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SOFTWARE AND KNOWLEDGE RE-
use have generated considerable interest
because they reduce development time and
the resources that projects require. For knowl-
edge-based systems, in particular, the high
cost of knowledge acquisition makes reuse
essential. However, reuse involves these chal-
lenges: heterogeneity of representation for-
malisms, languages, and tools; lexical and
semantic problems; assumptions implicit in
each system; and commonsense-knowledge
losses. Ontologies are a way around these
obstacles. They are useful for unifying data-
base, data-warehouse, and knowledge-base
vocabularies and even for maintaining con-
sistency when updating corporate memories
used in knowledge management.

To meet the challenge of building ontolo-
gies, we’ve developed Methontology,1,2 a
framework for specifying ontologies at the
knowledge level,3 and the Ontology Devel-
opment Environment. This article presents
our experience in using Methontology and
ODE to build the Chemicals ontology.4

The challenge of building
ontologies

Ontology building is a craft rather than an
engineering activity. Each development team

usually follows its own set of principles,
design criteria, and phases. The absence of
structured guidelines and methods hinders
the development of shared and consensual
ontologies within and between teams, the
extension of an ontology by others, and its
reuse in other ontologies and final applica-
tions. We believe that the source of these
problems is the absence of an explicit and
fully documented conceptual model upon
which to formalize the ontology.

Like knowledge-based-system develop-
ment, ontology development faces a knowl-
edge-acquisition bottleneck. Unlike KBS
developers, ontology developers (ontolo-
gists) lack sufficiently tested and generalized
methodologies recommending what activi-
ties should be performed and at what stage
of ontology development. (For descriptions

of related work, see the sidebar.)
Ontology developers often switch directly

from knowledge acquisition to implementa-
tion, which poses these problems:

First, the conceptual models are implicit
in the implementation codes. Making the
conceptual models explicit usually requires
reengineering.

Second, ontological commitments5 and
design criteria are implicit and explicit in the
ontology code.

Third, domain experts and human end
users have no understanding of formal on-
tologies codified in ontology languages.6

Research has shown that, using the Ontology
Server browser tools,7 experts and users
could gain a full understanding of and vali-
date taxonomies and partially understand
instances. However, they were unable to
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understand abstract definitions of concepts,
relations, functions, and axioms. From the
knowledge-acquisition viewpoint, they were
quite unable to formalize their knowledge.

Fourth, as with traditional knowledge bases,
direct coding of the knowledge-acquisition
result is too abrupt a step, especially for com-
plex ontologies.

Fifth, ontology-developer preferences in
a given language condition the implemen-
tation of the acquired knowledge. So, when
people code ontologies directly in a target
language, they are omitting the minimal
encoding bias criterion defined by Tom
Gruber:5

The conceptualization should be specified at the
knowledge level without depending on a par-
ticular symbol level encoding. An encoding bias
results when representation choices are made
purely for the convenience of notation or imple-
mentation .…

Finally, ontology developers might have
difficulty understanding implemented on-
tologies or even building new ontologies. This
is because traditional ontology tools focus too
much on implementation issues rather than
on design questions. For example, someone
who knows how to build ontologies but is
unfamiliar with the language in question
might have difficulties working at the imple-
mentation level.

For instance, the expression density =
mass/volume in a chemical domain could be
written in Ontolingua as shown in Figure 1.
This example shows that unless you are very
familiar with the language, understanding
existing definitions and writing new defini-
tions are almost impossible. If you are suc-
cessful in this process, it will have taken a
big effort. The problem is not understanding
that density is equal to mass divided by vol-
ume at the knowledge level, but writing this
in a target language. Therefore, something
that is apparently very simple at the concep-
tual level is extremely complicated when
expressed at the implementation level, if
you’re not familiar with the language.

This means that ontologies are built exclu-
sively by developers who are perfectly ac-
quainted with the languages in which the
ontologies will be implemented. Because
these ontologists are not necessarily experts
in the domain for which the ontology is built,
they spend a lot of time and resources on
knowledge acquisition.

Methontology and ODE alleviate some of
these problems. Methontology provides a
user-friendly approach to knowledge acquisi-
tion by non-knowledge engineers,6 and an
effective, generally applicable method for
domain-knowledge-model construction and
validation. ODE supports this framework by
letting ontologies be built at the knowledge

level and implemented automatically using
translators. So, ontologists don’t need to know
the ontology’s implementation language.

Ontology development

Ontological engineering requires the def-
inition and standardization of a life cycle
ranging from requirements specification to
maintenance, as well as methodologies and
techniques that drive ontology development.
So, the Methontology framework includes

• the identification of the ontology devel-
opment process;

• a life cycle based on evolving prototypes;
and

• the methodology itself, which specifies
the steps for performing each activity, the
techniques used, the products to be out-
put, and how the ontologies are to be
evaluated.

In developing Chemicals, our first step, as
in any project, was to plan. Then, because
we’re not experts in the chemicals domain,
we acquired knowledge to put together a pre-
liminary version of the requirements speci-
fication. We then simultaneously acquired
and conceptualized more knowledge; con-
ceptualization helped guide acquisition.
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Methodologies for building ontologies

Until now, few domain-independent methodologies for building

ontologies have been reported. Mike Uschold’s methodology,1 Michael

Grüninger and Mark Fox’s methodology,2 and Methontology3,4 are the

most representative. These methodologies all start from the identifi-

cation of the ontology’s purpose and the need for domain knowledge

acquisition. However, having acquired a significant amount of knowl-

edge, Uschold’s methodology and Grüninger and Fox’s methodology

propose coding in a formal language and Methontology proposes

expressing the idea as a set of intermediate representations (see the

main article). Methontology then uses translators to generate the

ontology.

These three methodologies also identify the need for ontology evalua-

tion. Uschold’s methodology includes this activity but does not state

how to carry it out. Grüninger and Fox propose identifying a set of com-

petency questions.2 Competency questions are the basis for a rigorous

characterization of the knowledge that the ontology has to cover; they

specify the problem and what constitutes a good solution. Once the

ontology has been expressed formally, it is compared against this set of

competency questions. Methontology proposes that evaluation occur

throughout ontology development. Most of the evaluation happens dur-

ing conceptualization.

Several representation systems use a frame-based modeling ap-

proach, a logic-based approach, or even both to formalize ontologies.

They model the world using concepts, instances, relations, functions,

and axioms. An ontology formalized using any of these approaches can

then be implemented, more or less straightforwardly, in different lan-

guages such as Ontolingua,5 CycL,6 LOOM,7 and Flogic.8
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Indeed, the conceptualization phase is like
assembling a jigsaw puzzle from the pieces
supplied by acquisition, which is why most
knowledge acquisition is completed during
conceptualization. We then gave the ontol-
ogy to the expert for examination. The expert
evaluated the conceptualization by inter-
preting the intermediate representations

(which we’ll present in the next section),
which are fairly intuitive. During both spec-
ification and conceptualization, we inte-
grated in-house and external ontologies.
Once the conceptualization was complete,
we used ODE to automatically generate the
code in Ontolingua.

Our experience shows that the specifica-
tion, conceptualization, integration, and im-
plementation can be performed as often as
required. Indeed, an ontology’s specification
frequently changes throughout the ontology
life cycle as its definitions are created, mod-
ified, and deleted. Figure 2 presents the
development life cycle of the Chemicals
ontology.

The Chemicals ontology (available at
http://www-ksl.stanford.edu:5915 and http://

www-ksl-svc-lia.dia.fi.upm.es:5915 .)
actually comprises two main ontologies:
Chemical-Elements and Chemical-
Crystals. Chemical-Elements has 16
concepts, 103 instances, three functions,
21 relations, and 27 axioms. Chemical-
Crystals has 19 concepts, 66 instances,
eight relations, and 26 axioms. Chemicals
also includes public Ontolingua ontologies,
such as Standard-Units, Standard-
Dimensions, and KIF-Lists. 

Specification. Ontology specification’s goal
is to put together a document that covers the
ontology’s primary objective, purpose, gran-
ularity level, and scope. The aim is to iden-
tify the set of terms to be represented, their
characteristics, and their granularity. This
specification should be as complete and con-

cise as possible.
Figure 3 shows a short example of an ontol-

ogy requirements specification document in
the chemicals domain. We built this specifi-
cation after acquiring domain knowledge.

Conceptualization. When most of the
knowledge has been acquired, the ontologist
has a lot of unstructured knowledge that must
be organized. Conceptualization organizes
and structures the acquired knowledge using
external representations that are independent
of the implementation languages and envi-
ronments. Specifically, this phase organizes
and converts an informally perceived view
of a domain into a semiformal specification,
using a set of intermediate representations
that the domain expert and ontologist can
understand.6 These IRs bridge the gap
between how people think about a domain

and the languages in which ontologies are
formalized.

This set of IRs is based on those used in
the conceptualization phase of the Ideal
methodology for knowledge-based systems
development.8 Figure 4 illustrates the order
we follow for conceptualization.

First, we built a glossary of terms that
includes all the terms (concepts, instances,
attributes, verbs, and so on) of the chemicals
domain and their descriptions (see Figure 5a).

When the glossary contained a sizable num-
ber of terms, we built concept-classification

trees using relations such as subclass-of, sub-
class-partition-of, and exhaustive-subclass-of.
(Class C is a subclass of parent class P if and
only if every instance of C is also an instance
of P. A subclass partition of C is a set of sub-
classes of C that are mutually disjoint. A
exhaustive subclass of C is a set of mutually-
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Figure 1. The expression density =  mass/ volume in a chemical domain written in Ontolingua.

(Define-Function Density(?Element):->?Density-At-20-C

“The density of an element is equal to its atomic weight divided by its atomic volume”

:Iff-Def

(And (Elements ?Element)

(Density-At-20-C ?Element?Density-At-20-C)

(Exists (?Atomic-Weight)

(Exists (?Atomic-Volume-At-20-C)

(And (Atomic-Weight?Element ?Atomic-Weight)

(Atomic-Volume-At-20-C?Element ?Atomic-Volume-At-20-C)

(>?Atomic-Volume-At-20-C 0)

(/?Atomic-Weight?Atomic-Volume-At-20-C))))))

Specification Conceptualization Implementation
Planning

Part 1

Part 2

. . .

Knowledge acquisition

Evaluation

Documentation

Configuration management

Integration

Figure 2. Ontology development life cycle.

.



disjoint classes—a subclass partition—that
covers C. Every instance of C is an instance of
exactly one of the subclasses in the partition.)
So, we identified this domain’s taxonomies,
and each taxonomy produced an ontology as
prescribed by Methontology. The concept-clas-
sification tree in Figure 5b outlines the taxon-
omy of the Chemical-Elements ontology.

The next step was to build ad hoc binary-

relations diagrams between concept classi-
fication trees. These diagrams establish rela-
tionships between concepts of the same or
different ontologies. They will set out the
guidelines for integrating ontologies, because
if a concept C1 is linked by a relation R to a
concept C2, the ontology containing C1
includes the ontology containing C2, pro-
vided that C1 and C2 are in different con-

40 IEEE INTELLIGENT SYSTEMS

Figure 3. Ontology requirements specif ication document for the Chemicals ontology.

Domain: Chemical

Date: May 15, 1996

Developed by Asunción Gómez-Pérez and Mariano Fernández López

Purpose: Ontology about chemical substances to be used when information about

chemical elements is required in teaching, manufacturing, analysis, and 

so on.

Level of formality: Semiformal.

Scope: List of 103 elements: lithium , sodium , chlorine, mercury, … .

List of concepts: element, halogen, noble gas, semimetal, metal, third-transi-

tion metal, … .

Information about at least the following properties: atomic number, atomic

weight, electronegativity, melting point, … .

Sources of knowledge:

(a) Three interviews with the expert.

(b) The following books:

[Handbook, 84–85]  Handbook of Chemistry and Physics, 65th ed., CRC Press 

Inc., 1984–1985.

Has structure

Is in element

Element
Crystalline
structure

Figure 5. Intermediate representations for the Chemicals ontology: (a) part of  the glossary of  terms; (b) a concept-

classif ication tree; (c) a binary-relations diagram; (d) part of  the concept dictionary; (e) a binary-relations table; 

(f ) an instance-attribute table; (g) a logical-axioms table; (h) a formula table; ( i) an attribute-classif ication tree; 

( j) part of  an instance table.

(c)

Name Description
Atomic weight The relative mass of an atom of an element against the mass of the twelfth part of the carbon-12 isotope.

Crystalline structure A 3D skeleton containing the set of points or ionic positions of a crystal that have an identical environment.

Element A substance made up of atoms with the same number of protons.

Mercury (Planet Mercury), Hg (hydrargyrum, liquid silver); at. wt. 200.59 ± 3; at. no. 80; m.p. −38.842°C; b.p. 356.58°C; va-
lence 1 or 2. The metal is obtained by heating cinnabar in a current of air and by condensing the vapor. It is a heavy,
silvery-white metal; a rather poor conductor of heat, as compared with other metals; and a fair conductor of electricty.
[Handbook, 84–85]

Third transition series The set of elements that belong to Ib, IIb, IIIb, IVb, Vb, VIb, Vllb, and VIII groups of the sixth period.

(a )

Element
Reactiveness

Nonmetal
Halogen

Semimetal
Metal

Transition metal
First transition series
Second transition series
Third transition series

Lanthanide
Actinide

Nontransition metal
Alkalai
Alkalai terreum

(b)

Concept Synonyms Acronyms Instances Class Instance Relations
name attributes attributes

Element — Elm. — — Atomic number Has structure
Atomic volume at 20°C
Atomic weight
Chemical group
Chemical period
Density at 20°C
Electronegativity
Melting point
…

Third Sixth-period 3TS. Gold — — —
transition transition Hafnium
series series Mercury

Osmium
Iridium
Platinum
Rhenium
Tantalum
Wolfram

(d)

.



cept-classification trees. Figure 5c presents
a simplified diagram of the ad hoc binary
relations in the Chemicals ontology. The
Chemical-Elements ontology includes the
Chemical-Crystal ontology because the
source concept of the relations named Has-
Structure is in the Chemical-Elements
hierarchy. Similarly, if the relation Is-in-
Element is defined as the inverse relation of
Has-Structure, the Chemical-Crystal
ontology can be said to include the Chemical-
Elements ontology.

For each concept-classification tree gen-
erated, we built these IRs:

The concept dictionary contains all the
domain concepts, instances of such con-
cepts, class and instance attributes of the
concepts, and, optionally, concept synonyms
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Build the
instance-attribute

tables

Build the
binary-relation

tables

Build the
concept

dictionary

Build the
instance

tables

Build the
attribute-classification

trees

Build the
formula
tables

Start
conceptualization

Conceptualize the ontology corresponding with each concept-classification tree

Build the
glossary of

terms

Build the
concept-classification

trees

Build the
binary-relations

diagram

Build the
class-attribute

tables

Build the
logical-axioms

tables

Build the
constants

table

Figure 4. Conceptualization according to Methontology.

Density at 20°C

Atomic weightAtomic volume
at 20°C

Density formula

( i )

Relation name Has structure
Source concept Element
Source cardinality (0, n)
Target concept Crystalline structure
Target cardinality (0, n)
Mathematic properties —
Inverse relation Is in element
References [Cullity, 78]

(e )

Axiom name High electronegativity of nonmetals
Description Electronegativity of nonmetals is higher than 2.1
Concept Nonmetal
Referred attributes Electronegativity
Variables N, E
Expression For all (X, Y) (Non-Metal(X) and Electronegativity(X, Y) => Y > 2.1)
Relations —
References [ Janssen, 90]

(g)

Instance Attribute Value
Mercury Atomic number 80

Atomic weight 200.59
Density at 20 degrees Celsius 13.546
Electronegativity 1.9
Melting point –38.842

( j )

Instance attribute name Density-at-20°C
Value type Density-Quantity
Unit of measure Kilogram/meter3

Precision 0.001
Range of values [ 0, 25]
Default value —
Cardinality (1, n)
Inferred from instance attribute Atomic-Weight

Atomic-Volume
Inferred from class attribute —
Inferred from constants —
Formula Density
To infer —
References —

( f)

Formula name Density
Inferred attribute Density-at-20-Degrees-Celsius
Formula Density-at-20-Degrees-Celsius = Atomic-

Weight/Atomic-Volume-at-20-Degrees-
Celsius

Description An element’s density is equal to its atomic
weight divided by its atomic volume

Basic instance attributes Atomic-Weight
Atomic-Volume-at-20-Degrees-Celsius

Basic class attributes —
Constants —
Precision —
Constraints Atomic-Volume-at-20-Degrees-Celsius > 0

(h)

.



and acronyms. Figure 5d gives a small part
of the concept dictionary of Chemical-
Elements.

A binary-relations table specifies the
name, the names of the source and target con-
cept, the inverse relation, and so on for each
ad hoc relation whose source concept is in the
concept-classification tree (see Figure 5e).

An instance-attribute table describes each
instance attribute in the concept dictionary
(see Figure 5f). Instance attributes are attri-
butes that are defined in the concept but that
take values in its instances. For example, a
chemical element’s atomic weight is proper
to each instance. For each instance attribute,
we included

• its name;
• the value type;
• the measurement unit for numerical

values;
• the accuracy for numerical values;
• the range of values;
• the default values;
• minimum and maximum cardinality;
• the instance attributes, class attributes,

and constants that are used to infer the
value of the attribute that is being defined;

• the attributes that can be inferred using
this attribute;

• the formula or rule for inferring the
attribute that is being defined; and

• the references used to fill in the attribute.

A class-attribute table describes con-
cepts, not concept instances, for each class
attribute in the concept dictionary. So, for
each class attribute, the table will give the
name, possible value type, measurement
unit for numerical values, value accuracy,
attribute cardinality, instance attributes for
which a value can be inferred using the
value of this attribute, references, and so on.

A logical-axioms table defines the con-
cepts by means of logical expressions that
are always true (see Figure 5g). Each defined
axiom includes its name, its natural-language
description, the concept to which the axiom
refers, the attributes used in the axiom, the
logical expression that formally describes the
axiom using FOPC (first-order predicate cal-
culus), and references.

A constants table specifies each constant’s
name, its natural-language description, its
value type (number, mass, and so on), its con-
stant value, its measurement unit (for numer-
ical constants), the attributes that can be
inferred using the constant, and references.

A formula table describes each formula in
the instance-attribute tables (see Figure 5h).
We used these tables to infer numerical
instance-attribute values from the values
taken by other instance attributes, class attri-
butes, or even constants. Each table should
specify

• the formula’s name,
• the attributes inferred with the formula,
• the formula’s mathematical expression,
• its natural-language description,
• the instance and class attributes and con-

stants used in the calculation,
• the accuracy with which the value will be

calculated,
• the constraints under which using the for-

mula makes sense, and

• the references employed in filling in the
formula table.

An attribute-classification tree graphically
shows related attributes and constants in a
root attribute inference sequence, and the
sequence of the formulas employed (see Fig-
ure 5i). We used it to validate that all attri-
butes used in the formula make sense and no
attributes have been omitted.

An instance table lists the name, the attri-
butes with known values in a instance, and the
values of the above attributes, for each instance
in the concept dictionary (see Figure 5j).

The process of building these IRs is not
sequential in the sense of a waterfall life-cycle
model, but it must follow some order so as to
assure the consistency and completeness of
the represented knowledge. Embedded in the
conceptualization method are a series of con-
trols for verifying that each IR is used cor-

rectly and that the knowledge represented is
valid—that is, that the semantics of the con-
ceptualized knowledge is what it should be.
Asunción Gómez-Pérez, Mariano Fernández
López, and Antonio de Vicente have provided
a detailed description of the IR evaluation.9

Our experience shows that domain experts
and human end users understand and validate
most of the Methontology IRs. In one set of
trials, two environmental and chemical experts
understood and validated 80% of the knowl-
edge represented in the IRs. Also, we found
that, from the knowledge-acquisition point of
view, experts can fill in many of the IRs.

Knowledge acquisition. This is an indepen-
dent activity within ontology development.
However, it coincides with other activities.
For Chemicals, we acquired most knowledge
at the start of ontology development. The
level of knowledge acquisition fell as devel-
opment progressed and we became more
familiar with the application domain.

Knowledge acquisition occurred in three
stages:

(1) We held preliminary meetings with the
expert to look for general, not detailed,
knowledge. The depth of these meet-
ings was minimal; we were looking for
the coarse grain—the overview.

(2) We studied the documentation. We
needed to learn as much as possible
about the domain of expertise (chem-
istry), to save the time the expert would
otherwise have spent on instructing us
in the domain. That’s why having a
method with which experts can build
their own ontologies is very useful.

(3) Having obtained some basic knowledge,
we initiated the expert-knowledge-
acquisition cycle. We started by look-
ing for more general knowledge and
gradually moved down into the partic-
ular details for configuring the full
ontology.

During knowledge acquisition, we used
the following set of KBS knowledge-acqui-
sition techniques in an integrated manner:

• Nonstructured interviews with experts to
build a preliminary draft of the require-
ments-specification document. They out-
put terms, definitions, a concept classifi-
cation, and so on.

• Informal text analysis to study the main
concepts in books and handbooks. This
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study enabled us to fill in IRs such as the
concept dictionary.

• Formal text analysis. We performed this
manually without using specialized envi-
ronments for this purpose. First, we iden-
tified the patterns to be located in the text.
For example, for Chemicals, some of the
structures to be detected were “A is B,”
“the highest value of A is attained in B,”
and “A increases as B increases.” After-
ward, we selected the instantiated struc-
tures in the text that matched the patterns.
Finally, we analyzed the marked sentences
to extract attributes, natural-language def-
initions, rules, assignation of values to
attributes, and so on.

• Structured interviews with the expert to get
specific and detailed knowledge about con-
cepts, their properties, and their relation-
ships with other concepts, and to evaluate
the conceptual model once the conceptu-
alization activity is complete. For Chemi-
cals, because the expert was familiar with
the IRs, we used structured interviews for
validation purposes. We delivered the IRs
to the expert, who proposed changes.

• Domain table analysis. This was very use-
ful for ascertaining the values of the con-
cept attributes and for identifying certain
data regularities. For example, we could
get electronegativity attribute values for
each element from the electronegativities
table—for instance, checking that the
electronegativity of nonmetals is over
2.1. However, this technique can be risky
when data are taken from domain tables
whose sources differ, because they are
probably based on different criteria. Elec-
tronegativity, for example, can be obtained
according to the criterion of Linus Paul-
ing or Robert Mulliken.

• Domain-graph analysis to look for regu-
larities. For example, using a graph that
related atomic numbers to volumes, we
concluded that the atomic volume of all
the lanthanides is similar. If we had had
domain graphs with exact data, we could
have obtained information similar to that
output by domain-table analysis.

• Units-of-measurement analysis to deter-
mine the attributes involved in formulas
and to determine the quantities of these
attributes.

• Detailed reviews by the expert. When
conceptualization was at an advanced
stage, we submitted the IRs to the expert
for detailed inspection. After several days
working on his own, he returned the

tables and trees with a series of sugges-
tions and corrections.

• Formula analysis to check whether the
formulas are correct and to determine their
attributes. For example, for Chemical-
Elements, the expert originally ex-
pressed the density formula as density =
mass/volume. The expert recommended
that mass was the Atomic-Weight; vol-

ume, the Atomic-Volume at a given tem-
perature (specifically, 20°C); and density,
the element’s Density at that tempera-
ture. Afterward, we checked the formula
for correctness, applying the formula to
several cases in which the three data were
known. We then analyzed the units of
measurement.

The expert was very important in all these
techniques (although he was not always
directly involved), because he gave clues as
to what we were to look for. For example,
thanks to the expert, we knew that the Lan-
thanides have properties very similar to
those of Lanthanum. Therefore, we always
checked in the tables and the graphs whether
it was possible to affirm in the ontology that
the maximum and minimum value within the
lanthanides was very close.

Integration. Throughout ontology devel-
opment, we identified terms that could be
included from other ontologies. For the
Chemicals ontologies, we found these pos-
sibilities for reuse of ontologies stored in the
Ontology Server: KIF-Number supplied all
the mathematical operators (multiplication,
sum, and so on). KIF-List contained the
definitions for building lists. Standard-
Dimensions10 included terms such as
mass-quantity and length-quantity,
which define an attribute that stores a value

that is a mass or length. Finally, Standard
Units defined the SI (Système Interna-
tional) units of measurement. It provided
some, but not all, of the units of measure-
ment identified in the conceptualization.

Having identified candidate ontologies for
reuse, we checked that these ontologies had
been validated and verified. Because no soft-
ware environment for validating ontologies
exists, we did this manually, following the
guidelines given by Asunción Gómez-Pérez.11

Implementation. Finally, ODE automati-
cally generated Ontolingua language code
using a translator that transforms the con-
ceptual model into an implemented model.
We’ll describe this in the next section.

ODE

The Ontology Design Environment’s goal is
to support the ontologist throughout ontology
development, from requirements specifica-
tion, through knowledge acquisition and con-
ceptualization, to implementation, with as
much integration and evaluation as possible.
To achieve this goal, ODE seeks to automate
each ontology-development activity and auto-
matically integrate the results of each phase
with the input of the following phase.

ODE capabilities. Because the conceptual-
ization of a complete and consistent ontol-
ogy involves the management of a huge
amount of information, we stored the entire
ontology in a relational database. This has
the big advantage that the applications access
the ontology using SQL (Structured Query
Language), which encourages the use of
ontologies in real applications. ODE uses
SQL directly on the IRs and not on the data-
base internal structure. Therefore, the user or
application that accesses the ontology only
has to know the IRs that are used for con-
ceptualization and not how the conceptual-
ization is stored in the database.

To maintain the consistency within each
IR and between IRs, we studied the con-
straints in the fields of a conceptual table or
between the fields belonging to different con-
ceptual tables. This study, based on proposed
rules of verification of the IRs,9 seeks to iden-
tify any effects possibly caused by the oper-
ations of editing an ontology at the concep-
tual level and how the above operations are
implemented in the database.

Because user experience in ontology de-
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velopment varies, ODE provides optional
guided conceptualization that helps inexpe-
rienced users learn about ontology develop-
ment. This conceptualization is very useful
for domain experts who want to build their
own ontologies.

ODE currently includes these functions:

• Managing ontologies (opening, closing,
saving, saving as, integrating, printing,
and so on);

• Managing ontologies in tabular notation
(creating and removing tables, adding and
deleting table rows, printing tables, and

so on);
• Managing IRs in graphic notation;
• Automatically generating code in formal

languages;
• Customizing the user interface;
• Managing the development-environment

help; and
• Managing conceptualization and user

interface errors.

We’ve designed ODE to be completely
independent of other systems that manage
ontologies. For example, although ODE gen-
erates Ontolingua code in ASCII, ODE does

not interact with Ontolingua.
ODE requires a Pentium running Win-

dows 95 and Access 7. ODE has been pro-
grammed in Visual Basic version 5.0. Its user
interface complies with Microsoft design
standards for the development of event-
oriented applications.

The translator module. Because ODE del-
egates implementation to fully automated
code generators, nonexperts in the languages
in which ontologies are implemented can
specify ontologies using the IRs already pre-
sented. To assure translation of the concep-
tual model to as many languages as possible,
we designed ODE’s translator to be modular
and reusable. The translator module incor-
porates these elements:

First, we use a grammar to declaratively
express the conceptual model. We use this
rules notation:

• A → B means A has the structure indi-

cated in B;
• [A] means A is optional;
• [A | B] means A or B;
• {A}x

y means A is repeated a number of

times that is between x and y;

• Terminal symbols are in bold and non-
terminal symbols are in italics;

• — means the field is filled in with no

value.

Figure 6 shows how we express the data
dictionary.

Second, we identified a series of transfor-
mation rules containing the structures to be
generated in each language. We use the same
notation as for the IRs. For example, Figure
7 shows the transformation rule for defining
classes in Ontolingua.

Third, for each type of valid definition in
the language, we built a table that relates the
terms used in the transformation rules to the
terms employed in the conceptual model (see
Table 1). So, the nonterminal symbols of the
transformation rules go in the left-hand col-
umn; the fields of the IRs needed to get the
information represented by the transforma-
tion rule go in the right-hand column. Table
1 shows that

• the name of the class in the implementa-
tion matches a concept name in the con-
cept dictionary;

• the documentation in the implementation
is obtained from the description in the
glossary of terms;
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Figure 6. The expression of  the data dictionary in the ODE rules notation.

data_dictionary → Concept name word
Synonyms [ {word}1

n | — ]
Acronyms [ {word}1

n | — ]
Instances [ {word}1

n | — ]
Class attributes [ {word}1

n | — ]
Instance attributes [ {word}1

n | — ]
Relations [ {word}1

n | — ]

Figure 8. Ontolingua code generated by the ODE translator for the concept Element.

;;; Element

(Define-Class Element (?Element)

“A substance that is made up of atoms with the same number of

protons.”

:def

(and

(Has-One ?Element Atomic-Number)

(Has-Some ?Element Atomic-Volume-at-20-Degrees-Celsius)

(Has-One ?Element Atomic-Weight)

(Has-One ?Element Chemical-Group)

(Has-One ?Element Chemical-Period)

(Has-Some ?Element Density-at-20-Degrees-Celsius)

(Has-One ?Element Electronegativity)

(Has-Some ?Element Melting-Point)

…………)

:axiom-def

(Exhaustive-Subclass-Partition Element

(Setof Reactiveness Reactiveless)))

Figure 7. The transformation rule for def ining classes in Ontolingua.

def_class → {;;; class
(Define-Class class (?class)
“ documentation”
[ :def
(and

{(superclass ?class)}
[ (Superclass-Of {subclass})]
[ (Has-Instance ?class {instance})]
[ {(Has-at-Most relation ?class max_cardinality)
(Has-at-Least relation ?class min_cardinality) |
(Has-One ?class relation) |
(Has-Some ?class relation)] }0

n)(
[ :axiom-def (Exhaustive-Subclass-Partition class

(Setof {subclass}1
n))] )}1

n

.



• each superclass and subclass name is sup-
plied by the concept-classification tree;

• the names of the instances are taken from
the instance field defined in the concept
dictionary;

• the relation names are obtained from the
instance and class attributes and the rela-
tions defined for the concept in question
in the concept dictionary; and

• the cardinalities appear in the instance- or
class-attribute tables and ad hoc binary-
relation tables.

Figure 8 shows an example of the Ontolin-
gua code generated for the Chemicals ontol-
ogy. The generated code is error-free, which
dramatically cuts the time and effort involved
in implementation.

Furthermore, the translator’s architecture
allows other translators to be developed in
series. By merely changing the rules that
identify the transformation rules of the terms
to be generated and changing the second col-
umn of the table that relates the conceptual-
ization to the implementation, we can build
a new translator.

M ETHONTOLOGY’S TABULAR
and graphic-based notation is a user-friendly
approach to knowledge acquisition by do-
main experts who are not knowledge engi-
neers. So, all the ontologies built using this
approach are not hand-crafted; they rely on
the same conceptualization process; they

have been built independently of their end
use; and the final ontology code is generated
automatically using ODE translators.

The Chemicals ontology is being used in
several applications. Ontogeneration6 is an
information-retrieval system that lets Span-
ish users consult and access, in their own
language, the knowledge contained in the
Chemicals ontology. The system uses a
domain ontology (Chemicals) and a linguis-
tic ontology (the Generalized Upper Mo-
del12) to generate Spanish text descriptions
in response to the queries in the chemistry
domain.

The other application is Chemical Onto-
Agent,13 an ontology-based WWW broker in
the chemistry domain. It is a teaching broker
that lets students learn chemistry in a very
straightforward manner, providing the nec-
essary domain knowledge and helping stu-
dents test their skills. To make the answers
more understandable to students, this system
can interact with Ontogeneration.

We are building other ontologies accord-
ing to the Methontology framework and using
ODE: the (KA)2-Ontology, developed by
the Knowledge Annotation Initiative,14 which
seeks to model the knowledge-acquisition
community (its researchers, topics, products,
and so on); the Reference-Ontology,13 a
domain ontology about ontologies; and a
Monatomic-Ions-Ontology, to be
included in an Environmental-Pollu-
tants-Ontology. These two ontologies
reuse the Chemicals ontology.
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