
J
H
E
P
0
9
(
2
0
2
0
)
0
1
4

Published for SISSA by Springer

Received: March 21, 2020

Revised: May 25, 2020

Accepted: August 3, 2020

Published: September 1, 2020

Building a consistent parton shower

Jeffrey R. Forshaw,a,b Jack Holguina,b and Simon Plätzerb,c

aConsortium for Fundamental Physics, School of Physics & Astronomy, University of Manchester,

Manchester M13 9PL, United Kingdom
bErwin Schrödinger Int. Institute for Mathematics and Physics, University of Vienna,

1090 Wien, Austria
cParticle Physics, Faculty of Physics, University of Vienna,

1090 Wien, Austria

E-mail: jeffrey.forshaw@manchester.ac.uk,

jack.holguin@manchester.ac.uk, simon.plaetzer@univie.ac.at

Abstract: Modern parton showers are built using one of two models: dipole showers or

angular ordered showers. Both have distinct strengths and weaknesses. Dipole showers

correctly account for wide-angle, soft gluon emissions and track the leading flows in QCD

colour charge but they are known to mishandle partonic recoil. Angular ordered showers
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physics but azimuthal averaging means they are known to mishandle some correlations.

In this paper, we derive both approaches from the same starting point; linking our under-

standing of the two showers. This insight allows us to construct a new dipole shower that

has all the strengths of a standard dipole shower together with the collinear evolution of

an angular-ordered shower. We show that this new approach corrects the next-to-leading-

log errors previously observed in parton showers and improves their sub-leading-colour

accuracy.
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1 Introduction

Parton showers simulate the particle content of scattering events at collider experiments

and provide the backbone to modern experimental analyses [1–7]. Yet questions over their

accuracy and on how best to improve them remain. In this paper we present a unified

analysis of the two main approaches to formulating parton showers: dipole showers [2–4, 8]

and angular ordered showers [5, 6, 9]. As a result, we are able to construct a new dipole

shower that does not suffer from the next-to-leading logarithm (NLL) problems suffered

by existing parton showers and has increased next-to-leading colour (NLC) accuracy [10].
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In our previous papers [11, 12] we introduced an algorithm for amplitude-level par-

ton branching (the PB algorithm). The PB algorithm was designed to capture both the

soft and collinear logarithms associated with the leading infra-red singularities of scatter-

ing amplitudes without making any approximations on the spin and colour. In [12] we

showed how the PB algorithm can be used to derive the resummation of observables at

leading-logarithmic accuracy (it has the capacity to be extended to include next-to-leading-

logarithms) and we showed that it gives rise to the collinear factorisation of parton density

and fragmentation functions. In [11] we showed that the colour evolution is equivalent to

that of other approaches [13–16]. The PB algorithm is the starting point for the analysis

presented here.

In the next section, we present a brief overview of the algorithm before going on to use it

to derive both dipole and angular ordered showers. In these derivations we keep close track

of the approximations made, with the goal of gaining a solid understanding of the sources

for errors in these showers. We focus on deriving showers in e+e−, though much of the

machinery necessary to derive showers for hadron-hadron processes is also present in this

paper. The full discussion of our derivations is technical and largely handled in appendix A.

More specifically, in section 2.2, we derive an angular ordered shower starting from

the PB algorithm. In doing so we are able to constrain the recoil functions in the original

PB algorithm, since angular ordered showers provide clear constraints on how momentum

longitudinal to a jet must be conserved in order to get NLL physics correct. In section 2.3

we then derive a dipole shower from the PB algorithm, taking particular care over the

constraints observed from our angular ordered derivation. The result is a dipole shower

that reduces the doubly-logarithmic NLC errors noted in [10] (complete removal of NLC

errors at a given logarithmic accuracy generally requires amplitude-level evolution). Having

pinned down longitudinal recoil, in section 3 we present a scheme (inspired by [17]) for

the transverse recoil. This completes the specification of our shower. We then go on to

recreate the fixed order analysis of [10] and show that our shower corrects the NLL errors

from incorrect transverse recoil previously observed in dipole showers. In appendix D we

go further and show that our new shower is sufficient for the correct leading-colour NLL

resummations of thrust and the generating functions for jet multiplicity.

2 Evolution equations

2.1 Amplitude evolution overview

The PB algorithm defines a sequence of transitions in a Markov chain of amplitude den-

sity matrices: A0(q0⊥; {p}0) 7→ A1(q1⊥; {p}1) 7→ . . . 7→ An(qn⊥; {p}n). The sequence is

illustrated in figure 1. We use n to index the number of partons dressing the hard process.

Each amplitude is defined at a given scale (parametrised by an ordering variable), this is

its first argument. The second argument, after a semi-colon, specifies its full dependence

on the relevant parton momenta (which we often choose to omit). The Markov chain uses

the initial condition A0(Q; {p}0) = H(Q;P1, . . . , PnH), where H ≡ |M〉 〈M| is the hard

process density matrix for a process of hard scale Q and with nH hard partons. The hard

partons’ momenta form the set {P1, . . . , PnH} ≡ {p}0. The Markov chain terminates on

– 2 –
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Figure 1. A general term in the Markov chain of amplitude density matrices, An, constructed by

the PB algorithm. H ≡ |M〉 〈M| is the initial hard process; in this case it has two hard coloured

legs, a and b. Dn dresses an amplitude with the nth emission that is either soft or collinear.

Collinear emissions are emitted symmetrically from the amplitude and conjugate amplitude, such

as gluon 1. Soft emissions appear as interference terms, such as gluon 2. Γn dresses the amplitude

after n soft or collinear emissions with a loop.

the amplitudes An(µ; {p}n); µ is an infra-red cut-off and {p}n = {P1, . . . , PnH , q1, . . . , qn}
where q1, . . . , qn are the momenta of the n partons that dress the hard process. Steps in

the Markov chain are constructed from the action of two operators, Dn and Γn. The Dn

operators are emission operators; they act as maps from a state An−1(q⊥; {p}n−1) to a state

An(q⊥; {p}n), and they describe the emission of the nth parton. Operators Γn provide a

map from a state An(q⊥; {p}n) onto some other Ãn(q⊥; {p}n). Physically, they dress the

density operator with (iterated) virtual corrections. The path-ordered exponent of Γn is

an amplitude level Sudakov factor/operator which we call Va,b:

Va,b = Pexp

(
−
∫ b

a

dq⊥
q⊥

Γn(q⊥)

)
. (2.1)

Va,b evolves a state An(b; {p}n) to a state at a lower scale Ãn(a; {p}n); for a complete

discussion of Va,b see [12]. In [12] we presented the PB algorithm in the following form:

An(q⊥; {p}n) =

∫
dRnVq⊥,qn⊥DnAn−1(qn⊥; {p}n−1)D†nV

†
q⊥,qn⊥

Θ(q⊥ ≤ qn⊥). (2.2)

The algorithm maps the set of partonic momenta prior to the nth emission ({pn−1}) onto

a new set ({pn}), by adding a parton (qn). In order to conserve energy-momentum, the set

of momenta prior to the emission are adjusted after each emission, i.e. {pn−1} → {p̃n−1}
and {pn} = {p̃n−1 ∪ qn}. We achieve this by integrating over delta functions relating the

two sets of momenta. This is all hidden inside
∫

dRn, which we describe in appendix A.1

and give examples of in section 3. We also provide definitions of each operator involved in

the evolution in appendix A.1.
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In this paper, it better suits our purposes to work with the PB algorithm expressed

as an evolution equation, i.e. working differentially in the ordering variable, q⊥. Broadly

speaking, qn⊥ is the transverse momentum of the nth parton and it is a function of the

n-parton phase-space. The precise definition of qn⊥ is context dependent and is given in

appendix A.1. The evolution equation is

q⊥
∂An(q⊥;{p}n)

∂q⊥
=−Γn(q⊥)An(q⊥;{p}n)−An(q⊥;{p}n)Γ†n(q⊥)

+

∫
dRn Dn(qn⊥)An−1(qn⊥;{p}n−1)D†n(qn⊥) q⊥ δ(q⊥−qn⊥). (2.3)

It is from this equation that we will derive generalised dipole and angular ordered showers.

The phase-space measure for the nth parton emitted in the cascade is variously

written as
d3qn
2Eqn

=
q2
n⊥dqn⊥
2qn⊥

dS
(qn)
2 =

π2q2
n⊥

2αs
dΠn. (2.4)

We typically parametrise the evolution so that real emissions use the phase-space measure

dΠn and loops d ln qn⊥dS
(qn)
2 . From each An we can compute the differential nH+n parton

cross section:

dσn(µ) =

(
n∏
i=1

dΠi

)
Tr An(µ), (2.5)

where µ is either an infra-red regulator that should be taken to zero or the shower cut-off

scale. We will focus on e+e− hard matrix elements, in which case observables are computed

using

Σ(µ; {p}0, {v}) =

∫ ∑
n

dσn(µ)u({p}n, {v}), (2.6)

where u({p}n, {v}) is a measurement function for an observable defined by the set of

parameters {v}.1 The formula for processes involving incoming hadrons is given in ap-

pendix A.1.1.

2.2 Angular ordered shower

In this section we give an overview of the derivation of an angular ordered shower, starting

from eq. (2.3). The unabridged derivation is given in appendix A.2. Angular ordering is de-

rived after averaging over the azimuth of each emitted parton, as measured relative to their

parent parton (and neglecting all subsequent azimuthal correlations). After performing this

averaging in eq. (2.3), the colour structures can be greatly simplified (a manifestation of

QCD coherence). We exploit this to re-write the evolution in terms of squared matrix

elements, |Mn|2. What follows is a little more detail of the key steps.

1Σ(µ; {p}0, {v}) is
∑
δ

dσδ
dB fB,δ(v) in [18].

– 4 –
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θin,jn

θn,jn

in

jn
φn

Figure 2. The angles used to derive angular ordering by azimuthal averaging. φn is the azimuth

that is averaged over. In some equations two azimuths are present, in these situations we give φn
a second index, e.g. φn,jn . Angular ordering corresponds to θin,jn > θn,jn .

1. The Dn operators in eq. (2.3) describe the emission of soft gluons from dipoles (via

eikonal currents) and the emission of hard-collinear partons. The probability for the

emission of a soft gluon is partitioned as

nin · njn
nin · n njn · n

= Pinjn + Pjnin , where 2Pinjn =
nin · njn − nin · n
nin · n njn · n

+
1

nin · n
,

nin = pin/Ein and n = qn/Eqn , and E is an energy in the event zero-momentum frame.

Note that Pinjn only has a pole when the emission is parallel to in. When integrated,

this term gives rise to a theta function that enforces angular ordering.

2. We average over the emitted parton’s azimuth, 〈. . .〉1,...,n, such that (for some quantity f)

〈f〉1,...,n =

∫
dφn
2π

. . .

∫
dφ1

2π
f(φ1, . . . , φn).

The relevant angles are defined in figure 2. We use this operation on both sides of

eq. (2.3) and spin-average, see appendices A.2 and B for details. It is at this point we

see that 〈Pinjn〉n ∝ Θ(θjn,in − θn,in).

3. We perform a change of variables, qn⊥ → ζn,jn = 1−cos θn,jn , so as to make the angular

ordering explicit. We merge the soft and hard-collinear emission kernels; expressing

them in terms of collinear splitting functions. We also must sort out recoil so that the

longitudinal component of the total momentum in a 1 → 2 splitting is conserved. Fi-

nally, using kinematic variables defined in the event zero-momentum frame2 allows us to

saturate the Θ(θjn,in − θn,in) angular ordering constraint for emissions originating from

the primary hard partons (which are anti-parallel to each other). For all other emissions,

it is necessary to approximate Θ(θjn,in − θn,in) ≈ 1. This approximation (which corre-

sponds to strong ordering in angles) is equivalent to assuming the angle of the current

emission is smaller than the opening angle of every other dipole, not just the opening

2I.e. for e+e− → qq̄, zn = p̃in · n/pin · n and n is chosen so that n||Pq̄ for all emissions in the quark jet

and vice versa for the anti-quark jet.

– 5 –
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angle of its parent dipole. This is the familiar angular ordering used in both resumma-

tions [19, 20] and parton showers when showering from an e+e− → qq̄ hard process [5].

Strong ordering in angles simplifies the colour structures, so that all colour-charge oper-

ators can be reduced to Casimir, i.e. CF for a quark and CA for a gluon. The simplified

colour reduces the evolution equation to an evolution of matrix elements, |Mn|2.

The final result is

ζ
∂
〈
|Mn(ζ)|2

〉
1,...,n

∂ζ
≈

−
∑
jn+1

∑
υ

αs

π

∫
dzPυυjn+1

(z)〈Θonshell〉n+1

〈
|Mn(ζ)|2

〉
1,...,n

+
∑
υ

αs

π
Pυυjn (zn)

×〈Θonshell〉n
∫

d4pjn δ
4(pjn−z−1

n p̃jn)
〈
|Mn−1(ζn,jn)|2

〉
1,...,n−1

ζn,jn δ(ζ−ζn,jn). (2.7)

The angular ordering variable ζn,jn = 1−cos θn,jn . Pυυjn (zn) are the usual collinear splitting

functions, e.g. Pqq(zn) = CF
1+z2

n
1−zn . Here we have used υjn to label the species of parton jn

and υ to label the species jn transitions to; if υjn = q then υ = q and if υjn = g then

υ = q, g. zn is the momentum fraction of parton n, i.e. if we have a collinear splitting that

induces jn−1 → jn n then pjn ≈ znpjn−1 and qn ≈ (1 − zn)pjn−1 . Θon shell is a product of

theta functions that ensures each parton is integrated over the phase space corresponding

to a real particle (see section A.2.2). In the first term, Θon shell is a function of ζ, z and

the n-parton phase space. In the second term Θon shell is a function of ζn,jn , zn and the

(n− 1)-parton phase space.
〈
|Mn(ζ; {P1, . . . , PnH , (z1, ζ1,j1), . . . , (zn, ζn,jn)})|2

〉
1,...,n

is the

azimuthally averaged, squared matrix element for a hard process dressed with n strongly-

ordered partons with a unique branching topology; each emitted parton is specified by a

pair (zm, ζm,jm) and parton jm is the corresponding parent. The delta function enforces

longitudinal momentum conservation; |Mn|2 depends on the momentum after the emission,

p̃jn , and |Mn−1|2 depends on the momentum before the emission, pjn .

Observables in e+e− are computed after summing over emission topologies:

Σ(µ;{p}0,{v})≈
∫ ∑

n

∑
j1,...,jn

(
n∏

m=1

dζm,jm
ζm,jm

dzidφi
2π

)〈
|Mn(µ)|2

〉
1,...,n

u({p}n,{v}), (2.8)

where µ should be taken to zero (or the shower cutoff) and for hadron-hadron collisions

see appendix A.1.1.3

There are several noteworthy points involved in this derivation:

• In order to reduce the colour structures to being diagonal, we made the approximation

Θ(θjn,in − θn,in) ≈ 1 for emissions from partons other than the two primary hard

particles. The approximation is generally only good to LL accuracy (though angular

ordered showers are able to go beyond this when combined with the CMW running

of the coupling [20], e.g. to compute thrust at NLL [19]). Moreover, modern angular

3In the appendix, we sum over branching topologies:
∑
j1,...,jn

〈
|Mn|2

〉
1,...,n

=
〈
|Mn|2

〉
1,...,n

.

– 6 –
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ordered showers retain information on the hard-process, leading Nc colour flows by

working in the dipole frames of initially colour-connected partons. This improves the

approximation for hard processes with greater than two hard jets, since it is then only

required to assume Θ(θjn,in − θn,in) ≈ 1 for emissions from partons other than the

primary hard partons. During the subsequent evolution, traditional angular ordered

showers lose the information on QCD colour flows,4 while dipole showers retain it

to all orders at leading Nc. We will exploit this in our dipole shower construction.

Appendix A.2 and A.3 give more details on this point.

• The shower does not yet fully conserve energy and momentum. Rather it only

conserves energy-momentum longitudinal to a jet. Accounting fully for energy-

momentum conservation is formally sub-leading in many observables. However, it

is phenomenologically important and necessary for shower unitarity. Furthermore,

if total energy-momentum conservation is handled incorrectly it can spoil the NLL

accuracy of a shower for some observables [10]. We will return to this in section 3.

• We averaged the azimuthal dependence of the matrix elements. However, this ig-

nores possible azimuthal dependence of the observable. Really one should compute〈
|Mn|2 u({p}n, {v})

〉
1,...,n

. It is therefore important to ask whether〈
|Mn|2 u({p}n, {v})

〉
1,...,n

≈
〈
|Mn|2

〉
1,...,n

〈u({p}n, {v})〉1,...,n

is a good approximation. In other words, are the azimuthal dependencies of the ma-

trix element and the observable correlated? This is clearly an observable dependent

statement. Despite this we can make some progress; we can remove the approxima-

tion and find〈
|Mn|2 u({p}n)

〉
1,...,n

=
〈
|Mn|2

〉
1,...,n

〈u({p}n)〉1,...,n

+
n∑

m=1

σm(
〈
|Mn|2

〉
1,...,n

)σm(〈u({p}n)〉1,...,n) Corm(
〈
|Mn|2

〉
1,...,n

, 〈u({p}n)〉1,...,n)

+ higher order correlations, (2.9)

where σn(x) =
√
〈x2〉n − 〈x〉2n and Corn(x, y) =

〈(x−〈x〉n)(y−〈y〉n)〉
n

σn(x)σn(y) . The first order

correlation term (the second line of eq. (2.9)) acts as a switch. If it is suppressed

relative to the uncorrelated term then all higher correlations will be too. If it is not

suppressed then higher order correlations may not be. In appendix 2.2 we show that

the higher order correlations are subdominant in the computation of NLL thrust. This

is because the observable is two-jet dominated5 and exponentiates, and so at NLL

accuracy σm(〈u({p}n)〉1,...,n) ≈ 0. However, we also find that the correlation term can

provide a formally leading contribution to non-global logarithms. In appendix A.2 we

observe that the correlation terms contribute leading logarithms to observables like

4Some azimuthal correlations due to colour correlations can be re-instantiated in coherent branching

algorithms [21, 22].
5Observables, such as thrust, for which the leading logarithms quantify small deviations from the two-jet

limit or, more generally, the n-jet limit in the case of n-jettiness [23].
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gaps-between-jets, for which αns L
n logs are leading. The miscalculation of non-global

logarithms by angular ordered showers has previously been subject to numerical study

in [24, 25], where it was observed that leading non-global logarithms are incorrectly

computed by angular ordered showers. However, [24, 25] also observed the error to

be a phenomenologically small effect.

2.3 Dipole shower

In the PB algorithm, the mechanism for energy-momentum conservation is unspecified.

This is because interference terms make it difficult to see how recoil should be distributed.

There are no such issues in angular ordered showers. In this case, the naive guess for how

to conserve momentum longitudinal to a jet is correct and is sufficient for the computation

of NLL DGLAP evolution and jet physics [26–31]. We can exploit this to constrain the

form of the recoil (
∫

dRn) so that the PB algorithm is consistent with an angular ordered

shower. In this section, we will derive a dipole shower with this constraint in place from

the outset. The resulting dipole shower is very similar to the dipole showers that are

commonplace in event generators [2, 3]. However, it has a crucial difference: it does not

use Catani-Seymour dipole factorisation [32].

To derive the dipole shower proceed as follows.

1. Expand eq. (2.3) in powers of the number of colours Nc and keep only the leading

terms, which go as αnsN
n
c , see [11, 33]. This is necessary as only in the leading colour

limit can we write evolution equations for |Mn|2. For the same purpose, spin average

the evolution, see appendix B for details.

2. The colour expansion reduces the evolution equation so that it only depends on

dipoles formed by colour connected partons. We use the form of
∫

dRn to partition

each dipole into two parts, introducing longitudinal momentum conservation to each

part of the dipole in such a way that it is exactly consistent with the angular ordered

shower. This is similar to how dipoles are usually partitioned using Catani-Seymour

dipole factorisation. This partitioning allows us to exchange the sum over dipoles

with a sum over emitting parton colour lines.

3. Use the dipole partitioning to restore the (full-colour) hard-collinear physics that is

correctly computed by an angularly ordered shower. This is uniquely determined by

how longitudinal recoil is assigned. The result is a dipole shower that does not suffer

the NLC errors in radiation ordered in angle noted in [10].

In appendix A.3 the complete proof is presented. The final result, expressed in the colour

flow basis, is

q⊥
∂|M(σ)

n (q⊥)|2
∂q⊥

≈− αs

π

∑
icn+1

∫
dq

(icn+1,i
c
n+1)

⊥ δ

(
q

(icn+1,i
c
n+1)

⊥ −q⊥
)∫

dzΘonshell Pυin+1
υin+1

(z) |M(σ)
n (q⊥)|2

+
αs

π

∫ (∏
jn

d4pjn

)
Rdipole
icn

Pυinυin (zn) q⊥δ
(
q

(icn,i
c
n)

n⊥ −q⊥
)∣∣∣M(σ/n)

n−1

(
q

(icn,i
c
n)

n⊥

)∣∣∣2 , (2.10)

– 8 –
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where σ is a colour flow and σ/n is the same colour flow but with the nth colour line

removed. We use icn to index the (anti-)colour line(s) of parton i in a final state dressed

with n soft or collinear partons, i.e. if parton i is a quark it has a single colour line and

so icn = iqn, if parton i is a gluon it will have a colour and an anti-colour line so icn = ign, i
ḡ
n

respectively. icn is the (anti-)colour line connected to icn. Momenta with colour line indices

are the momenta of the partons associated to that colour line, i.e. picn = pin . The shower

is ordered in dipole pT , defined as(
q

(icn,i
c
n)

n⊥

)2
=

2(picn · qn)(p icn · qn)

picn · p icn
. (2.11)

The dipole splitting functions are

Pqq(zn) = CF
1 + z2

n

1− zn
, Pgg(zn) =

CA

2

1 + z3
n

1− zn
.

These splitting functions are related to those in the previous section according to

Pgg(z) = Pgg(z) + Pgg(1− z), and Pqq(z) = Pqq(z). Note that to simplify eq. (2.10) we

have omitted the possibility of g → qq transitions, which is sub-leading in colour and only

contributes a leading logarithm to single-logarithm, collinear-sensitive observables or at

NLL for double-logarithmic observables. In appendix 2.3 we present eq. (2.10) with this

splitting included. Being explicit, we would write the squared matrix element as∣∣∣M(σ)
n

(
q⊥;
{
P1, . . . , PnH ,

(
z1, q

(ic1,i
c
1)

1⊥ , φ1

)
, . . . ,

(
zn, q

(icn,i
c
n)

n⊥ , φn

)})∣∣∣2 .
As for the angular ordered shower, this is the squared matrix element for a hard process

dressed with n strongly-ordered partons with a unique branching topology, i.e. each emitted

parton is specified by a triplet (zm, q
(icm,i

c
m)

m⊥ , φm) and is emitted from the parton with colour

line icm. The dipole recoil function is given by

Rdipole
icn

=

(
1

2
+ Asymicni

c
n
(qn)

)
Ricn , (2.12)

where

Ricn = δ4(pin − z−1
n p̃in)

∏
in 6=jn

δ4(pjn − p̃jn) +O(q⊥/Q), (2.13)

and where

Asymicni
c
n
(qn) =

[
T · picn
4T · qn

(q
(icni

c
n)

n⊥ )2

picn · qn
−
T · p icn
4T · qn

(q
(icni

c
n)

n⊥ )2

p icn · qn

]
, and T =

∑
in

pin . (2.14)

Note, in the limit that qn is collinear to picn , Asymicni
c
n
(qn) = 1/2. Thus, in this limit

Rdipole
icn

→ Ricn , as required. Our expression for Rdipole
icn

should be compared to the recoil

function one would find using Catani-Seymour dipole factorisation:

RC.S.
icn

(qn) =

 (q
(icni

c
n)

n⊥ )2p icn · picn
2picn · qn (p icn + picn) · qn

Ricn . (2.15)
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Rdipole
icn

→ RC.S.
icn

if we were to make the replacement T → picn + pīcn . Observables are

computed after summing over emission topologies:

Σ(µ; {p}0, {v}) ≈
∫ ∑

n

∑
σ

∑
ic1,...,i

c
n

(
n∏

m=1

dq
(icm,i

c
m)

m⊥

q
(icm,i

c
m)

m⊥

dzidφi
2π

)
|M(σ)

n (µ)|2 u({p}n, {v}).

(2.16)

There are several noteworthy points involved in this derivation:

• This shower was built around preserving the beneficial features of an angular ordered

shower. In fact, azimuthally averaging the dipole shower reinstates an angular order-

ing. Angular ordered showers provide a sufficient framework to resum global two-jet

dominated observables, such as thrust, up to αns L
2n−1 terms with full colour. Radia-

tion consecutively ordered in angle generated by the dipole shower presented here will

also achieve this accuracy (radiation unordered in angle will differ at sub-leading Nc).

This reduces the doubly logarithmic NLC errors noted in [10], where the particular

example of errors in the thrust observable was given.

• Traditional angular ordered showers fail to correctly compute αns L
2n−1 logarithms

for n > 2 jet observables. This is because soft, wide-angle physics is miscalculated

because of the Θ(θjn,in − θn,in) ≈ 1 approximation, as previously discussed.6 It is

never necessary to make this approximation in the dipole shower since we can use

the underlying colour flows to define variables in the relevant dipole frame, for which

Θ(θjn,in − θn,in) = 1 is always true. Thus we expect the dipole shower to have the

capacity to re-sum αns L
2n−1 logarithms at leading colour.7

• In the soft limit the dipole shower generates iterative solutions to the BMS equa-

tion [16, 34] (the proof is as in section 3 of [11]). This demonstrates that the shower

computes non-global logarithms at leading colour correctly.

• At this point in our theoretical development, the dipole shower does not completely

conserve energy and momentum. Rather it only conserves momentum longitudinal

to the emitting parton. Accounting for total energy-momentum conservation is not

needed to compute some observables to NLL accuracy, e.g. thrust. Regardless, it is

an important effect that if handled incorrectly can spoil the NLL accuracy of the

shower [10]. Addressing this is the focus of the next section.

6Modern implementations of angular ordered showers do use colour flow information from the hard pro-

cess, allowing them to compute αns L
2n−1 terms at leading colour for global n > 2 jet dominated observables

by deriving appropriate initial conditions from the respective large-N colour flows of the hard process [5].
7Eq. (2.10) as it stands only provides a sufficient framework for this resummation. It is not yet sufficient

in itself: one would need to enhance the shower with a running coupling and, possibly, higher order splitting

functions.
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3 Improving recoil in dipole showers

In this section we will address the problem of energy-momentum conservation in a dipole

shower, though our approach is simple to map onto an angular ordered shower. The

mechanism for energy-momentum conservation (or recoil scheme) we present lacks a formal

derivation. Rather it is inspired by the study of recoil by Bewick et al. [17]. Bewick et

al. analysed several approaches to recoil in angular ordered showers, reproducing some of

the fixed-order checks of [10] and performing further numerical checks. They observed

that among the better performing recoil schemes are globally defined schemes; schemes

that redistribute momentum across an entire jet or event. From our perspective, a global

scheme is also preferable, as it is more simply implemented in a dipole shower. Momentum

conservation on an emission-by-emission basis is also desirable when it comes to matching to

fixed-order and merging of hard processes of different jet multiplicity. In the two-jet limit,

our scheme becomes that which is analysed in [17] and implemented in HERWIG’s angular

ordered shower [5]. For comparison, in appendix C we summarise the implementation and

limitations of a spectator recoil scheme, as implemented in [2, 3, 35].

We start with an observation that is key to all global recoil schemes: when a parton

is emitted from another, the parent parton must have been off-shell. We parametrise the

amount by which it is off shell by giving it a virtual mass. A parton shower approximates

the sum over the multiplicities of QCD radiation dressing a given hard process. Each term

in the sum should have the same total energy and the same zero-momentum frame (ZMF).

Naively adding a parton to an n − 1 on-shell parton state changes the total energy and

ZMF. We will redistribute parton momenta as simply as possible in order to restore the

ZMF and total energy. We will do this using a single global Lorentz boost and a single

rescaling that preserves the transverse momentum ordering. This procedure is illustrated

in figure 3. Below we will spell out how to implement this recoil scheme. The simplicity of

the scheme can get lost in its mathematical definition and so we encourage the reader to

keep figure 3 in mind.

Let us now make figure 3 quantitative. We require that energy is conserved,

Ebefore = Eafter = Q where

n−1∑
in

√
p2
in

+m2
in
≡

n−1∑
J=1

√
P2
J +m2

J = Ebefore,

n−1∑
in

√
p̃2
in

+m2
in

+
√

q2
n +m2

qn ≡
n−1∑
J=1

√
P̃2
J + P̃ 2

J = Eafter, (3.1)

and that momentum is conserved

n−1∑
J=1

PJ =
n−1∑
J=1

P̃J = 0, (3.2)

where, in the ZMF, PJ is the 3-momentum of Jth jet amongst the n− 1 jets constructed

from an n−1 parton ensemble, i.e. PJ = pin for J = in (recall that in labels parton i in an

n-parton ensemble). We introduce the extra notation because it is the momentum of jets
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picn picn zpicn + k⊥ +O(k2)

(1− z)picn

O(k⊥) unbalanced momentum
pīcn

PJ P̂J

Boost to ZMF to conserve energy
rescalemomentum

P̃J

Figure 3. A summary of the dipole shower global recoil scheme (a scheme for energy-momentum

conservation). In words: a new particle is emitted which leaves some momentum unbalanced (in

the direction of the colour connected parton and in the plane transverse to the dipole); perform a

Lorentz boost to the new ZMF, and re-scale the jet momenta in such a way that the rescaling does

not change the k⊥ of the emission. This leaves an n-parton ensemble with the same total energy

and total momentum as the n− 1-parton ensemble.

that we particularly focus on conserving. P̃J is what we wish to find; it is the momentum of

the Jth jet now constructed from an n parton ensemble after the necessary redistribution

of momenta (all jets contain a single parton except for one which contains two partons;

the original parton and the newly added parton). mi is the mass of parton i, and mi = 0

since we consider only massless partons. P̃ 2
J is the virtual mass squared of the Jth jet, it

also is zero for all jets other than the jet built of two partons. We can achieve our desired

redistribution by a Lorentz boost, Λµ
ν , from the ZMF of the n− 1 parton ensemble to the

ZMF of the n parton ensemble. Once in this frame, we re-scale all the jet momenta by a

global factor κicn (the index will prove necessary later on) so as to preserve the centre-of-

mass energy. In all, we wish to find P̃J µ = κicnΛ ν
µ P̂j ν where P̂j is the four-momentum of

the Jth jet constructed from the n parton ensemble before the redistribution of momenta.

We place a hat on all intermediary kinematic variables (i.e. those after the emission but

before redistribution of momenta). We denote the 3-momentum of P̃J as P̃J = κicnΛP̂J .

Λµν is specified by solving eq. (3.2) and κicn is specified by solving

Q =
n−1∑
J=1

√
P̃2
J + P̃ 2

J =
n−1∑
J=1

κicn

√
(ΛP̂J)2 + P̂ 2

J , (3.3)

which comes from requiring Ebefore = Eafter = Q.
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We will express this recoil scheme in terms of the shower kinematics and solve for P̃J .

We use the following Sudakov decomposition for a 1→ 2 (picn → p̂icn q̂n) parton transition:

q̂n = (1− zn)picn + k⊥ +
(q

(icni
c
n)

n⊥ )2

1− zn
p icn

2picn · p icn
,

p̂icn = znpicn , (q
(icni

c
n)

n⊥ )2 = −k2
⊥, k⊥ · picn = k⊥ · p icn = 0. (3.4)

We label the jet in which the splitting takes place as PJ emit, so that PJ emit = picn . From

eq. (3.4):

P̂ 2
J emit =

zn(q
(icni

c
n)

n⊥ )2

(1− zn)
, P̂J emit = PJ emit + k⊥ +

(q
(icni

c
n)

n⊥ )2

(1− zn) 2picn · p icn
p icn

.

For all jets other than “J emit” P̂J = PJ and P̂ 2
J = 0. The Lorentz boost, Λµν(icn, i

c
n), can

now be found. The boost is in the direction of p icn
and is given by the boost velocity

βZMF =
P̂J emit −PJ emit∑

J

√
P̂2
J + P̂ 2

J +
√
|P̂J emit −PJ emit|2 + k2

⊥

. (3.5)

Finally we must solve for κicn using eq. (3.3),

κicn =

∑n−1
J=1

√
P2
J + P 2

J∑n−1
J=1

√
(ΛP̂J)2 + P̂ 2

J

. (3.6)

Note that in both the soft and collinear limits κicn → 1.

So now we have everything we need to compute P̃J = κicnΛP̂J . We can put this in

the dipole shower by introducing a recoil function

Ricn =δ4
J
(
p̃icn − znκicn Λ(icn, i

c
n)picn

) ∏
jn 6=in

δ4
J
(
κin Λ(icn, i

c
n)pjn − p̃jn

)
, (3.7)

where δ4
J (f(picn)) is a delta function normalised against its Jacobi factor:

δ4
J (f(picn)) = δ4(picn −X),

where X is the (unique) solution to f(X) = 0. Note that in an implementation of the

algorithm there is never any need to invert the argument of the delta function to solve for

picn since p̃icn is what is needed going forwards. In eq. (2.10), the delta functions simply

kill all of the integrals over pjn. For the sake of being explicit, the emitted parton has

momentum

qn = (1− zn)κicn Λ(icn, i
c
n)picn + k⊥ +

(q
(icni

c
n)

n⊥ )2

κicn (1− zn)

Λ(icn, i
c
n)p icn

2picn · p icn
. (3.8)

Note that both zn and dq
(icni

c
n)

n⊥ /q
(icni

c
n)

n⊥ are Lorentz and jet scaling invariants. This means

that all of the emission kernels remain unchanged and so the implementation of this recoil
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scheme only enters so as to ensure that the real emissions continue to be integrated over

the correct phase-space (and through the corresponding Θon shell for the virtuals).

In order to implement the proposed shower computationally we must specify the phase-

space boundary for real emissions. In our previous papers, [11, 12, 35], we gave general

formulae for the computation of phase-space boundaries, derived by ensuring the emit-

ted parton is on-shell and has less energy than its parent. Applying these to the recoil

prescription we present here, we find that

zn ∈
(

0, 1− (q
(icni

c
n)

n⊥ )2

2picn · p icn

)
, φ ∈ [0, 2π), (3.9)

up to terms of the order (1 − κicn); in the following section, we show that these terms are

negligible at NLL accuracy. Here φ is the trivial azimuth in the dipole frame. Thus, the

complete dipole shower is defined by eq. (2.10),8 eq. (2.12), eq. (3.7), and eq. (3.9).

3.1 NLC and NLL accuracy of the global recoil

In this section we will discuss the colour accuracy of our new dipole shower and test its

logarithmic accuracy.

Firstly, the sub-leading colour contained in the shower is inherited from its link to

angular ordered showers. In fact, when next-to-leading order splitting functions and the

CMW running coupling are introduced the collinear radiation generated by the dipole

shower is equivalent (after azimuthal averaging) to that generated by the coherent branch-

ing algorithm of [19, 20] up to the handling of transverse recoil. We discuss this in more

detail in appendix D.1 where we argue that differences due to transverse recoil do not ef-

fect next-to-leading logarithmic accuracy in the angular-ordered limit. This means that the

dipole shower can be used to compute the leading-colour NLL resummation of thrust, again

see appendix D.1. Correct colour factors will also be assigned to the leading logarithms

associated with a broad class of observables that can be computed fully at LL accuracy

in the angular-ordered approach (for which radiation unordered in angle generate NLLs).

Outside of this limit, only leading colour accuracy is guaranteed. This is an improvement

on existing dipole showers, which have been noted to incorrectly compute NLC at LL

accuracy [10], even including errors in logarithms originating from radiation ordered in

angle. Further improvements on sub-leading colour, for more general observables, require

amplitude evolution. We doubt that substantial further improvements in the accuracy of

sub-leading-colour effects can be achieved in either the dipole shower or coherent branching

frameworks. There is already a body of literature exploring possible resolutions to the NLC

errors in dipole showers [36–38]. Our approach of using angular ordering to improve dipole

evolution is similar to that of [36, 37], though there it was largely explored only in the

context of hadronisation and the computation of jet multiplicity observables. We also note

that, by partitioning dipoles so as to identify a unique parent, we expect the sub-leading

logarithms associated with unresolved soft and collinear radiation to be captured using the

CMW scheme for the running coupling [18, 20].

8Or better still, eq. (A.53), which also includes g → qq transitions.
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We will now proceed to evaluate the logarithmic accuracy of the recoil scheme dis-

cussed in the previous section. We do so in two ways. Firstly by re-creating the analysis of

section 4.2 in [10]. In this analysis, several event shape observables, defined by functions

V ({p}), are considered at fixed order. The analysis tests the sub-leading contributions from

the soft region found in the limit that the transverse momentum of the second emission

is of similar magnitude to that of the first but both are small relative to the hard scale.

This limit is considered because it is the limit where dipole showers have previously been

shown to mishandle recoil. Specifically, we calculate the difference between the α2
s LC,

NLL contribution to the observable using the fixed-order amplitude, and the shower con-

tribution: δΣ(L) = Σ
(α2

s )
shower(L)− Σ

(α2
s )

FO (L). As the observables exponentiate, we are looking

for differences of the form α2
sN

2
cL

2 at fixed coupling since these terms contribute to the

NLL exponent.

Our second check of logarithmic accuracy is to compare against two known NLL resum-

mations: thrust and generating functions for jet multiplicity. This is done in appendix D.

Let us proceed to compute δΣ(L) in the doubly-soft limit in e+e− → qq̄. We label the

quark as parton a and the anti-quark as parton b. In the same way that we label partons

with indices in, each parton label is given a subscript stating the ‘current’ multiplicity

of radiated partons (since a parton’s momentum changes to conserve momentum as more

partons are radiated). From eq. (2.10) we can compute the first two soft emissions and find

δΣ(L) = C2
FσnH

∫
dΠ2 dΠ1

∫
dq

(a2,12)
2⊥ δ

(
q

(a2,12)
2⊥ − q2⊥

)∫
dq

(a1,b1)
1⊥ δ

(
q

(a1,b1)
1⊥ − q1⊥

)
×Θ(q1⊥ − q2⊥)

[∫ 2∏
n=1

∏
kn

d4pkn Rsoft
a212

θa212 Rsoft
a1b1 θa1b1Θ

(
e−L − V ({p}2)

)
− θcorrect

a212
θcorrect
a1b1 Θ

(
e−L − V ({p}correct)

) ]
, (3.10)

where σnH is the hard process cross section. θinjn is the product of theta functions defin-

ing the on-shell requirements for emission from dipole injn (previously given without in-

dices as Θon shell). {p}correct are the momenta used to compute Σ
(α2

s )
FO (L) and θcorrect

injn
=

θinjn({p}correct). Rsoft
injn

is the combined dipole recoil function, Rsoft
injn

= Rdipole
icn

+ Rdipole
jcn

.

Before considering any specific event shape, we can simplify our expressions further by

using the recoil delta functions to perform some of the integrals. These fix the final state

momenta:

{p}2 = { ˜̃pa, ˜̃pb, q̃1, q2}, where ˜̃pa = κa2κa1 Λ(a2, 12)Λ(a1, b1)pa,

˜̃pb = κa2κa1 Λ(a2, 12)Λ(a1, b1)pb,

q̃1 = κa2 Λ(a2, 12)q1, q2 unmodified,

˜̃Q = κa2κa1Q, Q̃ = κa1Q, Q = O(2pa · pb). (3.11)

q1 and q2 are defined with respect to the rescaled momenta ˜̃pa, ˜̃pb and so have appropriately

modified limits on their phase space. We employ the ‘equally soft’ limit (Q � q1⊥, q2⊥;
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q1⊥ & q2⊥) which reduces the complexity of the phase space limits and removes dependence

on longitudinal recoil. In total, we find that

δΣ(L) ≈ 4α2
s C2

F σnH

π2

∫ Q

0

dq
(a2,12)
2⊥

q
(a2,12)
2⊥

∫ Q

0

dq
(a1,b1)
1⊥

q
(a1,b1)
1⊥

∫ ln Q̃/q
(a1,b1)
1⊥

− ln Q̃/q
(a1,b1)
1⊥

dy1

∫ ln ˜̃Q/q̃
(a2,12)
2⊥

− ln ˜̃Q/q̃
(a2,12)
2⊥

dy2

×
∫ 2π

0

dφ2

2π
Θ
(
e−L − V ({p}2)

)
Θ
(
Q− q(a1,b1)

1⊥

)
Θ
(
κ−1
a2
q

(a1,b1)
1⊥ − q(a2,12)

2⊥

)
− 4α2

s C2
F σnH

π2

∫ Q

0

dq
(a1,b1)
1⊥

q
(a1,b1)
1⊥

∫ q
(a1,b1)
1⊥

0

dq
(a2,12)
2⊥

q
(a2,12)
2⊥

∫ lnQ/q
(a1,b1)
1⊥

− lnQ/q
(a1,b1)
1⊥

dy1

∫ lnQ/q
(a2,12)
2⊥

− lnQ/q
(a2,12)
2⊥

dy2

×
∫ 2π

0

dφ2

2π
Θ
(
e−L − V ({p}correct)

)
. (3.12)

In the ‘equally soft’ limit we are considering

κin ≈ 1−O(q2
⊥/2Q

2). (3.13)

The κ dependence in the shower integrals (lines 1 and 2 of eq. (3.12)) causes potentially

incorrect O(q2
⊥/2Q

2) terms in the phase space limits.9 These integrate to give dilogarithms

in q2
⊥/2Q

2 which do not contribute α2
sL

2 terms but rather α2
sL

0 terms that go to zero in

both soft and collinear limits.10 Thus, with NLL accuracy, eq. (3.12) reduces to

δΣ(L) ≈ 4α2
s C2

F σnH

π2

∫ Q

0

dq
(a1,b1)
1⊥

q
(a1,b1)
1⊥

∫ lnQ/q
(a1,b1)
1⊥

− lnQ/q
(a1,b1)
1⊥

dy1

∫ q
(a1,b1)
1⊥

0

dq
(a2,12)
2⊥

q
(a2,12)
2⊥

∫ lnQ/q
(a2,12)
2⊥

− lnQ/q
(a2,12)
2⊥

dy2

×
∫ 2π

0

dφ2

2π

[
Θ
(
e−L − V ({p}2)

)
−Θ

(
e−L − V ({p}correct)

)]
. (3.14)

Note that δΣ(L) is only non-zero because {p}2 6= {p}correct.

We will now consider several specific observables, still following [10]. Dasgupta et al.

first consider the two-jet rate in the Cambridge algorithm. They argue that for this observ-

able V ({pi}) = maxi{pi⊥}. We notice that q
(an,bn)
n⊥ is a Lorentz invariant. As a consequence

q
(an,bn)
n⊥ is always larger than q

(an+1,bn+1)
n+1⊥ for ourrecoil scheme, up to the neglected diloga-

rithmic piece. Therefore we find V ({p}correct) = V ({p}2) = q
(a1,b1)
1⊥ and that the α2

sN
2
cL

2

terms are correctly computed. Similarly, V ({p}2) is also equal to the correct measurement

function (up to neglected poly-logs) for the ‘fractal moment of energy-energy correlation’

9The algebra to show this is awkward but as κin is simply a ratio of energies, we can argue that it must

be an even polynomial when expanded in small q⊥.
10The recoil terms in these integrals are reducible to a few general forms. One such form is∫ 1

a

dx

x
ln2 x ln

(
x

(
1− x2ε

2

))
=

1

4

(
Li4

(
a2ε

2

)
+ 2 ln2(a)Li2

(
a2ε

2

)
− 2 ln(a)Li3

(
a2ε

2

)
− ln4(a)− Li4

( ε
2

))
where a parametrises the observable, x ∼ q⊥/Q and ε parametrises the coefficients to the O(q2

⊥/2Q
2) effects

from our recoil scheme; ε = 0 gives the leading log result. Note that all terms other than the LL result are

not enhanced in the a→ 0 limit. See appendix D.1 for more details.
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(FC1) which, in the soft-collinear limit, is given by V ({pi}correct) =
∑

i pi⊥. In the limit we

are studying V ({pi}2) = κa2q
(a1,b1)
1⊥ + q

(a2,12)
2⊥ ≈ q(a1,b1)

1⊥ + q
(a2,12)
2⊥ = V ({pi}correct). In fact,

it will be the case that for all observables built from Lorentz invariant and jet rescal-

ing insensitive quantities11 our recoil scheme is sufficient for the computation of α2
sN

2
cL

2

terms. This being because the scheme is constructed by a Lorentz boost and a formally

sub-leading re-weighting. We expect that for suitably simple observables this accuracy will

also extend to higher orders, see the resummations in appendix D. This discussion should

be contrasted with that in appendix C, where we perform the same tests with a spectator

recoil scheme [2–4]. In agreement with [10], we find that with such a recoil scheme these

observables return V ({pi}2) 6≈ V ({pi}correct). This generates NLL errors.

4 Conclusions

Starting from a general algorithm designed to capture both the soft and collinear loga-

rithms associated with the leading infra-red singularities of scattering amplitudes, we have

derived an angular ordered shower and a dipole shower. Our dipole shower is novel in the

way that it partitions each dipole in order to account for longitudinal momentum conser-

vation. This partitioning is constructed so as to ensure that the shower implements longi-

tudinal momentum conservation in precisely the same way as the angular ordered shower

does. This new dipole partitioning is similar to, but not the same as, Catani-Seymour

partitioning. We complete our dipole shower by specifying the transverse recoil and phase-

space. The result is a new dipole shower that formally represents an increase in accuracy

when compared to the traditional parton shower models employed by many current event

generators [2–6, 8, 39, 40]. For example it will compute radiation ordered in angle at full-

colour, and the leading-colour contribution associated with non-global logarithms, i.e. it

will reproduce the correct leading-colour, wide-angle, soft radiation pattern beyond the

two, three, and four-jet limits whilst retaining complete leading-colour, global NLLs in the

two-jet limit. To our knowledge this is not achieved by other parton shower models.

However, our shower still has substantial limitations. In large part that is because

it is based on a cross-section-level, semi-classical picture. Operating at cross-section level

necessitates that the shower generally be defined only at leading-colour. General full-

colour resummation means a more complicated, amplitude-level, approach [12–15, 41–43].

Certainly it would be of considerable interest to compare a parton shower defined at am-

plitude level, such as the CVolver shower that is currently under construction [44, 45] or

the Deductor shower [46], with the improved dipole shower we present here.
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Additional comment on PanScales. Whilst this paper was being finalised, a study of

NLL accuracy in parton showers was released by the PanScales collaboration [47]. There

would seem to be a fair degree of similarity between the dipole shower we derive and the

PanGlobal shower with β = 0 presented in [47]. Our recoil schemes in particular are similar.

The dipole partitioning they employ also obeys the same basic properties as ours: a rapid

rise to 1 in the region that the emitted parton becomes collinear (and a rapid drop to 0

in the anti-collinear region), summing the two halves of the partitioning gives unity at all

points in the phase-space of emission, and in the limit that both partons in the dipole have

the similar energy the partitioning divides the dipole symmetrically in the event ZMF.

A The evolution equations supplementary material

A.1 Amplitude evolution detailed definitions

Before we proceed with the technical details of the PB evolution, it is necessary that we

properly introduce the notation we will later be relying on. In these appendices we will often

find ourselves manipulating expressions relating states of differing parton multiplicities (for

instance eq. (2.3) relates an nH+n−1 state to a an nH+n) state. We must label partons and

the multiplicity of state they come from carefully since the state’s multiplicity determines

both the dimension of the colour-helicity space in which the state resides and the momenta

of the constituent partons. To this end, we label partons with indices in, jn, kn, . . . which

run as in, jn, . . . ∈ {1H, 2H, . . . , nH} ∪ {1, 2, . . . , n − 1}, where {1H, 2H, . . . , nH} is the set

of hard partons and {1, 2, . . . , n − 1} the set of partons emitted during the evolution. We

use υin ∈ {q, g} to label the species of a parton in. The momentum of the ith parton in

a state of multiplicity nH + n − 1 is pin ∈ {p}n−1 = {P1, P2, · · ·PnH , q1, · · · qn−1}. The

emission operator, Dn, adds a new (nth) parton, of four-momentum qn, to the state. After

considering energy-momentum conservation, the parton momentum, qn, is added to the

set {p}n−1, to produce the set {p}n. dRn acts in conjunction with Dn to map {p}n−1 to

a new set, {p̃}n−1. The difference between these two sets is determined by the way we

implement energy-momentum conservation (i.e. the recoil prescription). Following this,

{p}n = {p̃}n−1 ∪ {qn} is the set of n momenta including the last emission, qn.

Many of the objects used in this paper carry complicated dependencies. To simplify

some lengthy expressions, we will only provide the full list of arguments in an object’s

definition. In definitions, we will write every object as some f(x; {y}), where x is the

evolution variable on which f depends and the set {y} itemises the complete dependences

of f . In all expressions subsequent to the definition we will drop the {y} dependence and
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only write f(x). We can do this safely as, following the initial definition of an object, each

object can always be uniquely determined by the subscripts and superscripts we provide.

In section 2.1 we gave an overview of the roles of Dn,
∫

dRn and Γn. Let us now define

these operators more carefully12

Dn(qn⊥; qn ∪ {p̃}n−1) O D†n(qn⊥; qn ∪ {p̃}n−1) =∑
in,jn

∫
δq

(in,jn)
n⊥ (qn⊥) Sinn O Sjn †n +

∑
in

∫
δq

(in,~n)
n⊥ (qn⊥) Cin

n O Cin †
n , (A.1)

where O is some operator in the colour-helicity space and where we have used a shorthand

notation to help save space

δx(y) ≡ dx δ(x− y). (A.2)

Delta functions of this form are used to carry the frame dependence of the ordering variable

in a compact form. Physically, Sinn emits a soft parton from the parton labelled in. These

soft partons take the form of interference terms in the evolution. Note that, due to our

choice of ordering variable, Sinn cannot completely factorise from Sjn †n as both depend on

the momenta (q
(in,jn)
n⊥ )2 (defined below). They have been written in this separated form to

reflect their operator structure in the colour-helicity space. Cin
n emits a collinear parton

from the parton labelled in. The following two definitions for transverse momenta are used

as ordering variables for soft and collinear emissions respectively,

(
q

(in,jn)
n⊥

)2
=

2(pin · qn)(p jn · qn)

pin · p jn
, and

(
q

(in,~n)
n⊥

)2
=

2(pin · qn)(n · qn)

pin · n
, (A.3)

where n is a light-like reference vector. The choice of n is determined by how recoil is

handled in the evolution and is often taken to be in the backwards direction relative to

pin . Strictly speaking, recoil cannot be entirely factorised from each Dn however the way

in which it acts in each Dn follows a simple pattern. Thus we have used the recoil measure

dRn as an abridged notation. It is defined to act by the following rules

dRn Sinn O Sjn †n ≡
(∏

in

d4pin

)
Rsoft
injn Sinn O Sjn †n ,

dRn Cin
n O Cin †

n ≡
(∏

in

d4pin

)
Rcoll
in Cin

n O Cin †
n . (A.4)

Rsoft
injn

and Rcoll
in

contain the necessary delta functions and kinematic pre-factors needed to

account for energy-momentum conservation. They are discussed in section 3 and further

examples are given in [12].13 Explicit expressions defining Sinn and Cin
n are lengthy and can

12For pedagogical reviews of the colour-helicity operators relevant in the definition of these operators

see [11, 12, 48].
13In [12] Rsoft

injn and Rcoll
in are written as Rsoft ∗

n jn Rsoft
n in and Rcoll ∗

n in Rcoll
n in respectively.
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be found in [12]. Finally,

Γn(q⊥;{p}n) =−αs

π

∫
dS

(q)
2

4π
1
2D2

n(q⊥)Θonshell+
αs

2π

∑
in+1,jn+1

Tgin+1
·Tgjn+1

iπ δ̃in+1jn+1 ,

1
2D2

n(q⊥;q∪{p}n) =

∫
dRn+1

1
2Final [Dn+1(q⊥)·Dn+1(q⊥)] . (A.5)

Final[. . .] indicates that the enclosed operators should act on any incoming partons as if

they were in the final state (see eq. A.1 in [12], which defines the operators from which

Dn+1 is constructed, in this context Final[δinitial
j ] = 0 and Final[δfinal

j ] = 1 for all j). Θon shell

is our short-hand notation for the inclusion of the theta functions necessary for restricting

the range of integration to the phase-space for an on-shell parton. These are also specified

fully in [12] (see functions θij and θi in section 2). δ̃in+1jn+1 = 1 if both partons i, j are

incoming or both outgoing and δ̃ij = 0 otherwise.

We ought to remark on the fact that qn⊥ is not equivalent to the dipole transverse

momentum derived in [49, 50]. The latter was derived using fixed-order perturbation theory

and is an amplitude-level object that acts to determine the limits on loop integrals. We

have not yet figured out a way to include this physics within our algorithm, though we

note that it is a higher-order effect.

A.1.1 Computing observables

In the main text our focus is on dressing e+e− → qq̄. The formalism is more general and

can be used to compute observables in hadron-hadron collisions using

dσn =

(
n∏
i=1

dΠi

)
Tr An(µ; {p}n),

Σ(µ; {p}0, {v}) =

∫ ∑
n

dσn ?

{ ∏
i∈initial

fυi

(
xi

zi1zi2 . . .
, µ

)}
un({p}n, {v}), (A.6)

where fυi(xi, µ) are the parton distribution functions (PDFs) with momentum fractions xi
and un({p}n, {v}) is the (nH + n)-body measurement function for an observable described

by parameters vi ∈ {v}. Note that Σ is differential in hard process momenta, and that

it should be multiplied by the necessary flux factors as necessary. The star operation is

defined in section 4 of [12] but in essence assigns PDF type to a given partonic leg (gluon

or quark). In this paper, every concrete use of our formalism concerns the showering of

an e+e− hard process and so we will not expand further on the treatment of DGLAP

evolution.

A.2 Derivation of the angular ordered shower

This section derives an angular ordered shower from eq. (2.3). It is split in three parts.

Part one forms the main derivation, however it will state some results without proof (when

these results are themselves laborious to prove). The subsection following presents the

limitations of this derivation. Finally the last subsection fills in the gaps. We will focus
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on e+e− → qq̄ as the hard processes, and at the end we will sketch the extension to other

hard processes.

We begin with the amplitude evolution equation, eq. (2.3), and introduce an azimuthal

averaging operation 〈〉1,...,n which averages the lab frame dipole azimuths of partons 1 to

n, i.e.

〈f〉1,...,n =

∫
dφn
2π

. . .

∫
dφ1

2π
f(φ1, . . . , φn).

Implicit in this operation is also spin averaging when acting on spin-dependent operators,

as discussed in appendix B. To keep things simple, we will proceed in this section without

discussing any dependence on the observable, which means we are implicitly assuming the

observable is not a function of the parton azimuths. We devote the next sub-section to

addressing this. After averaging, eq. (2.3) becomes

q⊥
∂ 〈An(q⊥)〉1,...,n

∂q⊥
=−Γn(q⊥) 〈An(q⊥)〉1,...,n−〈An(q⊥)〉1,...,n Γ†n(q⊥)

+

∫ ∏
in

d4pin
∑
in,jn

∫
δq

(injn)
n⊥ (qn⊥) 〈sin,jn〉n Tin 〈An−1(qn⊥)〉1,...,n−1 T

†
jn
q⊥ δ(q⊥−qn⊥)

+

∫ ∏
in

d4pin
∑
jn

∫
δq

(jn,~n)
n⊥ (qn⊥) 〈cjn〉n Tjn 〈An−1(qn⊥)〉1,...,n−1 T

†
jn
q⊥ δ(q⊥−qn⊥),

(A.7)

where sin,jn and cjn are the spin-averaged kinematic factors associated with a soft or

collinear emission respectively (they will be manipulated into the form of collinear splitting

functions shortly). They are defined through the relations

sin,jn Tjn · Tin ≡
1

2

∑
hin

〈hin |Sjnn · Sinn |hin〉 Rsoft
injn ,

cjn Tin · Tin ≡
1

2

∑
hin

〈hin |Cin
n ·Cin

n |hin〉 Rcoll
in . (A.8)

We observe that cjn = 〈cjn〉n provided Rcoll
in

is independent of the emission’s azimuth

(spin correlations provide the only azimuthal dependence for collinear emissions). In sec-

tion A.2.2 we show that14∫
δq

(injn)
n⊥ (qn⊥) 〈sin,jn〉n =

−
∫ ∏

in

d4pin

(
〈Pinjn〉φn,in 〈Θonshell〉φn,in +〈Pjnin〉φn,jn 〈Θonshell〉φn,jn

)
Rsoft
injn+O(1), (A.9)

where

〈Pinjn〉φn,in =
Θ(θjn,in − θn,in)

1− cos θn,in
. (A.10)

14Under the assumption that Rsoft
injn is independent of the azimuth up to O(1) terms, which is true for

the two recoil schemes we discuss in this paper.
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The angles in eq. (A.10) are defined in figure 2. 〈Θon shell〉φn,in contains the necessary theta

functions to constrain the phase-space of parton qn so that it is real and on-shell, encoding

the phase-space limits for energy conservation. Its lengthy definition can also be found

in section A.2.2. The presence of the functions 〈Pinjn〉φn,in enforces an angular ordering,

secondary to the k⊥ ordering. To bring this ordering to the fore, we now change variables:

q2
⊥ = E2

n sin2 θ = E2
n(1− (1− ζ)2), q⊥

∂

∂q⊥
=
ζ(2− ζ)

1− ζ
∂

∂ζ

and define ζn,in = 1− cos θn,in . In these new variables eq. (A.7) becomes15

ζ
∂ 〈An(ζ)〉1,...,n

∂ζ
≈−Γn(ζ) 〈An(ζ)〉1,...,n−〈An(ζ)〉1,...,n Γ†n(ζ)

−
∫ ∏

in

d4pin
∑
in,jn

2〈Pinjn〉φn,in
〈Θonshell〉φn,in

Rsoft
injn Tin 〈An−1(qn⊥)〉1,...,n−1 T

†
jn
ζn,in δ(ζ−ζn,in)

+

∫ ∏
in

d4pin
∑
jn

〈Pjn〉n 〈Θonshell〉φn,jn
Rcol
jn Tjn 〈An−1(qn⊥)〉1,...,n−1 T

†
jn
ζn,jn δ(ζ−ζn,jn). (A.11)

Here we have used

〈cjn〉n ≈ 〈Pjn〉n 〈Θon shell〉φn,jn R
col
jn ,

where 〈Pjn〉n is a sum over collinear splitting functions with the soft divergences subtracted

away, e.g. when jn is a quark, 〈Pjn〉n (z) = (1 − z)Pqq/2 where Pqq(z) = −(1 + z). The

details can be found in appendix A of [12]. We will formulate the evolution in terms of the

full splitting functions once equations have been reduced enough that it becomes convenient

to do so.

Using the strongly ordered approximation, ζ1 � ζ2 � . . .,16

〈Pij〉φn,in =
Θ(θjn,in − θn,in)EqEi

q · pi
≈ 1

ζq,i
. (A.12)

Also using strong ordering, the leading part of 〈Θon shell〉φn,in does not depend on jn and

Rsoft
injn

can be chosen so that its leading part can be factorised from the sum over jn as

1

ζn,in
〈Θon shell〉φn,in R

soft
injn ≈

1

ζn,in
〈Θon shell〉φn,in R

col
in .

15Γn(ζ) is defined as Γn(q⊥) after the change of variables has been made rather than naively swapping

out the argument.
16When working in a frame that ensures i and j are back to back, the theta function is saturated without

approximation. In this derivation we are concerned with e+e− → qq̄. Thus we can saturate the theta

function for emissions from the primary hard partons, so that they are handled without approximation.

This means we pick the backwards direction (n) (used to define kinematic variables for emissions in a jet)

to be in the direction of the other jet. This in turn fixes the definition for the momentum fraction used in

later equations: zn =
p̃j ·n
pj ·n

. When working beyond the two-jet limit, tricks can be played to further saturate

the theta function using knowledge of the hard process colour flows.
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Using these simplifications we can apply colour conservation and, by re-labelling indices,

write

ζ
∂ 〈An(ζ)〉1,...,n

∂ζ
≈ −Γn(ζ) 〈An(ζ)〉1,...,n − 〈An(ζ)〉1,...,n Γ†n(ζ) +

∫ ∏
in

d4pin

×
∑
jn

(
〈Pjn〉n 〈Θon shell〉φn,jn + 2

1

ζn,jn
〈Θon shell〉φn,jn

)
Rcol
jn

× Tjn 〈An−1(qn⊥)〉1,...,n−1 T†jn ζn,jn δ(ζ − ζn,jn). (A.13)

By recognising the evolution will become entirely colour-diagonal once the trace is taken,

we can diagonalise the colour structures. In turn this allows us to group the soft evolution

kernels and the collinear ones into splitting functions. We find

ζ
∂Tr〈An(ζ)〉1,...,n

∂ζ
≈−2Γn(ζ)Tr〈An(ζ)〉1,...,n+

∫ ∏
in

d4pin
(1−zn)

2

∑
jn

∑
υ∈{q,g}

Pυυjn (zn)

×〈Θonshell〉φn,jn R
col
jn Tr〈An−1(qn⊥)〉1,...,n−1 ζn,jn δ(ζ−ζn,jn). (A.14)

Pυυjn (zn) are the usual DGLAP splitting functions, e.g. Pqq(zn) = CF
1+z2

n
1−zn . Here we have

used υjn to label the species of parton jn and υ to label the state jn transitions to; if

υjn = q then υ = q and if υjn = g then υ = q, g. zn is the momentum faction of parton

n, i.e. if we have a collinear splitting that induces jn−1 → jn n then pjn ≈ znpjn−1 and

qn ≈ (1 − zn)pjn−1 . We specifically require that zn =
p̃jn ·n
pjn ·n

where n is a light-like vector

pointing along the primary axis of the jet from which parton jn does not stem.

We can make connection to squared matrix elements by letting〈
|Mn|2

〉
1,...,n

=

(
2αs

π

)n n∏
i=1

(1− zi)−1Tr 〈An(ζ)〉1,...,n , (A.15)

from which we find the evolution equation for a final-state angular ordered shower with

a conventional phase-space for a coherent shower in dz. After which, eq. (A.14) can be

written as in eq. (2.7) after
〈
|Mn|2

〉
1,...,n

→∑
j1,...,jn

〈
|Mn|2

〉
1,...,n

.

A.2.1 Observable dependence and logarithmic accuracy

In the previous discussion we derived
〈
|Mn|2

〉
1,...,n

from eq. (2.3). However, as we high-

lighted at the beginning, a full treatment should compute
〈
|Mn|2 u({p}n, {v})

〉
1,...,n

where

u({p}n; {v}) is the measurement function for an observable defined by parameters v ∈ {v}.
We want to know to what accuracy is〈
|Mn|2 u({p}n)

〉
1,...,n

≈
∫ n∏

i=1

dφi
2π

〈
|Mn|2

〉
1,...,n

u({p}n) =
〈
|Mn|2

〉
1,...,n

〈u({p}n)〉1,...,n .

(A.16)

We can start by considering the effects of only averaging over the nth parton and use the

following identity〈
|Mn|2 u({p}n)

〉
n

=
〈
|Mn|2

〉
n
〈u({p}n)〉n

+ σn(|Mn|2)σn(u({p}n) Corn(|Mn|2, u({p}n)), (A.17)
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where σn(x) =
√
〈x2〉n − 〈x〉2n and Corn(x(φn), y(φn)) is the correlation function of x and

y under the variation of φn. Both |Corn(|Mn|2, u({p}n))| and σn(u({p}n) are smaller than

unity.17 Next we can consider averaging over both the nth and (n− 1)th partons:〈
|Mn|2 u({p}n)

〉
n−1,n

=
〈〈
|Mn|2

〉
n
〈u({p}n)〉n

〉
n−1

+
〈
σn(|Mn|2)σn(u({p}n) Corn(|Mn|2, u({p}n))

〉
n−1

, (A.18)

where〈〈
|Mn|2

〉
n
〈u({p}n)〉n

〉
n−1

=
〈
|Mn|2

〉
n−1,n

〈u({p}n)〉n−1,n

+ σn−1(
〈
|Mn|2

〉
n
)σn−1(〈u({p}n)〉n)Corn(

〈
|Mn|2

〉
n
, 〈u({p}n)〉n). (A.19)

This can be iterated to give〈
|Mn|2 u({p}n)

〉
1,...,n

=
〈
|Mn|2

〉
1,...,n

〈u({p}n)〉1,...,n

+
n∑

m=1

σm(
〈
|Mn|2

〉
1,...,n

)σm(〈u({p}n)〉1,...,n) Corm(
〈
|Mn|2

〉
1,...,n

, 〈u({p}n)〉1,...,n)

+ higher order correlations. (A.20)

We have been slightly lazy with notation; it is implicit that

σm(〈x〉1,...,n) ≡ σm(〈x〉1,...,m−1,m+1,...,n).

The important question is whether the correlations can provide a logarithmic enhancement

to the observable. This is obviously an observable dependent statement. To progress we

will place some assumptions on the observable. If the observable is such that the correlation

term’s contribution to the cross section is suppressed relative to
〈
|Mn|2

〉
m
〈u({p}n)〉m, we

can approximate
〈
|Mn|2 u({p}n)

〉
1,...,n

by only keeping the first order correlations, since

second order correlations will necessarily be even further suppressed. The approximation

assumed by coherent branching is to neglect correlation terms altogether. Let us look at

the n = m = 1 term for thrust. At this order u({p}n) is not a function of the azimuth and

so σ1(u({p}1)) = 0. As the observable exponentiates [18, 19], this is sufficient to guarantee

that it can be computed to NLL using the coherent branching formalism (these last two

sentences are an abridged form of the argument in [19]). For contrast, let us look at the

n = m = 2 term in the computation of gaps-between-jets, with the same hard process.

The pertinent measurement functions are

un({p}n) =
n∏

m=1

(Θout(qm) + Θin(qm)Θ(Q0 − qm,⊥)), (A.21)

where Θin/out(qm) is unity when parton m is in/out the rapidity region between the two

highest pT jets and zero otherwise. In the following subsection, we compute all the ingre-

dients for σ2(
〈
|M2|2

〉
1
). It is reasonably easy to argue (though less easy to compute) that,

17This makes the weak assumption that the measurement function, u({p}n) is bounded.

– 24 –



J
H
E
P
0
9
(
2
0
2
0
)
0
1
4

unless suppressed by multiplicative factors in σ2(〈u({p}2)〉1) and correlation functions,

σ2(
〈
|M2|2

〉
1
) terms can contribute fourth-order, infra-red poles and with them leading log-

arithms. By considering the variation of φ2, it is also simple to convince oneself that the

correlation function must be finite and positive. So, if angular ordering is to adequately de-

scribe this observable, it must be the role of σ2(〈u({p}2)〉1) to screen against contaminating

logarithms. This means we only need to test to see if σ2(〈u({p}2)〉1) is non-zero:

σ2(〈u({p}2)〉1) =

√
〈u({p}2)〉1,2

(
1−
〈u({p}2)〉1,2
〈u({p}1)〉1

)
,

= (Θout(q1) + Θin(q1)Θ(Q0 − q1,⊥))

×
√
〈Θout(q2) + Θin(q2)Θ(Q0 − q2,⊥)〉2

(
1− 〈Θout(q2) + Θin(q2)Θ(Q0 − q2,⊥)〉2

)
6= 0.

(A.22)

Furthermore, not only is this non-zero but it contains non-vanishing terms in Θin(q1)Θout(q2).

While these terms do screen against fourth order poles and logarithms, they are crucial for

the computation of the α2
sL

2 non-global logarithms. As such, a coherence branching algo-

rithm (that makes usage of azimuthal averaging) cannot compute the leading logarithms to

gaps-between-jets, as it certainly gets the numerical coefficient to non-global pieces incor-

rect. This is a general feature: coherent branching will fail to capture leading, non-global

logarithms (though in most cases these logarithms are sub-leading in the computation of the

overall cross section). This has been previously observed in [24, 25], where the effect of the

missing correlations was computed numerically to all-orders. They found that, though the

missing correlations are a formally leading effect, phenomenologically their effect is < 10%.

As is widely known, we observe that coherent branching is always capable of calculating

logarithms up to αns L
2n−1 in observables for which αns L

2n is the leading logarithm.

A.2.2 Azimuthal averaging

In this appendix we will fill in the details on the azimuthal averaging of the evolution

kernels. The general procedure for azimuthal averaging is well known [20] textbook mate-

rial [26, 51]. However, the procedure is less widely discussed taking into account phase-space

limits and momentum maps. In this section we provide a more careful treatment than the

textbook one. We begin by looking at the following integral (which corresponds to the

integrated soft emission spectrum),

∫
dS

(qn)
2

4π
1
2Sjnn · Sinn ∝

∫
dS

(qn)
2

4π

∫
δq

(in,jn)
n⊥ (q⊥)

q⊥
2 Θon shell

=

∫
dΩqn

4π

∫
dEqn
Eqn

E2
qn

p̃in · p̃jn
p̃in · qnp̃jn · qn

Θon shell δ(q
(in,jn)
n⊥ − q⊥), (A.23)
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where Eqn is the energy of parton q and dΩqn is solid angle in the frame which Eqn is

measured. We can regroup the dipole kinematics as

Eq. (A.23) =

∫
dΩqn

4π

∫
dEqn
Eqn

(Pinjn + Pjnin) Θon shell δ(q
(in,jn)
n⊥ − q⊥),

2Pinjn =
nin · njn − nin · n
nin · n njn · n

+
1

nin · n
, (A.24)

where nin = pin/Ein . The two terms in this integral are symmetric under the exchange of

i and j and so we shall focus only on the first:∫
dEqn
Eqn

∫
dΩqn

4π
Pinjn Θon shell δ(q

(in,jn)
n⊥ − q⊥)

=

∫
dE2

qn

2E2
qn

∫
sin θn,in dθn,indφn,in

4π
Pinjn Θon shell 2q⊥ δ

(
(q

(in,jn)
n⊥ )2 − q2

⊥

)
. (A.25)

To compute this the integral we take nin = (1, 0, 0, 1), njn = (1, sin θjn,in , 0, cos θjn,in),

and n = (1, sin θn,in cosφn,in , sin θn,in sinφn,in , cos θn,in). In this basis

(q
(in,jn)
n⊥ )2 = E2

qn

2(1− cos θn,in)(1− sin θn,in cosφn,in sin θjn,in − cos θjn,in cos θn,in)

1− cos θjn,in

≡ E2
qnκi,j,n, (A.26)

and

Eq. (A.25) =

∫
sin θn,in dθn,indφn,in

4π

∫
d(κi,j,nE

2
qn)

2κi,j,nE2
qn

Pinjn Θon shell 2q⊥ δ
(
E2
qnκi,j,n − q2

⊥
)

=
1

q⊥

∫
sin θn,in dθn,indφn,in

4π
Pinjn Θon shell. (A.27)

The textbook treatment would set Θon shell = 1 here. For us,

Θonshell = Θ(pin ·pjn−qn ·(pjn +pin))

= Θ

(
EinEjn(1−cosθjn,in)− q⊥Ejn√

κi,j,n
(1−sinθn,in cosφn,in sinθjn,in−cosθjn,in cosθn,in)

− q⊥Ein√
κi,j,n

(1−cosθn,in)

)
, (A.28)

which bounds the φn,in integration to the range |φn,in | ∈ [φ−q,i, φ
+
q,i). The solutions for the

boundaries, φ±q,i are given by

cosφ±q,i = ±min
(
|α±|, 1

)
for α± > 0 and cosφ±q,i = 0 otherwise,

α± =
±
√
AF 2(AF 2 − 2DGH) +AF 2 −DG(H + CG)

(sin θn,in sin θjn,in)(1− cos θjn,in)q2
⊥E

2
jn

F = EinEjn(1− cos θjn,in) = EinEjnD, D = 1− cos θjn,in ,

H = q⊥Ein(1− cos θn,in) = q⊥EinA, A = 1− cos θn,in ,

B = sin θn,in sin θjn,in ,

C = 1− cos θjn,in cos θn,in ,

G = q⊥Ejn . (A.29)
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Note that the expression under the square root is always positive. The usual approach to

azimuthal averaging is to employ the soft limit and set Θon shell = 1, after which the φn,in
integral can be performed by contour integration. However, in our case this is not viable,

due to the boundaries on the φn,in integral. Instead we will write the integral as

Eq. (A.25) =
1

q⊥

∫
sin θn,in dθn,in

2
〈Pinjn Θon shell〉φn,in

=
1

q⊥

∫
sin θn,in dθn,in

2

[
〈Pinjn〉φn,in 〈Θon shell〉φn,in

+ σPinjn

√
〈Θon shell〉φn,in (1− 〈Θon shell〉φn,in )Cor(Pinjn ,Θon shell)

]
,

(A.30)

where Cor(x, y) is the correlation function between two variables x and y, in context the

correlation over variation of the azimuth. Firstly note that

〈Pinjn〉φn,in =
Θ(θjn,in − θn,in)

1− cos θn,in
,

the usual result from azimuthal averaging. We can also note that 〈Θon shell〉φn,in ∈ [0, 1] and

|Cor(Pinjn ,Θon shell)| ∈ [0, 1]. By brute-force evaluation and noting Θon shell is binomially

valued, we find

〈Θon shell〉φn,in =
|φ+
q,i − φ−q,i|
π

θ̄on shell,

where θ̄on shell = Θon shell

∣∣
φn,in=φcrit , and cosφcrit = sign(f)min (|f | , 1) ,

f(θn,in , θjn,in , Ein , Ejn , q⊥) =

1−(1−cos θn,in )Ein/Ejn
sin θn,in sin θjn,in

− 4
1−cos θn,in
1−cos θjn,in

(1− cos θjn,in cos θn,in)

1− 4
sin θn,in sin θjn,in

1−cos θn,in

.

(A.31)

The exact angular ordered result is obtained when 〈Θon shell〉φn,in = θ̄ij = 1, which is the

case in the strongly ordered, q⊥/Q → 0, and collinear, θn,in → 0, limits (here Q stands

in for any other harder invariant). The remainder of this section is used to show that the

correlation term can be neglected at least at αns L
2n−1 accuracy (and for NLL thrust). It

can be skipped if the reader does not need convincing.

Now we must compute σ2
Pinjn

=
〈
P 2
injn

〉
φn,in

− 〈Pinjn〉2φn,in

〈
P 2
injn

〉
φn,in

=

∫
dφn,in

2π
P 2
injn =

∫
dφn,in

8π

(
nin ·njn−nin ·n
nin ·nnjn ·n

+
1

nin ·n

)2

,

=
1

(nin ·n)2

∫
dφn,in

8π

(
cosθn,in−cosθjn,in

1−sinθn,in cosφn,in sinθjn,in−cosθjn,in cosθn,in
+1

)2

,

(A.32)
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using the substitution z = exp(iφn,in) this integral equals〈
P 2
injn

〉
φn,in

=
1

(nin ·n)2

∮
S1

zdz

2πi

(
cosθn,in−cosθjn,in

2z−sinθn,in(z2+1)sinθjn,in−2z cosθjn,in cosθn,in
+

1

2z

)2

,

=
1

(nin ·n)2

∮
S1

dz

2πi

(
z(cosθn,in−cosθjn,in)

sin2 θn,in sin2 θjn,in(z−z+)2(z−z−)2

+
cosθn,in−cosθjn,in

sinθn,in sinθjn,in(z−z+)(z−z−)
+

1

4z

)
, (A.33)

where

z± =
1− cos θjn,in cos θn,in

sin θn,in sin θjn,in
±
√(

1− cos θjn,in cos θn,in
sin θn,in sin θjn,in

)2

− 1. (A.34)

Only the z = z− and z = 0 poles are in the unit circle:

1

(nin · n)2

∮
S1

dz

2πi

(
cos θn,in − cos θjn,in

sin θn,in sin θjn,in(z − z+)(z − z−)
+

1

4z

)

=


3

4(1−cos θn,in )2 when θn,in < θjn,in ,

− 1
4(1−cos θn,in )2 otherwise,

(A.35)

and

1

(nin · n)2

∮
S1

dz

2πi

(
z(cos θn,in − cos θjn,in)

sin2 θn,in sin2 θjn,in(z − z+)2(z − z−)2

)
=

1

(1− cos θn,in)2(cos θn,in − cos θjn,in)

(
1− 2z−sign(cos θn,in − cos θjn,in)

(cos θn,in − cos θjn,in)2

)
. (A.36)

Thus

〈
P 2
injn

〉
φn,in

=


1− 2z−

(cos θn,in−cos θjn,in )2

(1−cos θn,in )2(cos θn,in−cos θjn,in )
+ 3

4(1−cos θn,in )2 when θn,in < θjn,in ,

1+
2z−

(cos θn,in−cos θjn,in )2

(1−cos θn,in )2(cos θn,in−cos θjn,in )
− 1

4(1−cos θn,in )2 otherwise,

(A.37)

and so

σ2
Pinjn

=


1− 2z−

(cos θn,in−cos θjn,in )2

(1−cos θn,in )2(cos θn,in−cos θjn,in )
+ 1

4(1−cos θn,in )2 when θn,in < θjn,in ,

1+
2z−

(cos θn,in−cos θjn,in )2

(1−cos θn,in )2(cos θn,in−cos θjn,in )
− 1

4(1−cos θn,in )2 otherwise.

(A.38)

This has a collinear divergence that is suitably screened in eq. (A.30) by the accompanying

phase space factor, √
〈Θon shell〉φn,in (1− 〈Θon shell〉φn,in ),

as is the soft divergence from the q⊥ pre-factor in eq. (A.25). Cor(Pinjn ,Θon shell), is

bounded above and below by 1 and −1 so at most further dampens the effect of the σ2
Pinjn

term. As a result it is a finite non-logarithmic correction at order αs and its contribution

is suppressed at higher orders (to be seen explicitly one could repeat the analysis of ap-

pendix D.1). Hence, for αns L
2n−1 accuracy, we need only take the first term on the right

hand-side of eq. (A.30).
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A.3 Derivation of the dipole shower

In this section we will derive from eq. (2.3) an evolution equation for a dipole shower for

final-state coloured radiation in e+e−. The extension to an initial state shower does not

add complexity but lengthens equations. To derive the dipole shower we will spin average

the evolution and make the leading colour approximation. To approximate the colour, we

express amplitude density matrices and colour charge operators in the colour-flow basis.

We manipulate the colour-flow basis using the mathematical machinery introduced in [11].

Before we begin the derivation let us look at eq. (2.3) in more detail and apply some of

the knowledge we have gained from deriving an angular ordered shower. Angular ordering

is most powerful when applied to the two-jet limit in e+e−, the mono-jet limit of DIS and

Drell-Yan. In these cases, angular ordering does not approximate the soft radiation pattern

at all. Instead, the soft radiation is colour diagonal. The diagonalisation of soft radiation

renders the conservation of momentum longitudinal to a jet unambiguous. Matching to

the angular ordered limit is sufficient to completely constrain the leading component of

momentum conservation in eq. (2.3) (it must respect the partitioning defined by Pinjn as

given in appendix A.2). It is required that

Rsoft
injn =

(q
(injn)
n⊥ )2

2E2
n

(PinjnRin + PjninRjn)

=
(q

(injn)
n⊥ )2

4

([
pin · pjn

pin · qn pjn · qn
− T · pjn
T · qn

1

pjn · qn
+
T · pin
T · qn

1

pin · qn

]
Rin + (i↔ j)

)
,

(A.39)

where T =
∑

in
pin is a vector for projecting out the energy of a parton in the event ZMF

and where En is the energy of qn in the ZMF. This can be rearranged to give

Rsoft
injn =

Rin + Rjn

2
+ Asyminjn(qn)Rin + Asymjnin(qn)Rjn , (A.40)

Asyminjn(qn) =

[
T · pin
4T · qn

(q
(injn)
n⊥ )2

pin · qn
− T · pjn

4T · qn
(q

(injn)
n⊥ )2

pjn · qn

]
. (A.41)

As previously stated in our discussions on angular ordering,

Rjn = δ4(pjn − z−1
n p̃jn)

∏
in 6=jn

δ4(pin − p̃in) +O(q⊥/Q).

This recoil function is ready to use in eq. (2.3).

Now, let us begin computing the leading colour evolution of An(q⊥). We intend to

compute

Leading(0)
τσ [An(q⊥)] ≡ A(0) τσ

n (q⊥) |τ〉 〈σ| , (A.42)

where A
(0) τσ
n is the leading colour amplitude for colour flows τ and σ, see [11, 33] for details

on this procedure. Term by term in eq. (2.3) we can apply this operation and find

Leading(0)
τσ

[
Γn(q⊥) An(q⊥) + An(q⊥) Γ†n(q⊥)

]
= 2 γ(σ)

n (q⊥) δτσ Leading(0)
τσ [An(q⊥)] ,

(A.43)
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where

γ
(σ)
n−1(q⊥; q⊥ ∪ {p}n−1) =

αs

2π

∫
dS

(q)
2

4π

( ∑
in,jn c.c. inσ

λin λ̄jnNc

∫
δq

(in,jn)
n⊥ (q⊥)

×Rsoft
injn +

∑
in,υn

P(final)
υin→υ,υn (1− zn)

∫
δq

(in,~n)
n⊥ (q⊥)Rcol

in

)
Θon shell

(A.44)

and where

Rsoft
injn =

∫ ∏
in

d4pin R
soft
injn = 1 +O(q⊥/Q), Rcol

in =

∫ ∏
in

d4pinR
coll
in = 1 +O(q⊥/Q).

(A.45)

The sum over “in, jn c.c. inσ” standards for performing the sum over partons dipoles in, jn
which are colour connected in the colour state σ. Pυin→υ,υn ≡ Pυ,υin are the hard-collinear

splitting functions defined in appendix A of [12]. They are the usual collinear splitting

functions with soft poles subtracted away, i.e. Pqq = −CF(1 + zn). Note that as we are

working in the strict leading colour limit CF = Nc/2. The constants λin and λ̄jn are defined

in table 1 of [11], in the situations we will use them (the LC limit) λin λ̄jn → 1/2. We can

observe that the first term on the r.h.s. of eq. (A.44) is of the same form as the standard

dipole type term. Next we can take the leading colour part of the emission operators. We

spin average emission kernels, see appendix B for details, and place carats on objects to

remind us that they are spin-averaged. We find

Leading(0)
τσ

[
D̂n(qn⊥) Ân−1(qn⊥) D̂†n(qn⊥)

]
= Ŵ (σ)

n (qn⊥) δτσ Leading
(0)
τ\nσ\n

[
Ân−1(qn⊥)

]
,

(A.46)

where

Ŵ (σ)
n (qn⊥; qn ∪ {p̃}n−1) =

∑
in,jn c.c. inσ

λin λ̄jnNc

∫
δq

(in,jn)
n⊥ (qn⊥)Rsoft

injn

+
∑

in∈final
υn

P(final)
υin→υ,υn (1− zn)

∫
δq

(in,~n)
n⊥ (qn⊥)Rcol

in . (A.47)

Note that γ̂(σ) = γ(σ) as the loops do not depend on spin.

For now we will ignore the single logarithmic, hard-collinear pieces as they are easy

to introduce later on (they are uniquely attributed to delta functions of the form δ4(pjn −
z−1
n p̃jn) in the recoil). This means that for now our final state will simply be the qq̄ pair

plus n gluons. It is also typical in the strict LLA to let Rsoft
injn

= 1; this will prove to be

exact with the recoil scheme given in section 3 though only approximately so with the
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spectator scheme in appendix C. Thus the evolution equation is

q⊥Leading(0)
τσ

[
∂Ân(q⊥)

∂q⊥

]
≈ − αs

π

∫
dS

(qn+1)
2

4π

∑
in+1,jn+1 c.c. inσ

× 4λin+1 λ̄jn+1Nc

∫
δq

(in+1,jn+1)
n+1⊥ (q⊥) Θon shell δτσ Leading(0)

τσ

[
Ân(q⊥)

]
+

∫ (∏
in

d4pin

) ∑
in,jn c.c. inσ

λiλ̄jNc

∫
δq

(in,jn)
n⊥ (qn⊥)Rsoft

injn

× δτσ Leading
(0)
τ\nσ\n

[
Ân−1(qn⊥)

]
q⊥ δ(q⊥ − qn⊥). (A.48)

This is a modified version of the equation for dipole evolution found in [11] that was shown

to reproduce BMS evolution [16]. It has been modified to allow for the possibility of

kinematic recoil and to account for the phase-space effects from energy conservation.

By taking the leading colour limit, the colour evolution has been made diagonal. We

can trivially make the connection with squared spin-averaged matrix elements; for a given

colour flow, σ,

|M̂ (σ)
n (q⊥)|2 |σ〉 〈σ| =

(
2αs

π

)n
Leading(0)

σσ

[
Ân(q⊥)

]
, (A.49)

where M̂ is a dimensionless, spin-averaged and leading-colour matrix element, up to global

factors of 2 and π which have been absorbed into the definition of our phase-space mea-

sure.18 Thus

q⊥
∂|M̂ (σ)

n (q⊥)|2
∂q⊥

≈− αs

π

∫
dS

(qn+1)
2

4π

∑
in+1,jn+1 c.c. inσ

4λin+1 λ̄jn+1Nc

∫
δq

(in+1,jn+1)
n+1⊥ (q⊥)Θonshell |M̂ (σ)

n (q⊥)|2

+
2αs

π

∑
in,jn c.c. inσ

λiλ̄jNc

∫ (∏
in

d4pin

)
δq

(in,jn)
n⊥ (qn⊥)Rsoft

injn |M̂
(σ/n)
n−1 (qn⊥)|2 q⊥ δ(q⊥−qn⊥).

(A.50)

This is a generalised leading-colour dipole shower evolution equation with fixed coupling.

Commonly one would introduce a running coupling with q⊥ as its argument. At this point

this would be a simple extension. We have omitted the running coupling as it does not

effect our discussion. From this point on we drop the carat denoting spin averaging, leaving

it implicit that the equations are spin averaged.

To manipulate our new dipole construction into the more usual form we now define a

recoil function based on colour flows:

Rdipole
icn

=

(
1

2
+ Asymicni

c
nn

(qn)

)
Ricn , (A.51)

18The usual dimensionful matrix element is retrieved by multiplying with a factor
∏
in+1

2π−1q−2
in+1 ⊥.
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where, just as in section 2.3, we use icn to index the (anti-)colour line(s) of parton i in a final

state dressed with n soft or collinear partons. Using this we can now return to eq. (A.50)

and manipulate the dipoles so that emissions from each half of a dipole are separated:

q⊥
∂|M (σ)

n |2
∂q⊥

≈ − αs

π

∫
dS

(qn+1)
2

4π

∑
icn+1

Cicn+1

∫
δq

(in+1,icn+1)
n+1⊥ (q⊥) 2 Θon shell |M (σ)

n |2

+
αs

π

∑
icn

Cicn
∫ (∏

jn

d4pjn

)
δq

(in,icn)
n⊥ (qn⊥)Rdipole

icn
|M (σ/n)

n−1 |2 q⊥ δ(q⊥ − qn⊥). (A.52)

We can now include the sub-leading logarithms from the hard-collinear limit along with

full-colour Casimir invariants. The Casimir invariants and collinear logarithms are each

uniquely associated with longitudinal recoil and so a single Rdipole
icn

. We note that

Asymicni
c
nn

(qn) gives no logarithmic enhancement in the hard-collinear region, rendering

the inclusion of hard-collinear pieces simple (including the re-inclusion of g → qq transi-

tions). Thus we arrive at eq. (2.10).19 We can explicitly include the g → qq transitions by

extending eq. (2.10):

q⊥
∂|M (σ)

n |2
∂q⊥

≈ − αs

π

∑
icn+1

∫
dq

(icn+1,i
c
n+1)

⊥ δ(q
(icn+1,i

c
n+1)

⊥ − q⊥)

∫
dzΘon shell Pυinυin (z) |M (σ)

n |2

+
αs

π

∑
icn

∫ (∏
jn

d4pjn

)
Rdipole
icn

Pυinυin (zn) q⊥δ
(
q

(icn,i
c
n)

n⊥ − q⊥
)
|M (σ/n)

n−1 |2

+
αs

π

∑
icn

∫ (∏
jn

d4pjn

)
Rdipole
icn

δυing Pqg(zn) q⊥δ
(
q

(icn,i
c
n)

n⊥ − q⊥
)
|M (σ)

n−1|2, (A.53)

where Pqg(zn) = nfTRz
2
n. The inclusion of Casimir factors and collinear physics in this

fashion ensures our shower correctly computes everything an angular ordered shower can

compute, in the angular-ordered limit. There will however be NLC errors for radiation not

ordered in angle. At the same time, the usual LC accuracy of a dipole shower is preserved.

Also note that at no point in this derivation did we restrict ourselves to a qq̄ final state

for the hard process. In section 2.3 we made this restriction as it allows eq. (2.16) to

be written more simply. For more complex hard-process topologies one should sum over

showers originating from each distinct hard-process colour flow (dipole).

So far we have still not constrained the O(q⊥/Q) pieces in the recoil function associated

with recoil in the backwards direction. These pieces are important for the computation of

NLLs. Specifying them is the purpose of section 3 and Appenidx C. In these sections we

19When constructing eq. (2.10) we chose to multiply each matrix element by a phase-space factor so that

|M (σ)
n |2 →

∏
i 1/(1 − zi)|M (σ)

n |2 and separate sums over emission topologies, |M (σ)
n |2 →

∑
ic1,...,i

c
n
|M(σ)

n |2.

This ensures the standard dipole shower phase space can be used [2–4, 10].
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study their effect on NLLs. For contrast, in section 2 of [12] we considered various recoil

functions that specify the O(q⊥/Q) pieces. We ensured each possible recoil prescription

would consistently produce all leading physics, however we did not check sub-leading ef-

fects. One of the prescriptions we considered was based on the spectator recoil commonly

employed in modern dipole showers [2, 35]. This approach involves partitioning the dipole

using Catani-Seymour dipole factorisation [32] and distributing the longitudinal recoil in ac-

cordance with this partitioning. The remaining transverse recoil is then given to a third par-

ton, not in the dipole but colour connected to the emitting parton. In [12] we give the func-

tional form of Rsoft
injn

necessary to implement this recoil. Using this recoil function instead of

the one we present here gives us an evolution equation similar to that governing Pythia8 [2].

In [10] it was shown that the standard spectator recoil prescriptions used in conjunc-

tion with Catani-Seymour dipole type showers are subject to errors computing NLLs and

miscalculate next-to-leading colour. The errors in NLC occur because of the misattribution

of longitudinal components of recoil and so colour factors. The errors in NLLs occur as

unphysical artefacts from the shower construction do not cancel when one properly consid-

ers the effects of recoil after multiple emissions. It is for this reason that we have taken so

much care to ensure consistency between our dipole shower and angular ordered showers,

and why we take great care implementing recoil in section 3.

B Spin averaging

In the derivation of an angular ordered shower and a dipole shower we had to spin average

the evolution from eq. (2.3). We can introduce spin averaging safe in the knowledge that

the spin-correlated evolution can be computed from the spin averaged by re-weighting with

the algorithm of Collins, Knowles et al. [22, 52]. In our previous paper [12] we showed that,

given collinear factorisation, the evolution of our algorithm is consistent with that of Collins

and Knowles et al. . We also showed that complete collinear factorisation can be achieved

in the PB algorithm (neglecting Coulomb exchanges, which cancel in the leading colour

limit). In this appendix we will summarise the spin averaging procedure. We will do so in

the leading colour limit, as this is the limit of interest in the dipole shower case and this

limit reduces the number of indices on objects. Real emissions in the leading colour limit

without spin averaging give rise to∫
dRn Leading(0)

τσ

[
Dn(qn⊥) An−1(qn⊥) D†n(qn⊥)

]
=∫

dRn W
(σ), hL

n,h
R
n

n (qn⊥) δτσ Leading
(0)
τ\nσ\n [An−1(qn⊥)] , (B.1)

where

W (σ), hL
n,h

R
n

n (qn⊥; qn ∪ {p̃}n−1, {hL}, {hR}) =∑
in,jn c.c. inσ

2λin λ̄jnNc

∫
δq

(in,jn)
n⊥ (qn⊥) sjn,h

R
n †

n sin,h
L
n

n Rsoft
injn

+
∑
in

∫
δq

(in,~n)
n⊥ (qn⊥) Cin cin,h

L
n †

n (hL
in) cin,h

R
n

n (hR
in)Rcol

in , (B.2)
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and where s
in,hL

n
n and c

in,hL
n

n (hL
in

) are the kinematic factors associated with a soft or collinear

emission respectively, for a fixed spin state. We have unpacked some of the recoil factors

from
∫

dRn and placed them next to the appropriate emission kernels, these are the Rsoft
injn

and Rcol
in

factors. s
in,hL

n
n and c

in,hL
n

n (hL
in

) are defined through the relations

sjn,h
R
n †

n sin,h
L
n

n Tjn · Tin =
〈
hR
jn

∣∣Sjn †n

∣∣hR
jn , h

R
n

〉 〈
hL
in , h

L
n

∣∣Sinn ∣∣hL
in

〉
,

cin,h
R
n †

n (hR
in) cin,h

L
n

n (hL
in) Tin · Tin =

∑
h′Rin ,h

′L
in

〈
hR
in

∣∣Cin †
n

∣∣h′Rin , hR
n

〉 〈
h′Lin , h

L
n

∣∣Cin
n

∣∣hL
in

〉
, (B.3)

where h
L/R
i is the helicity of the parton with label i on the left/right hand side of the

amplitude. In eq. (B.2) we again used the abbreviation “in, jn c.c. inσ” to mean that we

sum over pairs in, jn that are colour connected in σ. Note we have been a little sloppy by

omitting sums over trivial spin indices of partons not involved in the splittings induced by

Cin
n and Sinn in eq. (B.1). Spin averaging is achieved by setting {hL} = {hR} = {h} and

performing all trivial sums over spin states in eq. (B.1). This is equivalent to replacing

An 7→ Ân, W (σ), hL
n,h

R
n

n (qn⊥) 7→ Ŵ (σ),
n (qn⊥),

sjn,h
R
n †

n sin,h
L
n

n Tjn · Tin 7→ ŝjninn Tjn · Tin =
1

2

∑
hin

〈hin |Sjnn · Sinn |hin〉 ,

cin,h
R
n †

n (hR
in) cin,h

L
n

n (hL
in) Tin · Tin 7→ ĉinn Tin · Tin =

1

2

∑
hin

〈hin |Cin
n ·Cin

n |hin〉 , (B.4)

where we denoted the spin averaged objects with a carat. We have assumed Rsoft
injn

and Rcol
in

are chosen such that they are not spin dependent, otherwise they too should be averaged

in the same fashion.

C Dipole shower with spectator recoil

It is commonplace to use local ‘spectator’ recoils in dipole showers rather than the global

approach we have opted for [2, 3]. In this appendix we introduce one such recoil scheme

and show that, despite the other improvements to our dipole shower, it suffers the NLL

errors pointed out in [10].

Following the approach of [35], we can treat each transition from an n−1 to an n parton

matrix element as being generated by a 2 → 3 parton splitting which locally conserves

momentum. The splitting is defined such that the parton with colour line in under goes a

primary decay into two partons, the amplitude for which is given by a collinear splitting

function. The parton with colour line in acts as a spectator and under goes a secondary

1→ 1 transition where it absorbs the residual recoil from the primary decay. To this end
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we introduce the following Sudakov decomposition

p̃in = znpin − k⊥ +
(q

(inin)
n⊥ )2

zn

pin
2pin · pin

, (q
(inin)
n⊥ )2 = −k2

⊥,

qn = (1− zn)pin + k⊥ +
(q

(inin)
n⊥ )2

1− zn
pin

2pin · pin
,

p̃in =

(
1− (q

(inin)
n⊥ )2

zn(1− zn)

1

2pin · pin

)
pin , k⊥ · pin = k⊥ · pin = 0, (C.1)

which conserves momentum as pin + pin = p̃in + p̃in + qn. This decomposition defines the

kinematics of the 2→ 3 splitting. Enforcing this local recoil scheme implies that

Rin =

(
1− (q

(inin)
n⊥ )2

zn(1− zn) 2pin · pin

)
δ4
J

(
p̃in − pin +

(q
(inin)
n⊥ )2

zn(1− zn)

pin
2pin · pin

)

× δ4
J

(
p̃in − znpin + k⊥ −

(q
(inin)
n⊥ )2

zn

pin
2pin · pin

) ∏
jn 6=in,in

δ4(pjn − p̃jn), (C.2)

where

δJ (f(x)) = f ′(xi)δ(f(x)) = δ(x− xi),

and xi is the single root of f(x) inside the range of x over which the delta function has

support.

C.1 NLC and NLL accuracy of the spectator recoil

Let us begin by filling in some of the derivation of eq. (3.10) with the local dipole recoil

specified in previous section. Starting from eq. (A.50),

δΣ(L) = σnH

2∏
n=1

∫ dΠn

∑
in,jn c.c. inσ

∫ ∏
kn

d4pkn δq
(in,jn)
n⊥ (qn⊥)λiλ̄jNc R

soft
injn θinjn


×Θ(q1⊥ − q2⊥)Θ

(
e−L − V ({p}2)

)
− σnH

2∏
n=1

∫ dΠn

∑
in,jn c.c. inσ

∫
δq

(in,jn)
n⊥ (qn⊥)λiλ̄jNc θ

correct
injn


×Θ(q1⊥ − q2⊥)Θ

(
e−L − V ({p}correct)

)
,

= CFσnH

∫
dΠ2 dΠ1

∫
δq

(a2,12)
2⊥ (q2⊥)

∫
δq

(a1,b1)
1⊥ (q1⊥) Θ(q1⊥ − q2⊥)

×
[∫ 2∏

n=1

∏
kn

d4pkn Rsoft
a212

θa212 Rsoft
a1b1 θa1b1Θ

(
e−L − V ({p}2)

)
− θcorrect

a212
θcorrect
a1b1 Θ

(
e−L − V ({p}correct)

) ]
, (C.3)
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where {p}correct is the set of correct momenta for the 4-body system and where θcorrect
injn

=

θinjn({p}correct). From this we find

δΣ(L) ≈ 4α2
s C2

F σnH

π2

∫ Q

0

dq
(a1,b1)
1⊥

q
(a1,b1)
1⊥

∫ lnQ/q
(a1,b1)
1⊥

− lnQ/q
(a1,b1)
1⊥

dy1

∫ q
(a1,b1)
1⊥

0

dq
(a2,12)
2⊥

q
(a2,12)
2⊥

∫ lnQ/q
(a2,12)
2⊥

− lnQ/q
(a2,12)
2⊥

dy2

×
∫ 2π

0

dφ2

2π

[
Θ
(
e−L − V ({p}2)

)
−Θ

(
e−L − V ({p}correct)

)]
. (C.4)

The kinematics are encapsulated by {p}2, just as in the global scheme given in section 3.

They are in fact exactly the same kinematics as those specified in section 3.3 of [10] and

we have arrived at the same expression as B.5 of [10]. Thus, we can follow their argument

from appendix A and section 4 and conclude that our local dipole prescription does suffer

the same NLL errors as other local dipole prescriptions. For example, we can consider

the two-jet rate using the Cambridge algorithm, for which V ({pi}) = maxi{pi⊥}. In

the limit we have considered, this reduces to V ({p}correct) = q
(a1,b1)
1⊥ whereas V ({p}2) =

max(q
(a1,b1)
1⊥ , q

(a2,12)
2⊥ ) since the recoil scheme does not ensure that q

(a1,b1)
1⊥ > q

(a2,12)
2⊥ at all

points in the phase-space for parton 2’s emission. [10] show that this error generates a

incorrect NLL (N2
c α

2
sL

2). This was expected, as in our local dipole scheme we have only

made modifications to fix the NLC of the usual dipole shower procedure. It would be

unexpectedly fortuitous if this also fixed the NLL problems.

D Further checks

D.1 Thrust with NLL accuracy using global recoil

Thrust has a long history. It was first resummed to leading log accuracy in 1980 [53] and

then later at next-to-leading in 1993 [19]. More recently, it was resummed to N3LL [54]. In

this section we will analyse the consistency of the dipole shower and recoil scheme we present

in sections 2.3 and 3 with the NLL computation found in [19]. Crucially, the calculation of

NLL thrust was performed using a coherent branching algorithm [20] (or equivalently by

analytic computation of an angular ordered shower). The coherent branching algorithm

employed in the resummation was not strictly momentum conserving and effectively only

conserved the momentum longitudinal to the two back-to-back jets. In [19] they show that

neglecting the other components is a valid approximation in the computation of NLLs for

thrust (see their ε expansion of the correct phase-space). However, in [10] it was observed

that incorrect handling of transverse momentum in dipole showers can induce NLL errors

in thrust from O(α3
s ) onwards. These two papers are not inconsistent with each other, the

situation is simply that the incorrect inclusion of momentum conserving terms can induce

NLL errors.

Our dipole shower algorithm was built around consistency with an angular ordered

shower. Its collinear radiation pattern reproduces that of an angular ordered shower with

the correct longitudinal momentum conservation after azimuthally averaging. At NLL ac-

curacy, it is also consistent at leading-colour with the angular ordered shower (restricted

to leading-colour since our dipole shower only has leading-colour accuracy for radiation
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unordered in angle). Notwithstanding those NLC terms, there is one other main differ-

ence between the coherent branching resummed in [19] and our algorithm after azimuthal

averaging; ours conserves momentum completely. Thus the only remaining question is

whether our approach to momentum conservation breaks the full-colour LL and leading-

colour NLL accuracy of our dipole shower. We can compute the difference between our

algorithm’s computation of thrust and [19]. As thrust is dominated by the two-jet limit,

we initially focus on emissions from the primary hard legs (which is sufficient for NLL

accuracy in the approach of [19] by assuming inclusivity over jets from secondary jets).

Afterwards we will briefly consider the effects of secondary emissions, i.e. possible recoil

effects from the multi-jet limit. Firstly note that thrust can be defined as

T ({p}n) = max
n

∑
∀p∈{p}n |p · n|∑
∀p∈{p}n |p|

NLL' 1− P 2
n + P 2

n̄

Q2
,

where Pn (Pn̄) is the total four-momentum in the hemisphere centred on the forwards

(backwards) thrust axis. From this definition, it is clear that thrust is invariant under

boosts along the thrust axis and is invariant under global jet energy rescaling. Following

the notation of section 3, the difference in the two-jet limit between our dipole algorithm

and the NLL result due to recoil is of the general form

δΣ(L) ∼
∑
n

αnsCn

(∫ Q

0

dqn⊥
qn⊥

. . .

∫ Q

0

dq1⊥
q1⊥

∫ ln(κnQ/qn⊥)

− ln(κnQ/qn⊥)
dyn . . .

∫ ln(κ1Q/q1⊥)

− ln(κ1Q/q1⊥)
dy1

×Θ(Q− q1⊥) . . .Θ(κ−1
n qn−1⊥ − qn⊥)

−
∫ Q

0

dqn⊥
qn⊥

. . .

∫ Q

0

dq1⊥
q1⊥

∫ ln(Q/qn⊥)

− ln(Q/qn⊥)
dyn . . .

∫ ln(Q/q1⊥)

− ln(Q/q1⊥)
dy1

×Θ(Q− q1⊥) . . .Θ(qn−1⊥ − qn⊥)

)
Θ
(
e−L − (1− T ({p}n))

)
, (D.1)

where each transverse momentum is defined relative to the thrust axis and Cn is a constant

coefficient.

It is most beneficial to us if we evaluate the logarithmic order of δΣ(L) by starting

more generally and then applying the result to thrust. As previously stated, each κn =

1 − O(q2
n⊥/2Q

2). We will parametrise this as κn = 1 − εq2
n⊥/2Q

2 where ε is order unity.

Note that when ε = 0, δΣ(L) = 0. Eq. (D.1) is built from repeated sums over elementary

integrals of the following type

In =

∫ 1

a

dxn
xn

. . .

∫ 1

x2

dx1

x1

[
n∏
i=1

ln

(
xi

(
1− εx2

i

2

))
−

n∏
i=1

ln(xi)

]
Θ(f(a, {xi})), (D.2)

where a parametrises the observable dependence (for thrust a ∼ 1 − T ), xi ∼ qi⊥/Q

and Θ(f(a, {xi})) parametrises any residual more complex observable dependence. Note

that both terms in the square bracket are monotonically decreasing as xi → 0 and that the

second is always of smaller magnitude than the first. Thus I evaluates to having the largest

possible magnitude when Θ(f(a, {xi})) = 1, as every point in the domain of the integrand
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adds constructively to the integral. Therefore we will work assuming Θ(f(a, {xi})) = 1 in

order to place an upper limit on the order of logarithms produced. With this assumption

applied, I is dominated by the term

In ≈
∫ 1

a

dxn
xn

. . .

∫ 1

x2

dx1

x1

 n∑
j=1

ln

(
xj

(
1−

εx2
j

2

))
n∏
i 6=j

ln(xi)−
n∏
i=1

ln(xi)

 , (D.3)

which is in turn proportional to g2n−2(a, ε)− g2n−2(a, 0) where

gn(a, ε) =

∫ 1

a

dx

x
ln

(
x

(
1− εx2

2

))
ln(x)n. (D.4)

For large n, gn is difficult to evaluate. However we can navigate this by constructing a

generating function for gn,

GF (a, ε, ν) =

∫ 1

a
dx xν−1 ln

(
x

(
1− εx2

2

))
, (D.5)

so that gn = (∂ν)nGF |ν=0 and

GF (a, ε, ν) =
aν − 1

ν2
+
ε
(

2F1

(
1, ν2 + 1; ν2 + 2; ε2

)
− aν+2

2F1

(
1, ν2 + 1; ν2 + 2; a

2ε
2

))
ν(ν + 2)

+
ln(2)aν − ln(2) + ln(2− ε)− aν ln

(
2a− a3ε

)
ν

. (D.6)

The Taylor series in ν of GF (a, ε, ν) can be computed. The series is expressible in the form

GF (a,ε,ν)−GF (a,0,ν) =

∞∑
n=0

(
n∑
i=0

Ai,n ln(a)n−iLi2+i

(aε
2

)
+BnLi2+n

( ε
2

)) νn

n!
, (D.7)

where Ai,n and Bn are order unity constants that we do not need. Thus

δΣ(L).
∞∑
n=2

αns
(2n−2)!

(
2n−2∑
i=0

Ãi,n ln(1−T )2n−2−iLi2+i

(
(1−T )ε

2

)
+B̃nLi2n

( ε
2

))
, (D.8)

where L = ln(1 − T ), and Ãi,n and B̃n are order unity constants. Hence for T ≈ 1,

the limit in which we resum, δΣ(L) � ∑
n
αns Cn
n! ln(1 − T )2n−2 where Cn are also order

unity coefficients. Also note that the first logarithmic enhancement from our recoil scheme

occurs as ∼ α4
sL

2. Finally, we note that this argument applies to recoil distributed along

any chain of strongly ordered emissions. Therefore recoil from emissions off secondary legs

also contributes terms to δΣ(L) that are much less than
∑

n
αns Cn
n! ln(1− T )2n−2.20

We have shown that the recoil scheme for the dipole shower presented in section 3

does not introduce incorrect next-to-leading logarithms into the resummation of thrust in

e+e−. We did this using a very general approach, leading us to believe that for other

20In fact, following the epsilon expansion arguments of [19], recoil from secondary legs will contribute

terms less dominant than
∑
n

αn
s Cn

n!
ln(1− T )2n−4.
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exponentiating two-jet dominated observables the same result will also be found. Thus,

one would only need to add a running coupling and the shower could be used to compute

the NLL resummation of thrust. In summary, we expect our formalism to be capable of

leading-colour NLL accuracy in observables that can be resummed at NLL accuracy using

the coherent branching approach and will capture much of the full-colour LL contributions.

D.2 Generating functions for jet multiplicity using global recoil

We will now use our algorithm with our new recoil scheme (as presented in section 3) to

compute the integral equation defining the spin-uncorrelated generating function for the

multiplicity of subjets in the final state of e+e− → hadrons. The generating function was

first computed at NLL accuracy (i.e. including all αnsL
2n−1 terms) in [55]. The methodology

has since seen a variety of applications [28, 31] (and references therein) and can be found in

graduate texts [26, 51]. We will compute the generating function at LL accuracy, though

taking care to include all αnsL
2n−1 logs from recoil.

The generating function is defined by

φΣ(u,Q) =

∞∑
n=0

unPΣ(n,Q) = F

∞∑
n=0

un+N

∫
dΠBorn

∫
dσn(Q). (D.9)

It can be used for the computation of the moments of the subjet multiplicity distribution

for a process Σ:

〈nΣ(nΣ − 1) . . . (nΣ − n+ 1)〉 =
dnφΣ(u,Q)

dun

∣∣∣∣
u=1

. (D.10)

Here F is some flux factor for the hard process and PΣ(n,Q) is the probability of finding

n partons/subjets in the final state of a process with centre-of-mass energy (or hard-scale)

Q. N is the number of partons in the hard process and 〈nΣ〉 is the mean number of subjets

in Σ.

For e+e− → qq̄, i.e. computing φqq̄(u,Q), it is a textbook result that at our ac-

curacy generating functions factorise as φqq̄(u,Q) = φq(u, τ)φq̄(u, τ) where φa(u, τ) is

the generating function for subjet multiplicity within the jet from a single parton a.

τ = 2E sin(θ/2) is the scale of an individual jet and can be thought of as its maximum

transverse momentum, E is the energy of each jet and θ the opening angle of the jet, e.g.

φqq̄(u,Q) = φq(u,Q)φq̄(u,Q) as θ = π and E = Q/2 [28, 51].

We will now construct an integral equation for φa(u, τ). To do so consider also com-

puting φe+e−→qq̄[g](u, q⊥ 1), where the next hardest jet (if one occurs) is a gluon jet of scale

q⊥ 1. For the computation of φe+e−→qq̄[g](u, q⊥ 1), the hard process can be approximated as

H(e+e−→qq̄[g])(q1⊥) = A0(q1⊥) + uA1(q1⊥). Hence

φe+e−→qq̄[g](u, q⊥ 1) = F
∞∑
n=0

un
∫

dΠBorn

(
u2

∫
dσ(A0)

n (q1⊥) + u3

∫
dΠ1

∫
dσ(A1)

n (q1⊥)

)
,

(D.11)
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where dΠBorn ≡ dΠ
(q)
BorndΠ

(q̄)
Born is the Born phase-space for the qq̄ pair.21 We can rewrite

this as

φe+e−→qq̄[g](u, q⊥ 1) = φq(u, q⊥ 1)φq̄(u, q⊥ 1)Tr(Vq⊥ 1,Q ·Vq⊥ 1,Q) +

∫
dΠBorn

∫
dΠ1

×
∫

dR1

∫
d4Pg

dφq(u, q⊥ 1)

d4Pq

dφq̄(u, q⊥ 1)

d4Pq̄

dφg(u, q⊥ 1)

d4Pg

× Tr
(
Vq⊥ 1,Q ·Vq⊥ 1,Q

〈
D†1 ·D1

〉
1

)
δ4(Pg − q1), (D.12)

where we have employed azimuthally averaged result of appendix A.2 since the equation is

independent of the azimuth of the gluon. We have also spin averaged at this step. We also

note that eq. (D.12) is equal to φqq̄(u,Q) by necessity, i.e. φqq̄(u,Q) = φe+e−→qq̄[g](u, q⊥ 1)

as within the strong ordering approximation the next hardest jet of an e+e− → qq̄ process

must be a gluon jet. After a little work,

φqq̄(u,Q) = 1
2φq(u, q⊥ 1)∆q(q⊥ 1, Q)φq̄(u, q⊥ 1)∆q̄(q⊥ 1, Q)

+ φq̄(u, q⊥ 1)∆q̄(q⊥ 1, Q)
αs

2π

∫ Q

q⊥ 1

dq⊥
q⊥

∆q(q⊥, Q)

∫ 1− q⊥
2Q

q⊥
2Q

dz Pqq(z) φ̃q(u, q⊥)φ̃g(u, q⊥)

+ (q ↔ q̄), (D.13)

where

φ̃q(u, q⊥) =

∫
dΠ

(q)
Born d4Pq

dφq(u, q⊥)

d4Pq
Rprimary
q1 ≈ φq(u, zq⊥),

φ̃q̄(u, q⊥) =

∫
dΠ

(q̄)
Born d4Pq̄

dφq(u, q⊥)

d4Pq̄
Rsecondary
q1 ≈ φq̄(u, q⊥),

φ̃g(u, q⊥) =

∫
dφ1

2π
d4Pg

dφg(u, q⊥ 1)

d4Pg
δ4(Pg − q1) ≈ φq(u, (1− z)q⊥), (D.14)

and where the recoil functions, using the same definitions as section 3, are given by

Rprimary
q1 = δ4

J

(
P̃q1 − zκq Λ(q, q̄)pq

)
,

Rsecondary
q1 = δ4

J

(
κq1 Λ(q, q̄)Pjn − P̃jn

)
,

i.e. each φ̃ is simply related to each φ by momentum conservation. At our accuracy,

momentum conservation simply maps Eq → z1Eq and Eg = (1 − z1)Eq since κq1 and the

Lorentz boost are unity at our desired accuracy (noting the argument for neglecting the

changes in phase-space due to our recoil scheme given in the previous subsection also holds

for this resummation as the measurement function is unity and we are resumming logs

up to αns L
2n−1 accuracy). The limits on the z integrals capture angular ordering at NLL

21The Born phase-space on the momenta of partons after momentum conservation has been taken into

account and includes the momentum conserving delta function δ4(Pq̄ +Pq) as well as a delta function fixing

the energy.
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accuracy whilst still using a k⊥ ordering variable. ∆c(a, b) is a Sudakov factor

∆c(a, b) = exp

−αs

2π

∫ b

a

dk
(c~n)
⊥

k
(c~n)
⊥

∫ 1−
k
(c~n)
⊥
2Q

k
(c~n)
⊥
2Q

dz Pcc(z)

 . (D.15)

We can factorise eq. (D.13) as

φqq̄(u,Q) =

(
φq(u, q⊥ 1)∆q(q⊥ 1, Q)

+
αs

2π

∫ Q

q⊥ 1

dq⊥
q⊥

∆q(q⊥, Q)

∫ 1− q⊥
2Q

q⊥
2Q

dz Pqq(z) φ̃q(u, q⊥)φ̃g(u, q⊥)

)
× (q ↔ q̄) +O(α2

s), (D.16)

keeping only terms first order in αs.
22 From this, we can identify

φq(u,Q) = φq(u, q⊥ 1)∆q(q⊥ 1, Q)

+
αs

2π

∫ Q

q⊥ 1

dq⊥
q⊥

∆q(q⊥, Q)

∫ 1− q⊥
2Q

q⊥
2Q

dz Pqq(z) φ̃q(u, q⊥)φ̃g(u, q⊥). (D.17)

This expression is correct at LL accuracy with complete colour and only requires the

coupling to run as αs(z(1 − z)q⊥) in order to capture the full NLL (αnsL
2n−1) result. We

also can note that the correct NLL resummation might not have been achieved using the

local dipole prescription presented in appendix C. This is because the recoil could introduce

a correction in the n > 3 jet limit of the form φq̄(u, q⊥ 1)  φq̄(u, |q⊥ 1 − q⊥ 2|) (the wavy

arrow implying that it will approximately go to). This correction prevents both the usage

of naive azimuthal averaging and the factorisation φqq̄ ≡ φqφq̄ (which naturally emerged

between eq. (D.13) and eq. (D.16)), though it is possible that these features could re-

emerge once the phase space of each jet has been inclusively integrated over. Due to the

other known NLL limitations of this recoil scheme, we did not think it worthwhile further

proceeding to evaluate the order of these errors but rather conjecture that NLL errors will

also be likely here.
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