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Abstract—Key questions that scientists and engineers typically want to address

can be formulated in terms of predictive science. Questions such as: “How

well does my computational model represent reality?”, “What are the most

important parameters in the problem?”, and “What is the best next experiment

to perform?” are fundamental in solving scientific problems. mystic is a

framework for massively-parallel optimization and rigorous sensitivity analysis

that enables these motivating questions to be addressed quantitatively as

global optimization problems. Often realistic physics, engineering, and materials

models may have hundreds of input parameters, hundreds of constraints, and

may require execution times of seconds or longer. In more extreme cases,

realistic models may be multi-scale, and require the use of high-performance

computing clusters for their evaluation. Predictive calculations, formulated as

a global optimization over a potential surface in design parameter space, may

require an already prohibitively large simulation to be performed hundreds, if

not thousands, of times. The need to prepare, schedule, and monitor thousands

of model evaluations, and dynamically explore and analyze results, is a chal-

lenging problem that requires a software infrastructure capable of distributing

and managing computations on large-scale heterogeneous resources. In this

paper, we present the design behind an optimization framework, and also

a framework for heterogeneous computing, that when utilized together, can

make computationally intractable sensitivity and optimization problems much

more tractable. The optimization framework provides global search algorithms

that have been extended to parallel, where evaluations of the model can be

distributed to appropriate large-scale resources, while the optimizer centrally

manages their interactions and navigates the objective function. New methods

have been developed for imposing and solving constraints that aid in reducing

the size and complexity of the optimization problem. Additionally, new algorithms

have been developed that launch multiple optimizers in parallel, thus allowing

highly efficient local search algorithms to provide fast global optimization. In this

way, parallelism in optimization also can allow us to not only find global minima,

but to simultaneously find all local minima and transition points -- thus providing

a much more efficient means of mapping out a potential energy surface.

Index Terms—predictive science, optimization, uncertainty quantification, verifi-

cation, validation, sensitivity analysis, parallel computing, distributed computing,

heterogeneous computing

Introduction

Recently, a unified mathematical framework for the rigorous

construction and solution of uncertainty quantification (UQ)

problems was formulated [OSS11]. This framework, called

Optimal Uncertainty Quantification (OUQ), is based on the

observation that, given a set of assumptions and information

about the problem, there exist optimal bounds on the uncer-

tainties. These bounds are obtained as extreme values of well-

defined optimization problems that correspond to extremizing

probabilities of failure subject to the constraints imposed by

scenarios compatible with the information set.

The corresponding author is with California Institute of Technology, e-mail:

mmckerns@caltech.edu.

An accompanying software framework that implements

these rigorous UQ/OUQ methods is now posed.

A rigorous quantification of uncertainty can easily require

several thousands of model evaluations f (x). For all but the

smallest of models, this requires significant clock time -- a

model requiring 1 minute of clock time evaluated 10,000 times

in a global optimization will take 10,000 minutes (∼ 7 days)

with a standard optimizer. Furthermore, realistic models are

often high-dimensional, highly-constrained, and may require

several hours to days even when run on a parallel computer

cluster. For studies of this size or larger to be feasible, a

fundamental shift in how we build optimization algorithms

is required. The need to provide support for parallel and dis-

tributed computing at the lowest level -- within the optimiza-

tion algorithm -- is clear. Standard optimization algorithms

must be extended to parallel. The need for new massively-

parallel optimization algorithms is also clear. If these parallel

optimizers are not also seamlessly extensible to distributed and

heterogeneous computing, then the scope of problems that can

be addressed will be severely limited.

While several robust optimization packages exist [JOP01,

KROOO], there are very few that provide massively-parallel

optimization [BMM10, EKL02, MAT09] -- the most notable

effort being DAKOTA [DAKOT], which also includes meth-

ods for uncertainty quantification [DAKUQ]. A rethinking of

optimization algorithms, from the ground up, is required to

dramatically lower the barrier to massively-parallel optimiza-

tion and rigorous uncertainty quantification. The construction

and tight integration of a framework for heterogeneous paral-

lel computing is required to support such optimizations on

realistic models. The goal should be to enable widespread

availablility of these tools to scientists and engineers in all

fields.

Several of the component pieces of such a framework

for predictive science already exist, while a few key pieces

must be constructed -- furthermore, these packages must

then be assembled and integrated. Python [GVRPY] is a

natural integration environment, and is one that readily sup-

ports the dynamic nature of working across heterogeneous

resources. By requiring this framework be pure-Python, many

of the barriers to running on a new platform are removed.

multiprocessing [MPROC], mpi4py [MPI4P], and pp

[VVPPP] are selected for communication mechanisms, both

due to their high level of feature coverage and their relative

ease of installation. NumPy [NUMPY] is used for algorithmic

efficiency, and SymPy [SYM11] is used to provide an alternate

interface for building constraints. Many of the optimization
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algorithms leverage SciPy [JOP01]; however like the use

of Matplotlib [MATPL] for plotting, SciPy is an optional

dependency.

This paper will discuss the modifications to the mystic

[MHA09] optimization framework required to provide a sim-

ple interface to massively parallel optimization, and also to

the pathos [MBA10] framework for staging and launching

optimizations on heterogeneous resources. These efforts lever-

age pyre [MAGA1] -- an component integration framework

for parallel computing, which has recently been extended to

distributed communication and management with hydra (part

of this development effort). This paper will also overview

a new mathematical framework [OSS11, ALL11, KLL11,

LOO08] for the quantification of uncertainties, which pro-

vides a formulation of UQ problems as global optimization

problems.

Rigorous Uncertainty Quantification

Following [LOO08], we specifically take a certification point

of view of uncertainty quantification. For definiteness, we

consider systems whose operation can be described in terms

of N scalar performance measures (Y1, . . . ,YN) =Y ∈R
N . The

response of the system is taken as stochastic due to the intristic

randomness of the system, or randomness in the input parame-

ters defining the operation of the system, or both. Suppose that

the outcome Y ∈ A constitutes a satisfactory outcome for the

system of interest, for some prescribed measureable admissible

set A ⊆ R
N . Hence, we are interested in determining the

probability of failure (PoF) P[Y ∈ Ac].
Evidently, for an upper bound to be useful, it must also

be tight (i.e. it must be close to the actual PoF of the

system) and accessible by some combination of laboratory and

computational means. In [ALL11, KLL11], a methodology

for a rigorous determination of tight upper bounds on the

probability of failure for complex systems is presented, and

is summarized below.

We consider a response function Y = F(X) that maps con-

trollable system inputs X to performance measures Y , and re-

lies on a probability of failure (PoF) upper bounds of the con-

centration of measure (CoM) type [BBL04, LED01, MCD89].

If McDiarmid’s inequality [MCD89] (i.e. the bounded dif-

ferences inequality) is used to bound PoF, the system may

then be certified on the sole knowledge of ranges of its input

parameters -- without a priori knowledge of their probability

distributions, its mean performance E[Y ] = M and a certain

measure DG = U of the spread of the response, known

as system diameter, which provides a rigorous quantitative

measure of the uncertainty in the response of the system.

A model is regarded as Y = F(X) that approximates the

response Y = G(X) of the system. An upper bound on the

system diameter -- and thus on the uncertainty in the response

of the system -- then follows from the triangle inequality DG ≤
DF +DG−F , and U = DF +DG−F can be taken as a new -

- and conservative -- measure of system uncertainty. In this

approach, the total uncertainty of the system is the sum of

the predicted uncertainty (i.e. the variability in performance

predicted by the model as quantified by the model diameter

DF ), and the modeling-error uncertainty (i.e. the discrepancy

between model prediction and experiment as quantified by the

modeling-error diameter DG−F .

In [LOO08], PoF upper bounds of the CoM type were for-

mulated by recourse to McDiarmid’s inequality. In its simplest

version, this inequality pertains to a system characterized by

N real random inputs X = (X1, . . . ,XN) ∈ E ⊆R
N and a single

real performance measure Y ∈ R. Suppose that the function

G : RN → R describes the response function of the system.

Suppose that the system fails when Y ≤ a, where a is a

threshold for the safe operation of the system. Then, a direct

application of McDiarmid’s inequality gives the following

upper bound on the PoF of the system:

P[G ≤ a]≤ exp

(

−2
M2

U2

)

(1)

where

M = (E[G]−a)+ (2)

is the design margin and

U = DG (3)

is the system uncertainty. In (3), DG is the diameter of the

response function. From (1) it follows that the system is

certified if

exp

(

−2
M2

U2

)

≤ ε

where ε is the PoF tolerance, or, equivalently, if

CF =
M

U
≥

√

log

√

1

ε
(4)

where CF is the confidence factor. In writing (2) and subse-

quently, we use the function x+ := max(0,x). We see from

the preceding expressions that McDiarmid’s inequality sup-

plies rigorous quantitative definitions of design margin and

system uncertainty. In particular, the latter is measured by

system diameter DG, which measures the largest deviation in

performance resulting from arbitrarily large perturbations of

one input parameter at a time. Within this simple framework,

rigorous certification is achieved by the determination of two-

-and only two--quantities: the mean performance E[G] and the

system diameter DG.

McDiarmid’s inequality is a result in probability theory that

provides an upper bound on the probability that the value

of a function depending on multiple independent random

variables deviates from its expected value. A central device

in McDiarmid’s inequality is the diameter of a function. We

begin by recalling that the oscillation osc( f ,E) of a real

function f : E → R over a set E ∈ R is

osc( f ,E) = sup{| f (y)− f (x)| : x,y ∈ E} (5)

Thus, osc( f ,E) measures the spread of values of f that may be

obtained by allowing the independent variables to range over

its entire domain of definition. For functions f : E ⊂R
N →R

of several real values, component-wise suboscillations can be

defined as

osci( f ,E) = sup{| f (y)− f (x)| : x,y ∈ E, x j = y j for j 6= i}
(6)
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Thus osci( f ,E) measures the maximum oscillation among all

one-dimensional fibers in the direction of the ith coordinate.

The diameter D( f ,E) of the function f : E →R is obtained as

the root-mean square of its component-wise suboscillations:

D( f ,E) =

(

n

∑
i=1

osc2
i ( f ,E)

)1/2

(7)

and it provides a measure of the spread of the range of

the function. Thus (6) also us to regard osci( f ,E) as a

subdiameter of the system corresponding to variable Xi, where

the subdiameter can be regarded as a measure of uncertainty

contributed by the variable Xi to the total uncertainty of the

system.

The attractiveness of the McDiarmid CoM approach to UQ

relies on the requirement of tractable information on response

functions (sub-diameters) and measures (independence and

mean response). Above, it is described how to “plug” this in-

formation into McDiarmid’s concentration inequality to obtain

an upper bound on probabilies of deviation. One may wonder

if it is possible to obtain an “optimal” concentration inequality,

especially when the available information may not necessarily

be sub-diameters and mean values. A general mathematical

framework for optimally quantifying uncertainties based only

on available information has been proposed [OSS11], and will

be summarized here. Assume, for instance, that one wants to

certify that

P[G ≥ a]≤ ε (8)

based on the information that osci(G,E) ≤ Di, X =
(X1, . . . ,XN), E[G]≤ 0 and that the inputs Xi are independent

under P. In this situation, the optimal upper bound U (AMD)
on the PoF P[G ≥ a] is the solution of the following optimiza-

tion problem

U (AMD) = sup
( f ,µ)∈AMD

µ[ f (X)≥ a] (9)

subject to constraints provied by the information set

AMD =















( f ,µ)

∣

∣

∣

∣

∣

∣

∣

∣

f : E1 ×·· ·×EN → R,
µ ∈ M (E1)⊗·· ·⊗M (EN),

Eµ [ f ]≤ 0,
osci( f ,E)≤ Di















(10)

where M (Ek) denotes the set of measures of probability on

Ek. Hence, McDiarmid’s inequality is the statement that

U (AMD)≤ exp

(

−2
a2

∑
N
i=1 D2

i

)

(11)

Similarly, for any other set of information A , we have an

optimal (i.e.) least upper bound on the probability of deviation

U (A ) = sup
( f ,µ)∈A

µ[ f (X)≥ a] (12)

The idea is that in practical applications, the available infor-

mation does not determine (G,P) uniquely, but does determine

a set A such that (G,P) ∈ A and such that any ( f ,µ) ∈ A

could a priori be (G,P). This mathematical framework, called

optimal uncertainty quantification (OUQ), is based on the

observation that, given a set of assumptions and information

about the problem, there exist optimal bounds on uncertainties;

these are obtained as extreme values of well-defined optimiza-

tion problems corresponding to extremizing probabilities of

failure, or of deviations, over the feasible set A . Observe

that this framework does not implicitly impose inappropriate

assumptions, nor does it repudiate relevant information. In-

deed, as demonstrated in (10 and 11) for the CoM approach,

OUQ can pose a problem that incorporates the assumptions

utilized in other common UQ methods (such as Bayesian

inference [LJH99]) and provide a rigorous optimal bound on

the uncertainties.

Although some OUQ problems can be solved analytically,

most must be solved numerically. To that end, the reduction

theorems of [OSS11] reduce the infinite-dimensional feasible

set A to a finite-dimensional subset A∆ that has the key

property that the objective function (PoF) has the same lower

and upper extreme values over A∆ as over A .

For example, the reduction for AMD in (10) is to pass to

measures µ = µ1 ⊗·· ·⊗µN such that each marginal measure

µi is supported on at most two points of the parameter space

Ei, i.e. µi is a convex combination of two Dirac measures

(point masses). Having reduced the set of feasible measures

µ , the set of feasible response functions f is also reduced,

since we only care about the values of f on the finite support

of µ and nowhere else.

We refer the reader to [OSS11] for the more general

reduction theorems. The essential point is that if the infor-

mation/constraints take the form of ni inequalities of the form

Eµi
[φ j]≤ 0 (for some test functions φ j) and n′ inequalities of

the form Eµ [φ j] ≤ 0, then it is enough to consider µi with

support on 1+ni +n′ points of Ei.

The reduction theorems leave us with a finite-dimensional

optimization problem in which the optimization variables are

suitable parametrizations of the reduced feasible scenarios

( f ,µ).

A Highly-Configurable Optimization Framework

We have built a robust optimization framework (mystic)

[MHA09] that incorporates the mathematical framework de-

scribed in [OSS11], and have provided an interface to pre-

diction, certification, and validation as a framework service.

The mystic framework provides a collection of optimization

algorithms and tools that lowers the barrier to solving com-

plex optimization problems. mystic provides a selection of

optimizers, both global and local, including several gradient

solvers. A unique and powerful feature of the framework is

the ability to apply and configure solver-independent termi-

nation conditions --- a capability that greatly increases the

flexibility for numerically solving problems with non-standard

convergence profiles. All of mystic’s solvers conform to a

solver API, thus also have common method calls to configure

and launch an optimization job. This allows any of mystic’s

solvers to be easily swapped without the user having to write

any new code.

The minimal solver interface:
# the function to be minimized and the initial values

from mystic.models import rosen as my_model

x0 = [0.8, 1.2, 0.7]
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Figure 1: Conceptual diagram for an optimizer. The cost function
provides a difference metric that accepts input parameters x and
produces a cost E.

# configure the solver and obtain the solution

from mystic.solvers import fmin

solution = fmin(my_model, x0)

The criteria for when and how an optimization terminates are

of paramount importance in traversing a function’s potential

well. Standard optimization packages provide a single conver-

gence condition for each optimizer. mystic provides a set of

fully customizable termination conditions, allowing the user to

discover how to better navigate the optimizer through difficult

terrain. Optimizers can be further configured through several

methods for choosing the InitialPoints.

The expanded solver interface:

# the function to be minimized and initial values

from mystic.models import rosen as my_model

x0 = [0.8, 1.2, 0.7]

# get monitor and termination condition objects

from mystic.monitors import Monitor, VerboseMonitor

stepmon = VerboseMonitor(5)

evalmon = Monitor()

from mystic.termination import ChangeOverGeneration

COG = ChangeOverGeneration()

# instantiate and configure the solver

from mystic.solvers import NelderMeadSimplexSolver

solver = NelderMeadSimplexSolver(len(x0))

solver.SetInitialPoints(x0)

solver.SetGenerationMonitor(stepmon)

solver.SetEvaluationMonitor(evalmon)

solver.Solve(my_model, COG)

# obtain the solution

solution = solver.bestSolution

# obtain diagnostic information

function_evals = solver.evaluations

iterations = solver.generations

cost = solver.bestEnergy

# modify the solver configuration, and continue

COG = ChangeOverGeneration(tolerance=1e-8)

solver.Solve(my_model, COG)

# obtain the new solution

solution = solver.bestSolution

mystic provides progress monitors that can be attached

to an optimizer to track progress of the fitted parameters

and the value of the cost function. Additionally, monitors

can be customized to track the function gradient or other

progress metrics. Monitors can also be configured to record

Figure 2: Optimization analysis viewers available in mystic.

Figure 3: Basic components provided in the optimizer toolkit. Several
wrapper classes are also provided for binding components, while
factory classes are provided for generating components.

either function evaluations or optimization iterations (i.e.

generations). For example, using VerboseMonitor(5)

in the SetGenerationMonitor method will print the

bestEnergy to stdout every five generations.

Constraints Toolkit

mystic provides a method to constrain optimization to be

within an N-dimensional box on input space, and also a

method to impose user-defined parameter constraint functions

on any cost function. Thus, both bounds constraints and

parameter constraints can be generically applied to any of

mystic’s unconstrained optimization algorithms. Tradition-

ally, constrained optimization problems tend to be solved

iteratively, where a penalty is applied to candidate solutions

that violate the constraints. Decoupling the solving of con-

straints from the optimization problem can greatly increase the

efficiency in solving highly-constrained nonlinear problems --

effectively, the optimization algorithm only selects points that

satisfy the constraints. Constraints can be solved numerically

or algebraically, where the solving of constraints can itself
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be cast as an optimization problem. Constraints can also be

dynamically applied, thus altering an optimization in progress.

Penalty-based methods indirectly modify the candidate so-

lution by applying a change in energy ∆E = k · p(~x) to the

unconstrained cost function f (~x) when the constraints are

violated. The modified cost function φ is thus written as:

φ(~x) = f (~x)+ k · p(~x) (13)

Set-based methods directly modify the candidate solution by

applying a constraints solver c that ensures the optimizer

will always select from a set of candidates that satisfy the

constraints. The constraints solver has an interface ~x ′ = c(~x),
and the cost function becomes:

φ(~x) = f (c(~x)) (14)

Adding parameter constraints to a solver is as simple as build-

ing a constraints function, and using the SetConstraints

method. Additionally, simple bounds constraints can also be

applied through the SetStrictRanges method:

# a user-provided constraints function

def constrain(x):

x[1] = x[0]

return x

# the function to be minimized and the bounds

from mystic.models import rosen as my_model

lb = [0.0, 0.0, 0.0]

ub = [2.0, 2.0, 2.0]

# get termination condition object

from mystic.termination import ChangeOverGeneration

COG = ChangeOverGeneration()

# instantiate and configure the solver

from mystic.solvers import NelderMeadSimplexSolver

solver = NelderMeadSimplexSolver(len(x0))

solver.SetRandomInitialPoints(lb, ub)

solver.SetStrictRanges(lb, ub)

solver.SetConstraints(constrain)

solver.Solve(my_model, COG)

# obtain the solution

solution = solver.bestSolution

mystic provides a simple interface to a lot of underlying

complexity -- thus allowing a non-specialist user to easily

access optimizer configurability and high-performance com-

puting without a steep learning curve. This feature must also

be applied to the application of constraints on a function or

measure. The natural syntax for a constraint is one of symbolic

math, hence mystic leverages SymPy [SYM11] to construct

a symbolic math parser for the translation of the user’s input

into functioning constraint code objects:

# a user-provided constraints function

constraints = """

x2 = x1

"""

from mystic.constraints import parse

constrain = parse(constraints)

The constraints parser is a constraints factory method that can

parse multiple and nonlinear constraints, hard or soft (i.e. “∼”)

constraints, and equality or inequality (i.e. “>”) constraints.

Similar tools exist for creating penalty functions, including a

SetPenalty method for solvers. Available penalty methods

include the exterior penalty function method [VEN09], the

Figure 4: Conceptual diagram for a service-based model. Here, the
job is the fundamental commodity of work, and is the object on which
the service is based -- in mystic, this is typically the user’s model or
a cost function. Services have a global unique identifier, and thus can
easily be called by proxy. Note that services may not be located on
the machine that requested the service be spawned. Services also can
be imbued with infrastructure for monitoring and handling events.
Monitors write to a stream that can be piped into another object,
such as a logger or one of mystic’s viewers.

augmented Lagrange multiplier method [KSK94], and the

logarithmic barrier method [JJB03]. At the low-level, penalty

functions are bound to the cost function using mystic’s

functionWrapper method.

It is worth noting that the use of a constraints solver

c does not require the constraints be bound to the cost

function. The evaluation of the constraints are decoupled from

the evaluation of the cost function -- hence, with mystic,

highly-constrained optimization decomposes to the solving

of K independent constraints, followed by an unconstrained

optimization over only the set of valid points. This method

has been shown effective for solving optimization problems

where K ≈ 200 [OSS11].

Seamless Migration to Parallel Computing

mystic is built from the ground up to utilize parallel and

distributed computing. The decomposition of optimization

algorithms into their component parts allow this decomposition

to not only be in an abstraction layer, but across process-

space. mystic provides a modelFactory method that

convers a user’s model to a service. We define a service to

be an entity that is callable by globally unique identifier.

Services can also be called by proxy. In mystic, services

also include infrastructure for monitoring and handling events.

An optimization is then composed as a network of interacting

services, with the most common being the user’s model or

cost function being mapped over parallel resources.

mystic provides several stock models and model factories

that are useful for testing:

# generate a model from a stock ’model factory’

from mystic.models.lorentzian import Lorentzian

lorentz = Lorentzian(coeffs)

# evaluate the model

y = lorentz(x)

Model factory methods insert pathos infrastructure, thus

casting a model as a callable service that has been imbued with

pathos infrastructure as shown in Figure (4). The default

launcher and map included in mystic are functionally

equivalent to execution and map within the standard Python



6 PROC. OF THE 10th PYTHON IN SCIENCE CONF. (SCIPY 2011)

Figure 5: Use of a modelFactory to cast a user’s model F(x) as
a service. The model and experimental data G are then bound with a
costFactory to produce a cost function. A costFactory can
accept a raw user’s model, a model proxy, or a model service (as
shown here). A typical metric is |F(x)−G|2.

distribution. Any user-provided function can be cast as a

service through the use of a modelFactory:
# a user-provided model function

def identify(x)

return x

# add pathos infrastructure (included in mystic)

from mystic.tools import modelFactory, Monitor

evalmon = Monitor()

my_model = modelFactory(identify, monitor=evalmon)

# evaluate the model

y = my_model(x)

# evaluate the model with a map function

from mystic.tools import PythonMap

my_map = PythonMap()

z = my_map(my_model, range(10))

A Framework for Heterogeneous Computing

We have developed a computational job management frame-

work (pathos) [MBA10] that offers a simple, efficient,

and consistent user experience in a variety of heterogeneous

environments from multi-core workstations to networks of

large-scale computer clusters. pathos provides a single en-

vironment for developing and testing algorithms locally -- and

enables the user to execute the algorithms on remote clusters,

while providing the user with full access to their job history.

pathos primarily provides the communication mechanisms

for configuring and launching parallel computations across

heterogenous resources. pathos provides stagers and launch-

ers for parallel and distributed computing, where each launcher

contains the syntactic logic to configure and launch jobs in an

execution environment. Some examples of included launchers

are: a queue-less MPI-based launcher, a SSH-based launcher,

and a multiprocessing launcher. pathos also provides

a map-reduce algorithm for each of the available launchers,

thus greatly lowering the barrier for users to extend their code

to parallel and distributed resources. pathos provides the

ability to interact with batch schedulers and queuing systems,

thus allowing large computations to be easily launched on

high-performance computing resources. One of the most pow-

erful features of pathos is sshTunnel, which enables a

user to automatically wrap any distributed service calls within

an SSH tunnel.

pathos is divided into four subpackages: dill (a util-

ity for serialization of Python objects), pox (utilities for

filesystem exploration and automated builds), pyina (a MPI-

based parallel mapper and launcher), and pathos (distributed

parallel map-reduce and SSH communication).

pathos utilizes pyre, which provides tools for connecting

components and managing their interactions. The core com-

ponent used by pathos is a service -- a callable object with

a configurable connection mechanism. A service can utilize

Launcher and Monitor objects (which provide abstraction

to execution and logging, respectively), as well as Strategy

objects (which provide abstraction patterns for coupling ser-

vices). A standard interface for services enables massively

parallel applications that utilize distributed resources to be

constructed from a few simple building blocks. A Launcher

contains the logic required to initiate execution on the cur-

rent execution environment. The selection of launcher will

determine if the code is submitted to a batch queue, run

across SSH tunneled RPC connections, or run with MPI on

a multiprocessor. A Strategy provides an algorithm to

distribute the workload among available resources. Strategies

can be static or dynamic. Examples of static strategies include

the equalportion strategy and the carddealer strategy.

Dynamic strategies are based on the concept of a worker

pool, where there are several workload balancing options to

choose from. Strategies and launchers can be coupled together

to provide higher-level batch and parallel-map algorithms. A

Map interface allows batch processing to be decoupled from

code execution details on the selected platforms, thus enabling

the same application to be utilized for sequential, parallel, and

distributed parallel calculations.

Globally Unique Message Passing

We must design for the case where an optimizer’s calculation

spans multiple clusters, with a longevity that may exceed the

uptime of any single cluster or node. hydra enables any

Python object to obtain a network address. After obtaining

an address, an object can asynchronously exchange messages

with other objects on the network. Through the use of proxy

objects, sending messages to remote objects is easy as calling

an instance method on a local object. A call to a proxy trans-

parently pickles the function name along with the arguments,

packages the message as a datagram, and sends it over the

network to the remote object represented by the proxy. On

the recieving end, there is a mechanism for responding to

the sender of the current message. Since message sending is

asynchronous, an object responds to a message by sending

another message.

The modelFactory method essentially provides mystic

with a high-level interface for a pathos server, with an

option to bind a monitor directly to the service. The lower-

level construction of a distributed service, using SSH-based

communication, is as follows:

# a user-provided model function

def identify(x)

return x

# cast the model as a distributed service

from pathos.servers import sshServer

id = ’foo.caltech.edu:50000:spike42’

my_proxy = sshServer(identify, server=id)
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Figure 6: Conceptual diagram for heterogeneous job management.
A distributed parallel map function is used to copy a service n times
on N machines. If the object being mapped is not a service, then
the services manager is omitted from the diagram -- the jobs still
undergo a distributed launch, but are managed at the machine level.

# evaluate the model via proxy

y = my_proxy(x)

Parallel map functions are built around available launchers,

providing a high-level interface to launching several copies of

a model in parallel. The creation of a parallel map that will

draw from a pool of two local workers and all available IPC

servers at ’foo.caltech.edu’ is shown below:
# a user-provided model function

def identify(x)

return x

# select and configure a parallel map

from pathos.maps import ipcPool

my_map = ipcPool(2, servers=[’foo.caltech.edu’])

# evaluate the model in parallel

z = my_map(identify, range(10))

Serialization

dill extends Python’s pickle module for serializing and

de-serializing Python objects to the majority of the built-

in Python and NumPy types. Serialization is the process of

converting an object to a byte stream, the inverse of which is

converting a byte stream back to a Python object hierarchy.

dill provides the user the same interface as the pickle

module, and also includes some additional features. In addition

to pickling Python objects, dill provides the ability to save

the state of an interpreter session in a single command. Hence,

it would be feasible to save a interpreter session, close the

interpreter, ship the pickled file to another computer, open a

new interpreter, unpickle the session and thus continue from

the “saved” state of the original interpreter session.

Filesystem Interaction

pox provides a collection of utilities for navigating and

manipulating filesystems. This module is designed to facilitate

some of the low level operating system interactions that are

useful when exploring a filesystem on a remote host, where

queries such as “what is the root of the filesystem?”, “what is

the user’s name?”, and “what login shell is preferred?” become

essential in allowing a remote user to function as if they were

logged in locally. While pox is in the same vein of both the os

and shutil built-in modules, the majority of its functionality

is unique and compliments these two modules.

pox provides Python equivalents of several unix shell

commands such as “which” and “find”. These commands

allow automated discovery of what has been installed on an

operating system, and where the essential tools are located.

This capability is useful not only for exploring remote hosts,

but also locally as a helper utility for automated build and

installation.

Several high-level operations on files and filesystems are

also provided. Examples of which are: finding the location

of an installed Python package, determining if and where the

source code resides on the filesystem, and determining what

version the installed package is.

pox also provides utilities to enable the abstraction of

commands sent to a remote filesystem. In conjunction with

a registry of environment variables and installed utilites, pox

enables the user to interact with a remote filesystem as if they

were logged in locally.

Distributed Staging and Launching

pathos provides methods for configuring, launching, moni-

toring, and controlling a service on a remote host. One of the

most basic features of pathos is the ability to configure and

launch a IPC-based service on a remote host. pathos seeds

the remote host with a small portpicker script, which

allows the remote host to inform the localhost of a port that

is available for communication.

Beyond the ability to establish a IPC service, and then

post requests, is the ability to launch code in parallel. Unlike

parallel computing performed at the node level (typically with

MPI), pathos enables the user to launch jobs in parallel

across heterogeneous distributed resources. pathos provides

a distributed map-reduce algorithm, where a mix of local pro-

cessors and distributed IPC services can be selected. pathos

also provides a very basic automated load balancing service, as

well as the ability for the user to directly select the resources.

A high-level interface is provided which yields a map-

reduce implementation that hides the IPC internals from the

user. For example, with ipcPool, the user can launch their

code as a distributed parallel service, using standard Python

and without writing a line of server or parallel batch code.

pathos also provides tools to build a custom Map. In

following code, the map is configured to ’autodetect’

the number of processors, and only run on the localhost:

# configure and build map

from pathos.launchers import ipc

from pathos.strategies import pool

from pathos.tools import mapFactory

my_map = mapFactory(launcher=ipc, strategy=pool)

IPC servers and communication in general is known to be

insecure. However, instead of attempting to make the IPC
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communication itself secure, pathos provides the ability to

automatically wrap any distributes service or communication

in an SSH tunnel. SSH is a universally trusted method.

Using sshTunnel, pathos has launched several distributed

calculations on clusters at National Laboratories, and to date

has performed test calculations that utilize node-to-node com-

munication between two national lab clusters and a user’s

laptop. pathos allows the user to configure and launch

at a very atomistic level, through raw access to ssh and

scp. Any distributed service can be tunneled, therefore less-

secure methods of communication can be provided with secure

authentication:
# establish a tunnel

from pathos.tunnel import sshTunnel

uid = ’foo.caltech.edu:12345:tunnel69’

tunnel_proxy = sshTunnel(uid)

# inspect the ports

localport = tunnel_proxy.lport

remoteport = tunnel_proxy.rport

# a user-provided model function

def identify(x)

return x

# cast the model as a distributed service

from pathos.servers import ipcServer

id = ’localhost:%s:bug01’ % localport

my_proxy = ipcServer(identify, server=id)

# evaluate the model via tunneled proxy

y = my_proxy(x)

# disconnect the tunnel

tunnel_proxy.disconnect()

Parallel Staging and Launching

The pyina package provides several basic tools to make MPI-

based high-performance computing more accessable to the end

user. The goal of pyina is to allow the user to extend their

own code to MPI-based high-performance computing with

minimal refactoring.

The central element of pyina is the parallel map-reduce

algorithm. pyina currently provides two strategies for exe-

cuting the parallel-map, where a strategy is the algorithm for

distributing the work list of jobs across the availble nodes.

These strategies can be used “in-the-raw” (i.e. directly) to

provide map-reduce to a user’s own MPI-aware code. Further,

pyina provides several map-reduce implementations that

hide the MPI internals from the user. With these Map objects,

the user can launch their code in parallel batch mode -- using

standard Python and without ever having to write a line of

Parallel Python or MPI code.

There are several ways that a user would typically launch

their code in parallel -- directly with mpirun or mpiexec,

or through the use of a scheduler such as torque or slurm.

pyina encapsulates several of these launching mechanisms

as Launchers, and provides a common interface to the

different methods of launching a MPI job. In the following

code, a custom Map is built to execute MPI locally (i.e. not

to a scheduler) using the carddealer strategy:

# configure and build map

from pyina.launchers import mpirun

Figure 7: Conceptual diagram for a carddealer-DE optimizer.
The optimizer contains a map function that stages n copies of the
user’s model F(x) in parallel across distributed resources.

from pyina.strategies import carddealer as card

from pyina.tools import mapFactory

my_map = mapFactory(4, launcher=mpirun, strategy=card)

New Massively-Parallel Optimization Algorithms

In mystic, optimizers have been extended to parallel when-

ever possible. To have an optimizer execute in parallel,

the user only needs to provide the solver with a paral-

lel map. For example, extending the Differential Evolution

[SKP95] solver to parallel is involves passing a Map to the

SetEvaluationMap method. In the example below, each

generation has 20 candidates, and will execute in parallel using

MPI with 4 workers:

# the function to be minimized and the bounds

from mystic.models import rosen as my_model

lb = [0.0, 0.0, 0.0]

ub = [2.0, 2.0, 2.0]

# get termination condition object

from mystic.termination import ChangeOverGeneration

COG = ChangeOverGeneration()

# select the parallel launch configuration

from pyina.maps import MpirunCarddealer

my_map = MpirunCarddealer(4)

# instantiate and configure the solver

from mystic.solvers import DifferentialEvolutionSolver

solver = DifferentialEvolutionSolver(len(lb), 20)

solver.SetRandomInitialPoints(lb, ub)

solver.SetStrictRanges(lb, ub)

solver.SetEvaluationMap(my_map)

solver.Solve(my_model, COG)

# obtain the solution

solution = solver.bestSolution

Another type of new parallel solver utilizes the

SetNestedSolver method to stage a parallel launch

of N optimizers, each with different initial conditions. The

following code shows the BuckshotSolver scheduling a

launch of N = 20 optimizers in parallel to the default queue,

where 5 nodes each with 4 processors have been requested:

# the function to be minimized and the bounds

from mystic.models import rosen as my_model

lb = [0.0, 0.0, 0.0]

ub = [2.0, 2.0, 2.0]
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Figure 8: Conceptual diagram for a lattice-Powell optimizer.
N Powell’s local-search optimizers are launched in parallel, with
each optimizer starting from the center of a different lattice cuboid
in parameter space. A buckshot-Powell optimizer is similar;
however, instead utilizes a uniform random distribution of initial
values.

# get monitor and termination condition objects

from mystic.monitors import LoggingMonitor

stepmon = LoggingMonitor(1, ’log.txt’)

from mystic.termination import ChangeOverGeneration

COG = ChangeOverGeneration()

# select the parallel launch configuration

from pyina.maps import TorqueMpirunCarddealer

my_map = TorqueMpirunCarddealer(’5:ppn=4’)

# instantiate and configure the nested solver

from mystic.solvers import PowellDirectionalSolver

my_solver = PowellDirectionalSolver(len(lb))

my_solver.SetStrictRanges(lb, ub)

my_solver.SetEvaluationLimits(50)

# instantiate and configure the outer solver

from mystic.solvers import BuckshotSolver

solver = BuckshotSolver(len(lb), 20)

solver.SetRandomInitialPoints(lb, ub)

solver.SetGenerationMonitor(stepmon)

solver.SetNestedSolver(my_solver)

solver.SetSolverMap(my_map)

solver.Solve(my_model, COG)

# obtain the solution

solution = solver.bestSolution

Probability and Uncertainty Tooklit

The software framework presented in this paper was de-

signed to solve UQ problems. Calculation of the upper and

lower bounds for probability of failure is provided as a

framework service. The McDiarmid subdiameter is a model-

based measure of sensitivity, and is cast within mystic as

a global optimization. Diameter calculations can be coupled

with partitioning algorithms, and used to discover regions of

critical behavior. Optimization over probability measures is

also available as a framework service, and is utilized in (OUQ)

calculations of optimal bounds.

The minimization or maximization of a cost function is

the basis for performing most calculations in mystic. The

optimizer generates new trial parameters, which are evaluated

in a user-provided model function against a user-provided

Figure 9: Coupling an iterative partitioning algorithm with a
sensitivity calculation enables the discovery of critical regions in
parameter space.

metric. Two simple difference metrics provided are: metric =
|F(x)−G|2, where F is the model function evaluated at some

trial set of fit parameters P , and G is the corresponding

experimental data -- and metric = |F(x)−F(y)|2, where x and

y are two slightly different sets of input parameters (6).

mystic provides factory methods to automate the gener-

ation of a cost function from a user’s model. Conceptually, a

costFactory is as follows:

# prepare a (F(X) - G)**2 a metric

def costFactory(my_model, my_data):

def cost(param):

# compute the cost

return ( my_model(param) - my_data )**2

return cost

Suboscillations (6), used in calculations of rigorous sensi-

tivity (such as Di/D), can also be cast as a cost metric:

# prepare a (F(X) - F(X’))**2 cost metric

def suboscillationFactory(my_model, i):

def cost(param):

# get X and X’ (Xi’ is appended to X at param[-1])

x = param[:-1]

x_prime = param[:i] + param[-1:] + param[i+1:-1]

# compute the suboscillation

return -( my_model(x) - my_model(x_prime) )**2

return cost

The diameter D (7) is the root-mean square of its component-

wise suboscillations. The calculation of the diameter is per-

formed as a nested optimization, as shown above for the

BuckshotSolver. Each inner optimization is a calculation

of a component suboscillation, using the a global optimizer

(such as DifferentialEvolutionSolver) and the cost

metric shown above.

The optimization algorithm takes a set of model parameters

P and the current measure of oscillation O(P) as inputs, and

produces an updated P . The optimization loop iterates until

the termination conditions are satisfied.

When the global optimization terminates the condition

O(P) < −(osc2
i + ε) is satisfied, and the final set P is
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Figure 10: Optimal uncertainty quantification is an optimization
of probability measures over design parameter space. Collapse of
probability masses corresponds to the determination of the critical
design parameters.

composed of X and X ′.

OUQ problems can be thought of optimization problems

where the goal is to find the global maximum of a probability

function µ[H ≤ 0], where H ≤ 0 is a failure criterion for

the model response function H. Additional conditions in an

OUQ problem are provided as constraints on the information

set. Typically, a condition such as a mean constraint on H,

m1 ≤ Eµ [H] ≤ m2, will be imposed on the maximization.

After casting the OUQ problem in terms of optimization and

constraints, we can plug these terms into the infrastructure

provided by mystic.

Optimal uncertainty quantification (OUQ) is maximization

over a probability distribution, and not over a standard dif-

ference metric. Therefore the fundamental data structure is

not the user-provided model function, but is a user-configured

probability measure. For example, a discrete measure is rep-

resented by a collection of support points, each with an

accompanying weight. Measures come with built-in methods

for calculating the mass, range, and mean of the measure, and

also for imposing a mass, range, and mean on the measure.

Measures also have some very basic operations, including

point addition and subtraction, and the formation of product

measures.

Global optimizations used in solving OUQ problems are

composed in the same manner as shown above for the

DifferentialEvolutionSolver. The cost function,

however, is not formulated as in the examples above -- OUQ

is an optimization over product measures, and thus uses

mystic’s product_measure class as the target of the

optimization. Also as shown above, the bounds constraints

are imposed with the SetStrictRanges method, while

parameter constraints (composed as below) are imposed with

the SetConstraints method. The union set of these con-

straints defines the set A .

So for example, let us define the feasable set

A =







( f ,µ)

∣

∣

∣

∣

∣

∣

f = my_model : ∏
3

i=1
[lbi,ubi]→ R,

µ =
⊗3

i=1 µi ∈
⊗3

i=1 M ([lbi,ubi]),
mlb ≤ Eµ [f]≤ mub







(15)

which reduces to the finite-dimensional subset

A∆ =







( f ,µ) ∈ A

∣

∣

∣

∣

∣

∣

for ~x and ~y ∈ ∏
3
i=1[lbi,ubi],

and ~w ∈ [0,1],
µi = wiδxi

+(1−wi)δyi







(16)

where ~x = some (x1,x2,x3), ~y = some (y1,y2,y3), and ~w =
some (w1,w2,w3).

To solve this OUQ problem, we first write the code for the

bounds, cost function, and constraints -- then we plug this

code into a global optimization script, as noted above.

OUQ requires the user provide a list of bounds

that follow the formatting convention that mystic’s

product_measure.load uses to build a product measure

from a list of input parameters. This roughly follows the

definition of a product measure as shown in equation (16),

and also is detailed in the comment block below:

# OUQ requires bounds in a very specific form...

# param = [wxi]*nx + [xi]*nx \

# + [wyi]*ny + [yi]*ny \

# + [wzi]*nz + [zi]*nz

npts = (nx,ny,nz)

lb = (nx * w_lower) + (nx * x_lower) \

+ (ny * w_lower) + (ny * y_lower) \

+ (nz * w_lower) + (nz * z_lower)

ub = (nx * w_upper) + (nx * x_upper) \

+ (ny * w_upper) + (ny * y_upper) \

+ (nz * w_upper) + (nz * z_upper)

The constraints function and the cost function typically require

the use of measure mathematics. In the example below, the

constraints check if measure.mass ≈ 1.0; if not, the the

measure’s mass is normalized to 1.0. The second block of

constraints below check if m1 ≤ Eµ [H] ≤ m2, where m1 =
target_mean − error and m2 = target_mean +
error; if not, an optimization is performed to satisfy this

mean constraint. The product_measure is built (with

load) from the optimization parameters param, and after

all the constraints are applied, flatten is used to extract

the updated param:

from mystic.math.measures import split_param

from mystic.math.dirac_measure import product_measure

from mystic.math import almostEqual

# split bounds into weight-only & sample-only

w_lb, m_lb = split_param(lb, npts)

w_ub, m_ub = split_param(ub, npts)

# generate constraints function

def constraints(param):

prodmeasure = product_measure()

prodmeasure.load(param, npts)

# impose norm on measures

for measure in prodmeasure:

if not almostEqual(float(measure.mass), 1.0):

measure.normalize()

# impose expectation on product measure

E = float(prodmeasure.get_expect(my_model))

if not (E <= float(target_mean + error)) \

or not (float(target_mean - error) <= E):

prodmeasure.set_expect((target_mean, error), \

my_model, (m_lb, m_ub))

# extract weights and positions

return prodmeasure.flatten()
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The PoF is calculated in the cost function with the pof

method:

# generate maximizing function

def cost(param):

prodmeasure = product_measure()

prodmeasure.load(param, npts)

return MINMAX * prodmeasure.pof(my_model)

We find the supremum (as in 12) when MINMAX=-1 and, upon

solution, the function maximum is -solver.bestEnergy.

We find the infimum when MINMAX=1 and, upon solution, the

function minimum is solver.bestEnergy.

Future Developments

Many of the features presented above are not currently in

released versions of the code. Of primary importance is to

migrate these features from development branches to a new

release.

The next natural question beyond “what is the sensitivity of

a model to an input parameter?” is “how does the correlation

between input parameters affect the outcome of the model?”.

Methods for calculating parameter correlation will be very

useful in analysis of results. Another natural question is how

to handle uncertainty in the data.

New partitioning algorithms for the discovery of regions of

critical behavior will be added to mystic. Currently the only

partitioning rule drives the optimizer toward partitioning space

such that the upper bounds of a “piecewise-McDiarmid” type

are iteratively tightened [STM11]. We will extend the parti-

tioning algorithm not to refine the diameter, but to discover

regions where the diameters meet a set of criteria (such as:

regions where there are two roughly equal subdiameters that

account for 90% or more of the total diameter (i.e. automated

discovery of regions where two parameters compete to govern

the system behavior). mystic will also further expand its

base of available statistical and measure methods, equation

solvers, and also make available several more traditional

uncertainty quantification methods. mystic will continue to

expand its base of optimizers, with particular emphasis on

new optimization algorithms that efficiently utilize parallel

computing. mystic currently has a few simple parallel

optimization algorithms, such as the LatticeSolver and

BuckshotSolver solvers; however, algorithms that utilize a

variant of game theory to do speculation about future iterations

(i.e. break the paradigm of an iteration being a blocker to

parallelism), or use parallelism and dynamic constraints to

allow optimizers launched in parallel to avoid finding the

same minimum twice, are planned. Parallelism in optimization

also allows us to not only find the global minima, but to

simultaneously find all local minima and transition points -

- thus providing a much more efficient means of mapping out

a potential energy surface. Solving uncertainty quantification

problems requires a lot of computational resources and often

must require a minimum of both model evaluations and

accompanying experiments, so we also have to keep an eye

on developing parallel algorithms for global optimization with

overall computational efficiency.

pathos includes utilities for filesystem exploration and

automated builds, and a utility for the serialization of Python

objects, however these framework services will need to be

made more robust as more platforms and more extensive

objects and codes are tackled. Effort will continue on expand-

ing the management and platform capabilities for pathos,

unifying and hardening the map interface and providing load

balancing for all types of connections. The high-level inter-

face to analysis circuits will be extended to encompass new

types of logic for combining and nesting components (as

nested optimizers are utilized in many materials theory codes).

Monitoring and logging to files and databases across parallel

and distributed resources will be migrated from mystic and

added as pathos framework services.

Summary

A brief overview of the mathematical and software compo-

nents used in building a software framework for predictive

science is presented.
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