from ImageNet LSVRC dataset.
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Figure 8: Analysis of error degradation with corrupted training labels: (a) Both the training and testing sets are corrupted. There is a

significant difference when compared to the clean data. (b) Only the training set is corrupted. The induced classification error is much less

than the corruption level. (c) Only the training set is corrupted but more part localized features are utilized. The induced classification error

is still much less than the corruption level. See Section 7.1

7. Effect of Annotation Quality & Quantity

In this section we analyze the effect of data quality and

quantity on learned vision systems. Does the 4%+ error in

CUB and ImageNet actually matter? We begin with simu-

lated label corruption experiments to quantify reduction in

classification accuracy for different levels of error in Sec-

tion 7.1, then perform studies on real corrupted data using

an expert-vetted version of CUB in Section 7.2.

7.1. Label Corruption Experiments

In this experiment, we attempted to measure the effect

of dataset quality by corrupting the image labels of the

NABirds dataset. We speculated that if an image of true

class X is incorrectly labeled as class Y , the effect might

be larger if class Y is included as a category in the dataset

(i.e., CUB and ImageNet include only a small subset of

real bird species). We thus simulated class subsets by ran-

domly picking N ≤ 555 categories to comprise our sample

dataset. Then, we randomly sampled M images from the N

selected categories and corrupted these images by swapping

their labels with another image randomly selected from all

555 categories of the original NABirds dataset. We used

this corrupted dataset of N categories to build a classifier.

Note that as the number of categories N within the dataset

increases, the probability that a corrupted label is actually

in the dataset increases. Figure 8 plots the results of this

experiment for different configurations. We summarize our

conclusions below:

5-10% Training error was tolerable: Figures 8b and 8c

analyze the situation where only the training set is cor-

rupted, and the ground truth testing set remains pure. We

see that the increase in classification error due to 5% and

even 15% corruption are remarkably low–much smaller

than 5% and 15%. This result held regardless of the number

of classes or computer vision algorithm. This suggests that

the level of annotation error in CUB and ImageNet (≈ 5%)

might not be a big deal.

Obtaining a clean test set was important: On the other

hand, one cannot accurately measure the performance of

computer vision algorithms without a high quality test set,

as demonstrated in Figure 8a, which measures performance

when the test set is also corrupted. There is clearly a signif-

icant drop in performance with even 5% corruption. This

highlights a potential problem with CUB and ImageNet,

where train and test sets are equally corrupted.

Effect of computer vision algorithm: Figure 8b uses com-

puter vision algorithms based on raw image-level CNN-fc6

features (obtaining an accuracy of 35% on 555 categories)

while Figure 8c uses a more sophisticated method [5] based

on pose normalization and features from multiple CNN lay-

ers (obtaining an accuracy of 74% on 555 categories). Label

corruption caused similar additive increases in test error for

both methods; however, this was a much higher percentage

of the total test error for the higher performing method.

7.2. Error Analysis on Real CUB2002011 Labels

The results from the previous section were obtained on

simulated label corruptions. We performed additional anal-

ysis on real annotation errors on CUB-200-2011. CUB-

200-2011 was collected by performing Flickr image search

queries for each species and filtering the results using votes

from multiple MTurkers. We had experts provide ground

truth labels for all Flickr search results on 40 randomly se-

lected categories. In Figure 9, we compare different possi-

ble strategies for constructing a training set based on thresh-

olding the number of MTurk votes. Each method resulted in

a different training set size and level of precision and recall.

For each training set, we measured the accuracy of a com-

puter vision classifier on a common, expert-vetted test set.

The classifier was based on CNN-fc6 features from bound-



ing box regions. Results are summarized below:

Dataset Images ACC

vote 0 6475 0.78
vote 1 6467 0.78
vote 2 6080 0.77
vote 3 5002 0.77
vote 4 3410 0.75
vote 5 1277 0.68
expert 5257 0.78

Precision

R
e
c
a
ll

Figure 9: Different datasets can be built up when modifying the

MTurker agreement requirement. Increasing the agreement re-

quirement results in a dataset with low numbers of false positives

and lower amounts of training data due to a high number of false

negatives. A classifier trained on all the images performs as well

or better than the datasets that attempt to clean up the data. See

Section 7.2

The level of training error in CUB was tolerable: The re-

sults were consistent with the results predicted by the sim-

ulated label corruption experiments, where a 5-15% error

rate in the training errors yielded only a very small (roughly

1%) increase in test error. This provides comfort that CUB-

200-2011 and ImageNet are still useful despite label er-

rors. We emphasize though that an error free test set is still

necessary–this is still an advantage of NABirds over CUB

and ImageNet.

Keeping all Flickr images without any MTurk curation

does surprisingly well: This “free dataset” was as good as

the expert dataset and slightly better than the MTurk curated

datasets. The raw Flickr image search results had a reason-

ably high precision of 81%. Keeping all images resulted

in more training images than the MTurk and expert filtered

datasets. If we look at the voter agreement and the cor-

responding dataset training sizes, we see that having high

MTurk agreement results in much smaller training set sizes

and a correspondingly low recall.

Quantity can be more important than quality: This un-

derlines the point that having a large training set is ex-

tremely important, and having strict requirements on anno-

tation quality can come at an expense of reducing training

set size. We randomly reduced the size of the training set

within the 40 class dataset and measured performance of

each resulting computer vision classifier. The results are

shown in Table 2; we see that classification accuracy is more

sensitive to training set size than it was to label corruption

(see Figure 8b and 9).

Similar results when scaling to more classes: One caveat

is that the above results were obtained on a 40 class subset,

which was the limit of what was reasonable to ask experts

Scale Size 1 1/2 1/4 1/8 1/16 1/32 1/64

ACC .77 .73 .676 .612 .517 .43 .353

Table 2: Classification accuracy with reduced training set size.

See Section 7.2

to annotate all Flickr image search results. It is possible that

annotation quality becomes more important as the number

of classes in the dataset grows. To test this, we had experts

go through all 200 classes in CUB-200-2011, annotating all

images that were included in the dataset (see Section 6). We

obtained a similar result as on the 40-class subset, where

the expert filtered dataset performed at about the same level

as the original CUB-200-2011 trainset that contains 4-5%

error. These results are consistent with simulated label cor-

ruption experiments in Figure 8b.

8. Conclusion

We introduced tools for crowdsourcing computer vi-

sion annotations using citizen scientists. In collecting a

new expert-curated dataset of 48,562 images over 555 cate-

gories, we found that citizen scientists provide significantly

higher quality labels than Mechanical Turk workers, and

found that Turkers have alarmingly poor performance anno-

tating fine-grained classes. This has resulted in error rates

of over 4% in fine-grained categories in popular datasets

like CUB-200-2011 and ImageNet. Despite this, we found

that learning algorithms based on CNN features and part

localization were surprisingly robust to mislabeled training

examples as long as the error rate is not too high, and we

would like to emphasize that ImageNet and CUB-200-2011

are still very useful and relevant datasets for research in

computer vision.

Our results so far have focused on experiences in a sin-

gle domain (birds) and has resulted in a new publicly avail-

able tool for bird species identification. We are currently

working on expanding to other types of categories such as

shoes and Lepidoptera. Given that over 500 citizen scien-

tists helped provide high quality annotations in just a sin-

gle domain, working with citizen scientists has potential to

generate datasets of unprecedented size and quality while

encouraging the landscape of computer vision research to

shape around the interests of end users.
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