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Abstract—The current problem in building a conversational
model from Twitter data is the scarcity of long conversations.
According to our statistics, more than 90% of conversations
in Twitter are composed of just two tweets. Previous work has
utilized only conversations lasting longer than three tweets for
dialogue modeling so that more than a single interaction can
be successfully modeled. This paper verifies, by experiment, that
two-tweet exchanges alone can lead to conversational models that
are comparable to those made from longer-tweet conversations.
This finding leverages the value of Twitter as a dialogue corpus
and opens the possibility of better conversational modeling using
Twitter data.

I. INTRODUCTION

Twitter offers useful data for analyzing social communica-
tion, such as how information spreads among people [1], [2].
Twitter data can also be useful for mining timely opinions on
the web for marketing purposes [3]. Recently, because of the
conversational nature of Twitter (e.g., mentions and replies)
and because of its vast data size and diversity of content com-
pared to what the dialogue research community has seen, there
has been emerging work on creating stochastic conversational
models, such as hidden Markov models (HMMs), from Twitter
data [4]. Building such models can be useful for analyzing
how humans exchange utterances and obtaining insight into
building automated text/spoken dialogue systems.

Although it is true that Twitter data are conversational and
large in size, there is a severe limitation when we want to
build a conversational model from Twitter data. That is, only
a very small proportion of all posts form conversations, and,
what is worse, most of such conversations consist of only two
tweets (a post and a reply; hereafter referred to as two-tweets).
According to a previous study, 37% of English tweets are
reported to be conversational [5], of which 69% are two-tweets
[4]. This tendency is the same in Japanese. According to our
study (see Section IV-A), only about 5.1% of all Japanese
tweets form conversations, of which 91% are two-tweets. Note
that we call two or more tweets connected with an in-reply-
to relationship a conversation, which is different from Kelly’s
idea. He regards all tweets starting from @ (an indicator of
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addressing other users) conversational, which we consider to
be too lenient since there may not be a reply to an address.

Typically, when we want to build a conversational model,
we need conversations longer than just two tweets, because
conversations in general are not simply about a single inter-
action, such as a question and answer. Minimally, we need
conversations of three or more tweets (hereafter referred to as
long-tweets) to build reasonable conversational models when
we want to deal with more-than-one-shot interactions. This
is why previous studies have used conversations longer than
three tweets to train their models [4]. Now the problem is that
we have a very small number of long-tweets, which severely
limits the size of training data for conversational modeling.

This paper proposes to make use of two-tweets to build a
conversational model that can be equivalent to or better than
one built from long-tweets. Our basic idea is to cluster tweets
within two-tweets to form pseudo long conversations, from
which we can train a conversational model. In our approach,
we use a non-parametric Bayesian method called the infinite
HMM for the modeling. Our approach could make full use of
the conversations in Twitter and has the potential to leverage
the performance of conversational models that can be learned
from Twitter data.

II. RELATED WORK

Modeling conversations from dialogue data has long been
studied, mainly by using HMMs for their usefulness in dealing
with sequential data. Shirai trained ergodic HMMs from the
data of task-oriented spoken dialogues to analyze the functions
of audio-visual information in dialogue [6]. Dialogues with
less task restriction have also been modeled using HMMs;
Isomura et al. used HMMs to model interview-like conver-
sations and used the HMMs to evaluate the naturalness of
conversations [7], and Meguro et al. used HMMs to analyze
counseling-like listening-oriented dialogues for the purpose
of building listening agents [8]. Engelbrecht et al., and Hi-
gashinaka et al., both trained HMMs that can predict turn-
wise user satisfaction transitions within a dialogue [9], [10].
All these studies use long conversations that at least last
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three turns; typically one conversation lasts more than a few
minutes, resulting in tens of turns per dialogue. The problem
in these studies is that collecting conversations using human
subjects is usually very costly, resulting in a limited number
of dialogues with restrictions in dialogue topics.

Twitter data could overcome such a problem by its data
size and diversity in content, but as we mentioned in the
introduction, modeling Twitter conversations needs to deal
with the scarcity of long conversations. Currently, only long-
tweets are used for training conversational models as in [4],
which we consider does not make the best use of conversations
in Twitter. To the best of our knowledge, no work has tackled
the problem of the scarcity of long conversations in Twitter.

In the context of modeling Twitter data, Ramage et al., used
a technique called labeled latent Dirichlet allocation (labeled
LDA) to model a large number of tweets in order to understand
the varied content in Twitter [11], but their focus is to cluster
individual tweets by latent topics, not to model conversations.
Joty et al. proposed to model conversations using an HMM
(called HMM+Mix) [12]; however, they use the data of e-
mail discussions and messages at Internet forums, where the
conversations are typically longer than those found in Twitter,
and therefore do not address the lack of long conversations.

III. APPROACH

We aim to use two-tweets to create conversational models
that have only been realized by using long-tweets. We consider
that, by using clustering techniques, we can cluster tweets
within two-tweets to form pseudo long conversations, from
which we can train a conversational model for long conver-
sations; that is, we first find two-tweets, such as A — B and
B’ — C, where B and B’ are similar tweets, and cluster the
similar ones to form a pseudo three-tweet conversation (i.e., A
— {B, B’} — (). If we can apply this process to many two-
tweets and obtain the optimal clusters with their transitions,
then that structure would make a model for long conversations.

Since this process is the same as what HMM training does,
we can adopt known algorithms of HMMs for this task. In
this paper, we employ a non-parametric Bayesian version of
the HMM; namely, the infinite HMM, and use Gibbs sampling
for parameter estimation. The infinite HMM is related to the
Dirichlet process [13], which is a non-parametric Bayesian
model [14]. The hierarchical Dirichlet processes (HDP) [15]
is one realization of the Dirichlet process for handling mixture
models, and the infinite HMM is one implementation of
the HDP. The infinite HMM has been applied to modeling
sequential data when the number of states is not known in
advance; the optimal number of states is determined by data.
We find this feature useful because Twitter data are diverse in
content and it is difficult to estimate the number of states in
advance. In addition, a Bayesian approach has been reported
to perform better [4] than the EM algorithm [16].

One possible drawback of the above approach is that Gibbs
sampling is computationally heavy. Even when we are to use
only two-tweets in Twitter, which constitute a small proportion
of all tweets, we still need to handle a large number of
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tweets. Since we have more than a million two-tweets in our
data set (see Section IV-A), a straightforward application of
Gibbs sampling would be extremely difficult. Therefore, in
our approach, we insert one step before HMM training; that
is, the creation of small subsets. To make such subsets, we
take a grep approach; we grep the entire tweets by keywords
to create keyword-related subsets of tweets. Compared to
applying sophisticated hard-clustering algorithms for creating
subsets of data, we find this approach promising and attractive
because we can ascertain that a subset is concerned with
a certain topic semantically constrained by keywords. One
difficulty of this approach is that tweets are generally short,
and this simple grep approach may end in low recall. To
overcome this problem, following [17], we turn to Wikipedia
to annotate tweets with Wikipedia concepts (titles/entries) so
that we can additionally include such concepts as our grep
target and thereby leverage the coverage of tweet extraction.

We first describe how we use Wikipedia to annotate tweets
with Wikipedia concepts in order to create subsets. Then, we
describe how we train our model using the infinite HMM.

A. Making a Subset of Tweets using Wikipedia

Banerjee et al. annotated tweets with Wikipedia concepts
[17]. They first made a text database of Wikipedia articles.
Then, for each tweet, they queried the database using the
words in the tweet to retrieve top-N Wikipedia articles (they
used 20 for N). They used the titles of the retrieved articles
to semantically augment tweets for better clustering.

Our approach is similar to theirs in that we use Wikipedia to
complement the information of tweets, but different in that we
take a more direct approach. We first add all Wikipedia titles
to the dictionary of a morphological analyzer so that words
that match Wikipedia titles can be detected in morphological
analysis. Second, we create a database of Wikipedia titles and
their categories (NB. Wikipedia usually has several categories
associated with each title). Since Wikipedia categories have a
hierarchical structure, for each title, we also include categories
that are one layer above the categories directly associated with
that title. Such hypernym categories can be useful for adding
generalized meanings to the titles. For example, the word “w-
cup (daburyuu hai)” is associated with a category “world cup
(wdrudo kappu)” together with their upper layer categories
“world championships (sekai senshuken)” and “international
sports competitions (kokusai supodtsu kyougi taikai)”. Third,
we process all tweets by the morphological analyzer and detect
Wikipedia titles. The detected titles are then coupled with their
categories using the database. Finally, given such processed
tweets and keywords K W, we can create a subset of the tweets
by finding those that contain K'W. Note that grep extracts
tweets that have KTV in the tweets as well as in the associated
Wikipedia categories. In this approach, for example, a tweet
having “w-cup” can be extracted by keywords such as “world-
cup” as well as “sports” and “championships”.



B. Modeling Tweets by the Infinite HMM

In the infinite HMM, tweets are processed one by one.
The first tweet is clustered to the initial cluster (NB. there
is only one cluster at the beginning). Then, the next tweet ¢;
is clustered to an already occupied cluster c; or creates a new
cluster (¢j—new) With the probability

P(Qi Ctifl) . P(Cti+1 |Cj) ’ P(ti

ti) o< P(c;

Cj)v

where ¢; means the cluster of a tweet ¢. In a conversation,
tweets are given a sequential order; ¢;_; and t;4; denote
the previous and next tweets of ¢;. P(cx|c;) is a transition
probability:

transitions(c;, cx) + 3
ZZI; transitions(c;, ¢;) + K - 8 + o

P(cklej) =

where « is the hyper-parameter that determines how likely a
new cluster is created, K is the number of occupied clusters,
and transitions(c;, ¢x) returns the number of transitions from
¢; to cg. B s a flooring value to avoid zero probability. P (¢;|c;)
is the probability that ¢; is generated from c;; that is,

P(tile;) = ] Plw]e;)emtiom),

weW

count(c;j, w) + 7y
P wew count(cj,w) + [W] -y’

where W is a set of features (e.g., bag-of-words), count(x, w)
a function that returns the number of occurrences of a feature
w for a tweet or a cluster, and 7 the hyper-parameter.

The probability of creating a new cluster is

P(wlej) =

P(Cnew|cti71) : P(Cti+1 |Cnew) : P(ti|cnew)v

where P(cpew|c,_,) and P(cq,, ,|cnew) are derived by

[e%

P(Cnew|cti,1) - 5

SR transitions(c;, ,,¢) +

1
K41

Here, we use a uniform distribution for P(¢;|cpew ).

After all tweets have been processed, Gibbs sampling is
performed; that is, we repeatedly select one of the tweets
from its cluster and relocate that tweet as if it were the last
tweet to be clustered. After performing a sufficient number of
samplings, we obtain the optimal number of clusters together
with their emission probabilities and transition probabilities,
which become our conversational model.

Determining the appropriate features for representing tweets
is a difficult problem. Following previous studies [4], [12],
we use bag-of-word-unigrams in this paper. This choice of
features is also backed by the fact that there are too many
unique words in Twitter data (see Section IV-A), suggesting
that features made using bigrams or longer n-grams would be
too sparse.

P(Cti+1 |Cnew)

TABLE 1
STATISTICS OF OUR TWITTER CORPUS.

food sports all
# conversations 63312 37292 1211725
# tweets 132203 78123 2500918
# words 2517179 | 1870382 | 40098705
# unique words 74865 75309 452099

IV. EXPERIMENT

To verify our approach, we performed an experiment. We
first collected tweets from the public timeline. Then, we made
two subsets of tweets related to food and sports, which we
consider to be common topics in everyday conversation. Since
our aim is to examine whether the two-tweets can be used to
create models that can be achieved by long-tweets, we further
divided the subsets into two-tweets and long-tweets. Finally,
we examined whether conversational models made from two-
tweets can compete with those made from long-tweets.

A. Data Collection

We collected Japanese tweets from the public timeline using
Rest and Streaming APIs between February 2 and September
15, 2010. We used the default access level called “Spritzer”.
In this period, we crawled over 95 million tweets (95,501,894
tweets). From them, we retrieved conversations using the in-
reply-to field of the tweets (4,907,519 tweets; 5.1%). After
discarding conversations starting with replies, the resulting
corpus of conversations contains about 2.5 million tweets. This
is about 2.62% of the crawled data, which shows just how
scarce conversations are.

Having created the corpus, we ran our morphological an-
alyzer JTAG [18] with a user defined dictionary augmented
with Wikipedia titles (see Section III-A). We used the Japanese
Wikipedia dump of April 20, 2011. We also created a database
of titles and their categories from the same dump. After all
tweets had been annotated with Wikipedia categories, we
created two subsets by grep using “meal|food (shokuji|ryouri)”
(‘| indicates OR) and “sports (supdtsu)” as keywords. We call
the subsets here Food-Set and Sports-Set. Here, grep was done
on the conversation level; that is, when one of the tweets in
a conversation had a keyword, that entire conversation was
extracted.

Table I shows the statistics of our Twitter corpus together
with the information of the two subsets. We can confirm the
diversity of content in Twitter from its large vocabulary size.
From the fair size of the subsets, we can also confirm the
effectiveness of our utilizing Wikipedia. Table II shows the
number of N-tweet conversations. We can see that most are
two-tweets. We can also see that, as N increases, the number
of tweets decreases exponentially. This shows the difficulty of
using Twitter data as a dialogue corpus and makes clear the
need to make use of two-tweets, which account for over 90%
of all conversations (2,280,402 tweets; 91% of all tweets in
our conversations).

B. Evaluation Procedure

We divided each subset into two sets. One set comprises
only two-tweets (the 2-tweet set) and the other set long-tweets
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TABLE 11
NUMBER OF N-TWEET CONVERSATIONS.

N food sports all
2 | 58269 (92.03%) | 34114 (91.48%) | 1140201 (94.10%)
3 4565 (7.21%) 2865 (7.68%) 66223 (5.47%)
4 426 (0.67%) 273 (0.73%) 4729 (0.39%)
5 46 (0.07%) 34 (0.09%) 506 (0.04%)
6 6 (0.01%) 5 (0.01%) 62 (0.01%)
7 0 (0.00%) 0 (0.00%) 3 (0.00%)
8 0 (0.00%) 1 (0.00%) 1 (0.00%)
3 < 5043 (7.97%) 3178 (8.52%) 71524 (5.90%)

(the long-tweet set). We further divided the long-tweet set into
two sets by dividing it in half; we call them the long-tweet
train set and the long-tweet test set. In Food-Set, the long-
tweet train set and long-tweet test set have 2522 and 2521
conversations, respectively. In Sports-Set, the long-tweet train
set and long-tweet test set both have 1589 conversations.

Since we are interested in how the conversational model
made from two-tweets competes with that made from long-
tweets, we trained models from the 2-tweet set and the long-
tweet train set and evaluated them by looking at how they
explain unseen long conversations; that is, the long-tweet test
set. We also used the long-tweet test set to train a model and
evaluate it using itself as test data (i.e., closed test), which
will indicate the upper bound. We are also interested in how
a model improves when we increase the training data. To
investigate this, we split the 2-tweet set into blocks of 1000
conversations each, and investigated how a model improves
by adding blocks to the training data.

C. Evaluation Metrics

For evaluation metrics, we used log likelihood (LL) and
Kendall’s tau, which have been used in a previous study [4].
For LL, we used the forward algorithm for calculation [16].
For Kendall’s tau, we first created all possible orders of tweets
in each conversation in the long-tweet test set, and calculated
the LL of each order and selected the order with the highest
LL. Then, that order was compared against the original order
to calculate Kendall’s tau by:

ny(R,H) —n_(R,H)

tau(R, H) = combination(R)

where R and H denote reference and hypothesis orders,
n+ (R, H) the number of correct pairwise orders, n_(R, H)
the number of incorrect pairwise orders, and combination(R)
the number of possible pairwise orders. The high value in
Kendall’s tau suggests that the flow of conversation has been
successfully modeled.

D. Training infinite HMMs

We trained our infinite HMMs from (a) the 2-tweet set, (b)
the long-tweet train set, and (c) the long-tweet test set of Food-
Set and Sports-Set. We call the models trained from (a), (b),
and (c) the 2-tweet model, the long-tweet open model, and the
long-tweet closed model, respectively. We used tentative values
of 0.01 for all «, 3, and v in HMM training (cf. Section ITI-B).
For features, we used bag-of-word-unigram features, where the
words are the top-5000 words in the 2-tweet set. The number
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TABLE IIT
THE NEGATIVE LOG LIKELIHOOD (LL) AND KENDALL’S TAU FOR THE
LONG-TWEET TEST SET BY THE 2-TWEET MODEL, THE LONG-TWEET
OPEN MODEL, AND THE LONG-TWEET CLOSED MODEL. * AND + INDICATE
STATISTICAL SIGNIFICANCE (P < 0.01) OVER THE 2-TWEET AND
LONG-TWEET OPEN MODELS, RESPECTIVELY.

\ | 2-tweet | long-tweet open | long-tweet closed |
Food-Set LL [ 290.70" 294.71 285.54* T
Food-Set tau 0.312F 0.247 0.277
Sports-Set LL 332.36 331.92* 320.86* T
Sports-Set tau | 0.308T 0.170 0.303F

of top-N words follows the convention [4], [12]. The number
of iterations for Gibbs sampling was set to 1000, which means
that each tweet is considered 1000 times for relocation.

E. Results

Table III shows the negative log likelihood (the lower, the
better) and Kendall’s tau averaged over all test conversations
(i.e., the long-tweet test set) for the obtained models. We
performed the Wilcoxon rank-sum test to check whether the
models are significantly different. As a result, we found that
the 2-tweet models significantly outperform the long-tweet
open models in almost all cases and that their performance can
even attain the level of the long-tweet closed models in some
cases; for example, there is no statistical difference between
the 2-tweet model and the long-tweet closed model for tau in
both Food-Set and Sports-Set. This indicates that it is possible
to use two-tweets to model long conversations.

Figures 1 and 2 show the line plots of the negative LL and
Kendall’s tau against the long-tweet test set depending on the
size of the 2-tweet set of Food-Set and Sports-Set, respectively.
The solid blue and red lines indicate the possible upper bounds
(i.e., results of the long-tweet closed models) of the LL and
tau, respectively. The dotted blue and red lines indicate the
performance of the long-tweet open models. As for the LL,
as we increase the training data, the performance gradually
passed or closely neared the dotted line. Since the performance
reaches that of the long-tweet open models when the number
of training conversations is 5000-10000, this number of two-
tweets is what we need to compete against 1500-2500 (i.e.,
the size of our long-tweet train sets) long-tweets. It is also
noticeable that the LL somewhat degrades after 20000 two-
tweets, probably because of some structural changes in the
HMMs to better cope with longer tweets, which instead led to
improvements in tau. The result for Kendall’s tau seems better
than that for the LL; the 2-tweet models steadily reached the
performance of the long-tweet closed models. This indicates
that, in terms of ordering, two-tweets seem very helpful for
creating better conversational models.

Figure 3 shows the number of states of our 2-tweet models
depending on the size of training data. Remember that the
optimal number of states is automatically decided from data
in the infinite HMM. It can be seen that we require about 35-
40 states for the food and sports topics. This number is close to
that reported in [4] when their models’ performance saturated.
Although we need further verification by using different hyper-
parameters, 35-40 could be the rough estimate of utterance
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Fig. 1. Learning curve: the negative log likelihood (LL) and Kendall’s tau
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for Food-Set. The red solid and dotted lines indicate the LL for the long-tweet
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Fig. 2. Learning curve: the negative log likelihood (LL) and Kendall’s tau
against the long-tweet test set depending on the size of training data (2-tweets)
for Sports-Set. See Fig. 1 for the descriptions of the red and blue solid and
dotted lines.

variations in Twitter.

F. Analysis of Obtained HMMs

To understand our obtained HMMs, we looked at how
our 2-tweet models decode long-tweets. For this purpose,
we obtained best paths for the long-tweet test set in the 2-
tweet model using the Viterbi algorithm. Then, we visualized
frequent paths in the best paths. Figure 4 shows the resulting
graph. Here, only the paths that occurred more than 15 times
are shown. States that do not have such frequent paths and
the paths to the END state have been removed for better
visibility. The numerical numbers along the edges indicate the
probabilities of choosing those paths. The graph clearly shows
the existence of long sequences of tweets in the trained model
even though the model is trained from two-tweets, confirming
the feasibility of using two-tweets to model long conversations.

To further analyze the graph, we examined what words are

Number of states

Food-Set (long-tweet closed) —— |
Food-Set (long-tweet open) -------
Sports-Set (long-tweet closed) ——
51 Sports-Set (long-tweet open) ------- i
Food-Set (2-tweet) =——t—
Sports-Set (2-tweet) ===

40000 50000 60000

30000

0 10600 201)00

Training data size (number of conversations)
Fig. 3. The number of optimal states depending on the training size.
representative in the states. Table IV shows the representative
words for some of the states in Fig. 4. To select the represen-
tative words, we used the log-likelihood ratio test, which is
similar to the chi-square test; that is, for a state in question,
we count the occurrences of a word in the tweets clustered
to that state (see Section III-B) and tested whether that count
is significantly higher than its expected value. Since the log-
likelihood ratio follows the chi-square distribution, we selected
representative words that had the log-likelihood ratio of over
15.13 (p<0.0001).

To make it easier to grasp the underlying meaning of the
representative words in the table, we included our interpre-
tations of them in square brackets. For example, in state 29,
we see words that concern the status of people; e.g., come
home, wake up, work, and sleepy. State 11 also concerns
one’s status, but is more oriented towards activities at home.
In state 13, we have interrogatives. In state 6, 18, and 31, we
have some response variations; namely social, affection, and
emotion. In state 26, we see words that report one’s meals,
and in state 27, we see the description of food, such as food
names and ingredients. States 26 and 27 seem to be somewhat
topic-dependent states. State 7 seems to represent a generic
comment; people expressing their opinions/attitudes in reply
to previous tweets. Because many states come in to this state
and few edges go out, this state seems to be the terminal of
conversation in Twitter.

Below, we list some sequences from the graph. The se-
quences seem reasonable and bears some similarity to the
typical conversation flow in Twitter [4], again showing the
feasibility of using two-tweets for conversational modeling.

o ll:status (home) — 6:response (social) — 7:comment

e 29:status — 3l:response (emotion) — 18:response (af-

fection) — 7:comment

o 26:report — 13:question — 27:description — 7:comment

V. SUMMARY AND FUTURE WORK

In this paper, we first pointed out that Twitter data scarcely
contain long conversations and that most of the conversations
(91% in Japanese tweets) are composed of two tweets.
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REPRESENTATIVE WORDS OF EACH STATE FOR THE FOOD TOPIC. ID

0030

Fig. 4. Graphical representation of transitions between states for the food topic.

TABLE IV

MEANS THE STATE ID. THE SQUARE BRACKETS INDICATE OUR

INTERPRETATIONS OF THE REPRESENTATIVE WORDS. ENGLISH WORDS
ARE TRANSLATIONS BY THE AUTHORS AND THE ORIGINAL JAPANESE

WORDS ARE GIVEN IN PARENTHESES.

ID | [Interpretation] Representative words

6

[response (social)] welcome home (kaeri, kae, nasai, nasa),
you must be tired (otsukaresama), good night (oyasumi)

=

[comment] first person pronoun (watashi), sentence-ending
particles that express confirmation or agreement (ne, yo, yone,
desune), think (omou), lol (warai)

11

[status (home)] come home (kitaku), I'm home (tadaima),
!, meal (gohan), now (nau, ima), from now (korekara), bath
(furo), dinner (yuuhan), finished (shuuryou)

13

[question] what (nani), okay (daijoubu), ?, where (doko),
what kind of (donnna), how (dou)

[response (affection)] please (kudasai), !, thank you (ariga-
tou), congratulations (omedetou), good luck (ganbaru), 1 hope
to (yoroshiku), take care (daiji)

26

[report] today (kyou), lunch (ohiru), tonight (konya), yummy
(umauma), ramen noodles (rdmen), hamburger (hanbagu),
curry (karé), set meal (teishoku)

27

[description] salad (sarada), tomato (tomato), fried (itame),
miso soup (miso shiru), soy sause (shouyu), vegetables (ya-
sai), pork (butaniku), onion (tamanegi)

29

[status] meal (gohan), come home (kitaku), sleep (neru),
wake up (okiru), work (shigoto), sleepy (nemui)

31

[response (emotion)] ), (, *, ", -, ", V, 0,5, -, v, ", <, >, |,
_ (characters used for facial expressions)

Previous work has utilized only conversations lasting longer
than three tweets for dialogue modeling so that more than a
single interaction can be successfully modeled. This paper has
verified by experiments that two-tweets alone can also lead to
good conversational models that are comparable to those made
from long-tweets. This finding leverages the value of Twitter
as a dialogue corpus and points the way to making better use
of conversations in Twitter for conversational modeling. As
future work, we want to consider the possibility of using single
tweets to enhance our models. Since our approach is analogous
to estimating trigrams from bigrams, the same can be said for
unigrams. Although single tweets do not affect the transitions,
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we may be able to obtain better emission probabilities. We

also wish to build an automated dialogue system based on the

(1]

[10]

[11]
[12]
[13]

[14]
[15]

[16]

[17]

(18]

obtained conversational models.
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