
Citation: Wojciechowski, M.;

Pogscheba, P. Building a COVID-Safe

Navigation App Using a Meta-Model

Based Context Server. Sensors 2022,

22, 9890. https://doi.org/10.3390/

s22249890

Academic Editors: Philippe Roose

and Yudith Cardinale

Received: 13 October 2022

Accepted: 14 December 2022

Published: 15 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Building a COVID-Safe Navigation App Using a Meta-Model
Based Context Server
Manfred Wojciechowski * and Patrick Pogscheba

Faculty of Media, University of Applied Sciences Duesseldorf, 40476 Duesseldorf, Germany
* Correspondence: manfred.wojciechowski@hs-duesseldorf.de

Abstract: Building context-aware applications is an already widely researched topic. It is our belief
that context awareness has the potential to supplement the Internet of Things, when a suitable
methodology including supporting tools will ease the development of context-aware applications.
We believe that a meta-model based approach can be key to achieving this goal. In this paper, we
present our meta-model based methodology, which allows us to define and build application-specific
context models and the integration of sensor data without any programming. We describe how that
methodology is applied with the implementation of a relatively simple context-aware COVID-safe
navigation app. The outcome showed that programmers with no experience in context-awareness
were able to understand the concepts easily and were able to effectively use it after receiving a short
training. Therefore, context-awareness is able to be implemented within a short amount of time.
We conclude that this can also be the case for the development of other context-aware applications,
which have the same context-awareness characteristics. We have also identified further optimization
potential, which we will discuss at the conclusion of this article.

Keywords: context awareness; internet of things; development methodology; meta model; context
query language

1. Introduction

Discussions on the development of context-aware applications, including technologies
and methodologies, are not new. A lot of these discussions were carried out before the 1990s
with Marc Weiser’s idea on ubiquitous computing [1] and is still ongoing. Dey [2] defined
an application context-aware if: “it used context to provide relevant information and/or
services to the user, where relevancy depends on the user’s task”. According to Dey [2], con-
text is: “any information that can be used to characterize the situation of an entity”, where
“an entity can be a person, place, or object that is considered relevant to the interaction
between a user and an application, including the user and applications themselves”.

An example for a context-aware application is a context-aware tour guide, which pro-
vides information to their users depending on their location and/or personal preference [3].
Another example is the pre-registration of elevators in a smart building using the localiza-
tion of passengers within the callable range of an elevator, which should reduce the waiting
time for passengers [4]. Numerous such examples can be found in different application
areas, such as health care [5], residences for the elderly [6] and industrial applications [7].

Context-aware applications aim to reduce the need for user intervention [8]. Such ap-
plications can provide an automatic context-triggered action [9] e.g., initiating an emergency
call if a fall of an inhabitant living in a smart home has been detected.

With the development of the “Internet of Things”, several industries are experiencing a
digital transformation, where the development and usage of a “Digital Twin” is considered a
technology that can help gain competitive and economic advantage over its competitors [10].
A Digital Twin refers to the virtual copy or model of any physical entity, both of which are
interconnected via exchange of data in real time. In a broader view, the virtual copy or Digital

Sensors 2022, 22, 9890. https://doi.org/10.3390/s22249890 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22249890
https://doi.org/10.3390/s22249890
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0786-0647
https://orcid.org/0000-0002-7989-3969
https://doi.org/10.3390/s22249890
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22249890?type=check_update&version=1

Sensors 2022, 22, 9890 2 of 14

Shadow, which is updated through sensors, can be applied in context-aware applications [11].
In [12], the authors describe that future Digital Twins have to be context-aware.

Research on context-awareness has been conducted since the 1990s; the development
of such applications is still very challenging and expensive. We need to simplify the devel-
opment process, in order to help overcome high application overheads, social barriers asso-
ciated with privacy and usability, and an imperfect understanding of the truly compelling
use of context-awareness [13]. A very detailed overview on the context-awareness system
engineering challenges and applied techniques is given in [14]. One of many challenges
is the way context information is being handled. In order to simplify the development of
context-aware applications, a separation is required on how context is acquired to how
it is used. The way context information should be used in such applications is without
implementing the knowledge of sensor details and their implementation [15]. According
to Henricksen et al. [3], such context information can originate from four types of sources.
They can be “sensed, static, user-supplied (profiled) “ or “derived”. Context-aware applica-
tions must build on such information, which may require additional interpretation to be
significant for applications [16]. In reference [17], three different architectural approaches
for the implementation of the context related functionality are identified: direct sensor
access, middleware infrastructure, and context server. In references [18–20], overviews on
existing context frameworks, servers, and a discussion of their features, are given. Another
challenge is the methodology of building context-aware applications. The requirements
elicitation process is necessary to understand the user’s needs. In reference [14] an overview
of existing approaches are given. These requirements can be formally specified through
different modeling approaches, e.g., the Context Modeling Language (CML) [21]. The re-
sulting context model can then be implemented using different approaches, e.g., key-value
models. An overview and discussion is given in [14,22]. Additionally, design evaluation
can be applied to verify that the implementation of context-aware behavior has been carried
out correctly. This can be conducted through model checking, e.g., reference [23]. All these
aspects have to be included into a methodology for the development of context-aware
applications. In reference [14], the desirable features for a methodology are identified.
Additionally, existing methodologies and tools are identified and evaluated regarding the
desirable features. As a conclusion of that evaluation, the authors state that there is a strong
tool support for the design and development of context-aware applications.

Though a number of methodologies and tools exist and are well discussed in the re-
search community, the challenge still exists. We need experiences from the application of
those methodologies in real applications. Therefore, based on these discussions, we follow
an inductive approach to the question of how to minimize the development overheads
and simplify the implementation of context-aware applications. We have developed our
methodology, which uses a meta-model based context server. A meta model defines the
modeling concepts that can be used to describe concrete models [24]. We will implement
applications using this methodology with different context-aware characteristics and an-
alyze its implications. In this paper we will start that work and describe and analyze the
implementation of a COVID-safe navigation app, which has relatively simple characteristics.

Our paper is organized as follows. The next section describes the related work and
places our approach in its context. In Section 3 we describe the characteristics of the
COVID-safe navigation app. Then, we describe the basic concepts of the context server.
Section 5 then describes the methodology. In Section 6 we describe the development of
the COVID-safe navigation app using the methodology and the context server. We then
discuss our results.

2. Related Works

As stated in the introduction, we will follow an inductive approach towards a method-
ology to build context-aware applications. Therefore, papers that describe the application
of a methodology for the development of concrete context-aware applications are of interest.
In reference [25] we have described an initial model-based approach to build context-aware

Sensors 2022, 22, 9890 3 of 14

applications in a smart home environment. From then until now, we have improved the
meta-model, optimized the development process, and implemented a near real-time pro-
cessing context-server with an intermediate context query language. These improvements
are presented in this paper.

In [19] there is an interesting investigation on how to bring context-awareness into the
internet of things. The authors investigated 50 context-aware projects and tried to identify
the lessons that we can learn in the IoT perspective. There are many requirements that have
been identified from investigating these projects, which a context-aware IoT infrastructure
should support, which also is partially supported by our context-server. What is missing
for our purposes are the implications on the support to ease the development process.

There are a number of model driven development approaches, which aim to specify a
context-aware application including the context conditions and the application behavior
via a high-level abstraction, which then can be transferred to its implementation. The
description is based on a meta-model, which can be used to describe concrete applications.
One such example is presented in [26]. The modeling language, ContextUML, allows us
to model the context-aware behavior of a web service. It describes the retrieval of single
context attributes and when and how to automatically execute or modify the call of a web
service with parameters that represent the context. In contrast to our approach context is
limited to context attributes that can be relevant to the instantiation of the web services.
A very complex meta-model PervML is described in reference [27]. It includes different
sub-models, which can be used to describe different aspects of a pervasive application. It
includes a structural model, which can be used to describe a physical location in which a
service is deployed. Additionally, a user model can be used to describe context data on users
and policies. These parts of the meta-model are focused on the conditions and instantiation
of the services. Our approach on the contrast is focused on describing such context attributes
in its broader context regarding the states of entities and their relations. This is necessary if
context information should be evaluated in the context of their surrounding environment,
e.g., finding paths with given context conditions. We also do not model the application
logic of a context-aware application, but leave this to the programmer. We provide a context
query language, which the programmer can use to access the context model.

Work on a meta-model based approach, which is only focused on the context model,
can be found in reference [28]. The authors describe the motivation for a model-based
approach to develop context-aware applications. Their goal is to provide a methodology
that is consistent based on the meta-model through design and run time. They have
published the meta-model in reference [29], but further publications on the implementation
of the approach and a proof of concept cannot be found.

3. Characteristics of the COVID-Safe Navigation App

An example of a simple context-aware application is what we have implemented into
our COVID-safe navigation app. This app allows university members and students of the
university of applied sciences in Duesseldorf, Germany, to identify and follow paths to a
destination room within the campus buildings which are “corona-safe” according to the
lowest density of people on the desired path. The user can select a destination room and
will get a visualization of the building structure and the safe path s/he can use.

The application uses simple context information that is either static or easily sensed.
Static information includes the structure of the university building. In this structure the
construction of the building including the rooms, lecture halls, floors and their connections
have to be described. The density of people in these areas have to be sensed. Such
information can be provided by simple sensors. Small deviations or sensing errors may
not necessarily lead to suboptimal path recommendations. Therefore, coping with the
unreliability of sensors is not necessary. Additionally, we do not need the identity of the
people who are located in these areas. Therefore, we do not have privacy issues, as long as
we do not use tracking of the mobile devices as an input for the density calculation.

Sensors 2022, 22, 9890 4 of 14

In reference [30], a good overview on requirements of location models can be found.
A major requirement of our application is the support of a hybrid location model, which
includes a symbolic and a geometrical model. We need a symbolic location model in order
to define connections between areas from a starting to a destination room, which represent
the possible paths. For this, the location model has to support navigation queries. In order
to visualize the building and the safe path, but also for the calculation of the walking
distance we need a geometric location model, which can be used for position queries. Both
location model types have to be combined. Nearest neighbor and range queries are not
required in our application.

High-level context information that has to be derived from sophisticated sensors and
algorithms, which could be prone to uncertainty, e.g., the situation, activity, or goal of a
user, is also not required. The user has to explicitly input his destination. A derivation of
the destination from her/his lecture schedule is not part of the application.

The navigation app uses the context information in order to visualize the structure of
the building and the suggested path per user’s request. In this aspect the application can be
classified as “Proximate Selection” [9]. The application provides information dependent on
the context, which is manually entered by the user. Therefore, we do not have to deal with
undesired or even harmful behavior. The user will always be in control of the application.
However, we still have to deal with user acceptance in case that the suggested path is
obvious nonsense or includes a detour that is not acceptable, even if it is the safest path.
The context-awareness characteristics of our application is summarized in Table 1.

Table 1. Characteristics of the context-aware application.

Type of Context Information General Aspects

Static sensed profiled derived Privacy acceptance

x x - - - x

Location Model Location Queries

symbolic geometric position navigation nearest range

x x x x - -

High-Level Context Application Type

situation activity goal

- - - Proximate Selection

4. Basic Concepts of the Meta-Model Based Context Server
4.1. Context Server

We have implemented the HSD context server, which directly supports the meta-model
as described in the next subsection. It allows us to connect sensor data to the context-model
and to query the context model in near real-time. The core of the context server implements
an in-memory extended graph database, where entities and relations are represented by
nodes and edges. It allows the definition of node and edge types. Node types can be part of
a multiple inheritance relation. A concrete graph, which represents the application specific
context model, can be constructed based on the defined node and edge types.

Besides explicitly defined edges, implicit relations are also supported, which re-
sult from the application of comparison operations between edge properties. The graph
database also directly supports geometric location data types and operations, which can
also be part of an implicit relation.

4.2. Meta-Model

Based on a meta-model, the developer can define the application specific context
model. An overview of the relevant part of the meta-model is given in the following
Figure 1.

Sensors 2022, 22, 9890 5 of 14

Sensors 2022, 22, x FOR PEER REVIEW 5 of 15

application specific context model, can be constructed based on the defined node and edge
types.

Besides explicitly defined edges, implicit relations are also supported, which result
from the application of comparison operations between edge properties. The graph data-
base also directly supports geometric location data types and operations, which can also
be part of an implicit relation.

4.2. Meta-Model
Based on a meta-model, the developer can define the application specific context

model. An overview of the relevant part of the meta-model is given in the following Fig-
ure 1.

Figure 1. Excerpt of the meta-model.

The meta-model allows us to define entity types with a set of attributes. An entity is
any object in the real environment that is considered relevant for the specific context
aware application. We can define abstract entity types and also a subtype-relation be-
tween entity types, where attributes are inherited from the super-types.

We can define relation types between two entity types. These relation types can be
directed, meaning that the relation is only valid from the source entity type to the desti-
nation and not vice versa.

Attributes define the named properties of entities or relations and are of a defined
data type, e.g., numeric. An attribute can have a default value.

All the model elements can have a description, which allows us to document the con-
text model schema.

4.3. Location Models
The context server supports both geometric and symbolic location models. A good

overview on location models can be found in reference [30]. A geometric location model
is based on geometric coordinates, such as a geometric location model, implemented in
the context server by the special data type ‘location-geometric’. Currently, this data type
supports the definition of a rectangular cuboid with a given starting point (xstart, ystart, zstart)
and an ending point (xend, yend, zend). This data type includes a distance function, which
allows us to calculate the walking distance of a path, but also to execute range queries.

Additionally, the usage of a symbolic location model is supported. The meta-model
allows us to define and use context entities as such symbols, e.g., the room name. Relation
types can be used to define spatial relations, e.g., “containment” or “is connected”. The
distance between two symbolic coordinates can be explicitly given in defined attributes
of these relations.

The context server allows us to combine these different location models into a hybrid
location model.

Figure 1. Excerpt of the meta-model.

The meta-model allows us to define entity types with a set of attributes. An entity is
any object in the real environment that is considered relevant for the specific context aware
application. We can define abstract entity types and also a subtype-relation between entity
types, where attributes are inherited from the super-types.

We can define relation types between two entity types. These relation types can
be directed, meaning that the relation is only valid from the source entity type to the
destination and not vice versa.

Attributes define the named properties of entities or relations and are of a defined
data type, e.g., numeric. An attribute can have a default value.

All the model elements can have a description, which allows us to document the
context model schema.

4.3. Location Models

The context server supports both geometric and symbolic location models. A good
overview on location models can be found in reference [30]. A geometric location model
is based on geometric coordinates, such as a geometric location model, implemented in
the context server by the special data type ‘location-geometric’. Currently, this data type
supports the definition of a rectangular cuboid with a given starting point (xstart, ystart, zstart)
and an ending point (xend, yend, zend). This data type includes a distance function, which
allows us to calculate the walking distance of a path, but also to execute range queries.

Additionally, the usage of a symbolic location model is supported. The meta-model
allows us to define and use context entities as such symbols, e.g., the room name. Relation
types can be used to define spatial relations, e.g., “containment” or “is connected”. The
distance between two symbolic coordinates can be explicitly given in defined attributes of
these relations.

The context server allows us to combine these different location models into a hybrid
location model.

4.4. Context Query Language

The context server has an intermediate query language, which is very close to the
implementation of the context server, and it is then directly compiled into the execution
engine of the server. It is less developer friendly, but currently the only way to define
queries that can be directly executed. The query language allows us to search and to
traverse through the context model, which is internally implemented as a graph. The
query language uses the JSON-syntax. The basic elements of the language are given in
the following.

In its simplest form, the query language allows querying for entities of a given
type with or without attribute conditions. The following Listing 1 shows the syntax
of such an entity query. In Section 6.4 concrete examples of such queries are given.

Sensors 2022, 22, 9890 6 of 14

Listing 1. Syntax of an entity query.

{
"entityQuery": "<entity type>", "conditions": [
{ "attribute": "<name>", "value": "<value>", "condition": "<operator>" },
...
]
}

A relation query allows us to find specified relations between entities, which can be
further reduced by entity queries. The following listing shows the syntax of a relation query.
Relation queries can be further concatenated. Either the starting entity or the destination
entity of a relation can be the start or the destination of another concatenated relation.

In order to traverse through the context model, a transitive relation query can be used.
This means that if an entity “A” is related to an entity “B”, and an entity “B” is related
to an entity “C”, then entity “A” is also related to entity “C”. Such a query can be used,
for example, to find a path using a symbolic location model where symbolic locations are
“connected” with each other.

5. Development Methodology

Our development methodology consists of five steps. These will be outlined in the
following. How we applied this methodology to implement the COVID-safe navigation
app is described in the next section.

Step 1 is to define the application specific context model and to implement it into the
context server using the meta-model. First, the conceptual context model is defined. The
entities and relations and their properties are defined which are relevant for the application.
Then, the identified entities are examined regarding common properties or semantics.
These may be a reason for defining super entities that can be used to organize those entities
in an object-oriented manner. The conceptual context model is then implemented into the
context server using an XML-description. After the description is implemented, the entity
and relation types and their properties are available in the context server.

Step 2 is the instantiation of the context model. In this step, the concrete entities and
relations are registered in the context server. The context server provides two kinds of
interfaces for the registration. One possibility is to use a REST-interface to add, modify, and
delete concrete entities and relations. As an alternative, one can use a JAVA-API. After this
step, the context model is built internally in the form of an extended graph database.

The application of step 1 and step 2 in the development of the COVID-safe navigation
app is described in detail in Section 6.3.

Step 3 is the assignation of the sensors to attributes of entities or relations of the
model instances. This is conducted by using a configuration file. A “fingerprint” is used to
associate sensor data to the properties of certain entities or relations. Incoming sensor data
will then automatically update the context model. The application of this step in the project
is described in Section 6.5.

After these three steps, the context server provides a digital environment model for
the specific application. The following two steps will integrate the context logic into
the application.

In step 4, the context model can now be queried and supervised using the context
query language. The concrete queries will be defined in the next step and they can be
manually tested using a web interface. The context queries for our project are described in
Section 6.4.

In step 5, the application is connected to the context server using the REST-API.
Through this API the application can execute context queries, and also subscribe to context
change events.

Sensors 2022, 22, 9890 7 of 14

6. Development of the “COVID-Safe Navigation App”
6.1. Project Description

The HSD context server, together with its development methodology, was applied
in the scope of a student project at the University of Applied Sciences, Duesseldorf, with
students from bachelor’s and master’s courses in media informatics during the COVID-19
pandemic in 2021. The aim was the development of a context aware application which
could be useful in the pandemic situation. The participants agreed to develop a COVID-
safe indoor navigation app, which allows students to get from class to class while trying
to obtain as little contact as possible. The project team consisted of three students, two
masters and one bachelor student, all with some programming skills, but no experience
in context awareness. The goal was to first gain basic knowledge in context awareness
and then to use and configure the provided context server with a sensor infrastructure
already implemented in the laboratory, and finally to build a prototype of the COVID-
safe navigation app. Each student spent 16 days achieving these goals, which totaled the
students’ workload to 48 days.

6.2. Architecture

For better understanding we gave a rough, simplified overview of our architecture
(Figure 2), which the application was built on. A sensor layer based on home/building
automation systems (OpenHAB in our case) connects sensors and provides collected
sensor data over MQTT, which is often used in IoT-environments, provided by a MQTT-
Broker in JSON-format. The data is simple and provides the sensors’ fingerprint for easy
integration and mapping. The central context layer contains the context server with its
entity registration, context model and processing pipeline. The server connects to a MQTT
broker and gathers “sensed” data from the sensor layer which can, if desired, be processed
for “derived” data input to the context processing. Registered entities and their relations,
e.g., rooms and their connections, are injected into the graph-based context model. A
REST-based API is provided for querying the context model.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 15

Figure 2. Architecture.

Arbitrary applications are possible: our application layer contains an Android-based
application, which queries the context model and the entity Registry for the defined use
case.

The application was built as a distributed networking system. This consisted of the
building bound HSD context server, which used the building specific sensor information.
These were provided through MQTT from the sensor infrastructure, based on OpenHAB
(www.openhab.org, accessed on 13 December 2022). This approach leads to a high level
of decoupling between sensor information and context generation to improve interopera-
bility with different systems. In the context server, all entities and relations, e.g., rooms
and their connections, are instantiated and registered for use in the context model. Low-
level sensor data from the sensor infrastructure (“sensed” data) can be processed, if de-
sired, into high-level (“derived”) data inside the context-servers extensible processing
pipeline. APIs are introduced to query the context-model and the registered entities which
are needed in the application layer.

The COVID-safe navigation app was implemented as an Android application. It used
its own local HSD context server, which was running as a background service. The local
context server uses a service discovery approach to find a remote context server. Then, it
syncs the context models from the remote context server for privacy reasons and faster
processing. This allows for an easy implementation of smart context spaces. Communica-
tion between local and remote context servers is done by REST-API-Calls. The COVID-
safe navigation app then queries the local context server for the needed context infor-
mation, e.g., the safe path to the class room. The distributed context-server approach in-
troduces a high level of privacy and security as no information from the user is processed
remotely.

6.3. Context Model
In the COVID-safe navigation app, the context model is used to visualize the interior

structure of the buildings at the university. Students then receive an overview of the uni-
versity and then to show the user a proposed route to the destination. The context model

Figure 2. Architecture.

Sensors 2022, 22, 9890 8 of 14

Arbitrary applications are possible: our application layer contains an Android-based
application, which queries the context model and the entity Registry for the defined
use case.

The application was built as a distributed networking system. This consisted of the
building bound HSD context server, which used the building specific sensor information.
These were provided through MQTT from the sensor infrastructure, based on OpenHAB
(www.openhab.org, accessed on 13 December 2022). This approach leads to a high level of
decoupling between sensor information and context generation to improve interoperability
with different systems. In the context server, all entities and relations, e.g., rooms and
their connections, are instantiated and registered for use in the context model. Low-level
sensor data from the sensor infrastructure (“sensed” data) can be processed, if desired, into
high-level (“derived”) data inside the context-servers extensible processing pipeline. APIs
are introduced to query the context-model and the registered entities which are needed in
the application layer.

The COVID-safe navigation app was implemented as an Android application. It
used its own local HSD context server, which was running as a background service. The
local context server uses a service discovery approach to find a remote context server.
Then, it syncs the context models from the remote context server for privacy reasons
and faster processing. This allows for an easy implementation of smart context spaces.
Communication between local and remote context servers is done by REST-API-Calls.
The COVID-safe navigation app then queries the local context server for the needed
context information, e.g., the safe path to the class room. The distributed context-server
approach introduces a high level of privacy and security as no information from the user is
processed remotely.

6.3. Context Model

In the COVID-safe navigation app, the context model is used to visualize the interior
structure of the buildings at the university. Students then receive an overview of the
university and then to show the user a proposed route to the destination. The context
model is also used to calculate the “safe” path with the least population density to the
specified destination.

In the following, we will identify those elements of the context model that are needed
for the visualization of the building structure. The building consists of a number of floors.
Each floor can have a number of rooms, lecture halls, doors, corridors, staircases, and
elevators, for which a name and the geometric location is given. A relation “has” relates
to the floors in a building. We define a relation “is in”, which describes the parts that are
inside a floor.

For the route calculation we need to describe which rooms, lecture halls, doors,
corridors, staircases, and elevators are directly connected with one another. Using a
“connected to”-relation we can then traverse from a starting location to a destination
following all those parts which are connected with one another. In order to simplify the
context query, we define an entity type “Area”, which is the super type for the entity types
“Room”, “Lecture hall”, “Door”, “Corridor”, “Staircase” and “Elevator”. Each “Area” has a
geometric location, but also an attribute “size” and “person density”.

For all entity types that can be localized we define an abstract entity type “Localizable
Entity”, which holds the position information. Such localizable entities are the “Building”,
the “Floor” and the “Area”. Finally, we will define an abstract root entity type “Context
Entity”, which allows us to query for any context entities and which holds the entity’s
name. The following Figure 3 gives an overview on the entity and relation types that define
the schema of the context model for the COVID-safe navigation app.

www.openhab.org

Sensors 2022, 22, 9890 9 of 14

Sensors 2022, 22, x FOR PEER REVIEW 9 of 15

is also used to calculate the “safe” path with the least population density to the specified
destination.

In the following, we will identify those elements of the context model that are needed
for the visualization of the building structure. The building consists of a number of floors.
Each floor can have a number of rooms, lecture halls, doors, corridors, staircases, and el-
evators, for which a name and the geometric location is given. A relation “has” relates to
the floors in a building. We define a relation “is in”, which describes the parts that are
inside a floor.

For the route calculation we need to describe which rooms, lecture halls, doors, cor-
ridors, staircases, and elevators are directly connected with one another. Using a “con-
nected to”-relation we can then traverse from a starting location to a destination following
all those parts which are connected with one another. In order to simplify the context
query, we define an entity type “Area”, which is the super type for the entity types
“Room”, “Lecture hall”, “Door”, “Corridor”, “Staircase” and “Elevator”. Each “Area” has
a geometric location, but also an attribute “size” and “person density”.

For all entity types that can be localized we define an abstract entity type “Localizable
Entity”, which holds the position information. Such localizable entities are the “Building”,
the “Floor” and the “Area”. Finally, we will define an abstract root entity type “Context
Entity”, which allows us to query for any context entities and which holds the entity’s
name. The following Figure 3 gives an overview on the entity and relation types that de-
fine the schema of the context model for the COVID-safe navigation app.

Figure 3. Conceptual context model of the COVID-safe navigation app.

The above described conceptual context model schema is imported into the context
server using an XML-description. The following Listing 2 is part of that description and
defines the entity type “Localizable Entity”.

Figure 3. Conceptual context model of the COVID-safe navigation app.

The above described conceptual context model schema is imported into the context
server using an XML-description. The following Listing 2 is part of that description and
defines the entity type “Localizable Entity”.

Listing 2. Importable context model schema description.

<EntityType name="LocalizableEntity">
<generalizable>
<isAbstract>true</isAbstract>
<parentElementName>ContextEntity</parentElementName>
</generalizable>
<attribute name="position"><type>location-geometric</type></attribute>

</EntityType>

After the model schema is imported, the described context entity and relation types
are then available in the context server. Finally, to complete the context model, the concrete
entities and relations have to be instantiated. The following Listing 3 describes how to
register a concrete entity using the Java-API of the context server. In this example, a new
room is registered with its name, size, and position. The fingerprint information is needed
for the sensor registration. After the instantiation, the final context model consists of
422 registered entities and 443 relations, describing the building structure at the university.

Listing 3. Instantiation of the context model.

EntitySchema Room = thisEntityServer.getEntitySchema()
.getEntityTypeManager().getEntityType("Room");

Entity entityRoom04_E_007 = new Entity(Room);
entityRoom04_E_007.setName("04.E.007");
entityRoom04_E_007.setFingerprint("04.E.007");
entityRoom04_E_007.setAttribute("size", new AttributeNumber("334.41"));
entityRoom04_E_007.setAttribute("position", new AttributeLocation
("{\"xStart\":4.3, \"xEnd\":25.6, \"yStart\":20.3,\"yEnd\":36, \"zStart\":0,
\"zEnd\":0}"));

thisEntityServer.addEntity(entityRoom04_E_007);

Sensors 2022, 22, 9890 10 of 14

6.4. Context Queries

For the COVID-safe navigation app, only two types of queries are needed. The first
query returns all areas which are in a named floor. This can be achieved with the following
Listing 4:

Listing 4. Retrieve all areas which are within floor “1”.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 15

Listing 2. Importable context model schema description.

After the model schema is imported, the described context entity and relation types

are then available in the context server. Finally, to complete the context model, the con-
crete entities and relations have to be instantiated. The following Listing 3 describes how
to register a concrete entity using the Java-API of the context server. In this example, a
new room is registered with its name, size, and position. The fingerprint information is
needed for the sensor registration. After the instantiation, the final context model consists
of 422 registered entities and 443 relations, describing the building structure at the uni-
versity.

Listing 3. Instantiation of the context model.

6.4. Context Queries
For the COVID-safe navigation app, only two types of queries are needed. The first

query returns all areas which are in a named floor. This can be achieved with the following
Listing 4:

Listing 4. Retrieve all areas which are within floor “1”.

As a result, all registered area (sub-)entities within the floor “1” will be returned. If
only specific areas should be retrieved, e.g., only rooms, then the first entity query can be
replaced by “fromEntities”:{“entityQuery”:”Room”}.

The second query searches for paths from a starting area to a specified destination
area and then sorts the results according to the aggregated person density of the included
areas and also aggregates the walking distance, see the following Listing 5:

<EntityType name="LocalizableEntity">

 <generalizable>

 <isAbstract>true</isAbstract>

 <parentElementName>ContextEntity</parentElementName>

 </generalizable>

 <attribute name="position"><type>location-geometric</type></attribute>

</EntityType>

EntitySchema Room = thisEntityServer.getEntitySchema()

 .getEntityTypeManager().getEntityType("Room");

Entity entityRoom04_E_007 = new Entity(Room);

entityRoom04_E_007.setName("04.E.007");

entityRoom04_E_007.setFingerprint("04.E.007");

entityRoom04_E_007.setAttribute("size", new AttributeNumber("334.41"));

entityRoom04_E_007.setAttribute("position", new AttributeLocation

 ("{\"xStart\":4.3, \"xEnd\":25.6, \"yStart\":20.3,\"yEnd\":36, \"zStart\":0,

 \"zEnd\":0}"));

thisEntityServer.addEntity(entityRoom04_E_007);

As a result, all registered area (sub-)entities within the floor “1” will be returned. If
only specific areas should be retrieved, e.g., only rooms, then the first entity query can be
replaced by “fromEntities”:{“entityQuery”:”Room”}.

The second query searches for paths from a starting area to a specified destination
area and then sorts the results according to the aggregated person density of the included
areas and also aggregates the walking distance, see the following Listing 5:

Listing 5. Find the paths from room “04.E.001” to the room “04.E.032” sorted by the
person density.

{
"relationQuery": "connected_to",
"fromEntities": { "entityQuery": "Room", "name": "04.E.001"},
"toEntities": { "entityQuery": "Area" },
"appendQueries": [{
"relation": {
"transitiveRelation":
{ "relationQuery": "connected_to",
"toEntities": { "entityQuery": "Area" } },

"appendType": "TO_WITH_FROM",
"minDepth": 0

}, "appendType": "TO_WITH_FROM" }, {
"relation": {
"relationQuery": "connected_to",
"fromEntities": {"entityQuery": "Room","name": "04.E.032" },
"appendType": "TO_WITH_FROM"
} }],

"aggregation": [
{ "name": "personDensity", "order": "asc" },
{ "name": "distance" }
]

}

The first part of that query looks for all areas that are connected to the starting room
“04.E.001”. The appended query then looks for all areas that are connected to the identified
connected areas. All the resulting areas are then finally checked to see if they are connected
to the destination room “04.E.032”. Then, each of the identified paths are aggregated to the
accumulated person density in each area of the path and then the accumulated distance
between the connected areas. The paths are then sorted regarding the population density.

6.5. Sensors

For obtaining a measure of the occupancy in an area of a building, e.g., a hallway or
a room, we need sensors for counting people currently in the areas that the users will be
passing through. Besides (depth-)camera based sensors, there are also infrared sensors

Sensors 2022, 22, 9890 11 of 14

or light barriers for solving this problem. For our prototype we used a double infrared
passage sensor with direction recognition from Homematic (https://homematic-ip.com,
accessed on 13 December 2022) so we obtained inbound and outbound traffic. The sensor
is integrated in our OpenHAB backend and mapped to an area b. Sensor updates, together
with the fingerprint of the area, are sent to the context server in JSON over MQTT for
integration into the context model.

A big advantage of using MQTT in the distribution of sensor information is good
testability. Injecting arbitrary messages into the system is quite easy from any MQTT-client.
Manual and automatic tests can be done by sending test messages and monitoring the
application’s outcome.

The population density is then calculated in the context server pipeline by all persons
currently sensed in an area of the building by means of entering and exiting information of
the sensor divided by the bounded area size.

For testing purposes, we covered a small area in the ground floor of building 4 at the
HSD. Some hallways and rooms were equipped with passage sensors at their boundaries.
For accessing the sensors, a Homematic gateway was installed on a Raspberry Pi 4 together
with OpenHAB, a WLAN access point software, MQTT broker and the context server
service, everything containerized for quick deployment on arbitrary systems. The test
system was placed near our testing area on the floor of Figure 4.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 15

Figure 4. Used hardware in our test setup: Raspberry Pi4 (green), Homematic radio module (red),
passage sensors (blue).

6.6. Application
The concrete application for COVID-safe indoor navigation was implemented as a

mobile Android application. The main view shows a floor of the university building. All
information about the building structure was obtained from the context server and then
used for the drawing. The user can choose different floors. By tapping into rooms, hall-
ways or elevators, the user then selects the current position and also the desired destina-
tion. An automatic localization of the user within the local context server was not imple-
mented at that time. When submitting the navigation request the best path regarding min-
imum population density and distance is requested from the local context server and then
is drawn onto the floor map in Figure 5.

(a) (b)

Figure 5. Navigation panel of the app without (a) and with areas of high person density (b) marked
in red.

7. Discussion
We have described how to apply the methodology to build fairly simple context-

aware applications, such as the COVID-safe navigation app, using a meta-model based
context server. We have described the basic characteristics of that app in Section 3. Based
on the implementation of the COVID-safe navigation app, we have shown that a small
team of students, which had no previous experience in context awareness, were able to
build a context-aware application with these characteristics within a very limited time
frame. The meta-model and the methodology were easy to understand and apply. At this
point, we do not have a direct comparison of our approach with a manual implementation
to prove that it simplifies the development of such context-aware applications. However,
the student project gives some indication that this may be the case. In another student
project, we implemented a digital fire brigade plan. In that project, the fire brigade is

Figure 4. Used hardware in our test setup: Raspberry Pi4 (green), Homematic radio module (red),
passage sensors (blue).

6.6. Application

The concrete application for COVID-safe indoor navigation was implemented as a
mobile Android application. The main view shows a floor of the university building. All
information about the building structure was obtained from the context server and then
used for the drawing. The user can choose different floors. By tapping into rooms, hallways
or elevators, the user then selects the current position and also the desired destination. An
automatic localization of the user within the local context server was not implemented
at that time. When submitting the navigation request the best path regarding minimum
population density and distance is requested from the local context server and then is
drawn onto the floor map in Figure 5.

https://homematic-ip.com

Sensors 2022, 22, 9890 12 of 14

Sensors 2022, 22, x FOR PEER REVIEW 12 of 15

Figure 4. Used hardware in our test setup: Raspberry Pi4 (green), Homematic radio module (red),
passage sensors (blue).

6.6. Application
The concrete application for COVID-safe indoor navigation was implemented as a

mobile Android application. The main view shows a floor of the university building. All
information about the building structure was obtained from the context server and then
used for the drawing. The user can choose different floors. By tapping into rooms, hall-
ways or elevators, the user then selects the current position and also the desired destina-
tion. An automatic localization of the user within the local context server was not imple-
mented at that time. When submitting the navigation request the best path regarding min-
imum population density and distance is requested from the local context server and then
is drawn onto the floor map in Figure 5.

(a) (b)

Figure 5. Navigation panel of the app without (a) and with areas of high person density (b) marked
in red.

7. Discussion
We have described how to apply the methodology to build fairly simple context-

aware applications, such as the COVID-safe navigation app, using a meta-model based
context server. We have described the basic characteristics of that app in Section 3. Based
on the implementation of the COVID-safe navigation app, we have shown that a small
team of students, which had no previous experience in context awareness, were able to
build a context-aware application with these characteristics within a very limited time
frame. The meta-model and the methodology were easy to understand and apply. At this
point, we do not have a direct comparison of our approach with a manual implementation
to prove that it simplifies the development of such context-aware applications. However,
the student project gives some indication that this may be the case. In another student
project, we implemented a digital fire brigade plan. In that project, the fire brigade is

Figure 5. Navigation panel of the app without (a) and with areas of high person density (b) marked
in red.

7. Discussion

We have described how to apply the methodology to build fairly simple context-aware
applications, such as the COVID-safe navigation app, using a meta-model based context
server. We have described the basic characteristics of that app in Section 3. Based on the
implementation of the COVID-safe navigation app, we have shown that a small team
of students, which had no previous experience in context awareness, were able to build
a context-aware application with these characteristics within a very limited time frame.
The meta-model and the methodology were easy to understand and apply. At this point,
we do not have a direct comparison of our approach with a manual implementation to
prove that it simplifies the development of such context-aware applications. However, the
student project gives some indication that this may be the case. In another student project,
we implemented a digital fire brigade plan. In that project, the fire brigade is supplied
with a mobile front end, which shows the structure of the building, the state of fire doors,
the location of detected smoke and areas with a population density. It also calculates a
suitable path from any entrance to the detected smoke area. We had the same result in that
project. We assume that this will be the case for the development of any other context-aware
applications with the same characteristics. Such an application could be used in an industry
4.0 scenario. The context server can be used for the identification of free transportation
units nearby and the navigation of these units depending on the characteristics and state of
the production environment.

However, the project also showed some shortcomings, which we have to handle in the
future. The instantiation of the context-model using the Java-API was very time consuming,
since each entity and relation had to be programmed manually, which can cause errors in
the programming. A visual model editor could be of great help to construct and visualize
the context model. Such a tool will be one of our next steps for improvement. Additionally,
a tool to import building information from existing building planning software into the
context model could be added.

After the university building’s structure was initially instantiated, we tested the context
model manually using the path finding query, which in some cases resulted in false results,
because of the wrong instantiations. It was time consuming to find potential mistakes in the
model, and to correct them. A model checking tool that could be used to find and visualize
mistakes would be needed. This would not only include errors in the instantiation, but also
an evaluation of the calculated paths in different simulated person densities.

Sensors 2022, 22, 9890 13 of 14

The implementation has also shown that the ability of the context query language
to aggregate on single entity or relation properties may not be sufficient. The current
implementation of the context server will always prioritize the paths with the lowest
person density, regardless of the walking length of the path compared to other alternatives.
This optimization is at the moment delegated to the application, but which should be
provided by the context server in the future.

Non-functional features of the context-server were proved by the implementation of
the application. The context server was able to cope with the context model of the applica-
tion, which included 422 entities and 443 relations, which resulted from the description
of the university’s building structure. The implemented in memory graph database did
not have a problem with the size of the context model, but also not with executing queries
that required a flexible traversal through the model graph in order to identify the possible
routes, calculate the walking distances, aggregate the person density on the route and to
prioritize these routes. In our runtime environment, it took around 9 ms for the context
server to identify the possible paths, which typically included the description of 33 path
alternatives and their aggregations.

Author Contributions: Conceptualization, M.W.; methodology, M.W.; project administration, P.P.; re-
sources, P.P.; software, M.W. and P.P.; supervision, P.P.; visualization, M.W. and P.P.; Writing—original
draft, M.W. and P.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Weiser, M. The computer for the 21st Century. Sci. Am. 1991, 265, 94–105. [CrossRef]
2. Dey, A.K. Understanding and using context. Pers. Ubiquitous Comput. 2001, 5, 4–7. [CrossRef]
3. Schwinger, W.; Gruen, C.; Proell, B.; Retschitzegger, W.; Schauerhuber, A. Context-Awareness in Mobile Tourism Guides—A

Comprehensive Survey; Rapport Technique; Johannes Kepler University: Linz, Austria, 2005.
4. Hangli, G.; Hamada, T.; Sumitomo, T.; Koshizuka, N. PrecaElevator: Towards Zero-Waiting Time on Calling Elevator by Utilizing

Context Aware Platform in Smart Building. In Proceedings of the IEEE 7th Global Conference on Consumer Electronics (GCCE),
Nara, Japan, 9–12 October 2018; pp. 566–570. [CrossRef]

5. Bricon-Souf, N.; Newman, C.R. Context awareness in health care: A review. Int. J. Med. Inform. 2007, 76, 2–12. [CrossRef]
[PubMed]

6. Kroese, B.; Van Kasteren, T.; Gibson, C.; Van den Dool, T. Care: Context awareness in residences for elderly. In Proceedings of the
6th International Conference of the International Society for Gerontechnology, Pisa, Italy, 4–6 June 2008; pp. 101–105.

7. Rosenberger, P.; Gerhard, D. Context-awareness in industrial applications: Definition, classification and use case. Procedia CIRP
2018, 72, 1172–1177. [CrossRef]

8. Hardian, B.; Indulska, J.; Henricksen, K. Balancing autonomy and user control in context-aware systems—A survey. In Proceedings
of the 4th Annual IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOMW’06),
Pisa, Italy, 13–17 March 2006; pp. 6–56.

9. Schilit, W. A System Architecture for Context-Aware Mobile Computing. Ph.D. Thesis, Columbia University, New York, NY
USA, 1995.

10. Singh, M.; Fuenmayor, E.; Hinchy, E.P.; Qiao, Y.; Murray, N.; Devine, D. Digital twin: Origin to future. Appl. Syst. Innov. 2021,
4, 36. [CrossRef]

11. Sahlab, N.; Braun, D.; Jung, T.; Jazdi, N.; Weyrich, M. A Tier-based Model for Realizing Context-Awareness of Digital Twins. In
Proceedings of the 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Vasteras,
Sweden, 7–10 September 2021; pp. 1–4.

12. Hribernik, K.; Cabri, G.; Mandreoli, F.; Mentzas, G. Autonomous, context-aware, adaptive Digital Twins—State of the art and
roadmap. Comput. Ind. 2021, 133, 103508. [CrossRef]

13. Henricksen, K.; Indulska, J. Developing context-aware pervasive computing applications: Models and approach. Pervasive Mob.
Comput. 2006, 2, 37–64. [CrossRef]

http://doi.org/10.1038/scientificamerican0991-94
http://doi.org/10.1007/s007790170019
http://doi.org/10.1109/GCCE.2018.8574706
http://doi.org/10.1016/j.ijmedinf.2006.01.003
http://www.ncbi.nlm.nih.gov/pubmed/16488663
http://doi.org/10.1016/j.procir.2018.03.242
http://doi.org/10.3390/asi4020036
http://doi.org/10.1016/j.compind.2021.103508
http://doi.org/10.1016/j.pmcj.2005.07.003

Sensors 2022, 22, 9890 14 of 14

14. Alegre, U.; Wrede, J.; Clark, T. Engineering Context-Aware Systems and Applications: A survey. J. Syst. Softw. 2016, 117, 55–83.
[CrossRef]

15. Dey, A.K.; Abowd, G.D.; Salber, D. A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware
applications. Hum.-Comput. Interact. 2001, 16, 97–166. [CrossRef]

16. Henricksen, K.; Indulska, J.; Rakotonirainy, A. Modeling Context Information in Pervasive Computing Systems. In Pervasive
Computing, Proceedings of the 1st International Conference on Pervasive Computing, Zürich, Switzerland, 26–28 August 2002; Friedemann,
M., Mahmoud, N., Eds.; Lecture Notes in Computer Science series; Springer: Berlin/Heidelberg, Germany, 2002; Volume 2414,
pp. 167–180.

17. Chen, H.; Finin, T.; Joshi, A. An ontology for context-aware pervasive computing environments. Knowl. Eng. Rev. 2004, 18,
197–204. [CrossRef]

18. Baldauf, M.; Dustdar, S.; Rosenberg, F. A survey on context-aware systems. Int. J. Ad Hoc Ubiquitous Comput. 2007, 2, 4. [CrossRef]
19. Perera, C.; Zaslavsky, A.; Christen, P.; Georgakopoulos, D. Context aware computing for the internet of things: A. survey. IEEE

Commun. Surv. Tutor. 2013, 16, 414–454. [CrossRef]
20. Li, X.; Eckert, M.; Martinez, J.F.; Rubio, G. Context aware middleware architectures: Survey and challenges. Sensors 2015, 15,

20570–20607. [CrossRef] [PubMed]
21. McFadden, T.; Henricksen, K.; Indulska, J. Automating context-aware application development. In Proceedings of the UbiComp

1st International Workshop on Advanced Context Modelling, Reasoning and Management, Nottingham, UK, 7 September 2004;
pp. 90–95.

22. Strang, T.; Linnhoff-Popien, C. A Context Modeling Survey. In Proceedings of the 1st International Workshop on Advanced
Context Modeling, Reasoning and Management, Nottingham, UK, 7 September 2004.

23. Preuveneers, D.; Berbers, Y. Constency in context-aware behavior: A model checking approach. In Intelligent Environments 2021:
Workshop, Proceedings of the 17th International Conference on Intelligent Environments, Virtual Event, 21–24 June 2012; Bashir, E., Lutrek,
M., Eds.; IOS Press: Amsterdam, The Netherlands, 2021; pp. 401–412.

24. Klint, P.; Laemmel, R.; Verhoef, C. Towards an engineering discipline for grammarware. ACM Trans. Softw. Eng. Methodol.
(TOSEM) 2005, 14, 331–380. [CrossRef]

25. Wojciechowski, M.; Wiedeler, M. Model-based development of context-aware applications using the MILEO-context server.
In Proceedings of the IEEE International Conference on Pervasive Computing and Communications Workshops, Lugano,
Switzerland, 19–23 March 2012; pp. 613–618.

26. Sheng, Q.Z.; Benatallah, B. ContextUML: A UML-based modeling language for model-driven development of context-aware web
services. In Proceedings of the IEEE International Conference on Mobile Business (ICMB’05), NW Washington, DC, USA, 11–13
July 2005; pp. 206–212.

27. Serral, E.; Valderas, P.; Pelechano, V. Towards the model driven development of context-aware pervasive systems. Pervasive Mob.
Comput. 2010, 6, 254–280. [CrossRef]

28. Jaouadi, I.; Djemaa, R.B.; Abdallah, H.B. Approach to Model-Based Development of Context-Aware Application. J. Comput.
Commun. 2015, 3, 212. [CrossRef]

29. Jaouadi, I.; Djemaa, R.B.; Abdallah, H.B. A generic metamodel for context-aware applications. In Progress in Systems Engineering,
Proceedings of the Twenty-Third International Conference on Systems Engineering, Las Vegas, NV, USA, 19–21 August 2014; Selvaraj, H.,
Zydek, D., Chmaj, G., Eds.; Springer: Cham, Switzerland, 2015; pp. 587–594.

30. Becker, C.; Dürr, F. On location models for ubiquitous computing. Pers. Ubiquitous Comput. 2005, 9, 20–31. [CrossRef]

http://doi.org/10.1016/j.jss.2016.02.010
http://doi.org/10.1207/S15327051HCI16234_02
http://doi.org/10.1017/S0269888904000025
http://doi.org/10.1504/IJAHUC.2007.014070
http://doi.org/10.1109/SURV.2013.042313.00197
http://doi.org/10.3390/s150820570
http://www.ncbi.nlm.nih.gov/pubmed/26307988
http://doi.org/10.1145/1072997.1073000
http://doi.org/10.1016/j.pmcj.2009.07.006
http://doi.org/10.4236/jcc.2015.35027
http://doi.org/10.1007/s00779-004-0270-2

	Introduction
	Related Works
	Characteristics of the COVID-Safe Navigation App
	Basic Concepts of the Meta-Model Based Context Server
	Context Server
	Meta-Model
	Location Models
	Context Query Language

	Development Methodology
	Development of the “COVID-Safe Navigation App”
	Project Description
	Architecture
	Context Model
	Context Queries
	Sensors
	Application

	Discussion
	References

