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Abstract: Developing better agricultural monitoring capabilities based on Earth Observation data

is critical for strengthening food production information and market transparency. The Sentinel-2
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mission has the optimal capacity for regional to global agriculture monitoring in terms of resolution

(10–20 meter), revisit frequency (five days) and coverage (global). In this context, the European

Space Agency launched in 2014 the “Sentinel-2 for Agriculture” project, which aims to prepare

the exploitation of Sentinel-2 data for agriculture monitoring through the development of open

source processing chains for relevant products. The project generated an unprecedented data set,

made of “Sentinel-2 like” time series and in situ data acquired in 2013 over 12 globally distributed

sites. Earth Observation time series were mostly built on the SPOT4 (Take 5) data set, which was

specifically designed to simulate Sentinel-2. They also included Landsat 8 and RapidEye imagery as

complementary data sources. Images were pre-processed to Level 2A and the quality of the resulting

time series was assessed. In situ data about cropland, crop type and biophysical variables were

shared by site managers, most of them belonging to the “Joint Experiment for Crop Assessment and

Monitoring” network. This data set allowed testing and comparing across sites the methodologies

that will be at the core of the future “Sentinel-2 for Agriculture” system.

Keywords: agriculture monitoring; satellite time series; in situ data; Sentinel-2; SPOT4 (Take 5);

Landsat 8; JECAM; GEOGLAM

1. Introduction

Achieving sustainable food security for all people was a key priority of the World Food Summit

that took place from 13 to 17 November 1996 [1]. This priority was re-affirmed and re-highlighted

during the Millennium Summit of the United Nations (UN) in 2000 [2], which defined the eradication

of extreme poverty and hunger as one of the eight Millennium Development Goals (MDGs). In 2015,

which was the MDGs deadline, broad progress was reported in varying topics, including the poverty

reduction target. However, hunger remains an everyday challenge for almost 795 million people

worldwide [3].

In June 2011, the need to enhance food security and address commodity price volatility was

mentioned for the first time in the declaration following the meeting of the G20 Ministries of

Agriculture in Paris [4]. This objective was confirmed in the Final Declaration of the Cannes Summit

from November 2011 [5] and re-emphasized in June 2012 in the declaration of the G20 Mexico

summit [6]. The international food supply crises as regularly observed since 2008 have further

shown how agriculture production and its markets are globally connected and exhibit both a wide

geographical variation and high fluctuations over time [7].

It is now widely acknowledged that neither the problem of food insecurity nor the impact

of increased market volatility are likely to disappear without policy interventions based on sound

scientific evidence [8]. Consequently, it is critical to develop better agricultural monitoring

capabilities able to provide timely information about crop status, crop area and yield forecasts [9].

Earth Observation (EO) data can clearly contribute to this objective as a proven source for transparent,

timely, accurate and consistent information on the agricultural productivity at global and regional

scales [10,11].

Since 2011, support for agricultural monitoring using satellite data has become substantial,

with formal institutional support, objectives and timelines. In the context of the Group on Earth

Observations (GEO) supporting the sustainable management of the earth’s resources using satellite

remote sensing, the Global Earth Observation System of Systems (GEOSS) identified the development

of remote sensing agriculture applications as one of its strategic targets. In order to improve market

information and transparency, the G20 launched the “Agricultural Market Information System”

(AMIS) in Rome on 15 September 2011 and the GEO “Global Agricultural Monitoring” (GEOGLAM)

initiative in Geneva on 22–23 September 2011. The GEOGLAM initiative aims to strengthen

the international community’s capacity to produce and disseminate relevant, timely and accurate

16063



Remote Sens. 2015, 7, 16062–16090

forecasts of agricultural production at national, regional and global scales through the use of EO [11].

It builds on GEO’s Agricultural Community of Practice (AG COP) agenda and implementation

actions in GEO’s Agriculture’s Societal Benefit Area. Its outputs will directly support the AMIS. The

research and development component of GEOGLAM, called “Joint Experiment for Crop Assessment

and Monitoring” (JECAM), was launched to enable the global agricultural monitoring community

to compare results based on disparate sources of data, using various methods, over a variety of

local or regional cropping systems [12]. It has been operating since 2013, with support from the

Committee on Earth Observation Satellites (CEOS). The GEOGLAM implementation plan approved

in July 2013 defined clear EO requirements for agriculture monitoring, which highlighted the critical

importance of the decameter resolution capabilities to cover the whole diversity of the agricultural

landscapes [13,14].

The upcoming Sentinel-2 mission provides the sensor capacity that best meets this requirement.

Its temporal revisit frequency of 5 days, its specific spectral bands and its high spatial resolution

(10–20 meters) combined with its 290 km wide swath are particularly suited to globally and regularly

record key variables of interest over cultivated landscapes [15]. Further, its compatibility to the

Landsat missions allows building on an historic time series of observations. Since its inception in

1972, the Landsat program has provided an invaluable archive of EO data at 16 day repeat periods.

The complementarity between the Sentinel-2 and the Landsat missions can also be seen at the spectral

level as only the Landsat sensor includes thermal bands. While data from the visible, near-infrared

and shortwave infrared are still the most broadly applied resource in the agricultural monitoring

context, thermal data could also be of interest for evapotranspiration and water status, land surface

temperature measurements and atmospheric adjustment [14]. Recent research also suggests their

utility in yield forecasting as well as for crop type classification and residue mapping [16]. Besides,

the effective revisit and coverage performance of Sentinel-2 may be improved through the conjoint

use of Sentinel-1 observations which are also of high interest for agricultural applications [17]. A

deeper analysis of the complementarity of Sentinel-2 to other similar mission can be found in [14].

Accordingly, the continuous availability of Sentinel-2 (with Landsat 8 and Sentinel-1) time series

will constitute a major advancement for large scale agriculture monitoring capabilities using satellite

remote sensing. It will allow providing unprecedented estimates on crop area extent, crop type and

state, which can serve as indicators for the agricultural productivity of the respective region.

This paper is a first look at the Sentinel-2 for Agriculture (Sen2-Agri) project which was

launched by the European Space Agency (ESA) in 2014 to anticipate this momentum and prepare the

exploitation of Sentinel-2 data for local to global operational agriculture monitoring. The presentation

begins with a project overview, objective, outputs, planning and approach. Then it focuses on the

building of composite data sets consisting of satellite imagery and in situ measurements allowing

development of agriculture monitoring methods for Sentinel-2. Satellite data were collected over 12

sites spread over the world, primarily sourced from the SPOT4 (Take 5) experiment in 2013 [18], and

secondarily from Landsat 8 and RapidEye imagery. For each site, time series were pre-processed and

complemented by in situ crop measurements shared by JECAM network members and other teams

in the field.

2. Sentinel-2 for Agriculture Project

The objective of the Sen2-Agri project is to provide the international community with validated

algorithms, open source codes and best practices to process Sentinel-2 data in an operational manner

into relevant EO agricultural products for major worldwide representative agriculture systems.

2.1. Project Outputs

The Sen2-Agri project delivers different products: (i) a core of processing strategies and (ii) an

open source processing software developed from the OrfeoToolbox [19] to convert the Sentinel-2

Level 1c (L1c) data (i.e., geo-coded top of atmosphere reflectance product associated with cloud and
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land/water masks [15]) into relevant EO products. These Sen2-Agri EO products consist of a suite of

four validated Sentinel-2 based outputs (Figure 1):

‚ Cloud-free surface reflectance composites

The composite products provide monthly cloud-free temporal syntheses of surface reflectance

values in the 10 Sentinel-2 bands designed for land observation. Each band is delivered at its full

spatial resolution, 10–20 meters.

‚ Dynamic cropland mask, delivered several times during agricultural seasons

The crop mask consists of a binary map at 10 meter spatial resolution separating annual cropland

areas from other areas. The mask is delivered for the first time after 6 months of data acquisition

and is then updated monthly. The season start date is a parameter defined a priori by the user.

From one year of data acquisition, the production is based on a 12-month moving window. The

regular update leads to an accuracy progressively increasing along the growing season.

‚ Cultivated crop type map and area estimate for main crop groups

The crop type map is a map of the main crop types (or crop groups) for a given region at 10

meter spatial resolution. It builds upon the cropland mask to process the time series only over

the cropland areas. The main crop types are defined as (i) those covering a minimum area of 5%

of the annual cropland area and (ii) whose cumulated area represent more than 75% of the annual

cropland area. A maximum of 5 crop types are considered by site. The rationale for these 5% and

75% thresholds is to avoid crop types that are weakly represented and therefore, too costly for

field campaign. Selection of 5 crop types and the 5% and 75% thresholds came from a thorough

analysis of the Food and Agriculture Organization (FAO) national cropland statistics. As it will

be demonstrated later in Section 4.1, they allow a good compromise between map accuracy and

representativeness of the area. This definition of the main crop types is only used to measure the

algorithm performance. In practice, the user can map as many crop types as he wants, providing

that he has the corresponding in situ data. The crop type map is delivered twice during the

growing season with user-defined season start and end dates. The first map is produced after

six months of data acquisition, with a legend that might be slightly different from the final one

depending on what can be discriminated during the early stages of the season (e.g., summer vs.

winter crops, irrigated vs. rainfed fields, etc.). Its accuracy may be good or poor but provides the

best current information critically needed for crop monitoring systems. The second map comes

after one year of observations and will have much higher accuracy. The product is completed

by an early crop area indicator, which consists of the proportion of each crop type included in

the crop type map inside a 1 km2 pixel. In the case of significant bias, the proportions will be

corrected using the information provided by the confusion matrix of the crop type map. The area

estimate is delivered at the most convenient aggregation level from the user point of view.

‚ Vegetation status describing the vegetative development of crops on a 7 to 10 day basis

This product consists of a set of maps of indicators describing the evolution of green vegetation.

Three types of indicators are computed: the well-known Normalized Difference Vegetation Index

(NDVI) largely used to monitor fractional vegetation cover, the Leaf Area Index (LAI) and

phenology metrics derived from the NDVI time profiles. NDVI and LAI maps are produced at

10 meter resolution over the whole region of interest, not only over cropland. They are delivered

every 10 days as long as only one Sentinel-2 satellite is active but the temporal frequency will be

decreased to 7 days when Sentinel-2 A and B satellites are operational. As an additional option,

users have the possibility to re-process, at the end of the season, a filtered LAI profile, with gap

filling between overpass dates.
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Figure 1. Suite of the four validated Sentinel-2 derived agricultural products.

The products will be generated by the system with quality flags (Table 1). Their documentation

and validation report will be open and freely available. Products will be delivered in GEOTIFF

format, in the Universal Transverse Mercator (UTM)/WGS84 projection and with associated

metadata (Table 1).

Table 1. Quality flags and metadata associated with each product.

Quality Flags Metadata

Composite

- Number of valid observations, by pixel, over the
compositing period

- Report documenting the accuracy assessment of
each composite with respect to 3 criteria: the
remaining proportion of data gaps after the
compositing, the fidelity of the composite to a daily
image close to the compositing medium date, the
spatial consistency

Single file containing:

- General product information (product
type, processing baseline, tile list, legacy
data list, scale factor, special values for
no data and invalid pixels,
compression mode)

- Geolocation information of the
product footprint

- Reference of all processing Ground
Image Processing Parameters (i.e., the
set of parameters and values used in
each processing step)

Cropland
mask

- Number of valid observations, by pixel, over the
period used to generate the map

- Overall accuracy over the area of interest coming
from validation against independent in situ data

Crop type
map

Vegetation
status

- Number of valid observations, by pixel, over the
period used to generate the map

- Origin of the pixel value (computed or filled)

- For the LAI, retrieval uncertainty on a pixel basis
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Started early 2014, the project has been organized in three consecutive phases over a total period

of 36 months. The first two phases focused on the algorithms selection, system design, prototype

products generation and system implementation. The third phase is dedicated to the demonstration

of the Sen2-Agri products and system in real life conditions, i.e., with Sentinel-2 data, in near real-time.

It will start in spring 2016, with the end of the Sentinel-2 commissioning phase and the availability

of the first images through the ramp-up phase [20]. The demonstration will be done at local scale (at

least a full Sentinel-2 swath) for five sites and at a national scale (~500.000 km2) for three countries. In

both cases, the exercise will be carried out in close interactions with teams working on the field. The

project will end in March 2017 with the release of the open source system to the whole community.

2.2. User-Oriented Approach

Being part of the ESA Data User Element programme, this project is entirely driven by a

user-oriented approach in order to address concrete user needs and requirements. User requirements

were first defined before the start of the project in April 2012 through a workshop involving about

50 members of the agricultural community [21]. Out of this group, 19 users remain involved (Table 2).

Referred hereafter to as “Champion Users”, they are part of scientific, national and international

institutions mandated for agricultural monitoring.

Table 2. “Champion Users” of the Sen2-Agri project.

Champion User Country, Region

Agriculture and Agri-Food Canada (http://www.agr.gc.ca/index_e.php) Canada
Arvalis France (http://www.arvalisinstitutduvegetal.fr/en/) France
Alberta Terrestrial Imaging Center (http://www.imagingcenter.ca) Canada
Chinese Academy of Science, Institute of Remote Sensing and Digital Earth
(http://english.ceode.cas.cn)

China

Consultative Group on International Agriculture Research
(http://www.cgiar.org/)

International

Centre de coopération internationale en recherche agronomique pour le
développement (http://www.cirad.fr/en)

France

Food and Agriculture Organization (http://www.fao.org) International (UN)
Fenareg (Federation of irrigation associations) Portugal
International Fund for Agricultural Development (http://www.ifad.org) International (UN)
Instituto Nacional de Tecnología Agropecuaria (http://inta.gob.ar) Argentina
MARS Unit, Joint Research Center European Commission
Chouaïb Doukkali University & Réseau National des Sciences et Techniques de la
Géo- Information

Morocco

Regional Center for Mapping of Resources for Development
(http://www.rcmrd.org)

East Africa

SA GEO Agricultural Community of Practice
(http://sageo.org.za/sa-geo-communities/agriculture/)

South Africa

University Cheikh Anta Diop, Faculty of Sciences and Technology, Geology
department (http://www.ucad.sn/)

Senegal

Ministry of agriculture and irrigation—Agricultural Statistics Department Sudan
Space Research Institute, National Academy of Science & State Space Agency,
(http://www.ikd.kiev.ua)

Ukraine

US Geological Survey—Earth Resources Observation and Science
(http://www.fews.net/Pages/default.aspx)

United States

World Food Programme (http://www.wfp.org) International (UN)

The “Champion Users” were consulted at the beginning of the project to refine and consolidate

the initial user requirements [22]. They are also involved in the products accuracy assessment and in

the system performance evaluation. Along the course of the project, user workshops are organized to

promote the Sen2-Agri products to the wider agricultural community (including the JECAM network

and the GEOGLAM initiative) and to widen the ownership of the open source Sen2-Agri system.
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2.3. An Objective and Transparent Selection of Algorithms

A critical activity of the project was to select the “most suitable” algorithm(s) for fulfilling

products specifications to a maximum extent. It was done through a benchmarking, as illustrated

in Figure 2.

 

Figure 2. Overall concept of the benchmarking concept.

For each product, a minimum of five concurrent algorithms were selected based upon literature

review (commonly used algorithms, highest performance, novelty) and on the team’s experience. The

concurrent algorithms were then run on the 12 sites, using the data set presented in this paper. The

products were validated and inter-compared based on classical accuracy figures (overall accuracy,

users and producers accuracy, F-Score values), spatial consistency indices (e.g., gaps, artifacts) and

computation times. Specific attention was paid to methodologies that will benefit most from the

spatial, temporal and spectral properties of Sentinel-2. The studies carried out for the crop mask

and crop type products are described in detail in three papers of this special issue [23–25]. Project

reports also document these analyses, including the ones related to the cloud-free composite and the

vegetation status. They are available on the Sen2-Agri website [26].

Such a protocol ensured an objective and transparent algorithm selection but the relevance of its

findings was mainly explained by the properties of the data set used as input. The building of this

data set is the core of this paper and is detailed in the following sections.

3. Which Data Set to Develop Sentinel-2-Based Agriculture Monitoring Methods?

Aiming at developing an operational and globally relevant agriculture monitoring system is not

straightforward. It raises several challenges.

In spite of a relative standardization of the agriculture products and the large international

market integration for the main commodities, the agricultural landscapes are highly diverse. In terms

of landscape and agricultural practices, there is very little in common between the Red River Delta

in Northern Vietnam with 1000 persons per square kilometer living from food production based on

water management since centuries with three to four cropping cycles a year and the Southern part

of Central African Republic where 8 persons per square kilometer live from shifting cultivation and

forest harvesting. From the remote sensing point of view, being relevant over the whole range of

agricultural systems will require dealing adequately with the global diversity of surface reflectance

values to extract meaningful land cover information. Furthermore, the local heterogeneity of the

agricultural practices (rotations, unusual crops, grassland edges, etc.) and the agro-meteorological

variability will prevent the use of expected trajectories for crop discrimination and will require

methodologies able to account for specific local conditions.

Yet, products relevance does not only depend on their accuracy but also on their timeliness.

Indeed, the value of most agricultural information rapidly decreases over time, as the seasonal

production cycle leads to a sequence of critical dates for information delivery. The challenge is to
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provide the capacity to handle rapidly the processing of whole countries, with the associated large

volumes of data and products. It will have to be addressed from the methodological, digital and

organizational points of view.

Up to now, most operational monitoring systems rely on proxies and qualitative indicators based

on medium to coarse spatial resolution sensors [27–36]. While the potential of high spatial resolution

imagery is widely recognized, most of the research activities in this area currently rely on one site,

one crop and one sensor. There is thus still a gap between research and operational methods. The

Sentinel-2 mission will certainly contribute to bridge this gap by providing high quality imagery but

the only availability of data will not solve the issue. Supporting the development of operational

agriculture monitoring methods based on high resolution images will first require collecting both

EO and in situ data coming from the same season. Second, enough in situ data are to be acquired

over each site to allow both algorithm calibration and independent validation of each product. Third,

the data has to be collected as much as possible over a selection of sites representative of the huge

diversity of agricultural systems in order to tackle the global dimension. Finally, in the case of this

research which took place before the Sentinel-2 era, the EO data set had to mimic the “Sentinel-2 like

conditions”, emphasizing decametric spatial resolution and 5–10 day temporal revisits.

4. Data and Methods

The data set built in this research—hereafter referred to as Test Data Set (TDS)—was generated

over 12 sites and is made of

‚ high spatial and temporal resolution EO time series that simulate Sentinel-2 time series;

‚ in situ data for land cover and biophysical variables, to be used for algorithm calibration and

products validation.

4.1. Sites Selection

The sites selection was guided by three criteria: (i) representativeness in terms of agricultural

practices and climate types; (ii) availability of high spatial and temporal resolution time series; and

(iii) availability of in situ data. An additional requirement expressed by ESA and confirmed by the

Champion Users was to focus on Africa. As a result, 12 sites were selected (Figure 3, Table 3), making

most use of the JECAM network where high spatial resolution time series were already acquired

thanks to the free data access policy supported by CEOS commitment and where in situ data are

collected in a systematic way.

 

Figure 3. Twelve globally distributed sites selected for algorithm and system design.
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Table 3. Site descriptions. In the crop description, figures in parentheses indicate the crop percentages according to FAO national statistics (first figure) and site

statistics (second figure).

Spatial Extent Main Characteristics Main Crops and Crop Calendar

Argentina, San Antonio de Areco (JECAM)

- Top left: 33.83˝S, 60.09˝W

- Bottom right: 34.46˝S, 59.30˝W

- Southern hemisphere

- Temperate humid climate

- Field size: 20 ha (with high variability)

- Mainly rainfed crops

- Soybean (55.5%–79%), maize (11.5%–21%), wheat
(9.5%–0%)

- From June to December; from October to
March/April

Belgium, Hesbaye (JECAM)

- Top left: 51.00˝N, 4.50˝E

- Bottom right: 49.60˝N, 5.80˝E

- Northern hemisphere

- Temperate climate

- Field size: 3–5 ha

- Mainly rainfed

- Wheat (36%–43%), maize (21%–9%), potatoes
(11%–9%), sugar beet (10.5%–14%), barley
(8%–9%)

- From November to July; from March to September

Burkina Faso, Koumbia (JECAM)

- Top left: 11.24˝N, 3.74˝W

- Bottom right: 10.20˝N, 3.40˝W

- Northern hemisphere

- Tropical climate (Sudanese type)

- Field size: ~1 ha

- Sorghum (32%–13.5%), cow peas (10%–9%), millet
(27%–0%), maize (18%–28%), cotton (13%–38%)

- From June to October

China, Shandong (JECAM)

- Top left: 37.33˝N, 116.32˝E

- Bottom right: 36.33˝N, 116.82˝E

- Northern hemisphere

- Temperate to semi-arid climate/monsoon climate

- Field size: 0.2–0.8 ha

- Maize (20%–0%), paddy rice (17.5%–0%), wheat
(14%–92%), vegetables (5%–5%)

- From October to May; from June to September

France, SupdmipyOuest (JECAM)

- Top left: 44.24˝N, 0.30˝W

- Bottom right: 43.03˝N, 1.43˝E

- Northern hemisphere

- Temperate to Mediterranean climate

- Field size: 10 ha

- Wheat (38.2%–29.5%), maize (12.5%–43%), barley
(12%–0.3%), rapeseed (11.5%–6.5%), sunflower
(10.5%–14%)

- From October to July; from May to November
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Table 3. Cont.

Spatial Extent Main Characteristics Main Crops and Crop Calendar

Madagascar, Antsirabe (JECAM)

- Top left: 19.38˝S, 47.08˝W

- Bottom right: 20.01˝S, 45.37˝W

- Southern hemisphere

- Subtropical climate

- Field size: 0.03 ha

- Rice cultivated with and without irrigation
(terraces or basins); a lot of mixed crops

- Rice (42%–23.5%), cassava (11.5%–0%), maize
(9.5%–27%), soybean (0%–38%)

- From October to April (rainy season)

Morocco, Tensift (JECAM, Centre d’Etudes Spatiales de la BIOsphère (CESBIO) and University of Cadi Ayyad, Marrakech (UCAM))

- Top left: 31.50˝N, 8.24˝W

- Bottom right: 31.49˝N, 8.22˝W

- Northern hemisphere

- Semi-arid climate

- Field size: 0.5–40 ha

- A lot of tree crops

- Wheat (41%–83%), barley (25.5%–0%), wheat-oat
(0%–11%)

- From December to June (winter cereals)

Pakistan (FAO with SUPARCO)

- Top left: 31.83˝N, 72.26˝E

- Bottom right: 31.52˝N, 72.69˝E

- Northern hemisphere

- Semi-arid to hyper-arid climate with high
fluctuation in seasonal temperature regime and
rainfall patterns

- Field size: 0.25–6 ha

- Wheat (23%–0%), cotton (6%–12.4%), rice
(6%–54.5%), maize (5%–0%), sugar cane
(60%–33%)

- From September to May; from May to December

Russia, Tula (JECAM)

- Top left: 53.67˝N, 37.14˝E

- Bottom right: 53.59˝N, 37.33˝E

- Northern hemisphere

- Moderate continental climate

- Field size: 50–120 ha

- Only rainfed crops

- Wheat (40.5%–45.5%), barley (14.6%–24.5%),
sunflower (12%–4.5%), oats (5.5%–0%), rapeseed
(1%–17.5%)

- From September to July
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Table 3. Cont.

Spatial Extent Main Characteristics Main Crops and Crop Calendar

South Africa, Freestate (JECAM)

- Top left: 26.85˝S, 24.55˝E

- Bottom right: 30.74˝S, 29.77˝E

- Southern hemisphere

- Sub-humid to semi-arid climate

- Field size: 40 ha

- Maize (53%–88%), wheat (8.5%–0%), sunflower
(8.5%–9%), soybean (8%–2%)

- From December to June; from April to November

Ukraine, Phenichne and Velyka Snitynka (JECAM)

- Top left: 50.14˝N, 29.96˝E

- Bottom right: 50.01˝N, 30.26˝E

- Northern hemisphere

- Humid continental climate, with snow cover in
February and March

- Field size: 30–250 ha

- Wheat (23%–22%), sunflower (20.5%–10.2%),
maize (18%–36.5%), barley (13.5%–0%), potatoes
(6%–0%), soybean (1%–17%)

- From September to July; from April to October

United States, Maricopa (USDA)

- Top left: 33.41˝N, 112.71˝W

- Bottom right: 32.59˝N, 111.19˝W

- Northern hemisphere

- Long hot summers and cool-warm winter

- Field sizes: 20–120 ha

- Irrigated agriculture

- Maize (34.5%–13.5%), soybean (30%–0%), wheat
(19.5%–1.5%), alfalfa (0%–44.5%), cotton
(0%–18.5%), barley (1%–13.5%)

- From November to May; from March to
September; all year round for alfalfa
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This selection tackles a large variety of climate types and agricultural practices. It also includes

sites in the southern and northern hemispheres as well as in temperate, Mediterranean and tropical

regions, which will allow distributing the workload along the year and learning from one site to

the other.

4.2. EO Data

4.2.1. Selection

Three sensors were considered to build the EO time series: SPOT 4, Landsat 8 and RapidEye.

Characteristics of these three sensors are described in Table 4.

SPOT 4 images were those acquired by the SPOT4 (Take 5) experiment which took place between

February and June 2013 [18]. Priority was given to this SPOT4 (Take 5) data set, as it aimed to

provide time series of optical images simulating the periodicity, the resolution and the large swath

of Sentinel-2. Landsat 8 images (with less than 70% of cloud cover) were then considered as a

complement to increase the temporal resolution of the SPOT4 (Take 5) time series and the time period

covered by the time series when relevant. Finally, RapidEye data were selected only over specific

sites during specific periods when there were no SPOT4 (Take 5) or Landsat 8 data. Images with high

cloud coverage (above 50%) were marked as less appropriate.

4.2.2. Pre-Processing

The SPOT4 (Take 5) data were made available as L2A products (see Table 4). The reader is

referred to [18] for the details of the SPOT4 (Take 5) pre-processing methodology and validation. One

particularity of the methodology comes from the Multisensor Atmospheric Correction and Cloud

Screening (MACCS) processor, which uses multi-temporal criteria to build the various masks and to

detect the aerosols before the atmospheric correction [37–39].

Landsat 8 data were acquired at level L1T (see Table 4) in the UTM projection from the Earth

Explorer website [40]. They were pre-processed at their original spatial resolution to L2A using nearly

the same method as the one developed for the SPOT4 (Take 5) images, thus also involving the MACCS

processor [41]. The processing was slightly enriched compared to the SPOT4 (Take 5) since additional

bands were available: band 9 (cirrus band) enabled an enhanced detection of high and thin clouds

and band 2 provided an additional criterion to detect aerosols. L2A products were generated for

the visible, near-infrared and shortwave infrared bands (bands 1 to 7). The thermal bands were not

processed, as they are not available on Sentinel-2.

RapidEye data were acquired as L3A products (see Table 4) [42]. After a resampling to the

Sentinel-2 10 m resolution, they were processed to L3A BOA (see Table 4). In this case, the

processing was slightly different since the multi-temporal method implemented in MACCS requires

data acquired under constant viewing angles, which is not the case for the RapidEye sensor. The cloud

detection was performed through a semi-automatic approach based on a Supervised Vector Machine

active learning algorithm embedded into a QGIS plugin. The cloud shadows were then retrieved

assuming a constant cloud altitude within the image and by searching the ground displacement for

the best match with decreased reflectance values due to shadows. The Aerosol Optical Thickness

(AOT) estimation relied on the Dark Dense Vegetation method available in MACCS and described

in [43].
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Table 4. Characteristics of the three sensors used to build the EO time series. For the sake of comparison, Sentinel-2 main characteristics are also detailed.

SPOT 4 Landsat 8 RapidEye Sentinel-2

Spatial resolution 20 m 30 m 6.5 m (resampled to 5 m) 10, 20, 60 m
Field of view 60 to 120 km 180 km 77 km 290 km
Repeat period 5 days 16 days Daily (off-nadir)/5.5 days (at nadir) 5 days (with 2 sensors)
Time Period February 2013–June 2013 April 2013–present September 2008–present From June 2015

Bands

- B1: 0.50–0.59 µm

- B2: 0.61–0.68 µm

- B3: 0.78–0.89 µm

- B4: 1.58–1.75 µm

- B1: 0.43–0.45 µm

- B2: 0.45–0.51 µm

- B3: 0.53–0.59 µm

- B4: 0.64–0.67 µm

- B5: 0.85–0.88 µm

- B6: 1.57–1.65 µm

- B7: 2.11–2.29 µm

- B9: 1.36–1.38 µm

- B10: 10.60–11.19 µm

- B11: 11.50–12.51 µm

- B1: 0.44–0.51 µm

- B2: 0.52–0.59 µm

- B3: 0.63–0.685 µm

- B4: 0.69–0.73 µm

- B5: 0.76–0.85 µm

- B1: 0.433–0.453 µm

- B2: 0.4575–0.5225 µm

- B3: 0.5425–0.5775 µm

- B4: 0.65–0.68 µm

- B5: 0.6975–0.7125 µm

- B6: 0.7325–0.7475 µm

- B7: 0.773–0.793 µm

- B8: 0.7845–0.8995 µm

- B8a: 0.855–0.875 µm

- B9: 0.935–0.955 µm

- B10: 1.365–1.395 µm

- B11: 1.565–1.655 µm

- B12: 2.1–2.28 µm

Products used in
the TDS

Input and output:
Input:

Input:

/Level 2A (L2A): surface
reflectance values (top of
canopy) with masks for
clouds, cloud shadows,

snow and water

Level 3A (L3A): surface reflectance values (top of
canopy) with radiometric, sensor and geometric

correction
Level 1T (L1T): surface

reflectance values (top of
atmosphere) with masks for

clouds, cloud shadows, snow,
water and level of aerosol

Output:
Output:

/Level 3A Bottom of Atmosphere (L3A BOA): surface
reflectance values with masks for clouds and waterL2A
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4.2.3. Quality Assessment

The quality of the resulting L2A time series was assessed, looking at several properties: (i) the

geometry and the co-registration of the images over time and between sensors; (ii) the cloud masks;

(iii) the aerosol estimates; and (iv) the temporal consistency of the surface reflectance values.

‚ Geometry

The geometry of the SPOT4 (Take 5) data set is fully documented in [18]. Given that the initial

geolocation error could reach 1500 m, the multi-temporal registration was qualified as good. For

most images, 50% of the measurements show that the registration performance is better than 0.3 pixel

(6.66 m) and for 80% of the measurements, it is better than 0.5 pixel (10 m).

The geometric performance of the Landsat 8 L1T products is detailed in [44]. The measured

band-to-band registration accuracy exceeds the requirement threshold for all band-pair combinations

and greatly exceeds the threshold for all band-pairs that do not include the cirrus band. As for

image-to-image registration accuracy, the performance was found again to exceed the requirement of

12 meters in the line and sample directions: 3.052 and 2.250 meters in the line and sample directions

respectively for the all validation sample and 6.623 and 5.051 meters in the line and sample directions

for the worst image of the samples. These generally good results were confirmed in the TDS, except

for the French site where a 38-m bias was found. In this particular case, the image was nearly

completely covered by clouds, resulting in few ground control points.

As for the RapidEye sensor, all images are provided with a guaranteed minimum geometric

accuracy of 30.34 m [42]. These specifications were already confirmed in the literature [45,46] and

were largely met in the TDS.

The multi-temporal registration of all sensors was also qualitatively assessed: pixels

corresponding to borders between two different surface types were selected for each sensor and

site and the temporal profile of each reflectance band was analyzed. When a significant difference

between the expected reflectance value and the observed one was detected, the two consecutive

images were visually analyzed. The analysis resulted in very good geometric accuracy for all data

sets. When an anomaly was observed, it was mainly due to undetected clouds or shadows, but also

to seasonality or changes in the brightness that were not related to the co-registration.

Finally, the geometric consistency between images acquired by different sensors was analyzed.

In general, the images of the different sensors were properly aligned. The geometric consistency

between the SPOT4 (Take 5) and Landsat 8 images was naturally ensured since the SPOT4 (Take 5)

ortho-rectification used the Landsat 8 images as reference for all sites. The only exception is the

French site as already mentioned. The consistency of the RapidEye data set with SPOT4 (Take 5) and

Landsat 8 images was quantified (Table 5). The figures were obtained through a set of 90 points for

the SPOT4 (Take 5) analysis and a set of 116 points for the Landsat 8 analysis. In both cases, the points

were spread over all the RapidEye images (between 2 and 5 points by image). The results are below

the SPOT4 (Take 5) and the Landsat 8 pixel resolution, which means that the three data sets could be

used together.

Table 5. Geometric consistency of the RapidEye data set with SPOT4 (Take 5) and Landsat 8 images.

SPOT4 (Take 5) Landsat 8
RMSEx RMSEy RMSEx RMSEy

11.3 m 19.4 m 13.4 m 15.1m

‚ Cloud masks

The quality of the SPOT4 (Take 5) cloud masks was assessed outside of this project. The protocol and

the results are documented in [18]. The evaluation of the clouds and cloud shadows masks relied on
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a visual verification of quick-looks. In spite of some imperfections, even very thin clouds and their

shadows were usually detected.

The quality of the cloud masks generated for the Landsat 8 and RapidEye data was assessed

also by visual inspection. In general, for the two sensors, the performance of the cloud screening

is good, even if some problems were noticed when dealing with small clouds. When working

with Landsat 8 data, clouds identification is slightly improved when using the additional spectral

information provided by the cirrus band 9. Figure 4a provides an example of cloud detection on

Landsat 8 data over the Pakistan site. This is a good example of the interest of a multi-temporal

method (as implemented in MACCS) for cloud detection. A method based on reflectance thresholds

would classify the desert (North West corner) as a cloud, or miss the haze in the valley close to desert

or the clouds in the top right of image. Here, haze, clouds and their shadows were very well detected.

Some possible false detections may be observed over the desert because it was a drying period at the

beginning of summer. Despite the very high AOT during image acquisition, no other false detection

of clouds was observed.

 
(a) (b) 

–
–

– –

Figure 4. Cloud detection (a) over the Pakistan site (May 25, 2013, top left: 31.74˝N–72.46˝E, low

right: 31.52˝N–72.70˝E) with haze and clouds over desert and (b) over the Ukrainian site (November

10, 2013, top left: 50.25˝ N–29.80˝ E, low right: 49.69˝ N–30.71˝E) with a large number of cumulus

clouds. Clouds are circled in green and shadows in black.

This good performance of the cloud mask could be even better by further improving the mask

expansion process. Currently, the final mask is provided after an expansion of 480 meters in all

directions, which is justified for clouds with fuzzy edges as illustrated in Figure 4b. In this case, the

expansion fills the gaps between clouds in which the surface reflectance values would be affected

by shadows and by the light reflected by clouds. Yet, in the case of scattered cumulus clouds which

usually have sharp edges, a 480 meters expansion tends to exaggerate the size of the clouds.

‚ Aerosol estimates

The aerosol estimates were validated for the whole SPOT4 (Take 5) experiment (Figure 5a

from [18]). They were compared with in situ measurements from the Aeronet Network [47] if available

and if not, the estimates at 550 nm were compared to the Aeronet level 2 data. All the Aeronet sites

which were within 50 km from the image were used.

The standard deviation of the AOT estimates was 0.09. It reduced to 0.06 when removing the

Aeronet data that were likely corrupted by the presence of clouds. The criteria used for this screening

are defined in [18]: only cloud-free images (i.e., for which there should be less than 10% of clouds

in a 20-km neighborhood from the Aeronet site) and Aeronet observations which are stable over
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time (i.e., below 0.02 within an hour around the satellite overpass time) are kept. These conditions

correspond to the stable condition in the legend of Figure 5, represented by blue circles. The highest

disagreements were observed for the Tunisian site, which is not part of the project. The standard

deviations for the Sen2-Agri sites were less than 0.06.

 
(a) (b) 

Figure 5. Validation of AOT estimates at 550 nm determined for (a) SPOT4 (Take 5) images (from [18])

and (b) Landsat 8 images using Aeronet in situ measurements.

The same assessment was performed for the Landsat 8 data (Figure 5b). The Aeronet sites that

were used are: Seysses, Le Fauga and Avignon in France; Kyiv in Ukraine; and Saada and Ouarzazate

in Morocco. Here again, the accuracy of aerosol estimates was excellent. Despite the reduced overpass

frequency offered by Landsat sensors (16 vs. 5 days), the same level of accuracy is obtained as for the

SPOT4 (Take 5) data set.

Unfortunately, no Aeronet sites were available near the Chinese and Pakistani sites where very

large AOT were observed. For 2013, mean AOT values at 500 nm of 0.719 and of 0.706 were measured

by the closest photometers of Lahore (Pakistan) and Beijing (China), respectively [48,49]. These

figures must be taken cautiously as the photometers are at a significant distance from the agricultural

sites and are located in cities. In Pakistan, the estimations are more or less representative while in

China, they are slightly lower (around 0.5). Consequently, atmospheric corrections over these sites

were less accurate and added noise to the surface reflectance time series.

‚ Temporal consistency of surface reflectance values

The temporal consistency of the TDS was assessed by visually analyzing the temporal profiles

of the individual reflectance bands and of the NDVI coming from different agricultural fields. When

unexpected reflectance values were observed in the profiles, the images were visually checked. This

analysis was done per site for each sensor, looking at the temporal profiles coming from the average

of all pixels belonging to one field.

In general, the detected outliers were explained by undetected clouds or shadows, the presence

of aerosols, etc. Two issues were noticed in the SPOT4 (Take 5) data sets of Maricopa (United States)

and San Antonio de Areco (Argentina), which could be explained by irrigation events (Figure 6). In

the case of Maricopa, irrigation explained variations observed in the band 4 (shortwave infrared) for

the dates of 15, 20 and 25 April. The same occurred over the Argentinian image of May 29 when the

reflectance values in the bands 1, 2 and 3 (green, red, near infrared) dropped in an unexpected way

(up to 50% for the bands 1 and 2).
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(a) Maricopa, United States 

 

(b) San Antonio de Areco, Argentina 

Figure 6. Temporal profiles in the four spectral bands of the SPOT4 (Take 5) time series over the

(a) American and (b) Argentinian sites. Irrigation periods are highlighted in red.

Finally, the temporal consistency of the reflectance values between sensors (SPOT4 (Take 5)

and Landsat 8) was evaluated, for the sites of France, Morocco and Belgium. Landsat 8 data were

resampled to 20 meters and the same methodology as before was applied, thus analyzing temporal

profiles made of two sensors. The conclusion was that the profiles coming from the two sensors were

coherent and temporally consistent, as shown in Figure 7 for the Moroccan site.
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Figure 7. NDVI temporal profiles from parcels of wheat, maize, permanent crops and mix of

permanent and annual crops over the Moroccan site. For each crop, temporal profiles of three

parcels are provided, plain and hatched dots showing NDVI values obtained from SPOT4 (Take 5)

and Landsat 8 images respectively.

4.3. In Situ Data Collection and Formatting

In situ data for algorithm development and products validation were collected for the year 2013

by the team(s) responsible of each site. All site managers agreed to share their data with the project.

Except for Belgium (where an official land cover database was already available for 2013) and United

States (where annual cropland classifications exist as raster files), the cropland data (crop presence

and crop type identification) were obtained by field observations during the main growing season

of the year 2013. In order to have a complete data set allowing a proper validation of the cropland

products, non-cropland classes were also requested and obtained either from field observations or

from institutional data. Regarding the biophysical variables, only 4 sites had these kinds of data:

Belgium, France, Morocco and Ukraine. Over Belgium, France and Ukraine, LAI was obtained using

the CAN-EYE imaging software [50] which extracts canopy structure characteristics from true-color

images either acquired with a fish-eye or with a classic objective. Over Morocco, LAI was also

estimated from hemispheric images using a MATLAB code which makes a similar work as CAN-EYE.

Each data set received was checked, sometimes cleaned, and put in a standard format for the project.

5. Results

The data set generated for agriculture monitoring by the project is presented in Figure 8. In this

figure, S4-T5, L8 and RE abbreviations were used for SPOT4 (Take 5), Landsat 8 and RapidEye.
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Argentina, San Antonio de Areco (JECAM) Belgium, Hesbaye (JECAM) 

EO data 

- 12 SPOT4 (Take 5) + 11 Landsat 

8 

- 15 RapidEye (Take 5) images to 

test directional correction in the 

composites  

- Data set of good quality; winter 

crops not covered with SPOT4 

(Take 5) but very good coverage 

of summer crops: almost one 

image by week from February to 

April 

In situ data 

- Cropland/crop type information: 108 fields 

- Non-cropland vegetation: 39 fields 

- Biophysical variable: no 

- Comments: field boundaries available 

 

EO data 

- 8 SPOT4 (Take 5) + 3 Landsat 8 

- Data set of moderate quality due to 

cloud cover during the summer crops 

season (at least one image by month 

from March to September); end of 

winter crop season also covered 

In situ data 

- Cropland/crop type information: 31244 

fields 

- Non-cropland vegetation: 78156 fields 

- Biophysical variable: CAN-EYE 

derived variables (GAI, PAI, FAPAR, 

FCOVER) of 14 samples in fields of 

wheat measured at different dates 

(number of dates included depend on 

the field and varies from 1 to 8 dates) 

- Comments: field boundaries available; 

crop information from farmers 

declarations; regional map of land use 

from 2005 

 
 

Figure 8. Cont.
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Burkina Faso, Koumbia (JECAM) China, Shandong (JECAM) 

EO data 

- 9 Landsat 8 + 1 RapidEye 

- Data set of low quality, with 

very few images during the 

growing period 

In situ data 

- Cropland/crop type information: 496 fields 

- Non-cropland vegetation: 101 fields 

- Biophysical variable: no 

- Comments: field boundaries available; crop 

type and non-crop information collected 

through 590 GPS waypoints provided as 

polygons   

EO data 

- 18 SPOT4 (Take 5) + 10 Landsat 8 

- Data set of moderate quality with a 

high presence of aerosols in February 

and March; April and May well 

covered, as well as the beginning of 

June 

In situ data 

- Cropland/crop type information: 54 

fields 

- Non-cropland vegetation: 22 fields 

- Biophysical variable: no 

- Comments: field boundaries available 

 
 

Figure 8. Cont.
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France, SupdmipyOuest (JECAM) Madagascar, Antsirabe (JECAM) 

EO data 

- 32 SPOT4 (Take 5) + 8 Landsat 8 

- Data set of good quality, covering 

well the end of the winter crops 

and the complete summer crops 

cycles (more than one image per 

month) 

In situ data 

- Cropland/crop type information: 1500 fields 

- Non-cropland vegetation: 7659 fields 

- Biophysical variable: CAN-EYE derived 

variables (GAI, FAPAR, FCOVER) of 5 

samples in fields of wheat at 6 dates, 11 

samples in fields of sunflower at 6 dates, 9 

samples in fields of maize from 8 to 12 dates 

- Comments: field boundaries available; 

access to European databases (Common 

Agriculture Policy) 

EO data 

- 12 SPOT4 (Take 5) + 15 Landsat 8 + 2 

RapidEye  

- Data set of moderate to low quality, 

with almost weekly acquisitions from 

the middle of the growing season (end 

of February to end of April) but with a 

lot of clouds 

In situ data 

- Cropland/crop type information: 221 

fields 

- Non-cropland vegetation: 101 fields 

- Biophysical variable: no 

- Comments: field boundaries available; 

field observations of land use and crop 

type 

 
 

Figure 8. Cont.
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Morocco, Tensift (JECAM, CESBIO and UCAM) Pakistan (FAO with SUPARCO) 

EO data 

- 24 SPOT4 (Take 5) + 16 Landsat 8  

- Data set of good quality, with a 

very good coverage from January 

to June (+/- one image every 5 

days) 

In situ data 

- Cropland/crop type information: 636 fields 

- Non-cropland vegetation: 500 fields 

- Biophysical variable: LAI measured in 2 

fields of wheat at 11 dates 

- Comments: field boundaries available  

EO data 

- 13 Landsat 8 + 1 RapidEye  

- Data set of low quality, with at least 

one cloud-free Landsat 8 in June, July, 

August and September (the ones from 

June and July with aerosols); only the 

beginning and the end of the growing 

cycle covered; no acceptable image 

during the maximum growing period 

In situ data 

- Cropland/crop type information: 228 

fields 

- Non-cropland vegetation: 54 fields 

- Biophysical variable: no 

- Comments: field boundaries obtained 

after a segmentation of SPOT-5 

images 

 
 

Figure 8. Cont.
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Russia, Tula (JECAM) South Africa, Free State (JECAM) 

EO data 

- 5 Landsat 8 + 6 RapidEye  

- Data set of low quality, restricted 

to two Landsat 8 and four 

RapidEye images covering the 

end of the summer crops cycle 

(end of April to July) 

In situ data 

- Cropland/crop type information: 205 fields 

- Non-cropland vegetation: 56 fields 

- Biophysical variable: no  

- Comments: field boundaries available  

EO data 

- 23 SPOT4 (Take 5) + 15 Landsat 8 + 3 

RapidEye 

- 23 RapidEye (Take 5) images to test 

directional correction in the composites 

- Data set of good quality, with a good 

coverage (one image every week) 

except for the beginning of the growing 

cycle (December/January) 

In situ data 

- Cropland/crop type information: 120 

fields 

- Non-cropland vegetation: 44 fields 

- Biophysical variable: no 

- Comments: field boundaries available 

based on 2012 farm boundaries; crop 

type is determined by observers based 

in very light aircraft; high resolution 

reference land use map 

 
 

Figure 8. Cont.
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Ukraine, Phenichne and Velyka Snitynka (JECAM) United States, Maricopa (USDA) 

EO data 

- 17 SPOT4 (Take 5) + 11 Landsat 

8 + 2 RapidEye 

- Data set of moderate quality, 

with the end of the winter crops 

and the beginning of the summer 

crops (April, May, June) well 

covered 

In situ data 

- Cropland/crop type information: 221 fields 

- Non-cropland vegetation: 56 fields 

- Biophysical variable: CAN-EYE derived 

variables (LAI, FAPAR, and FCOVER) of 

about 30 samples of different surface types 

(sugar beet, forest, grassland, soybeans, 

maize, winter wheat and sunflower) at three 

different date 

- Comments: field boundaries available 

EO data 

- 54 SPOT4 (Take 5) + 15 Landsat 8 

- Data set of good quality, with +/- one 

image every 5 days from February to 

June, covering the middle end of the 

winter and the beginning to middle 

cycle of the summer crops. Summer 

cycle less covered with Landsat 8 

In situ data 

- Cropland/crop type information: 4907 

fields 

- Non-cropland vegetation: 11351 fields 

- Biophysical variable: no 

- Comments: land cover information 

(crop, crop type, no crop) derived from 

USDA cropland classification (raster 

file); a posteriori verification of the 

interpretation made by the project  

 
 

Figure 8. Description of the TDS acquired over each site.
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6. Discussion and Future Activities

The TDS was built using EO and in situ data acquired in 2013 over 12 globally distributed

sites. The EO data set was made of the best possible images to simulate Sentinel-2 time series: the

invaluable SPOT4 (Take 5) data collection, complemented by Landsat 8 and RapidEye data. Such

combination of missions will be exactly the situation with Sentinel-2, especially during the first year

when there will be a single operational satellite.

The time series coming from the three sensors showed very good geometric performance. The

specifications given in the literature [18,42,44] were largely met. Only the Landsat 8 data over the

French site showed a lower geometric accuracy, with a 38-m bias. In addition, the multi-temporal

registration was successfully assessed for each sensor and images acquired by different sensors

proved to be properly aligned (Table 5).

The cloud mask algorithm generally performed well and was able to remove cloud and cloud

shadow contaminated data from further analysis ([18]; Figure 4). This assessment is consistent

with other studies that have shown the high performance of the cloud detection implemented in

MACSS [38,51]. Despite the general good performance, a few issues were noticed. First, some thin

clouds were omitted on SPOT4 (Take 5) images while they were better discriminated over the Landsat

8 data thanks to band 9 (cirrus band). Sentinel-2 also includes a cirrus band (band 10), which should

allow avoiding this kind of omission as long as these very thin clouds are high enough [18]. Second,

as the final cloud mask is provided after an expansion of 480 meters in all directions, the size of the

clouds tends to be exaggerated in the case of scattered cumulus with sharp edges. Cloud-free pixels

are thus removed, which can become problematic in very cloudy areas where each valid date and

pixel is essential. Finally, there is also little room for improvement in the cloud shadows detection

area. This specific process is being reworked and will become better in the next version of MACCS.

Once the clouds and cloud shadows are well detected, the quality of the surface reflectance time

series is mainly driven by the accuracy of the AOT retrieval. The performance of the AOT estimation

has been very good with a standard deviation of the AOT estimates of 0.06 both for the SPOT4 (Take 5)

and Landsat 8 sensors. Only the sites of Pakistan and China showed large atmospheric correction

errors, which limited the usability of the data set.

The particular dates where the performance of the cloud detection or the aerosol estimation

was lower than expected were identified. In the data set of San Antonio de Areco (Argentina), the

images of 29 May and 15 March presented undetected shadows. Some undetected small clouds were

also observed, which was found problematic because of their quantity in the images of 4 May and

29 April, this last one being affected to a lesser degree. Over Shandong (China), the cloud detection

did not perform as desired due to the high aerosol content. Most affected images are those from

19 February to 31 March. In the data set of Antsirabe (Madagascar), the image from 8 February

presented a high number of undetected small clouds. It was also the case of the image of 18 September

in the data set of Tula (Russia). In the data set of Free State (South Africa), high aerosol content and

shadows remained in the image of 1 April and omission of cloud shadows affected the image of 11

May. Finally, over the Ukrainian site, thin clouds remain in the south east of the 16 June image and

the image of 22 August presented undetected small clouds.

Over all sites, the temporal consistency of the time series was good: the profiles were smooth,

and most of the observed discontinuities were due to undetected clouds or shadows. The same level

of consistency was also observed in multi-sensor time series (Figure 7).

A last criterion that affects the quality—or at least, the usability—of the TDS is the number of

images along the season. This information is detailed in Figure 8 as well as the images distribution

along the growing season. The sites in Burkina Faso, Madagascar, Pakistan and Russia have few

images during the growing season. Conversely, the sites in Argentina, France, Morocco, South Africa

and United States are very well covered with up to one image per week. The data sets of Belgium,

China and Ukraine are of intermediate quality: they are not very rich but they contain key dates of
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very good quality. It should be noted that the TDS only covers the summer crops over the Argentinian

and South African sites as they are located in the southern hemisphere.

Each EO time series came with a comprehensive data set of field measurements acquired during

the same growing season.

The TDS, and thus the SPOT4 (Take 5) time series, was used in the Sen2-Agri project as input for

the benchmarking, to test concurrent algorithms and select the most suitable ones for each product

(see Section 2.3). The project is also taking advantage of the SPOT5 (Take 5) data set. Eight sites

were selected to run another set of prototype products based on these new time series. The sites are

those of Belgium, Burkina Faso, China, France, Mali, Russia, South Africa and Ukraine. The same data

synthesis protocols are used. For satellite data, images are acquired and L2A time series are generated

using the SPOT5 (Take 5) as main inputs and the Landsat 8 data as a complementary source especially

to cover the beginning of the season. For ground data, site managers agreed once more to share their

in situ data with the project. Thanks to SPOT5 (Take 5) and the field data collection, the project will be

able to propose agricultural products for the 2015 growing season and will offer a smooth transition

with the first Sentinel-2 data. With the launch on June 23, 2015 and a commissioning phase around

three months, the first images can be expected by the end of 2015. If everything goes well, the project

will be able to switch to the Sentinel-2 data for the 2016 growing season in the northern hemisphere.

7. Conclusions

The need to develop better agricultural monitoring capabilities able to provide timely

information about crop status, crop area and yield forecasts is widely acknowledged. Satellite data

can contribute to this objective and in particular, the new Sentinel-2 mission suited to agriculture

monitoring applications with its 5-day repeat period, its specific spectral bands and its 10–20 meters

spatial resolution. The Sen2-Agri project anticipated this momentum around 2 years ago and

prepared the exploitation of Sentinel-2 data for local to global operational agriculture monitoring.

The prerequisite to this anticipation was to build a data set suitable for such an objective.

This paper presented the activities underlying the building of such a data set, which consists of

satellite imagery and in situ measurements acquired in 2013 over 12 sites spread over the world. The

main source of the EO data was the SPOT4 (Take 5) experiment, complemented with Landsat 8 and

RapidEye imagery. In situ crop measurements were shared by JECAM network members and other

teams in the field.

This duo of EO and in situ data was used as input for benchmarking algorithms and selecting

the most suitable ones to be included in an operational agriculture system. Benchmarking provided

crucial support for the twofold ambition of the project, which is to support timely and accurate crop

information at local scales while also supporting accurate monitoring of widely varying agricultural

systems at global scales. These ambitions could only be ensured since the TDS is representative of the

diverse agricultural practices and climate types over the world and is made of both EO and in situ data

acquired in enough quantity during the same season. The site selection and benchmarking approach

adopted in this project has allowed algorithms and methods to be compared across sites [23–25].

So far, very few examples of this kind of across-sites study exist. This can probably be explained

by the logistics, coordination and costs needed to build the necessary data sets. Yet, these studies

are highly important to improve our understanding of the current agriculture monitoring capacities.

They are the prerequisite to bridge the gap between research and operational methods for agricultural

remote sensing.

With the past SPOT4 (Take 5) and the following SPOT5 (Take 5) experiments, the project

provides a strong scientific contribution to the JECAM network and GEOGLAM initiatives: it allows

completing one of the very first cross-cutting analyses for multiple, globally distributed sites. In

that sense, it helps to fill the gap between field operational systems and state-of-the-art remote

sensing practices.
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The TDS can be made available upon request through the project website [26]. EO component

is available for all sites and in situ data are shared for most of them. The data set is delivered with a

report that documents its quality site by site.
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