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1.  Introduction
The Open SystemC Initiative (OSCI) has recently issued the second version of its standard for
Transaction Level Modeling (TLM) [4]. This defines an interface for writing high level software
models of hardware.

The OSCI standard is comprehensive. As well as a powerful general purpose interface, it defines
a number of convenience components to facilitate adoption of the technology.

This application note provides an introductory tutorial on using TLM 2.0 for loosely timed
models—ideally suited for early development of embedded software. It demonstrates through
a practical case study the development of a complete SoC, capable of running a modern Linux
2.6 kernel, using the TLM 2.0 convenience components.

One of the most important components in any SoC system model is the processor core In-
struction Set Simulator (ISS). This application note demonstrates how to wrap an existing ISS
to provide a TLM 2.0 compliant interface.

This application note is the first in a series from Embecosm (www.embecosm.com), providing
case studies in OSCI TLM 2.0 use. The objective is to provide an introduction to TLM 2.0 within
a practical context. Examples are provided throughout, based on open source components,
which are freely reusable under the GNU Lesser General Public License.

1.1.  Target Audience
SystemC represents a challenge to engineers, because it bridges the divide between the worlds
of hardware and software. These are two distinct disciplines, the languages of hardware de-
sign such as Verilog and VHDL are very different in philosophy to the languages of software
development such as C++ and Java. Yet both are brought together in the world of the System
on Chip SoC, where large embedded software systems must run on complex silicon chips often
containing multiple processor cores of different architectures.

This application note is aimed at any engineer intending to bridge the gap between hardware
and software. It recognizes that the reader will most likely be expert in only one of these. Ex-
planation is provided throughout of both the hardware ideas and software ideas being covered.

The reader is assumed to have basic programming familiarity with C and C++ and the key con-
cepts of object oriented programming: classes and instances of classes. A basic understanding
of system level hardware design and the construction of SoC from components linked by buses
(or on-chip networks).

Familiarity with SystemC is assumed. The user guide supplied with SystemC provides a good
introduction [5].

1.2.  About the Embecosm TLM 2.0 Application Notes
The OSCI TLM 2.0 standard represents a significant advance in standardizing the creation of
fast models of hardware.

However the OSCI reference implementation lacks training material and examples to introduce
new users to the technology.

This series of Embecosm Application Notes was prompted by a customer requesting assistance
in porting an existing ISS to the TLM 2.0 standard. This is the first application note in the
series. Further Embecosm Application Notes, addressing different aspects of TLM 2.0 will be
published in the future.

http://www.embecosm.com
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2.  Background to SystemC and the TLM 2.0 Standard

The development of SystemC as a standard for modeling hardware started in 1996. Version
2.0 of the proposed standard was released by the Open SystemC Initiative (OSCI) in 2002. In
2006, SystemC became IEEE standard 1666-2005 [3].

OSCI has several groups working on supplementary standards. One of these is the TLM Work-
ing Group. It proposed its first standard for transaction level modeling in 2005. Two drafts
for version 2.0 were released in 2006 and 2007, with the version 2.0 standard issued in June
2008 [4].

2.1.  What is SystemC
Most software languages are not particularly suited to modeling hardware systems1. SystemC
was developed to provide features that facilitate hardware modeling, particularly the paral-
lelism of hardware, in a mainstream programming language.

An important objective was that software engineers should be comfortable with using SystemC.
Rather than invent a new language, SystemC is based on the existing C++ language. SystemC
is a true super-set of C++, so any C++ program is automatically a valid SystemC program.

SystemC uses the template, macro and library features of C++ to extend the language. The
key features it provides are:

• A C++ class, sc_module, suitable for defining hardware modules containing parallel pro-
cesses2;

• A mechanism to define functions modeling the parallel threads of control within
sc_module classes;

• Two classes, sc_port and sc_export to represent points of connection a sc_module;

• A class, sc_interface to describe the software services required by a sc_port or provided
by a sc_export;

• A class, sc_prim_channel to represent the channel connecting ports;

• A set of derived classes, of sc_prim_channel, sc_interface, sc_port and sc_export to
represent and connect common channel types used in hardware design such as signals,
buffers and FIFOs; and

• A comprehensive set of types to represent data in both 2-state and 4-state logic.

The full specification is 441 pages long [3]. The OSCI reference distribution includes a very
useful introductory user guide and tutorial [5].

2.2.  What is a TLM

2.2.1.  Hardware and Software Views of Parallelism
To understand transaction level modeling, it is essential to understand the difference in ap-
proach to parallelism taken in hardware and software design.

A hardware engineer, typically writing in a Hardware Description Language (HDL) such as
Verilog or VHDL, describes a design as a collection of parallel activities, which communicate

1 There are some exceptions, most notably Simula67, one the languages which inspired C++. In some respects it is
remarkably like SystemC.
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via shared data. The parallel activities are always (Verilog) or process (VHDL) blocks. The
shared data structures are wires or signals.

This follows very naturally the way that physical hardware behaves. There is no one flow
of control—all parallel components are active at the same time, with their individual flow of
control.

By contrast, a software engineer typically describes parallelism in a design as a number of
threads, which pass flow of control between them. The threads communicate by a number of
mechanisms (message passing or remote procedure call for example), but although there is
logical parallelism, only one thread is ever physically active at one time.

This follows naturally the behavior on a conventional uni-processor CPU, where there is a
single program counter indicating the next instruction to execute, and so only one flow of
control. Even with modern multiprocessors, this is still a natural way of programming for the
software engineer, because the number or threads or processes will often exceed the number
of processor cores available.

2.2.2.  Modeling Hardware Parallelism in Software
A simple way to model hardware is via a round-robin, which updates the state of each com-
ponent as time advances. Each component is represented as a software function. A master
clock function calls each component function in turn when the clock advances—for example
on each clock edge. The wires between the components are represented as variables shared
between the components. A number of tools (e.g. ARC VTOC, ARM RealView SoC Designer,
Carbon SpeedCompiler, Verilator) use this approach to cycle accurate modeling.

With its close parallel of the way hardware is designed with languages such as Verilog and
VHDL, this approach has merit for detailed modeling. It is well suited to cycle accurate mod-
eling where every hardware register and wire must be accurate.

Efficiency demands that not every HDL process or always is built as a separate function.
Automated tools which generate cycle accurate models in SystemC from HDL can often reduce
complex designs to a small number of functions executed on each cycle.

For less detailed models, the overhead in calling each component whenever time advances
cannot be justified.

The solution is to model each component only when it has something to do. The individual
components communicate by sending messages requesting data be transferred between each
other. The exchange of messages is called a transaction, and the approach Transaction Level
Modeling (TLM).

This mirrors the way hardware behaves at the high level, where functional blocks communicate
by reading and writing across buses.

2.3.  Overview of OSCI TLM 2.0
OSCI TLM 2.0 offers a standard approach to building Transaction Level Models.

At the simplest level a TLM is a set of SystemC modules (i.e. C++ classes), each providing one
or more sockets through which the SystemC modules may read and write data.

The behavior of each module is provided by a number of parallel threads (functions of the C+
+ class), which communicate with the threads in other modules by passing data (i.e. reading
or writing) through the sockets. This communication is known as a transaction and the data
passed as a payload. Figure 1 shows the key components in a TLM 2.0 model.
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Socket Thread

Module Module

Figure 1.  Key components in an OSCI TLM 2.0 model.

2.3.1.  Transaction Payload
The data passed in a transaction may take any form. However the TLM 2.0 standard defines
a Generic Payload which is suitable for many uses, and which can be extended if required. By
using the Generic Payload, a TLM 2.0 model will maximize interoperability.

The main features of the Generic Payload are:

Command Is this a read or a write?

Address What is the address (in the hardware sense of an address in memory).

Data A pointer to the physical data as an array of bytes

Byte Enable Mask A pointer to an array indicating which bytes of the data are valid.

Response An indication of whether the transaction was successful, and if not the
nature of the error.

Further features provide support for streaming, custom memory management and extensions
to the generic payload.

A TLM 2.0 transport function is used to pass the payload to another SystemC thread and
obtain a response—i.e. a transaction.

2.3.2.  Initiators and Targets
A module's threads may act as either initiators or targets. An initiator is responsible for creat-
ing a payload (see Section 2.3.1) and calling the transport function to send it. A target receives
payloads from the transport function for processing and response. In the case of non-blocking
interfaces (see Section 2.3.3, the target may create new transactions backwards in response
to a transaction from an initiator.

Initiator calls are made through initiator sockets, target calls received through target sockets. A
module may implement both target and initiator sockets, allowing its threads to both generate
and receive traffic.
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2.3.3.  Blocking, Non-Blocking, Debug and Direct Memory Interfaces
There are two principal types of TLM 2.0 transport function.

1. The blocking transport functions are called by the initiator thread, received by the target
thread, which processes the request and then returns the result. Until the transaction
has been processed and released the initiator thread is blocked.

2. The non-blocking transport functions are called by the initiator thread, received by the
target thread, which immediately returns, before processing the request. Subsequently
the target, having processed the request makes a transport call backwards to the ini-
tiator to return the result.

In the non-blocking case there are actually two types of transport used. The forward transport
path is used by the initiator to pass the request to the target and the backward transport
path used by the target to return the response. The advantage of the non-blocking transport
interface is that the initiator can carry on processing, while the target is processing the request
originally made.

In addition TLM 2.0 provides two more specialized types of transaction.

1. A debug transaction is a read that does not affect the state of the model. These are for
use by debuggers, which wish to see the state of a model, without affecting that state.

2. TLM 2.0 recognizes that a full-blown transaction is too heavyweight for some types of
access. For example an ISS accessing memory using transactions would destroy per-
formance. TLM 2.0 provides the concept of a direct memory interface, allowing threads
direct access to blocks of memory in another thread for high performance.

2.3.4.  Loosely Timed, Approximately Timed and Untimed TLM
TLM 2.0 considers two levels of timing detail.

1. A loosely timed model uses transactions corresponding to a complete read or write across
a bus or network in physical hardware. It provides timing at the level of the individual
transaction.

2. An approximately timed model breaks down transactions into a number of phases cor-
responding much more closely to the phasing of particular hardware protocols (for ex-
ample the address and data phases of an AHB read or write).

Typically loosely timed models are implemented with a blocking interface and approximately
timed models with a non-blocking interface.

TLM 2.0 also introduces the concept of temporal decoupling. Standard SystemC keeps a single
synchronized view of time, which is used by all threads in all modules. However with temporal
decoupling, each thread can keep its own local view of time, allowing the thread to run ahead in
simulation time, until it needs to synchronize with another thread. This improves performance
in loosely timed models with blocking interfaces, by avoiding bottlenecks in processing.

To ensure that one thread doesn't run away hogging all the processing, TLM 2.0 temporal
decoupling uses the concept of the quantum, the greatest amount that a thread may differ in
timing from the central view of time. This allows other threads a chance to catch up

TLM 2.0 does not have an explicit concept of an untimed socket (something that was explicit
in TLM 1.0). The standardization group took the view that in practice all models need some
concept of time, so purely untimed models are of little value.

However, untimed models are easily implemented as loosely timed models which always set
the timing parameter in transport calls to zero. The example in Section 4 Section 6 and Sec-
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tion 7 uses this approach to create an untimed model. This is then refined in Section 8 to add
synchronous timing information and in Section 9 to add temporal decoupling.

2.3.5.  TLM 2.0 Convenience Sockets
The standard TLM 2.0 approach to modeling requires the user to derive their own classes from
the standard TLM 2.0 sockets, so that those sockets can then implement the TLM 2.0 inter-
faces. Modules then instantiate these derived sockets and use the bind function to connect
them to sockets on other modules.

This is a very flexible approach, but the need to define new derived classes classes for sockets is
an unnecessary layer of complexity for simple modeling. For such uses, the TLM 2.0 standard
defines a number of convenience sockets which can be instantiated directly by modules, and
which specify their interface functions as callbacks.

These convenience sockets are used throughout the case study in this application note.
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3.  Case Study: A Loosely Timed SoC Using TLM 2.0

In this case study, TLM 2.0 convenience sockets are used to wrap an existing ISS. This is then
built into a simple SoC using additional hand-written TLM 2.0 components.

Modeling uses the TLM 2.0 Generic Payload with no extensions. It is independent of the specific
bus architecture that will be used in the implementation.

The ISS used is from the OpenCores (www.opencores.org) project. This open source project
has developed a complete 32/64-bit architecture, the OpenRISC 1000, complete with GNU
compiler chain, architectural simulator and Linux port. This application note uses the Open-
RISC 1000 architectural simulator, Or1ksim as the ISS for all the examples.

The model is constructed in a number of stages:

1. The basic wrapper for the Or1ksim ISS is built using TLM 2.0 convenience sockets and
tested with a simple logger. In this first stage timing is ignored—this is effectively an
untimed model. See Section 4 and Section 5.

2. A model UART is added as an example peripheral, demonstrating how TLM 2.0 and
existing SystemC technologies can be mixed. See Section 6

3. A model of a terminal is added as a test bench for the SoC. This demonstrates how to add
SystemC components which use operating system I/O without blocking the SystemC
thread. See Section 7

4. Synchronous timing is added to each component, making the model loosely timed. See
Section 8

5. Temporal decoupling is added to the Or1ksim ISS, UART and terminal, to improve the
performance of the model. See Section 9

6. Interrupt modeling is added to the UART and the Or1ksim ISS, allowing the model to
run Linux. Section 10

Simple applications, compiled with the OpenRISC 1000 tool chain are used throughout to
exercise the model components. The final model is demonstrated booting a Linux 2.6 kernel.

3.1.  The Example Designs
The example, a simple SoC, is based on the Or1ksim ISS for the OpenRISC 1000 architecture.
The OpenRISC 1000 architecture is a conventional 32-bit DSP/RISC design, with optional
caches and MMU. Or1ksim is an interpreting ISS written in C, which in its standard configu-
ration models main memory and a number of peripherals as well as the CPU itself.

Information on obtaining and setting up the open source Or1ksim simulator and its tool chain
are given in  Embecosm Application Note 2. The OpenCores OpenRISC 1000 Simulator and
Tool Chain: Installation Guide.  [2].

For Section 4 through Section 9 the Or1ksim ISS is configured to model only the CPU and main
memory, with example peripherals modeled as separate SystemC modules. For Section 10,
the ISS is configured to model the data and instruction MMUs and a programmable interrupt
controller (PIC). This allows the ISS to support interrupt driven peripherals and hence Linux

3.1.1.  Or1ksim ISS TLM 2.0 Wrapper with Logger
In Section 4 the TLM 2.0 wrapper for the Or1ksim ISS is developed. In Section 5 the wrapped
ISS is tested by connection to a simple TLM 2.0 logger module. This module records transac-
tions sent to it on standard output as shown in Figure 2.

http://www.opencores.org
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Logger
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Or1ksim

Data
Bus

Figure 2.  Testing the TLM 2.0 wrapper for the OpenRISC 1000 Or1ksim.

3.1.2.  Simple SoC Design
To build a simple SoC the Or1ksim ISS CPU/memory subsystem is connected to a UART
modeled in SystemC using TLM 2.0. The test bench for the system is a terminal, also modeled
in SystemC using TLM 2.0 as shown in Figure 3. The model is built up in stages starting with
the ISS wrapper module developed in Section 4. In sections Section 6 and Section 7 models of
the UART and terminal are added to create an untimed model. Synchronous timing to create
a loosely timed model is added in Section 8 and temporal decoupling to improve performance
is added in Section 9. .

Tx

Rx

xterm Logger

CPU Memory

Or1ksim

Data
Bus

Figure 3.  Simple SoC based on the OpenRISC 1000 Or1ksim.

3.1.3.  SoC with Interrupt Support
To run Linux (see Section 10), the example must be extended to support interrupt driver I/O.
It also needs memory management and other peripheral functions. This is provided internally
to the Or1ksim ISS. This design is shown in Figure 4.

Tx

Rx

xterm Logger

Or1ksim

Data
Bus

CPU

Flash

IRQ

SRAM

RAM

IMMU

DMMU

TICKPIC

Figure 4.  Simple SoC based on the OpenRISC 1000 Or1ksim with interrupts and MMU
enabled.
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3.2.  Example Code

3.2.1.  Source Code for Example Models and Programs
The code for all the SystemC models is provided in the sysc_models sub-directory of the code
distribution. See Appendix A for details of obtaining the code.

Code for example programs which run on the models can be found in in the sysc_models/
progs_or32 sub-directory of the code distribution. Binaries are provided as well as source, but
to recompile the example programs requires the OpenRISC 1000 tool chain. See  Embecosm
Application Note 2. The OpenCores OpenRISC 1000 Simulator and Tool Chain: Installation
Guide.  [2] for more information on building the OpenRISC 1000 tool chain.

3.2.2.  Code Documentation
The code throughout is documented with Doxygen (see www.doxygen.org). This provides a
description of the code, generated automatically from the source. The generated HTML can be
found in the doc/html sub-directory of both the SystemC model directory and the OpenRISC
1000 program directory.

3.2.3.  SystemC Model Coding Conventions
All the examples in this application note separate the definition of a class (i.e. what it does)
in a .h file, from the implementation (i.e. how it does it) in a .cpp file. Class X is defined in
file X.h and implemented in X.cpp.

The examples use the convention that classes and other type names start with an Upper Case
letter (e.g. Or1ksimSC), variables and functions start with a lower case letter (e.g. dataBus) and
defined or enumerated constants are all in UPPER CASE (e.g. #define BAUD_RATE 9600).

3.2.4.  Modifying the Standard Or1ksim ISS
It is not intended that the reader should have to understand the internal workings of Or1ksim.
The changes described in this application note are provided as a patch file, which can be
applied to generate a fully working, modified version of the ISS. More information is provided
in Appendix A.

3.2.5.  Derived classes
C++ provides the hierarchical class mechanism, where derived classes inherit (some) of the
functions and variables of their base class. This feature is heavily used within SystemC—for
example all module classes are derived classes of the SystemC base class, sc_module.

The SystemC models in each section of this application note are built using derived classes
of the models from previous sections.

Those functions and variables which other classes will use are declared as public. For Sys-
temC modules this usually means the constructor and any SystemC ports or sockets. Oc-
casionally there are some utility functions which are also made public (see for example
Or1ksimExt::isLittleEndian in Section 6.3)3.

Variables and functions in classes that are not for use by other classes, but are required in
derived classes are declared as protected (i.e. visible to derived classes).

The remaining functions and variables, which are for use only by the current class, are de-
clared private (visible only to this class). This avoids any unplanned reuse by derived classes.

3 Object oriented purists prefer to expose only class functions as the public interface, so hiding all state implementa-
tion from external view. There is considerable merit in this, but the common SystemC convention is to expose actual
ports or sockets, rather than accessor functions for those objects. This application note sticks with this practice.

http://www.doxygen.org
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Some of the functions will be reimplemented in later derived classes. Such functions are also
declared virtual.

In summary public functions and variables may be used by any other class, protected func-
tions and variables may be used only by this class and any derived classes and private func-
tions and variables may be used only by this class. virtual functions may be reimplemented
in derived classes.

3.2.6.  Make Files
Both the sysc_models and progs_or32 directory contain make files which will build the pro-
grams and Doxygen documentation, if the appropriate tools are available.

These files will need editing. In general the main make file, Makefile includes an operating
system specific make file (linux.mk for Linux, win32.mk for Microsoft Windows), because of the
very substantial differences in behavior between GNU make and Microsoft nmake.

In particular the SystemC model builds need to know the location of the Or1ksim binaries,
libraries and include files, which should be set in the environment variable OR1KSIM. If left
unset it will default to /opt/or1ksim.
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4.  Wrapping the ISS
The conversion of an existing ISS to a SystemC module with TLM 2.0 sockets involves several
steps.

• Modify the existing ISS (in this example Or1ksim written in C) so it behaves in a manner
suitable for wrapping (see Section 4.1).

• Define a SystemC module for the wrapper (see Section 4.2) and provide its implementa-
tion (see Section 4.3).

• Test the wrapper with a simple logger module attached to the TLM 2.0 socket and a
suitable test application running as embedded code on the ISS (see Section 5).

4.1.  Modifying the Or1ksim ISS for TLM 2.0
Most ISS need some modification before they can be incorporated into a TLM 2.0 framework.
Like many ISS, Or1ksim is designed as a standalone program. The options are:

1. Keep the ISS as a standalone program, but modify it to call out to a SystemC model of
the peripherals as required.

2. Modify the ISS to be a library with a set of public interfaces that can be part of a larger
system.

Given the choice, option 2 is more flexible, making the ISS widely reusable in other environ-
ments. It is the approach adopted in this application note.

All the modifications required to the standard Or1ksim ISS described in this application note
are provided as a patch file in the distribution. See Appendix A for details.

4.1.1.  Converting Or1ksim to a Library
The Or1ksim main function first initializes the ISS, then sits in a loop executing instructions.
This main function is replaced by a series of functions which form the interface to the library.
The interface functions needed are:

• int  or1ksim_init( const char         *config_file,
                   const char         *image_file,
                   void               *class_ptr,
                   unsigned long int (*upr)( void              *class_ptr,
                                             unsigned long int  addr,
                                             unsigned long int  mask),
                   void              (*upw)( void              *class_ptr,
                                             unsigned long int  addr,
                                             unsigned long int  mask,
                                             unsigned long int  wdata ) );

or1ksim_init initializes the simulator. For Or1ksim, configuration data is read from a
file, which is passed as the first argument, config_file. The program image is passed
as a second argument, image_file.

Or1ksim also needs to be able to call up to the SystemC model of which it is part—to
read and write from the peripheral address space. These are provided as the fourth and
fifth arguments, upr and upw. More explanation of the upcall mechanism can be found
in Section 4.2.6.

Function calls between C and C++ can be awkward. The upcall functions form part of
the SystemC module object, but are written as static functions with C linkage. To enable
these functions to invoke functions in the SystemC module, they are passed a pointer
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to the module class instance to use as a handle. This pointer forms the third argument,
class_ptr.

• int  or1ksim_run( double  duration );

or1ksim_run runs the simulator for the specified time in seconds.

4.1.2.  Additional Functionality for Or1ksim
The standard Or1ksim ISS incorporates the functionality of several common peripherals. The
objective of this application note is to demonstrate the ISS driving external peripherals modeled
in SystemC using TLM 2.0 interfaces.

Or1ksim peripherals are configured in a textual configuration file, with a section (introduced
by the keyword section) for each device attached. This configuration file specifies the memory
mapped addresses of the peripheral. Any reads or writes to those addresses will be directed
to the code of the peripheral within Or1ksim.

Or1ksim is extended with a new class of peripheral, generic, which specifies an external
peripheral. The specification in the configuration file specifies the memory mapped address
range covered and whether byte, half word or full word access are enabled. Multiple generic
sections may be defined (for different address ranges) in the configuration file.

Code is added to Or1ksim, so that any read or write to a generic peripheral is redirected back
to the wrapper code via the upcalls specified as arguments to or1ksim_init (see Section 4.1.1
and Section 4.2.6).

4.2.  Or1ksim Wrapper Module Class Definition
The class definition for the Or1ksim ISS wrapper module is found in the file Or1ksimSC.h.

4.2.1.  Included Headers
The Or1ksim SystemC wrapper module class, Or1ksimSC, is defined in the file Or1ksimSC.h.
It will provide a single initiator socket, for data access, dataBus. No instruction accesses are
planned, so modeling an external instruction bus is unnecessary.

The module includes the tlm.h header, which defines the core TLM 2.0 interface and the
required convenience wrapper header—in this case for a simple initiator socket.

The POSIX stdint.h header is also included, since the definitions and code will make use of
the fixed width native types defined there.

#include <stdint.h>

#include "tlm.h"
#include "tlm_utils/simple_initiator_socket.h"
#include "or1ksim.h"

Note
There is no need to include the standard systemc header, since this is included
automatically by tlm.h.

4.2.2.  Module Declaration
The module is declared as a standard SystemC module, i.e. as a derived class of
sc_core::sc_module.

class Or1ksimSC
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  : public sc_core::sc_module
{

Note
SystemC provides a macro, so that a module can be defined by:

SC_MODULE( Or1ksimSC )

However this is equivalent (IEEE 1666-2005 section 5.2.5) to the C++ derived class
declaration

class Or1ksimSC
  : public sc_core::sc_module
{
 public:

By using SC_MODULE all functions and variables will be visible to all other classes
(public) unless there is a subsequent protected: or private: declaration.

The examples provided with SystemC and TLM 2.0 all use explicit declarations of
classes derived from sc_module rather than the SC_MODULE macro. This application
note uses the same approach.

4.2.3.  Constructor and Destructor
Or1ksimSC needs a custom constructor, which can be passed the Or1ksim ISS configuration
and image files. It will call the or1ksim_init function within the Or1ksim library (see Sec-
tion 4.1.1) to initialize the ISS.

Or1ksimSC( sc_core::sc_module_name  name,
           const char              *configFile,
           const char              *imageFile );

The default destructor is sufficient here. The module has no tidying up to do on termination.

4.2.4.  Public Interface
The only public interface is the TLM 2.0 simple initiator convenience socket, dataBus. The
TLM 2.0 convenience sockets are templated with

• the class of which any callbacks are members;

• a bus width (default BUSWIDTH, 32); and

• a protocol type (default the TLM 2.0 base protocol types).

For this case study, the default bus width and protocol are appropriate and need not be speci-
fied. There is no default class for the template, so Or1ksimSC is used. A class must be specified,
even where (as in this case for a simple blocking initiator) no callbacks are actually required.

  tlm_utils::simple_initiator_socket<Or1ksimSC>  dataBus;

4.2.5.  Threads
The module has a single thread, which executes the instructions of the ISS. The run function
implements this:

  void  run();

The thread is not part of the public interface, but will but will be reused and reimplemented
in derived classes later in the application note, so it is declared protected and virtual.
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4.2.6.  Upcalls
The Or1ksim ISS makes requests to read and write peripherals via the upcalls passed as
arguments to or1ksim_init (see Section 4.1.1).

The Or1ksim ISS is implemented in C, which cannot easily call C++ class instance functions.
The solution is to declare two static member functions which can be called from C. The call
to or1ksim_init also received the address of the actual C++ class instance (cast to void *).
This pointer is passed back with the upcall, so the static function can call the corresponding
instance function.

A total of 4 functions are needed, one static and one instance each for read and write. The
static functions use the native C/C++ types (unsigned long int), but convert to defined fixed
width types for the instance functions. The native SystemC 64-bit unsigned type is used for
the address (which is always 64 bits in TLM 2.0 function calls) and the POSIX 32-bit unsigned
data type is used for the byte enable mask and data.

These upcall functions are not changed throughout this application note, so are declared
private.

  static unsigned long int  staticReadUpcall( void              *instancePtr,
                                              unsigned long int  addr,
                                              unsigned long int  mask );

  static void               staticWriteUpcall( void              *instancePtr,
                                               unsigned long int  addr,
                                               unsigned long int  mask,
                                               unsigned long int  wdata );

  uint32_t                  readUpcall( sc_dt::uint64  addr,
                                        uint32_t       mask );

  void                      writeUpcall( sc_dt::uint64  addr,
                                         uint32_t       mask,
                                         uint32_t       wdata );

!
Caution
It might seem logical to use the SystemC limited precision types, rather than the
POSIX types. However the SystemC types are not native C++ types, so will not cast
as expected.

The transport mechanism is common to both, so provided in a utility function, doTrans. This
function will be used and re-implemented in derived classes, so is declared protected and
virtual.

4.3.  Or1ksim Wrapper Module Class Implementation
The class implementation for Or1ksimSC is found in the file Or1ksimSC.cpp.

4.3.1.  Headers and Macros
All the definitions required are obtained from the definition file:

#include "Or1ksimSC.h"

The implementation of a C++ class that is a SystemC module with SystemC threads
(SC_THREAD), methods (SC_METHOD) or clocked threads (SC_CTHREAD) requires a number of defi-
nitions for that class to be set up using the SC_HAS_PROCESS macro.

SC_HAS_PROCESS( Or1ksimSC );
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!
Caution
The SC_HAS_PROCESS macro is a common cause of confusion with new users to
SystemC. It doesn't appear in the user guide and tutorial examples. The reason is
that those examples use the SC_CTOR macro to define the constructor for the class,
which provides the same definitions as the SC_HAS_PROCESS macro.

The SC_CTOR macro can only be used where the constructor's implementation is
given within the class definition. As explained in Section 3.2.3, good object oriented
design separates class definition from class implementation, with the constructor
implemented separately from the class definition.

In cases such as this, where the constructor implementation is separate from the
definition, SystemC requires that the SC_HAS_PROCESS macro is used before the
code of any class functions. The macro is only required if the constructor uses
SC_METHOD, SC_THREAD or SC_CTHREAD to associate a process with the module class.

4.3.2.  Constructor
The constructor passes the name to the constructors of its base class (sc_module) and its
simple initiator socket (dataBus), then calls the or1ksim_init function in the Or1ksim library
to initialize the ISS.

The member function, run is associated with the class as a SystemC thread, using the
SC_THREAD macro. It will be called automatically by the SystemC kernel after elaboration (i.e
SystemC initialization).

Or1ksimSC::Or1ksimSC ( sc_core::sc_module_name  name,
                       const char              *configFile,
                       const char              *imageFile ) :
  sc_module( name ),
  dataIni( "data_initiator" )
{
  or1ksim_init( configFile, imageFile, this, staticReadUpcall,
                staticWriteUpcall );

  SC_THREAD( run );               // Thread to run the ISS

}       /* Or1ksimSC() */

4.3.3.  Thread
The main thread, run, invokes the Or1ksim ISS to run for ever (by passing a negative time
argument). The ISS will use the upcalls (see Section 4.2.6) to request reads from and writes
to the peripheral address space.

The thread is called automatically when the SystemC kernel has completed elaboration (i.e.
is initialized).

void
Or1ksimSC::run()
{
  scLastUpTime   = sc_core::sc_time_stamp();
  or1kLastUpTime = or1ksim_time();

  (void)or1ksim_run( -1.0 );

}       // Or1ksimSC()



20 Copyright © 2008 Embecosm Limited

4.3.4.  Upcalls
Two functions are declared as static member functions to implement the upcalls from the
Or1ksim library (see Section 4.2.6 for an explanation of why these functions are static).

The static functions receive the pointer to the Or1ksimSC instance which originally started the
Or1ksim ISS (provided as an argument to or1ksim_init described in Section 4.3.3).

This allows each static function to call the instance function which implements the upcall, as
shown here with staticReadUpcall:

unsigned long int
Or1ksimSC::staticReadUpcall( void              *instancePtr,
                             unsigned long int  addr,
                             unsigned long int  mask )
{
  Or1ksimSC *classPtr = (Or1ksimSC *)instancePtr;

  return (unsigned long int)classPtr->readUpcall( (sc_dt::uint64)addr,
                                                  (uint32_t)mask );
}       // staticReadUpcall()

The address is cast to the SystemC native 64-bit type, which is always used in TLM 2.0 for
addresses. The mask and result (and write data for staticWriteUpcall are cast to the POSIX
uint32_t fixed length type to avoid any ambiguity over size4.

!
Caution
It might be thought that providing a direct upcall to the C++ upcall functions of
the class would be more efficient, using the C++ member reference operator (::*).
However the linkage to a member is much more complex (to cope with inheritance
and overloading). Lack of standardization in the C++ Application Binary Interface
(ABI) means that such linkage between C and C++ will not necessarily work.

Linkage to static functions is much simpler and usually works between C and C+
+. So the approach used here is more reliable.

The upcalls from the ISS generate the transactional activity. These functions set up the pay-
load, execute the transaction (i.e exchange the payload and result with the target) and return
the result to the ISS.

The example here is coded in a very simple fashion, in the knowledge that the requests to
read are always four bytes long (the OpenRISC 1000 has a simple 32 bit bus), possibly with
some bytes masked out for byte and half-word reads. This matches the default BUSWIDTH of
the simple initiator socket.

Both payload and data are declared as local (automatic) variables, i.e. on the stack. This is
fine with a blocking transport function, since they will remain valid for the duration of the
transaction. The data and mask are both encoded in the four bytes of a POSIX uint32_t.

!
Caution
Using local variables is this way would not be appropriate with a non-blocking
socket, since the initiator function could return before the result of the transaction
is received back from the target.

TLM 2.0 requires that the payload, data and mask fields all remain valid for the
duration of the complete transaction, so in this case the variables would need to
be allocated and deleted from the heap.

4 While unsigned long int is almost always 32 bits long, it is not guaranteed to be so.
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4.3.5.  Blocking Transport
Once the payload fields are set up, the doTrans function (which is used for both read and write)
is called to transport the payload to the target and return the result.

The transport function requires a time to be supplied, even when timing is not being used (as
in this case). This must be time variable, not a constant, since the target can update the value.
A dummy variable is declared with zero time and passed to the blocking transport function
of the socket with the payload.

  sc_core::sc_time  dummyDelay = sc_core::SC_ZERO_TIME;
  dataBus->b_transport( trans, dummyDelay );

This implementation is sufficient for modeling just the Or1ksim ISS in SystemC. However at
no time does the thread execute a SystemC wait call. In the absence of any such yield, no
other thread would be able to execute. This will be remedied in Section 6 when other threads
are added to model peripherals.
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5.  Testing the Or1ksim ISS TLM 2.0 Wrapper
The test configuration was shown earlier in Figure 2. For this a simple logger is needed, which
must implement a TLM 2.0 simple target socket.
In addition, a simple embedded application is needed to run on the Or1ksim ISS, which will
make reads and writes to peripheral address space, which can be detected by the logger.
All the behavior is in the callback function—there are no SystemC threads. This means the
logger will be suitable for testing the Or1ksimSC wrapper module, even though its thread never
yields (see Section 4.3.5).

5.1.  Definition of the TLM 2.0 Logger Module

5.1.1.  Include Files
The logger is based on the TLM 2.0 convenience simple target socket, so needs the appropriate
header, in addition to the standard TLM 2.0 header:

#include "tlm.h"
#include "tlm_utils/simple_target_socket.h"

5.1.2.  Module Declaration and Constructor
The class is a standard SystemC module:

class LoggerSC
: public sc_core::sc_module

A custom constructor is needed, which will be used to register the callback function for the
simple target convenience socket blocking transport.

  LoggerSC( sc_core::sc_module_name  name );

5.1.3.  Public Interface
The public interface is the single simple target convenience socket.

  tlm_utils::simple_target_socket<LoggerSC>  loggerPort;

5.1.4.  Blocking Transport
Blocking transport is via a callback function:

  void  loggerReadWrite( tlm::tlm_generic_payload &payload,
                         sc_core::sc_time         &delay );

All the behavior of the module is captured in this callback function. There are no SystemC
threads required.

5.2.  Implementation of the TLM 2.0 Logger Module

5.2.1.  Included Headers
The logger will be doing a certain amount of stream IO, so includes the C++ headers that define
stream manipulation functions. The POSIX standard integer types are also included.

#include <iostream>
#include <iomanip>
#include <stdint.h>

#include "LoggerSC.h"

5.2.2.  Constructor
The constructor passes its argument (the module) name to the base class sc_module construc-
tor. The body of the function then registers the loggerReadWrite function as the callback for
blocking transport to this convenience socket. This means that any initiator which requests
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blocking transport (by calling the initiator socket's b_transport function) will invoke this call-
back function in the target.

LoggerSC::LoggerSC( sc_core::sc_module_name  name ) :
  sc_module( name )
{
  loggerPort.register_b_transport( this, &LoggerSC::loggerReadWrite );

}       // Or1ksimSC()

5.2.3.  Blocking Transport Callback
The callback function, loggerReadWrite records the key information regarding any transaction
it receives. The payload is a TLM 2.0 Generic Payload, with appropriate access functions. In
this simple implementation, a length of 4 bytes is assumed for the data in the payload.
To get at the data and byte enable mask, the pointers to unsigned char are cast to pointers
to the POSIX fixed width type, uint32_t, as was used with Or1ksimSC. Endianism issues due
to the byte pointers not being word aligned are not an issue, because the Or1ksimSC module
also declared them as uint32_t.

void
LoggerSC::loggerReadWrite( tlm::tlm_generic_payload &payload,
                           sc_core::sc_time         &delay )
{
  // Break out the address, mask and data pointer.

  tlm::tlm_command   comm    = payload.get_command();
  sc_dt::uint64      addr    = payload.get_address();
  unsigned char     *maskPtr = payload.get_byte_enable_ptr();
  unsigned char     *dataPtr = payload.get_data_ptr();

  // Record the payload fields (data only if it's a write)

  const char *commStr;

  switch( comm ) {
  case tlm::TLM_READ_COMMAND:   commStr = "Read";   break;
  case tlm::TLM_WRITE_COMMAND:  commStr = "Write";  break;
  case tlm::TLM_IGNORE_COMMAND: commStr = "Ignore"; break;
  }

  std::cout << "Logging" << std::endl;
  std::cout << "  Command:      "   << commStr << std::endl;
  std::cout << "  Address:      0x" << std::setw( 8 ) << std::setfill( '0' )
            <<std::hex << (uint64_t)addr << std::endl;
  std::cout << "  Byte enables: 0x" << std::setw( 8 ) << std::setfill( '0' )
            <<std::hex << *((uint32_t *)maskPtr) << std::endl;

  if( tlm::TLM_WRITE_COMMAND == comm ) {
    std::cout << "  Data:         0x" << std::setw( 8 ) << std::setfill( '0' )
              <<std::hex << *((uint32_t *)dataPtr) << std::endl;
  }

  std::cout << std::endl;
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  payload.set_response_status( tlm::TLM_OK_RESPONSE );  // Always OK

}       // loggerReadWrite()

5.3.  The Model Main Program
The logger module and the Or1ksim wrapper module must be connected in the main program
(sc_main since this is SystemC), and the simulation invoked.

5.3.1.  Included Headers
The program includes the main TLM 2.0 header and the header of the two modules which
will be used:

#include "tlm.h"
#include "Or1ksimSC.h"
#include "LoggerSC.h"

5.3.2.  Argument Processing
The program takes two arguments, an Or1ksim configuration file (described further in Sec-
tion 5.5) and a binary image to execute on the Or1ksim ISS (see Section 5.4).

int  sc_main( int   argc,
              char *argv[] )
{
  if( argc != 3 ) {
    fprintf( stderr, "Usage: TestSC <config_file> <image_file>\n" );
    exit( 1 );
  }

5.3.3.  Module Instantiation
Instances of the Or1ksim ISS and the logger are created, the ISS being passed the two program
arguments for its initialization.

  Or1ksimSC  iss( "or1ksim", argv[1], argv[2] );
  LoggerSC   logger( "logger" );

5.3.4.  Connecting the Modules
The target socket of the logger (loggerPort) is connected by passing it as argument to the
initiator socket of the ISS (dataBus). The C++ function application operator, (), is overloaded
for initiator sockets to provide this binding function.

  iss.dataBus( logger.loggerPort );

5.3.5.  Model Execution
Once the model is instantiated, simulation is invoked to run forever.

  sc_core::sc_start();

5.4.  Test Program to Run on the Or1ksim
The test program in logger_test.c defines a memory mapped volatile data structure and then
writes to and reads from each element of that structure. Compilation of this program requires
the OpenRISC 1000 GNU tool chain (see  Embecosm Application Note 2. The OpenCores Open-
RISC 1000 Simulator and Tool Chain: Installation Guide.  [2] for details of installing this).

5.4.1.  The Utility Functions
The test program uses some simple utility functions which can write characters (simputc),
string (simputs) and hexadecimal numbers (simputh). Its header is included:

#include "utils.h"

The utilities' implementation can be found in utils.c.
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5.4.2.  Memory Mapped Data Structure
The memory mapped address is defined in the configuration of Or1ksim (see Section 5.5) to
be 0x90000000. This is set as a defined constant in the test program.

#define BASEADDR  0x90000000

The memory mapped structure consists of a byte, half word (16 bits) and full word (32 bits),
all declared as volatile within the struct. These are all declared with the C types, which for
the OpenRISC 1000 tool chain are known to correspond to these sizes.

struct  testdev
{
  volatile unsigned char       byte;
  volatile unsigned short int  halfword;
  volatile unsigned long  int  fullword;
};

The main program declares a pointer to this struct at the BASEADDR, along with 3 variables to
hold the results of the various sized results when reading.

main()
{
  struct testdev *dev = (struct testdev *)BASEADDR;

  unsigned char       byteRes;
  unsigned short int  halfwordRes;
  unsigned long int   fullwordRes;

5.4.3.  Checking Write Access
The details of each write are logged and the value then written. (In the absence of a printf,
the logging is necessarily cumbersome).

  simputs( "Writing byte 0xa5 to address 0x" );
  simputh( (unsigned long int)(&(dev->byte)) );
  simputs( "\n" );
  dev->byte     =       0xa5;

  simputs( "Writing half word 0xbeef to address 0x" );
  simputh( (unsigned long int)(&(dev->halfword)) );
  simputs( "\n" );
  dev->halfword =     0xbeef;

  simputs( "Writing full word 0xdeadbeef to address 0x" );
  simputh( (unsigned long int)(&(dev->fullword)) );
  simputs( "\n" );
  dev->fullword = 0xdeadbeef;

5.4.4.  Checking Read Access
The values are then read back. No results are expected (the logger does not set any values),
but this should check the process behaves as expected.

  byteRes = dev->byte;
  simputs( "Read 0x" );
  simputh(  byteRes );
  simputs( " from address 0x" );
  simputh( (unsigned long int)(&(dev->byte)) );
  simputs( "\n" );
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  halfwordRes = dev->halfword;
  simputs( "Read 0x" );
  simputh( halfwordRes );
  simputs( " from address 0x" );
  simputh( (unsigned long int)(&(dev->halfword)) );
  simputs( "\n" );

  fullwordRes = dev->fullword;
  simputs( "Read 0x" );
  simputh( fullwordRes );
  simputs( " from address 0x" );
  simputh( (unsigned long int)(&(dev->fullword)) );
  simputs( "\n" );

At the end of the program, the utility simexit is used. This not only terminates the program,
but will also exit the simulation.

5.4.5.  Program Compilation
The program is compiled with the utility functions (in utils.c) and a small boot loader (in
start.s) which defines a _start function which invokes main. The linker arguments are cho-
sen to make the program load from start of memory, with the _start function sitting at the
OpenRISC 1000 reset vector (0x100).

5.5.  Running the Test

5.5.1.  Compiling the SystemC Model
The SystemC modules are each compiled with access to the Or1ksim, SystemC and TLM 2.0
header directories. It is also essential that SC_INCLUDE_DYNAMIC_PROCESSES is defined when
using TLM 2.0:

g++ -ggdb -DSC_INCLUDE_DYNAMIC_PROCESSES -I$OR1KSIM_HOME/include \
    -I$SYSTEMC_HOME/include -I$TLM_HOME/include/tlm -c TestSC.cpp
g++ -ggdb -DSC_INCLUDE_DYNAMIC_PROCESSES -I$OR1KSIM_HOME/include \
    -I$SYSTEMC_HOME/include -I$TLM_HOME/include/tlm -c Or1ksimSC.cpp
g++ -ggdb -DSC_INCLUDE_DYNAMIC_PROCESSES -I$OR1KSIM_HOME/include \
    -I$SYSTEMC_HOME/include -I$TLM_HOME/include/tlm -c LoggerSC.cpp

The final linking must include the SystemC library, and since the Or1ksim library in-
cludes some shared objects, linker directions to find those shared objects (-Wl,--rpath,
$OR1KSIM_HOME).

g++ -ggdb -DSC_INCLUDE_DYNAMIC_PROCESSES TestSC.o Or1ksimSC.o LoggerSC.o \
    -Wl,--rpath,$OR1KSIM_HOME/lib -L$OR1KSIM_HOME/lib \
    -L$SYSTEMC_HOME/lib-linux -lsim -lsystemc -o TestSC

5.5.2.  Configuring the OpenRISC 1000 Or1ksim ISS
The Or1ksim ISS is configured using a textual configuration file, described in more detail in
Embecosm Application Note 2. The OpenCores OpenRISC 1000 Simulator and Tool Chain:
Installation Guide.  [2]. For the modified Or1ksim ISS, generic peripherals can be added (see
Section 4.1.2), which will cause code to call out via the upcall mechanism to the Or1ksim
SystemC wrapper module (see Section 4.2.6).
The Or1ksim configuration file for this example is in simple.cfg. It disables all the standard
peripherals and specifies one block of memory from address 0x0. It adds a generic peripher-
al allowing byte, half word and full word access to addresses mapped from 0x90000000 to
0x90000007, with the following configuration file entry

section generic
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  enabled      =          1
  baseaddr     = 0x90000000
  size         =        0x8
  name         = "External UART"
  byte_enabled =          1
  hw_enabled   =          1
  word_enabled =          1
end

5.5.3.  Running the Compiled Model
The compiled program can be executed by passing in as arguments the Or1ksim configuration
file and the OpenRISC 1000 binary. The result is shown in Figure 5.

$ ./TestSC ../simple.cfg progs_or32/logger_test

             SystemC 2.2.0 --- May 16 2008 10:30:46
        Copyright (c) 1996-2006 by all Contributors
                    ALL RIGHTS RESERVED
Reading script file from '../simple.cfg'...

   ... <Or1ksim initialization messages>

Writing byte 0xa5 to address 0x090000000
Logging
  Command:      Write
  Address:      0x90000000
  Byte enables: 0x000000ff
  Data:         0x000000a5
  Delay:        0.000000000s

Writing half word 0xbeef to address 0x090000002
Logging
  Command:      Write
  Address:      0x90000000
  Byte enables: 0xffff0000
  Data:         0xbeef0000
  Delay:        0.000000000s

   ... <More test program output>

Logging
  Command:      Read
  Address:      0x90000004
  Byte enables: 0xffffffff
  Delay:        0.000000000s

Read full word 0x0 from address 0x090000004
exit(0)
@reset : cycles 0, insn #0
@exit  : cycles 26921, insn #13854
 diff  : cycles 26921, insn #13854
$ 

Figure 5.  Output from the logger test of the Or1ksim wrapper module.
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Each access from the application program generates the expected transactional access. All
accesses are 32 bits wide, but for byte and half-word access the relevant bytes are masked off.

Note
The Or1ksim ISS can be configured to model big-endian architectures. The TLM 2.0
payloads are always packed with data using the endianism of the model.

If the exercise were repeated with a big-endian version of Or1ksim the addresses of
the access would be unchanged (they are word aligned), but the byte enable masks
for the byte and half word accesses would be inverted.
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6.  Modeling Peripherals
This example uses a single peripheral, a UART. The UART model is based on National Semi-
conductor 16450 design.

6.1.  Details of the 16450 UART
The 16450 UART is a very long established industry component. Data written a byte at a time
into the transmit buffer is converted to serial pulses on the output (Tx) pin. Serial pulses on the
input (Rx) pin are recognized and converted to byte values, which can be read from the receive
buffer. Typically Rx and Tx are connected to a terminal and keyboard which can generate and
recognize the pulses of data. The UART can also generate additional signals for terminals and
keyboards to provide physical flow control, but that is beyond the scope of this model. The
key interfaces are shown in Figure 6.

a

16450 UART

A-bus
(3-bit)

D-bus
(8-bit)

Interrupt Clk

Rx
Tx

Figure 6.  16450 UART: Key interfaces.
The 16450 UART specifies a set of registers which control the UART behavior. On the Tx/Rx
side, this includes setting the board rate and the pattern of stop, start and data bits. On the
CPU side this includes configuring interrupt behavior (if any) and setting flags to show the
status of transmit and receive buffers. The registers are shown in Table 1.

Address Register R/W Description
RXBUF R When the DLAB bit is 0 (see register LCR, this is the

buffer for read data.

TXBUF W When the DLAB bit is 0 (see register LCR, this is the
buffer for data to be written.

0

DLL R/W When the DLAB bit is 1 (see register LCR, this is the low
byte of the divisor latch (which controls UART perfor-
mance)

IER R/W The interrupt enable register. The lower 4 bits control
which events generate an interrupt.

1

DLH R/W When the DLAB bit is 1 (see register LCR, this is the high
byte of the divisor latch (which controls UART perfor-
mance)

2 IIR R Interrupt identification register. Bit 0 indicates if an in-
terrupt is pending, bits 1-2 the reason for the interrupt.

3 LCR R/W Line control register. Various bits controlling the behav-
ior of the UART. Of these, DLAB, bit 7, the divisor latch
access bit is important, because it controls the behavior
of registers 0 (RXBUF/TXBUF/DLL) and 1 (IER/DLH).

4 MCR W Modem control register. Bits 0-4 control the behavior of
the modem.

5 LSR R Line status register. Bits 0-6 report the status of the
UART. Of these, DR, bit 0, receiver data ready is impor-
tant, indicating there is valid data in RXBUF.
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Address Register R/W Description
6 MSR R Modem Status Register. Bits reporting the state of the

modem.

7 SCR R/W Scratch register. Not used by the UART, but may be
used by the application to store an 8-bit value.

Table 1.  NS 16450 UART Registers

6.2.  UART Module Design
A transaction level model cannot show all the intricacies of a UART—the whole point is to
simplify and remove detail.

The TLM should allow the CPU to read and write registers, a terminal to send and receive
characters and should generate interrupts as appropriate. While all writable registers can be
written and all readable registers read, only those registers and bits of registers which are
relevant to this level of modeling will have any impact on behavior.

6.2.1.  UART Model Interfaces
A TLM 2.0 socket is the natural model for the bus interface to the CPU. However the interface
to the terminal is much simpler. Standard SystemC buffers (sc_buffer) will be suitable, one
for the Rx direction and one for Tx. The buffer is implemented for the Rx direction and a
port to a buffer for the Tx direction. The terminal (see Section 7) will offer the complementary
arrangement.

Note
A SystemC buffer (sc_buffer) is used rather than a (sc_signal), since it must report
all writes to the buffer, rather than just changes to the value (as would be the case
with a signal). At this level of modeling it is quite possible that two identical bytes
would follow each other.

The interrupt is not modeled as an interface at this stage, so the UART will only be suitable
for polled use. An interrupt interface is added in Section 10.

6.2.2.  UART Model Registers
The divisor latch affects the baud rate, which will affect timing of transfers. This will be covered
in a later section (see Section 8), but is not needed for the current untimed model. The value
can be written and read, but does not affect behavior.

All interrupts are modeled (see Section 6.2.3), so all bits in the interrupt enable and interrupt
control register are modeled.

The modem control and status registers are only modeled to the extent of supporting modem
loopback. This is used by some software to determine the nature of the modem (for example
in the standard Linux serial line driver).

The line control register sets details of the bit transfers. In a later section (see Section 8), this
will affect the timing of transfers, but it is not relevant to the current untimed model.

In the Line Status Register, the Data Ready and Transmitter Holding Empty/Transmitter
Empty bits are the only ones modeled. The model does not distinguish a separate buffer and
holding transmit register, so the last two of these will move in step in the model.

6.2.3.  UART Model Interrupts
All interrupts are modeled, although there is no way to cause a receiver line status interrupt.
The modem status interrupt can only be generated when modem loopback is in operation.
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6.3.  Extending the Or1ksimSC Wrapper Module
For a larger system, the Or1ksim wrapper module described in Section 4 must be extended.
A public function is required for peripheral models to establish the CPU endianism.

The function must be added to the underlying Or1ksim library and then a wrapper function
added to the Or1ksimSC wrapper module.

In Section 4.3.5 it was noted that the absence of any call to wait meant the Or1ksim ISS could
be the only thread in the model. The doTrans function must be extended to yield after each
transaction to allow other threads to run.

These extensions are achieved by defining a new class, Or1ksimExtSC derived from the existing
Or1ksimSC class. It inherits all the functionality of the existing class, re-implements that of the
transport function, doTrans and adds an additional public interface function, isLittleEndian.

6.3.1.  Adding an Endianism Test Function to the Or1ksim Library
The additional function is straightforward, since endianism is a compile time constant in the
Or1ksim ISS.

• int  or1ksim_is_le();

or1ksim_is_le returns 1 if Or1ksim is modeling a little endian architecture, 0 otherwise.
It is needed to ensure the payload is packed with the correct byte ordering.

6.3.2.  Extended Or1ksim Wrapper Module Class Definition
The new class, Or1ksimExtSC is derived from Or1ksimSC, so the definition file includes its head-
er. The module class can then inherit from that class.

#include "Or1ksimSC.h"

class Or1ksimExtSC
: public Or1ksimSC
{

A custom constructor must be defined. Custom constructors do not inherit, so a new custom
constructor is defined just to pass the arguments on to the base class.

  Or1ksimExtSC( sc_core::sc_module_name  name,
                const char              *configFile,
                const char              *imageFile );

A new public function to report the endianism of the underlying CPU model is defined

bool  isLittleEndian();

The doTrans is reimplemented here, to allow the thread to yield. The function remains protected
and virtual, since it will be redefined again later in this application note.

virtual void  doTrans( tlm::tlm_generic_payload &trans );

6.3.3.  Extended Or1ksim Wrapper Module Class Implementation
The constructor just passes its arguments to its base class

Or1ksimExtSC::Or1ksimExtSC ( sc_core::sc_module_name  name,
                             const char              *configFile,
                             const char              *imageFile ) :
  Or1ksimSC( name, configFile, imageFile )
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{
 }      // Or1ksimExtSC()

isLittleEndian is a simple wrapper for the underlying Or1ksim ISS library function5.

bool
Or1ksimExtSC::isLittleEndian()
{
  return (1 == or1ksim_is_le());

} // or1ksimIsLe()

The majority of the code for doTrans is unchanged from its implementation in Or1ksimSC. The
addition is a wait for zero time immediately after the transaction has completed. This allows
the SystemC thread to yield, so that any other threads that are ready can take a turn.

  wait( sc_core::SC_ZERO_TIME );

!
Caution
The call to wait is essential. SystemC is not preemptive. Other threads are only
considered for execution when the currently executing thread yields. If the code
were to return here, control would pass back to the underlying Or1ksim ISS until
its next upcall, with no opportunity for another SystemC thread to execute.

The implementation currently is untimed, so a zero delay wait is perfectly accept-
able. That just gives all the other untimed threads a turn at execution.

The logger described in Section 5 worked without this call to wait, because it had
no thread—all its functionality was in the blocking transaction callback function.

6.4.  UART: Module Class Definition
The UART module class, UartSC is defined in UartSC.h. It uses the TLM 2.0 simple target
convenience socket (described earlier in Section 5).

6.4.1.  Headers and Constant Definitions
The header files for TLM 2.0 and the simple target convenience socket are included.

#include "tlm.h"
#include "tlm_utils/simple_target_socket.h"

Convenience constants for the address mask, named register offsets and bit fields are then de-
fined. The address mask is needed, since in this simple SoC model there is no arbiter/decoder
to strip out the higher order bits from the address before the transaction is sent to the UART.

#define UART_ADDR_MASK      7     // Mask for addresses (3 bit bus)

Named constants are defined giving the address offset of each register of the UART

#define UART_BUF  0               // R/W: Rx/Tx buffer, DLAB=0
#define UART_IER  1             // R/W: Interrupt Enable Register, DLAB=0
#define UART_IIR  2             // R: Interrupt ID Register
#define UART_LCR  3             // R/W: Line Control Register
#define UART_MCR  4             // W: Modem Control Register
#define UART_LSR  5             // R: Line Status Register

5 A technicality is that the Or1ksim library function, is_little_endian returns an int, since C does not have a bool
type. A C++ compiler would automatically convert one to the other, but making the comparison explicit is good for
clarity. The same code will be generated, so there is no loss of performance.
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#define UART_MSR  6             // R: Modem Status Register
#define UART_SCR  7             // R/W: Scratch Register

Bit masks are declared for each of the bits and bit fields of interest in the UART. For example
the interrupt identification register needs a mask for the pending bit a mask for the two bits
representing the highest priority interrupt and a mask for each possible interrupt.

#define UART_IIR_IPEND  0x01    // Interrupt pending (active low)

#define UART_IIR_MASK   0x06    // the IIR status bits
#define UART_IIR_RLS    0x06    // Receiver line status
#define UART_IIR_RDA    0x04    // Receiver data available
#define UART_IIR_THRE   0x02    // Transmitter holding reg empty
#define UART_IIR_MOD    0x00    // Modem status

6.4.2.  Class Declaration and Constructor
The main class is a standard SystemC module class derived from sc_core::sc_module.

class UartSC
: public sc_core::sc_module
{

The module has a customized constructor, specifying an input clock rate (which in the SoC
example will be the SoC clock rate), and a flag to indicate the endianism of the model.

  UartSC( sc_core::sc_module_name  name,
          unsigned long int        _clockRate,
          bool                     _isLittleEndian );

6.4.3.  Public Interface
The interfaces to the UART model are:

• The simple target convenience socket, bus, representing the bus from the CPU;

• A byte wide SystemC buffer (sc_buffer<unsigned char>) for the Rx pin; and

• A byte wide SystemC output port (sc_out<unsigned char>) for the Tx pin.

No external port is provided for the interrupt at this stage. That will be added in Section 10

6.4.4.  SystemC Processes
A SystemC thread is provided busThread to handle transactions arriving on the bus. A SystemC
method, statically sensitive to writes to the Rx buffer is used to handle bytes arriving in the
Rx buffer.

Note
Unlike threads, SystemC methods may not yield by calling wait. A SystemC method
is started when one of its static sensitivities is triggered and runs to completion. It
is suitable here, where it runs when a character is received, copying that character
to the UART RXBUF register and then exiting.

it is worth using SystemC methods whenever possible, because they can potentially
be implemented more efficiently than threads.

6.4.5.  Blocking Transport Callback
The blocking transport callback function is busReadWrite. This in turn calls for two separate
functions which implement read specific (busRead) and write specific (busWrite) behavior.
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6.4.6.  Utility Functions
A utility function, modemLoopback determines the state of registers and generates an interrupt
in the event of modem loopback being requested (a bit in the modem control register). It is
used by the busRead and busWrite functions.

Three utility functions are provided to handle interrupts. setIntrFlags sets the interrupt in-
dication register according to which interrupts are currently pending. genIntr generates an
interrupt and clrIntr clears an interrupt. In this implementation these functions ensure all
register flags are set correctly but do not drive an external interrupt signal.

A set of convenience utilities are provided to set and clear flags in registers (set and clear)
and to test the state of a flag bit in a register (isSet and isClear).

6.4.7.  UART State
struct regs is used to hold the value of each register. There are ten of these, since register
0 is really two registers, depending on whether it is being read (rbr) or written (thr) and the
divisor latch is really an extra 16 bit register.

  struct {
    unsigned char       rbr;            // R: Rx buffer,
    unsigned char       thr;            // R: Tx hold reg,
    unsigned char       ier;            // R/W: Interrupt Enable Register
    unsigned char       iir;            // R: Interrupt ID Register
    unsigned char       lcr;            // R/W: Line Control Register
    unsigned char       mcr;            // W: Modem Control Register
    unsigned char       lsr;            // R: Line Status Register
    unsigned char       msr;            // R: Modem Status Register
    unsigned char       scr;            // R/W: Scratch Register            
    unsigned short int  dl;             // R/W: Divisor Latch
  } regs;

An additional register, intrPending, holds flags (corresponding the interrupt enable regis-
ter bits) indicating which interrupts are currently pending. A flag initialized at construction
records the model endianism, isLittleEndian.

6.4.8.  Notifying the Bus Thread of Transaction Activity
A function is needed for the TLM 2.0 callback function, busReadWrite to notify the thread
handling data being sent for transmission (busThread). This is achieved with a SystemC event:

  sc_core::sc_event  txReceived;

The callback function notifies on this event, to trigger behavior in the busThread.

6.5.  UART Module Class Implementation

6.5.1.  UART Constructor
Implementation of the constructor is preceded, like Or1ksimSC, by the SystemC macro

SC_HAS_PROCESS( UartSC );

The constructor calls the base class (sc_module) constructor to set the module name, saves
the endianism flag in its internal state variable and clears the interrupt pending flags. The
thread to handle bus I/O is associated with this module.

  SC_THREAD( busThread );
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The method handling data on the Rx buffer is associated with this module with static sensitivity
to writes to that buffer. It is not initialized.

  SC_METHOD( rxMethod );
  sensitive << rx;
  dont_initialize();

The blocking transport callback is registered for the bus socket, in the same manner as was
used for the logger, LoggerSC.

  bus.register_b_transport( this, &UartSC::busReadWrite );

Finally the registers (regs) are cleared.

6.5.2.  UART Threads
busThread sits in a perpetual loop. It first marks the transmit buffer as empty (on reset the
flags are cleared, so the buffer will appear full).

Note
The 16450 UART describes two flags for transmit buffer status, one to indicate that
the transmit holding register is empty and a second to indicate that the internal
transmit buffer register is empty.

For simplicity, this model does not model a separate internal register (effectively a
one byte FIFO), so both flags are set and cleared together.

If the transmit buffer empty interrupt is enabled, the thread generates an interrupt to indicate
that the buffer is empty.

The thread then waits until it is notified via the SystemC event txReceived that a byte is in
the buffer to be sent. This event will be triggered by the busWrite callback when a value is
written into the transmit holding register.

The second thread, rxThread sits in a perpetual loop, waiting for characters to be received on
the Rx buffer. The character is read into the read buffer register and the line status data ready
flag is set to indicate availability.

If the receive data interrupt is enabled, an interrupt is asserted to indicate data availability.

6.5.3.  UART Blocking Transport Callback
The registered callback function is busReadWrite, which breaks out the address, byte enable
mask pointer and data pointer. A switch statement on the mask is used to determine the offset
of the actual byte requested and hence the exact byte address, allowing for the endianism of
the model. This also provides a check that only a single byte is being requested.

  switch( *((uint32_t *)maskPtr) ) {
  case 0x000000ff: offset = isLittleEndian ? 0 : 3; break;
  case 0x0000ff00: offset = isLittleEndian ? 1 : 2; break;
  case 0x00ff0000: offset = isLittleEndian ? 2 : 1; break;
  case 0xff000000: offset = isLittleEndian ? 3 : 0; break;

  default:              // Invalid request

    payload.set_response_status( tlm::TLM_GENERIC_ERROR_RESPONSE );
    return;
  }



36 Copyright © 2008 Embecosm Limited

In a perfect world, the router/arbiter function would have masked the address to the range
handled by the UART. However for this simple model, the full address is received, so masking
with UART_ADDR_MASK is carried out here, to give the address of the UART register being read.

Separate functions, busRead and busWrite are used to implement the register specific behavior,
selected as appropriate based on the payload command field.

Single byte reads and writes always succeed, so the response is set to tlm::TLM_OK_RESPONSE
in all cases.

6.5.4.  UART Read Behavior
Read behavior is handled by busRead. A switch on the address is used to identify the result to
be returned, usually just the value in the register if it is readable. The interesting cases are:

• If the DLAB bit is set in the line control register, then reads to the first two registers (read
buffer and interrupt enable) yield instead the low and high bytes of the divisor latch.

• Reading the read buffer (when DLAB=0) yields the byte just read, if flag DR is set in the line
status register. The act of reading causes the DR flag and the read buffer full interrupt to
be cleared. If no interrupts remain pending then the interrupt pending flag is cleared.

• Reading the interrupt indicator register clears the transmit buffer empty interrupt if it
was pending. If no interrupts remain pending, then the interrupt pending flag is cleared.

• Reading the line status register clears any error indications and the receive line status
interrupt if it was pending, although the model has no way of setting any of these indi-
cations. If no interrupts remain pending, then the interrupt pending flag is cleared.

• Reading the modem status register clears all flags and the modem status interrupt if it
was pending. However the modem loopback indication may still be in operation and if so
the bits and interrupts are set to indicate the state of the loopback by a call to modem-
loopback. If no interrupts remain pending, then the interrupt pending flag is cleared.

6.5.5.  UART Write Behavior
Write behavior is handled by busWrite. A switch on the address is used to identify the action
required. Usually the register is just written (if writable). The interesting cases are:

• If the DLAB bit is set in the line control register, then writes to the first two registers
(read buffer and interrupt enable) update the low and high bytes of the divisor latch
respectively.

• Writing the transmit hold register (when DLAB=0) triggers a new transfer. The flags are
set to indicate data is in the register, the transmit buffer empty interrupt is cleared, and
the bus thread (busThread) notified via the SystemC event txReceived. If no interrupts
remain pending, then the interrupt pending flag is cleared.

• If the modem loopback bit is set by a write to the modem control register, then the modem
status bits are set appropriately by a call to modemLoopback. If enabled a modem status
interrupt may be generated.

6.5.6.  UART Utility Functions
setIntrFlags determines the setting of the interrupt identification register according to which
interrupts are currently pending (in intrPending).

genIntr generates an interrupt by marking the corresponding interrupt as pending if the in-
terrupt is enabled and setting the interrupt identification register flags appropriately. In this
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implementation, no external signal is generated (see Section 10 for details of generating an
interrupt signal).

clrIntr clears the interrupt pending flag (no need to check if the interrupt is enabled in this
case) and sets the appropriate interrupt identification register flags. Again there is no external
generated in this implementation.

A set of functions are provided to set, clear and test bits in registers. Using these makes the
code much more readable6.

6 Many programmers use #defined macros for functions such as these. However such macros have no encapsulation
(they can be used by anyone including the header) and have a nasty habit of clashing with other peoples macros. By
using functions, the functions can be made private to the UartSC class alone.
The functions are declared in line, and a modern C++ compiler will generate code as efficiently as if they had been
#defined as macros. Indeed the added type information gives the potential for greater optimization.
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7.  Adding a Terminal as a Test Bench
The Or1ksim ISS described in Section 4 and the UART described in described in Section 6 can
be put together as a minimal SoC. However a test bench is needed to exercise that SoC
The usual way of exercising a SoC with a UART is to connect a terminal to the UART. This
section describes a suitable SystemC model of a terminal and how to connect it to create the
complete SoC.
This is not a TLM 2.0 component—the interfaces are standard SystemC buffers, so the de-
scription is less detailed. However it serves to illustrate an important general technique when
using SystemC—how to interact with the operating system functions.
The problem is that many operating system calls block. Consider modeling the terminal as
a thread which reads characters from a console window. This will block until characters are
typed. However the block does not use the SystemC wait call, so SystemC is not aware that
the thread has yielded. The simulation will hang until characters are received.
This implementation of the terminal will show how to wrap non-blocking versions of operating
system functions with SystemC events, to give versions that block correctly using SystemC
wait, so allowing the thread to yield.

7.1.  SystemC Terminal Module Design
The terminal provides SystemC buffer to model the Rx and a port to model the Tx pins of a
serial connection. The visualization is provided by a Linux xterm running in a child process,
with communication through a pseudo-TTY7.
Two SystemC processes are used, one a method waiting for bytes from the UART in the Rx
buffer, the other a thread waiting for bytes from the xterm. When bytes are received in the Rx
buffer, they are written to the xterm. When bytes are received from the xterm they are written
to the Tx port. The key interfaces are shown in Figure 7.

Terminal Module
(parent process)

Read
Pseudo-TTY

Rx
Buffer

Tx
Port

Write
Pseudo-TTY

xterm
(child process)

Figure 7.  SystemC terminal model using a xterm child process.
The difficulty is in waiting for the xterm. As described above, reading from the pseudo-TTY is
an operating system call, and does not use the SystemC wait, so the thread will not yield and
the simulation will block. Instead the pseudo-TTY is set up to use asynchronous I/O, which
will cause a Linux SIGIO to be raised whenever data is available to read. The event handler
for SIGIO will then notify a SystemC event, and it is this SystemC event on which the thread
can safely wait.

7.2.  Terminal Module Class Definition

7.2.1.  Mapping Signals to Class Instances
The operating system signal handlers require C style linkage, so cannot be used with C++
member functions (the same issue addressed by the Or1ksim wrapper in Section 4.2.6). Thus
the SIGIO handler will be a static function. However each instance (there could be multiple

7 The description here is specific to Linux. A future version of this application note will describe use under Microsoft
Windows.
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terminals in a simulation) will have a different file descriptor, which can be used to identify
the owning class instance.

The set of mappings from file descriptor to class instance is held in a linked list with static
head pointer. The struct Fd2Inst is provided for that list, with entries for the file descriptor,
instance and a pointer to the next in the list.

7.2.2.  The SystemC Class
TermSC is declared as a standard SystemC class, with a buffer for bytes coming in, and a
port for bytes out (which will connect to a buffer in the UART). In this case it has a custom
destructor as well as constructor, which will be used to kill the child process running the
xterm when the class is deleted.

7.2.3.  Setting up the xterm
A set of utility functions are provided to set up the xterm. A function, xtermRead, is provided
to read from the xterm and a function, xtermWrite to write to the xterm. Both these functions
are blocking on the operating system. The write function should always be able to write with
minimal delay. However the read function must only be called when the SIGIO signal handler
has determined input is available, in order to avoid blocking the SystemC simulation.

There is some internal state to hold the pseudo-TTY file descriptors and the process ID of the
xterm (so it can be killed by the destructor). It is the slave file descriptor that is used for both
input and output.

7.2.4.  Signal and event handling
The SIGIO signal handler (ioHandler) is declared static as noted above. The static instList of
type Fd2Inst points to the list of mappings from file descriptor to class instance.

The SystemC event used to signal when input is available is pointed to by ioEvent.

!
Caution
It is essential that the event is declared as a pointer. If the event itself were declared
here, it would be available at elaboration, and would crash the system (try it!).

The solution is to declare the pointer and allocate the event instance dynamically
when the xterm is created. The memory can be freed from the destructor on ter-
mination.

7.3.  Terminal Module Class Implementation
The implementation is a standard SystemC module communicating via the Rx buffer and Tx
port. It has a SystemC method sensitive to writes to the Rx buffer and a SystemC thread
listening to the xterm.

The setup of the pseudo-TTYs and the xterm in a separate process uses standard operating
system functions, not described further here. The key factor is that the file descriptor for the
pseudo-TTY to the xterm is set up to be asynchronous, with Linux signal SIGIO raised when
input is available and handled by the ioHandler() function.

7.3.1.  SystemC Processes
The method listening to the UART, rxMethod is sensitive to writes to the rx buffer. When trig-
gered, the character is read from the buffer and immediately copied to the xterm. Although this
is a blocking operating system write, it should return with minimal delay. In an environment
where any blocking were a concern, a non-blocking write could be used instead.

The thread listening to the xterm, xtermThread sits in a perpetual loop, waiting on the SystemC
event pointed to by ioEvent. This will safely allow the thread to yield to the SystemC scheduler
until a character is ready.
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When input is available, the event is notified (see Section 7.3.2). The thread can safely make
an operating system read to get the character, knowing that data is definitely available.

7.3.2.  Signal and event handling
During initialization of the xterm the SystemC event, ioEvent is allocated:

  ioEvent = new sc_core::sc_event();

When ioHandler is called in response to a Linux SIGIO event, it does not know which pseu-
do-TTY was responsible. The file descriptor responsible is identified by using an operating
system select call. Using the mappings in instList, the corresponding class instance can be
identified and its ioEvent notified.

  for( Fd2Inst *cur = instList; cur != NULL ; cur = cur->next ) {
    if( FD_ISSET( cur->fd, &readFdSet )) {
      (cur->inst)->ioEvent->notify();
    }
  }

This event then allows the xtermThread to run and read a character.

7.4.  The Complete SoC

7.4.1.  The Model Main Program
The structure of the main program (SimpleSoC.cpp) is similar to that for the logger test program
(see Section 5.3). The TLM 2.0 header and the headers for each module (Or1ksim ISS, UART
and terminal) are included.

#include "tlm.h"
#include "Or1ksimExtSC.h"
#include "UartSC.h"
#include "TermSC.h"

As before the main program (sc_main) takes as arguments the Or1ksim configuration file and
OpenRISC 1000 image. Instances of the three modules are declared.

  Or1ksimExtSC  iss( "or1ksim", argv[1], argv[2] );
  UartSC        uart( "uart", iss.isLittleEndian() );
  TermSC        term( "terminal" );

The endianism for the UART is set using the public utility function in Or1ksimExtSC. The TLM
sockets of UART and ISS can be connected:

  iss.dataBus( uart.bus );

The Rx buffer in the UART is connected to the Tx port in the terminal and the Rx buffer in the
terminal is connected to the Tx port in the UART.

  uart.tx( term.rx );
  term.tx( uart.rx );

The simulation can then be started with a call to sc_start.

7.4.2.  Test Program to Run on the Or1ksim ISS
The test program, uart_loop.c is a simple polling loop back driver of the UART. Characters
are read and immediately echoed back.

A volatile structure is declared for the UART registers, with #defined constants for the base
address and the register bits of interest

#define BASEADDR   0x90000000
#define BAUD_RATE        9600
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#define CLOCK_RATE  100000000           // 100 Mhz

struct uart16450
{
  volatile unsigned char  buf;          // R/W: Rx & Tx buffer when DLAB=0  
  volatile unsigned char  ier;          // R/W: Interrupt Enable Register   
  volatile unsigned char  iir;          // R: Interrupt ID Register         
  volatile unsigned char  lcr;          // R/W: Line Control Register       
  volatile unsigned char  mcr;          // W: Modem Control Register        
  volatile unsigned char  lsr;          // R: Line Status Register          
  volatile unsigned char  msr;          // R: Modem Status Register         
  volatile unsigned char  scr;          // R/W: Scratch Register            
};

#define UART_LSR_TEMT   0x40            // Transmitter serial register empty
#define UART_LSR_THRE   0x20            // Transmitter holding register empty
#define UART_LSR_DR     0x01            // Receiver data ready

#define UART_LCR_DLAB   0x80            // Divisor latch access bit
#define UART_LCR_8BITS  0x03  // 8 bit data bits

The utility functions to set and clear flags in the UART (see Section 6.5) are reused here,
modified for C rather than C++ and volatile register arguments. They are included from the
file binutils.c

#include "bitutils.c"

The main program declares a pointer to the UART register structure, uart, at the base address.
Initialization requires setting the divisor latch, to divide the main clock down to 16 x the baud
rate and setting 8-bit data.

  volatile struct uart16450 *uart = (struct uart16450 *)BASEADDR;
  unsigned short int         divisor;

  divisor = CLOCK_RATE/16/BAUD_RATE;            // DL is for 16x baud rate

  set( &(uart->lcr), UART_LCR_DLAB );           // Set the divisor latch
  uart->buf  = (unsigned char)( divisor       & 0x00ff);
  uart->ier  = (unsigned char)((divisor >> 8) & 0x00ff);
  clr( &(uart->lcr), UART_LCR_DLAB );

  set( &(uart->lcr), UART_LCR_8BITS );  // Set 8 bit data packet

The remainder of the program is a perpetual loop:

• Wait for a character in the read buffer (flag DR of the line status register is set).

• Read the character from the buffer and print it.

• Wait for the transmit buffer to clear (flags TEMT and THRE of the line status register are set).

• Write the character back.

  while( 1 ) {
    unsigned char  ch;

    do {                        // Loop until a char is available
      ;
    } while( is_clr(uart->lsr, UART_LSR_DR) );
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    ch = uart->buf;

    simputs( "Read: '" );       // Log what was read
    simputc( ch );
    simputs( "'\n" );

    do {                        // Loop until the transmit register is free
      ;
    } while( is_clr( uart->lsr, UART_LSR_TEMT | UART_LSR_THRE ) );
      
    uart->buf = ch;
  }

7.4.3.  Compiling and Running the Model
Compilation uses the same command lines as the standalone test of the Or1ksim wrapper
with the logger (see Section 5.5), but this time links in the UART and terminal; rather than
the logger.

!
Important
Since Or1ksimExt is a derived class of Or1ksim, linking should include the compiled
base class, Or1ksimSC.o as well as the derived class, Or1ksimExtSC.o.

The Or1ksim configuration is also unchanged. Like the logger, the UART registers start at
address 0x90000000 and are 8 bytes long.

Running the model requires specifying the configuration file (unchanged) and the binary exe-
cutable (this time the UART loop back program).

./SimpleSocSC ../simple.cfg progs_or32/uart_loop

The xterm terminal should appear. Select it and type some characters. The window running
the model, will show the logged output from the terminal, reporting the same characters being
written, as shown in Figure 8.

$ ./SimpleSocSC ../simple.cfg progs_or32/uart_loop

             SystemC 2.2.0 --- May 16 2008 10:30:46
        Copyright (c) 1996-2006 by all Contributors
                    ALL RIGHTS RESERVED
Reading script file from '../simple.cfg'...

   ... <Or1ksim initialization messages>

Read: 'F'
Read: 'a'
Read: 'r'

   ... <more Or1ksim output>

Read: '!'
Read: '!'
Read: '!'

Figure 8.  UART loop back program log output.

At the same time the characters will be echoed on the xterm, as shown in figure Figure 9.
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Figure 9.  xterm with the UART loop back program running.

Well it makes a change from "Hello World!".

As an exercise, rebuild the model, removing the call to wait in the Or1ksimExtSC::doTrans
function. Observe that the program hangs without accepting any characters. The reason for
this is given in the description of doTrans in Section 6.3.

A debugger connected to the model will show that execution is stuck in Or1ksim ISS, waiting
for the data ready flag to be set in the UART. This can never occur, since neither UART nor
terminal are given the chance to execute the threads that would set this flag.

7.4.4.  Model Timing
This model is completely untimed. It executes the behavior of the design, and for that reason
such models are useful in system verification.

The next stages will add timing to this model. To allow this to be demonstrated, add some
logging to the UART and terminal to report the timing of reads and writes.

Edit the rxThread in UartSC, to print out the time when a character is received from the ter-
minal8.

void
UartSC::rxThread()
{
  // Loop woken up when a character is written into the buffer from the terminal.

  while( true ) {
    regs.rbr  = rx.read();                      // Blocking read of the data

8 The use of printf and C stdio is unfortunate. It would be better to use C++ stream IO. However there seems to
be an interaction with either SystemC or the asynchronous IO of the xterm, which makes stream IO to standard
output unreliable
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    sc_core::sc_time  now = sc_core::sc_time_stamp();
    printf( "Char read at    %12.9f sec\n", now.to_seconds());

    set( regs.lsr, UART_LSR_DR );               // Mark data ready

    if( isSet( regs.ier, UART_IER_ERBFI ) ) {   // Send interrupt if enabled
      genIntr( UART_IIR_RDI );
    }
  }
}       // rxThread()

Similarly edit the rxThread in TermSC, to print out the time when a character is received from
the UART.

void
TermSC::rxThread()
{
  while( true ) {
    unsigned char  ch = rx.read();      // Blocking read from the buffer

    xtermWrite( ch );                   // Write it to the screen

    sc_core::sc_time  now = sc_core::sc_time_stamp();
    printf( "Char written at %12.9f sec\n", now.to_seconds());
  }
}       // rxThread()

In both cases the C standard IO header will be needed at the top of the file (UartSC.cpp and
TermSC.cpp):

#include <stdio.h>

The model can now be rerun as before, and will print out precise timing (use of 9 decimal
places ensures that granularity at least as fine as the 100MHz CPU clock will be seen). The
output is shown in Figure 10.

$ ./SimpleSocSC ../simple.cfg progs_or32/uart_loop

             SystemC 2.2.0 --- May 16 2008 10:30:46
        Copyright (c) 1996-2006 by all Contributors
                    ALL RIGHTS RESERVED
Reading script file from '../simple.cfg'...

   ... <Or1ksim initialization messages>

Char read at    0.000000000 sec
Read: 'F'
Char written at 0.000000000 sec
Char read at    0.000000000 sec
Read: 'a'
Char written at 0.000000000 sec
Char read at    0.000000000 sec
Read: 'r'

   ... <Lots more output>

Figure 10.  UART loop back program log output with timing annotation.
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As can be seen all the reads and writes occur at time zero.
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8.  Adding Synchronous Timing to the Model
The current models are all untimed. In the TLM 2.0 components (Or1ksimExtSC and UartSC)
the delay parameter to the blocking transport function has been ignored by setting it to zero.

In this section, the models are extended to synchronize explicitly with the SystemC clock.

The synchronization is not perfect—the underlying Or1ksim ISS executes outside the SystemC
world. Synchronization is only possible when it makes an upcall for read or write. In Section 9
this model will be further extended to add control over the underlying ISS and its interaction
with SystemC time.

8.1.  Summary of Changes Required for Synchronous Timing
Each module of the existing SoC requires some changes. New classes, Or1ksimSyncSC, Uart-
SyncSC and TermSyncSC are derived from the existing classes to provide added functionality. In
addition the underlying Or1ksim ISS library will need extending. the main program will need
modifying to use these new classes.

• Or1ksimSyncSC. A public function to report the clock rate of the underlying Or1ksim ISS
is added (requiring an extension to the Or1ksim library), and the transport function,
doTrans modified to add timing information.

• UartSyncSC. This now models the time taken to put a character out on the Tx wire, so
must know its input clock rate (in this SoC, the Or1ksim clock rate), so that baud rate
can be calculated from the divisor latch. Also models the true time to process a read or
write on the bus and returns this with the transaction response.

• TermSyncSC. This now models the time taken to put a character out to the UART, so must
know its baud rate. This requires an updated thread listening to the xterm, so that the
baud rate delay can be added.

• Or1ksim ISS library. Information functions are added to return the model clock rate
(used as input clock rate for the UART) and to determine the time spent executing in-
structions (so Or1ksimSyncSC can determine the synchronization time with SystemC.

• A new main program SyncSocSC.cpp to build the new classes into a synchronized SoC.
Information functions are added to return the model clock rate (used as input clock
rate for the UART) and the time spent executing instructions (so Or1ksimSyncSC can
determine the synchronization time with SystemC.

8.2.  Extending the Or1ksimExtSC Wrapper Module

8.2.1.  Adding Clock Rate and Timing Functions to the Or1ksim Library
Three additional functions are needed in the Or1ksim library to support synchronized timing.
The UART will need to know the clock rate of the model (to work out the baud rate from the
value of the divisor latch). The Or1ksimSyncSC class itself will need a pair of functions, one to
set a timing point in the ISS the second to return the amount of time since the last timing
point. This the amount of time the underlying ISS has used when synchronizing with SystemC.

The three additional functions are simple additions. The clock rate is a configuration param-
eter, while a run time count of instructions executed is already maintained. An extra record
in the run-time structure allows a time to be recorded (in seconds through dividing the count
by the clock rate), which can be compared in subsequent calls to give the ISS time used since
the last time point9.

9 This is a loosely timed model. The timing from the ISS is approximate—it does not model the microarchitecture in
detail. Cycle estimates will not be exact—that requires a fully cycle accurate model.
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• unsigned long int  or1ksim_clock_rate();

or1ksim_clock_rate returns the Or1ksim ISS clock rate in Hz. This information will be
used by the UART to allow it to set its baud rate.

• void  or1ksim_set_time_point();

or1ksim_set_time_point records the current ISS simulation time (clock cycles divided
by clock rate) in the run-time data structure.

• double  or1ksim_get_time_period();

or1ksim_get_time_period returns the time in seconds since the last time point was set.
This function is needed to keep the SystemC model of time due to instruction set pro-
cessing accurate, both in the synchronous SoC and when temporal decoupling is added.

8.2.2.  Or1ksimSyncSC Module Class Definition
The new module class, Or1ksimSyncSC is derived from the existing Or1ksimExtSC module class.
The header of the base class, Or1ksimExtSC is included and the new class derived from that
base class.

#include "Or1ksimExtSC.h"

class Or1ksimSyncSC
  : public Or1ksimExtSC
{

A custom constructor must be defined, but has the same arguments as the base class con-
structor, to which it will pass its arguments.

The new Or1ksim library call to give the clock rate is wrapped by a public function10.

  unsigned long int  getClockRate();

The virtual function, doTrans function is reimplemented—it will replace the call to doTrans in
the base class to add timing synchronization.

8.2.3.  Or1ksimSyncSC Module Class Implementation
The custom constructor passes its arguments directly to the base class constructor. It then
uses the Or1ksim library function, or1ksim_set_time_point to set an initial time point at the
start of simulation. The first call to or1ksim_get_time_period will return the time since the
ISS started.

The doTrans function (which is used for both read and write) is extended from the version used
with Or1ksimExtSC to synchronize with the SystemC clock.

There are two components to the time taken in this model, the time taken by the Or1ksim ISS
and the time taken in any peripherals. At the time of an upcall, the SystemC wrapper thread
will not have yielded control since either initialization or the last upcall, when a time point
was set in the ISS using or1ksim_set_time_point.

A call to or1ksim_get_time_period gives the time used by the ISS in this period. This is used
as the argument to wait, allowing any other threads in the SystemC world to run until the
calculated simulation time is reached.

  wait( sc_core::sc_time( or1ksim_get_time_period(), sc_core::SC_SEC ));

10 The use of unsigned long int reflects the usage in the Or1ksim ISS. The designers do not anticipate usage to model
designs in excess of 4GHz!
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At this time the blocking transport function of the simple initiator socket is called with the
payload and specifying a zero time offset (since the call to wait means the thread is synchro-
nized with the SystemC clock).

  sc_core::sc_time  delay = sc_core::SC_ZERO_TIME;
  dataBus->b_transport( trans, delay );

On return, the delay parameter will have been updated with any additional delay due to the
transaction—in this case an estimate of the number of cycles to read or write the relevant
UART register.

However, since this is a synchronized model, the target will have called wait to model the time
taken to read or write, so delay will still be zero on return.

The read or write is now complete. A new time point is set with set_time_point before control
is returned to the ISS

  or1ksim_set_time_point();

The utility getClockRate is a simple wrapper for the underlying Or1ksim library function (see
Section 8.2.1). It will be used in the main program (see Section 8.5).

unsigned long int
Or1ksimSyncSC::getClockRate()
{
  return or1ksim_clock_rate();

}       // getClockRate()

8.3.  Extending the UartSC Module Class
A new class, UartSyncSC derived from UartSC implements the additional functionality for syn-
chronized timing.

The time taken for the serial pulses (start, data, parity, stop bits) on the real UART will be
modeled as a delay before writing data onto the Tx output port. The corresponding delay on
the Rx buffer port will be modeled by the terminal writing into that port11.

The TLM 2.0 socket modeling the bus is extended to model the time taken for reads to and
writes from the bus.

8.3.1.  UartSyncSC Module Class Definition
The class definition (in UartSyncSC.h) includes the header of the base class and defines two
new constants to represent the delay in reading and writing in nanoseconds.

#define UART_READ_NS       60   // Time to access the UART for read
#define UART_WRITE_NS      60   // Time to access the UART for write

The class is derived directly from the base class, UartSC. A new custom constructor is needed,
with an additional parameter specifying the input clock rate. This is used in conjunction with
the divisor latch to specify the baud rate.

  UartSyncSC( sc_core::sc_module_name  name,
              unsigned long int        _clockRate,
              bool                     _isLittleEndian );

11 This is not the ideal solution. The delay is really a property of the channel, so should be modeled by a derived class
of the standard SystemC buffer which provides a defined delay between data being written and data availability being
signaled. The approach used here (transmitter models the delay) represents a practical compromise.
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The busThread thread is reimplemented to add the timing delay (as a call to wait in transmitting
a character as described above.

The blocking transport function, busReadWrite is reimplemented to add in the bus delays
in reading and writing. Again this will be achieved by calls to wait, so keeping the model
synchronous.

The busWrite must also be reimplemented, since any change to the divisor latch or the line
control register (which specifies the bit format being sent on the wire) could affect the baud
rate and timing for busThread

A new utility function, resetCharDelay is defined to compute the delay in putting a character
on the Tx port from the clock rate, divisor latch and line control register.

Two new member variables are declared, to hold the clock rate and the calculated delay to
put a character on the Tx port.

8.3.2.  UartSyncSC Module Class Implementation
The custom constructor passes the name and _isLittleEndian flag to the base class con-
structor. The clock rate is saved in the state variable, clockRate.

UartSyncSC::UartSyncSC( sc_core::sc_module_name  name,
                        unsigned long int        _clockRate,
                        bool                     _isLittleEndian ) :
  UartSC( name, _isLittleEndian ),
  clockRate( _clockRate )
{

}       /* UartSyncSC() */

The new version of busThread adds only one line to the version in the base class. A call to
wait( charDelay ) is added when the transmit request is received (notified on the SystemC
event, txReceived).

    wait( txReceived );                         // Wait for a Tx request
    wait( charDelay );                          // Wait baud delay
    tx.write( regs.thr );                       // Send char to terminal

The new version of busReadWrite draws most of its functionality from the base class version.
However it then synchronizes with a time delay for the read or write access. Since the thread
is now synchronous, a time delay of zero is returned with the transaction.

void
UartSyncSC::busReadWrite( tlm::tlm_generic_payload &payload,
                          sc_core::sc_time         &delay )
{
  UartSC::busReadWrite( payload, delay );       // base function

  switch( payload.get_command() ) {
  case tlm::TLM_READ_COMMAND:
    wait( sc_core::sc_time( UART_READ_NS, sc_core::SC_NS ));
    delay = sc_core::SC_ZERO_TIME;
    break;

    <code for write commands etc>

The new version of busWrite similarly relies on the base class for most of its functionality.
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void
UartSyncSC::busWrite( unsigned char  uaddr,
                      unsigned char  wdata )
{
  UartSC::busWrite( uaddr, wdata );

However any change to the divisor latch or line control register could change the baud rate or
the number of bits in each Tx transmission, and hence the modeled delay to send a character.

The function identifies if this has happened and if so calls resetCharDelay to recalculate the
delay.

  switch( uaddr ) {
  case UART_BUF:                // Only change if divisorLatch update (DLAB=1)
  case UART_IER:
    if( isSet( regs.lcr, UART_LCR_DLAB ) ) {
      resetCharDelay();
    }
    break;

  case UART_LCR:
    resetCharDelay();           // Could change baud delay
    break;

The time taken to put a character on the Tx line is the product of the time taken to put one
bit on the line (the inverse of the baud rate) and the bits required for the character (start bit,
data bits, optional parity bit, stop bit(s)). The baud rate is determined by the input clock rate
and the 16-bit divisor latch.

Note
The divisor latch for a 16450 divides the input clock to yield an internal clock 16x
the baud rate (i.e. not the actual baud rate itself).

The 16450 specification supports an input clock up to 24 MHz, so the 16 bit divisor
latch can yield an internal clock for rates down to 50 baud. However for a software
model this limitation can be ignored. Faster input clocks can be specified, but it
will not be possible to configure a 16-bit divisor latch for very low baud rates.

The number of bits to send a character is determined by the line control registers. There is
always a stop bit, there can be 5-8 data bits, an optional parity bit and 1, 1.5 or 2 stop bits.
The resetCharDelay function calculates the total delay.

8.4.  Extending the TermSC Module Class
A new class, TermSyncSC derived from TermSC implements the additional functionality for syn-
chronized timing.

As with the UART (see Section 8.3), the terminal will model the time taken to put the bits of
a character on its Tx port. This mirrors the arrangement with the UART, so when the two are
connected, delays in both directions are correctly modeled.

8.4.1.  TermSyncSC Module Class Definition
The new class, TermSyncSC is derived from TermSC. The header for that class is included and
the new class derived from it.

#include "TermSC.h"

class TermSyncSC
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  : public TermSC
{

A new custom constructor is needed, which takes a second argument to specify the baud rate.

  TermSyncSC( sc_core::sc_module_name  name,
              unsigned long int        baudRate );

The xtermThread thread will be reimplemented. No further derived classes are anticipated, so
this function is declared private and not marked as virtual.

A variable is needed to hold the baud rate. For convenience the class does not hold the baud
rate, but the corresponding delay that this represents in sending a character.

  sc_core::sc_time  charDelay;

8.4.2.  TermSyncSC Module Class Implementation
The custom constructor calls the base class constructor to set the module name. The body of
the constructor is calculates the delay due to the baud rate. There is no configurability (this
terminal supports 1 start, 8 data, 0 parity and 1 stop bits only), so this is a one off calculation.

TermSyncSC::TermSyncSC( sc_core::sc_module_name  name,
                        unsigned long int        baudRate ) :
  TermSC( name )  
{
  charDelay = sc_core::sc_time( 10.0 / (double)baudRate, sc_core::SC_SEC );

}       /* TermSyncSC() */

The xtermThread thread is almost identical to the base class version. A single line is added
after the character is read from the xterm and before it is written to the port to add the modeled
baud rate delay.

    int ch = xtermRead();               // Should not block

    wait( charDelay );                  // Model baud rate delay
    tx.write( (unsigned char)ch );      // Send it

8.5.  Main Program for the Synchronous Model
As with the untimed SoC (see Section  7.4.1), the main program includes the headers for
TLM 2.0 and the component modules, but this time using the synchronously timed versions.

#include "tlm.h"
#include "Or1ksimSyncSC.h"
#include "UartSyncSC.h"
#include "TermSyncSC.h"

The baud rate for the terminal is defined as a constant for convenience.

#define BAUD_RATE  9600

As before the main program (sc_main) takes as arguments the Or1ksim configuration file
and OpenRISC 1000 image. Instances of the three modules are declared, but now have ad-
ditional arguments. The UART requires an input clock rate—obtained from the ISS via the
Or1ksimSyncSC public utility function, getClockRate (see Section 8.2.3). The Terminal requires
its baud rate to be set.

  Or1ksimSyncSC  iss( "or1ksim", argv[1], argv[2] );
  UartSyncSC     uart( "uart", iss.getClockRate(), iss.isLittleEndian() );
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  TermSyncSC     term( "terminal", BAUD_RATE );

The remainder of the program, connecting components and starting the simulation is identical
to the untimed version.

8.6.  Compiling and Running the Synchronous Model
Compilation uses the same command lines as the untimed model (see Section 7.4.3), but with
the synchronized versions of the modules and main program.

!
Important
Since Or1ksimSync is a derived class of Or1ksimExt, Or1ksimExt, linking should
include the compiled base classes, Or1ksimSC.o and Or1ksimExtSC.o as well as the
derived class, Or1ksimSyncSC.o. Similarly the compiled base classes of UartSyncSC
and TermSyncSC should also be included.

The Or1ksim configuration is completely unchanged, and the embedded code running on the
Or1ksim ISS is the same (uart_loop).

The command line to run the model is unchanged, but uses the synchronized version of the
model

./SyncSocSC ../simple.cfg progs_or32/uart_loop

Once again the xterm terminal should appear. Select it and type some characters. The window
running the model, will show the logged output from the terminal, reporting the same charac-
ters being written and timing of the reads and writes. However this time, the time progresses
as the characters are written, as shown in Figure 11.

$ ./SyncSocSC ../simple.cfg progs_or32/uart_loop

             SystemC 2.2.0 --- May 16 2008 10:30:46
        Copyright (c) 1996-2006 by all Contributors
                    ALL RIGHTS RESERVED
Reading script file from '../simple.cfg'...

   ... <Or1ksim initialization messages>

Char read at     0.060059107 sec
Read: 'F'
Char written at  0.061114010 sec
Char read at     0.070717297 sec
Read: 'a'
Char written at  0.071772200 sec
Char read at     0.077270287 sec
Read: 'r'
Char written at  0.078325190 sec

   ... <Lots more output>

Figure 11.  UART loop back program log output.

The read timing is as the character leaves the terminal, after the terminal has added the baud
rate delay. The write timing is as the character leaves the UART after the echo loop in the
embedded application on the Or1ksim ISS and after the UART has added the baud-rate delay.
So the timing from the read message to the write message should be the time for the UART
delay for the current baud rate and packet bits plus the execution time for the code to echo
the character on the Or1ksim ISS.
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The UART was initialized to use 1 start bit, 8 data bits and 1 stop bit, which at 9600 baud
takes around 1040μs. The time shown in Figure 11 for the first character to be read and
written back is 1055μs. This seems reasonable, allowing approximately 1500 cycles (15μs at
100MHz) for the Or1ksim ISS to process the read and write code.
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9.  Adding Temporal Decoupling to the Model
In this case study temporal decoupling is added to the TLM 2.0 model of an SoC. The SoC
model with arbiter from the previous example is reused.

9.1.  What is Temporal Decoupling
The idea of temporal decoupling is very simple and has been around for a long time (see for
example  A loosely coupled parallel LISP execution system. ). In a parallel system, the various
threads keep their own local time, and only synchronize when they need to communicate with
each other.
TLM 2.0 provides some convenience classes to help threads implement temporal decoupling.
The nomenclature used by these classes can be more than a little confusing—the following
should help to explain how the technique works.
There are two key points about temporal decoupling.
1. Temporal decoupling is a property of threads, not module classes. So it is each thread

that must keep track of its local view of time.
2. Nothing in the TLM 2.0 system checks a program is following the rules. It is up to each

thread to ensure it is compliant.
Not all threads need use temporal decoupling, although the more that do, the greater the
potential model efficiency. In general temporal decoupling is only appropriate for threads using
TLM 2.0 blocking interfaces for their communication—typically loosely timed models. Where
temporal decoupling is implemented it is managed by the threads driving initiator sockets.

9.1.1.  Timing Concepts
TLM 2.0 defines four different timing entities to describe temporal decoupling. These are il-
lustrated in Figure 12.

Synchronous Thread

TLM Thread 1

TLM Thread 2

Time

0 50μs 100μs 150μs 200μs 250μs 300μs

sc_time_stamp() = 235μs

system global quantum = 100μs = thread global quantum

local quantum = 65μs

local time offset = 45μs
local effective time = 280μs

local time offset = 30μs
local effective time = 265μs

local quantum = 65μs

Figure 12.  Diagram illustrating temporal decoupling
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(System) Global Quantum This represents the time unit on which all threads synchro-
nize. For example a Global Quantum of 100μs means that all
threads synchronize on 100μs 200μs, 300μs etc. Although the
TLM 2.0 standard refers to this as just the Global Quantum, it
is a system wide concept and for clarity this application note
refers to it as the System Global Quantum.

(Thread) Global Quantum This represents the time unit on which a particular thread
synchronizes. The TLM 2.0 standard allows different threads
to have their own private time unit of synchronization, which is
very confusingly also referred to in the standard as the Global
Quantum.
To avoid confusion, in this application note, the term Thread
Global Quantum is used to mean the global quantum used by
a particular thread.

Having different values for the global quantum in different
threads is a recipe for complete confusion, while offering few
advantages. The user is strongly recommended to set the
Thread Global Quantum to the same value as the System
Global Quantum when the thread is created and not change it.

Local Quantum For each thread, this represents the time remaining from the
current SystemC time (as returned by sc_time_stamp) until the
end of the current Thread Global Quantum.
For example if the current SystemC time stamp is 235μs and
the Thread Global Quantum is 100μs, then the Local Quan-
tum will be 65μs—the time until the 300μs Thread Global
Quantum synchronization is due.

If the recommendation that all threads set their Thread Global
Quantum to be the same as the System Global Quantum is
followed, then the value of the Local Quantum will be the same
in all threads.

Local Time Offset Each thread is allowed to hold a local view of time, which runs
ahead of the current SystemC time. This is known as the Local
Time Offset
The Local Time Offset must not take the thread's local view
of time past the next Thread Global Quantum, i.e. it cannot
exceed the Local Quantum.

For example if the current SystemC time stamp is 235μs and
the Thread Global Quantum is 100μs, then a local time offset
of 45μs would represent a thread local effective time of 280μs.

9.1.2.  The Global Quantum Class, tlm_global_quantum
TLM 2.0 defines a singleton class12 which can be used to hold the system global quantum. A
set of functions to manipulate the global quantum are provided.

instance Returns a reference to the singleton global quantum object

12 A singleton is a class of which only one instance can be created. The constructor is declared private (so no other
class can create it), and a static function is provided to return the single instance. This static function will create the
single instance the first time it is called, and thereafter just return a reference to that same instance.
Singleton classes are useful for holding centrally required values and providing centrally required functions in a
system, where having duplicate provision would lead to incorrect behavior.
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set Sets the global quantum (as a SystemC sc_time object)

get Returns the value of the global quantum

compute_local_quantum Returns the local quantum, i.e. the time from the current Sys-
temC time stamp to the next multiple of the global quantum.

The intention is that at start up the main program should set the system global quantum in
the singleton tlm_global_quantum object. All threads can then set their thread global quantum
by getting the value from the tlm_global_quantum object.

9.1.3.  TLM 2.0 Quantum Keepers
TLM 2.0 provides a utility class for threads to keep track of their thread global quantum,
local quantum and local time offset. This is in the tlm_utils namespace (like the convenience
sockets) with a header in tlm_utils/tlm_quantumkeeper.h.

A module will instantiate one quantum keeper for each thread that is uses temporal decou-
pling, initializing them in the constructor.

Two functions are provided to manage the thread global quantum: set_global_quantum to set
the value and get_global_quantum. Typically a module constructor will get the system global
quantum with a call to the singleton tlm_global_quantum and immediately use that to set the
thread global quantum for each thread's quantum keeper.

One function is provided to manage the local quantum. The reset function calls
compute_local_quantum to calculates the local quantum from the time stamp and the
global quantum (which is done by calling the compute_local_quantum in the singleton
tlm_global_quantum object) and sets the local time offset to zero.

Typically a constructor will call reset for each thread immediately after setting the thread
global quantum. The compute_local_quantum in the quantum keeper is protected, so can-
not be called directly (which seems to be an omission). If the value of the local quantum
is needed, this can be obtained using the compute_local_quantum function in the singleton
tlm_global_quantum object.

Four functions are provided to manage the local time offset. set sets the local time offset to
a particular value, inc increments by a given value and get_local_time returns the current
value of the local time offset. get_current_time computes the local effective time, i.e. the Sys-
temC time stamp plus the local time offset13. The intention is that a thread advances model
time, it will call set and inc to update the local decoupled view of time.

Two functions are provided to handle synchronization. The test need_sync returns true if the
local time offset exceeds the local quantum. sync calls wait for the local time offset, synchro-
nizing the thread with the global SystemC view of time, and allowing other threads to catch
up. It then calls reset to update the local quantum and zero the local time offset. sync should
always be called when need_sync is true, but may be called at any other time if required.

9.1.4.  Other Styles of Temporal Decoupling
TLM 2.0 presents one model of temporal decoupling, with an explicit regular synchronization
time.

Other temporal decoupling models can build on the TLM 2.0 infrastructure, for instance to
remove the regular synchronization time, and instead only synchronize when the local time

13 The naming is not consistent. get_local_time should have been just get for consistency with set and inc.
get_current_time would be better named get_effective_time, to match its description in the standard.
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offset reaches some prescribed maximum. A class derived from the tlm_gatekeeper class can
modify the control and synchronization functions, to allow different approaches to be tried.

9.2.  Guidelines for Using TLM 2.0 Temporal Decoupling
Temporal decoupling is not for use everywhere. These guidelines may help.

1. Use temporal decoupling for models based on blocking transactions, as used for loosely
timed models. There is no obvious value to temporal decoupling in non-blocking models.

2. Only apply temporal decoupling to threads that are communicating via TLM 2.0 trans-
actions. Other SystemC protocols (for example via FIFO) have no way of communicat-
ing delays between threads (the equivalent of the delay parameter in TLM 2.0 transport
functions).

3. Let the thread controlling the initiator manage the temporal decoupling and synchro-
nization. Targets should just return the incremented delay, and avoid synchronizing if
possible.

4. Allocate one quantum keeper for each thread that drives an initiator socket and is im-
plementing temporal decoupling.

5. Ensure that the thread global quantum is always the same as the system global quan-
tum.

6. Select a global quantum that is small enough not to swamp timing behavior of the sys-
tem. For example in the SoC used in this application note, the finest time granularity
that matters is the time to put a character over a 9600 baud link, approximately 1ms.
A time around 10-50% of this would be a reasonable time to use as a global quantum.

9.3.  Temporal Decoupling the Or1ksim Wrapper Class
The only thread that can be decoupled in the current model is the Or1ksim wrapper class,
Or1ksimSyncSC, since it is the only thread with a TLM 2.0 initiator socket.

ISS are natural candidates for temporal decoupling, since they often can run large blocks of
code without any need for hardware interaction. This is particularly important for modern
compiling ISS (e.g ARM SystemGenerator, ARC xISS), which achieve their performance by
executing thousands of instructions at a time.

The changes needed to add temporal decoupling are:

• Change the main thread, run so that it only tries to execute instructions up to the end
of the current global quantum.

• Change the upcall transport function, doTrans, so that it increments the local time offset,
rather than synchronizing via wait/

• Updates to the Or1ksim ISS library to support running to a fixed time time point.

A new class, Or1ksimDecoupSC is derived from Or1ksimSyncSC to implement the required func-
tionality.

9.3.1.  Adding a Function to the Or1ksim Library to Support Temporal Decoupling
One additional function is needed in the Or1ksim library to support temporal decoupling. The
or1ksim_run already allows the user to specify a duration for which the simulation will run. A
function, is added to change the duration of a run already in progress.
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• void  or1ksim_reset_duration( double duration );

or1ksim_reset_duration resets the duration of a call to or1ksim_run which is already
in progress. The argument is the duration for which the run should continue from the
current time (i.e. not from the time of the original call to or1ksim_run).

This function is needed because upcalls may lead to a synchronization, increasing the
time for which the ISS may run before needing resynchronization.

9.3.2.  Or1ksimDecoupSC Module Class Definition

The new class, Or1ksimDecoupSC is derived from or1ksimSyncSC, whose header it includes. A
custom constructor is defined with the same arguments as the base class constructor.

The ISS thread, run and the transport function, doTrans are both reimplemented to add tem-
poral decoupling.

A quantum keeper for the ISS thread, issQk is defined.

  tlm_utils::tlm_quantumkeeper  issQk;

9.3.3.  Or1ksimDecoupSC Module Class Implementation

The constructor passes its arguments to the base class, Or1ksimSyncSC. The quantum keeper
for the ISS thread is then initialized with the system global quantum and the local quantum
calculated and local time offset zeroed with a call to reset.

  tlm::tlm_global_quantum &refTgq = tlm::tlm_global_quantum::instance();
  issQk.set_global_quantum( refTgq.get() );
  issQk.reset();

Note
The global quantum accessor function, instance returns a reference to the global
quantum. Ensure that it is assigned to a reference variable (declared as &refTgq
here) of type tlm::tlm_global_quantum. Use of a plain variable would be valid code,
but make a copy of the quantum keeper, so subsequent calls to set would not
actually set the singleton instance. An example of the dangers of reference variables
in C++ and why singleton accessors should return pointers, not references.

The main thread function, run is reimplemented to ensure that ISS simulation does not run
past the end of the current quantum. Instead of running for ever (or1ksim_run( -1.0 );), the
ISS is run for the local time quantum, less the local time offset. This means the ISS will return
exactly at the point when it should need to synchronize again.

Since the local quantum is only available through the singleton tlm::tlm_global_quantum a
reference to that instance is obtained for use throughout this function:

  tlm::tlm_global_quantum &refTgq = tlm::tlm_global_quantum::instance();

The body of the program is a perpetual loop, which calculates the time left until the next global
quantum then calls the ISS for that period.

  while( true ) {
    sc_core::sc_time  timeLeft =
      refTgq.compute_local_quantum() - issQk.get_local_time();

On return, or1ksim_get_time_period is used to find out how much computation has actually
been carried out and advance local time accordingly. This may be different to the duration
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requested, since an upcall may set a new time point and adjusted the duration. A new time
point is immediately set ready for the next loop.

    (void)or1ksim_run( timeLeft.to_seconds());

    issQk.inc( sc_core::sc_time( or1ksim_get_time_period(), sc_core::SC_SEC ));
    or1ksim_set_time_point();

If the local time offset has reached the end of the global quantum, the thread synchronizes.

    if( issQk.need_sync() ) {
      issQk.sync();

The transport function, doTrans has the same structure as the synchronous version in the
base class. However instead of calling wait to delay calculation, it updates the local time offset.
The time offset is advanced for the ISS simulation since the last time point and a new time
point is set.

  issQk.inc( sc_core::sc_time( or1ksim_get_time_period(), sc_core::SC_SEC ));
  or1ksim_set_time_point();

The delay argument to the blocking transport is the local time offset. This may be increased
by the target (to model read/write delay), and the new value becomes the local time offset on
return.

  sc_core::sc_time  delay = issQk.get_local_time();
  dataBus->b_transport( trans, delay );
  issQk.set( delay );

At this point synchronization could be required—the read/write delay could have pushed the
local time offset past the global quantum.

  if( issQk.need_sync() ) {
    issQk.sync();
  }

The duration remaining for the ISS simulation is reset in the same way as in the main thread to
be the local quantum less the local time offset. On return the ISS will continue for that period.

  tlm::tlm_global_quantum &refTgq = tlm::tlm_global_quantum::instance();
  sc_core::sc_time  timeLeft      =
    refTgq.compute_local_quantum() - issQk.get_local_time();

  or1ksim_reset_duration ( timeLeft.to_seconds() );

9.4.  Modifying the UART to Support Temporal Decoupling
Although the threads in the UART class are not temporarily decoupled, a small modification
is needed. The callback for the target socket is part of this class, and it must handle delay
data for the initiator in Or1ksimDecoupSC suitably.

A new class, UartDecoupSC, derived from UartSyncSC is defined to provide a modified TLM 2.0
convenience target socket blocking callback function.

9.4.1.  uartDecoupSC Module Class Definition

The class definition includes the header of the base class and is derived from it. The constructor
has the same parameters as the base class, UartSyncSC.
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A reimplemented version of the TLM 2.0 convenience callback, busReadWrite is defined with
the same parameters as the base class function.

9.4.2.  uartDecoupSC Module Class Implementation

The constructor just calls the base class constructor, passing on all its arguments.

The BusReadWrite callback has the same structure as the version in the base class. Like the
base class it calls the original UartSC version to carry out most of the functionality.

!
Caution
The call is therefore to the base class of the base class of this class. The call cannot
be to the base class, since that would call wait, defeating the temporal decoupling.

The difference is in updating the delay. The synchronous base class waited to model the timing
delay and set the delay in the response to zero. In this version the code just increments the
delay (which is the local time offset) by the additional time to carry out the read or write.

  switch( payload.get_command() ) {

  case tlm::TLM_READ_COMMAND:
    delay += sc_core::sc_time( UART_READ_NS, sc_core::SC_NS );
    break;

9.5.  Main Program for Temporal Decoupling
The main program, DecoupSocSC.cpp is similar in structure to the main program used for the
synchronous version (see Section 8.5). This time the headers for the versions of the Or1ksim
wrapper and UART implementing temporal decoupling are used and the time to use as the
global quantum is defined as a parameter.

#include "Or1ksimDecoupSC.h"
#include "UartDecoupSC.h"
#include "TermSyncSC.h"

#define QUANTUM_US   100

Before any modules are instantiated, the system global quantum must be set. For the initial
version a value of 100μs is selected, 10% of the time taken to transmit a character at 9600
baud, so there should be no awkward timing interactions.

  tlm::tlm_global_quantum &refTgq = tlm::tlm_global_quantum::instance();
  refTgq.set( sc_core::sc_time( QUANTUM_US, sc_core::SC_US ));

Thereafter the program follows the same structure (but using the versions of the Or1ksim
wrapper and UART with temporal decoupling).

9.6.  Compiling and Running the Synchronous Model
Compilation is very similar to that of the synchronous model. The binaries of all the base
classes are included when linking.

The same configuration file and OpenRISC 1000 compiled image is used to run the model with
temporal decoupling.

$ ./DecoupSocSC ../simple.cfg progs_or32/uart_loop

The results look very similar to those for the synchronized version, as shown in Figure 13.
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$ ./SyncSocSC ../simple.cfg progs_or32/uart_loop

             SystemC 2.2.0 --- May 16 2008 10:30:46
        Copyright (c) 1996-2006 by all Contributors
                    ALL RIGHTS RESERVED
Reading script file from '../simple.cfg'...

   ... <Or1ksim initialization messages>

Char read at     0.381741687 sec
Read: 'F'
Char written at  0.382841620 sec
Char read at     0.494341667 sec
Read: 'a'
Char written at  0.495441600 sec
Char read at     0.597841677 sec
Read: 'r'
Char written at  0.598941610 sec

   ... <Lots more output>

Figure 13.  UART loop back program log output with temporal decoupling.

The timing reported for the first character, 'F', is 1100μs—in the synchronized version it was
1055μs. The global quantum was set to 100μs, which means that other threads may have a
delay of up to 100μs before they can run, affecting the time they will report for their actions.

If the quantum is changed from 100μs to 10ms, the change is more dramatic, as shown in
Figure 14.

$ ./SyncSocSC ../simple.cfg progs_or32/uart_loop

             SystemC 2.2.0 --- May 16 2008 10:30:46
        Copyright (c) 1996-2006 by all Contributors
                    ALL RIGHTS RESERVED
Reading script file from '../simple.cfg'...

   ... <Or1ksim initialization messages>

Char read at     0.091041667 sec
Read: 'F'
Char written at  0.101041600 sec
Char read at     0.101041667 sec
Read: 'a'
Char written at  0.111041620 sec
Char read at     0.111041687 sec
Read: 'r'
Char written at  0.121041600 sec

   ... <Lots more output>

Figure 14.   UART loop back program log output with temporal decoupling and 10ms
global quantum.

The time taken to write the first character is now 9,999μs, completely dominated by the quan-
tum. The typing of characters at the xterm is notably sluggish.
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This is characteristic of loosely timed models with temporal decoupling. The objective is to
model the gross behavior of the system with a reasonable view of the timing, such that events
happen in the correct sequence. However detailed timing can be sacrificed in the interest of
greater model performance.

The value for the global quantum is a subjective choice. In this case, with a busy polling UART
loop back function, any delays were wasted in additional polling cycles, so a small quantum
was appropriate.

In a more realistic scenario, the UART would be interrupt driven (or at least not polled contin-
uously). Very likely the UART would only be lightly used, while other parts of the system were
working. Under such circumstances, a global quantum of 100-500μs (10%-50% of the time to
put one character on the UART) would be reasonable. The timing of characters output would
be out by up to 100%, but the model would gain from fewer synchronizations.

In other scenarios an even higher quantum could be justified—for example if the UART were
only for occasional diagnostic output, where sluggishness did not matter. However when mod-
eling a 100MHz ISS as part of the SoC, the benefits of such large global quantum values would
be minimal.

Beware that an excessively large quantum may break software with timing dependencies. It
may mean that interrupt sequences do not arrive in a reasonable order, or flood in all at once.
An example of this is shown in Section 10.

The other step to take to improve performance would be to move to an exclusively TLM 2.0
model. The SystemC buffer is a good way to model the UART to terminal connection. However
by using a TLM 2.0 socket in each direction, the UART could adopt temporal decoupling, giving
further performance improvement.
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10.  Modeling Interrupts and Running Linux on the Example SoC
The Simple SoC used in the previous sections is not sufficient to run Linux. Two significant
extensions are needed.

• Memory management must be added to support Linux virtual memory. This is provided
by enabling the internal MMUs (instruction and data) of the Or1ksim ISS.

• The SystemC UART peripheral must be extended to handle interrupts.

The example design was shown in Section 3.1.3, but for convenience the diagram is repeated
here in Figure 15.

Tx

Rx

xterm Logger

Or1ksim

Data
Bus

CPU

Flash

IRQ

SRAM

RAM

IMMU

DMMU

TICKPIC

Figure 15.  Simple SoC based on the OpenRISC 1000 Or1ksim with interrupts and MMU
enabled.
Enabling memory management is a matter of modifying the configuration file for Or1ksim. The
Linux port used here expects to boot from flash memory, so the internal memory of Or1ksim
is also extended to provide this.

The UART model, UartDecoupSC is further extended by a new derived class, UartIntrSC pro-
viding a SystemC sc_out<bool> port through which the interrupt signal is driven.

10.1.  Extending the Or1ksimDecoupSC Module Class
The Or1ksim ISS library is extended to provide an API call to generate an interrupt. The
Or1ksim includes a programmable interrupt controller (PIC), which is enabled. The new API
call, or1ksim_interrupt, takes as parameter the interrupt number to be triggered.

The Or1ksim wrapper, Or1ksimDecoupSC is further extended by a new derived class,
Or1ksimIntrSC, which provides an array of signal ports to connect to external devices which
wish to generate interrupts.

10.1.1.  Adding an Interrupt Generation Function to the Or1ksim Library
The additional function allows the external SystemC model to call into the Or1ksim ISS to re-
quest an interrupt. The ISS requires that interrupts are not taken mid-instruction (for example
while a peripheral memory access upcall is in progress), so a flag is set internally, allowing the
ISS to trigger the interrupt at the start of the next instruction.

• void or1ksim_interrupt( int  i );

void or1ksim_interrupt requests the the interrupt given by its argument be taken at
the start of the next instruction cycle.

10.1.2.  Or1ksimIntrSC Module Class Definition
The new module class, Or1ksimIntrSC is derived from the existing Or1ksimDecoupSC module
class, whose header, Or1ksimDecoupSC.h, is included. The number of interrupts to be support-
ed is given by the constant, NUM_INTR.
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#define  NUM_INTR  32

The new class derived from the base class and a custom constructor defined. The possible
interrupts are represented by an array of sc_signal.

  sc_core::sc_signal<bool>  intr[NUM_INTR];

Tip
It would have been possible to define an array of signal input ports, sc_in<bool>.
However these ports must then be explicitly connected (bound), requiring tie-off
signals to be created in the main program.

By creating actual signals, interrupts that are unused can be left unbound and
ignored.

A SystemC method is required to handle the interrupts (since it never waits, a thread is not
needed). This can respond to interrupts in parallel with the main ISS execution thread.

  void  intrMethod();

10.1.3.  Or1ksimIntrSC Module Class Implementation
The constructor passes its arguments to the base class constructor for processing. It then sets
up intrMethod as a SystemC method process, sensitive to the positive edge of each interrupt
signal. There is no need to initialize this function.

  SC_METHOD( intrMethod );
  for( i = 0 ; i < NUM_INTR ; i++ ) {
    sensitive << intr[i].posedge_event();
  }
  dont_initialize();

The interrupt method is triggered by a positive edge on one of the signals. It loops through to
find which interrupt was triggered and generates a call to or1ksim_interrupt for that interrupt
number. In principle more than one could be triggered in the same cycle, so all are checked.

  for( i = 0 ; i < NUM_INTR ; i++ ) {
    if( intr[i].event()) {
      or1ksim_interrupt( i );
    }
  }

10.2.  Extending the UartDecoupSC Module Class
The existing UART module processes interrupts, but does not generate an external interrupt
signal. To generated an interrupt signal, UartDecoupSC is further extended by a new derived
class, UartIntrSC, which provides a signal port and a new thread to drive that signal port

An extra thread is required, because both the rxMethod and busThread processes may wish
to drive signals, but SystemC requires that a signal is driven by a single process. Just as in
hardware design a simple wire would not normally have more than one driver.

The new process communicates with the existing processes via a FIFO internal to the UART,
allowing rxMethod and busThread to both request interrupt activity and for those requests to
be processed in the order they were generated.

10.2.1.  UartIntrSC Module Class Definition
The new module class, UartIntrSC is derived from the existing UartDecoupSC module class,
whose header, UartDecoupSC.h, is included.
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A custom constructor is declared, and a signal output port, sc_out<bool> intr through which
the interrupt will be driven.

The new thread, intrThread is declared. It will use re-implemented versions of the genIntrr
and clrIntr functions from the base class, UartSC.

A Boolean FIFO is used to hold the queue of requests from the existing processes, rxMethod
and busThread.

  sc_core::sc_fifo<bool>  intrQueue;

10.2.2.  UartIntrSC Module Class Implementation
Since this class declares a new SystemC process, SC_HAS_PROCESS is used. The constructor
passes its arguments to the base class, UartDecoupSC and sets the FIFO queue size to 1.

UartIntrSC::UartIntrSC( sc_core::sc_module_name  name,
                        unsigned long int        _clockRate,
                        bool                     _isLittleEndian ) :
  UartDecoupSC( name, _clockRate, _isLittleEndian ),
  intrQueue( 1 )
{

Note
The choice of FIFO size means that there should be only one request for interrupt
pending. In principle this could block an attempt by the rxMethod to write to the
FIFO, and since SystemC methods may not wait (unlike threads) a run time error
will occur.

This is an explicit model design decision. If there is interrupt congestion, then it
would be useful to know—indicating design issues over the UART capacity. If this
were not an issue, then it would be quite valid to use a larger FIFO capacity.

The constructor then creates the new SystemC method for intrThread.

intrThread has a very simple API. If true is read it asserts an interrupt (drives the interrupt
port true), otherwise it deasserts the interrupt port (drives the interrupt port false).

On initialization, the interrupt port is deasserted (false). The thread then sits in a perpetual
loop, copying requests from the FIFO to the interrupt signal output port.

  while( true ) {
    intr.write( intrQueue.read() );
  }

The interrupt generator, genIntr is almost identical to the version in the base class, UartSC.
The only difference is that if an interrupt is generated, a request to drive the signal is written
onto the internal interrupt FIFO for processing by the intrThread thread.

    setIntrFlags();                    // Show highest priority
    intrQueue.write( true );            // Request an interrupt signal

The interrupt clear routing is a similar modification, this time requesting the interrupt signal
to be cleared by writing false on the FIFO queue.

  if( isSet( regs.iir, UART_IIR_IPEND )) {     // 1 = not pending
    intrQueue.write( false );                   // Deassert if none left

10.3.  Main Program for the Interrupt Driven Model
The main program for the model supporting interrupts is in intrSocSC>cpp. It has a very similar
structure to the main program used with the temporal decoupling example in Section 9.5,
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but uses the new versions of the Or1ksim wrapper class and UART module, Or1ksimIntrSC
and UartIntrSC.

A baud rate of 115,200 is expected for the Linux kernel serial port and a global quantum of
10μs is appropriate for this. A constant is defined to hold the interrupt port number used by
the UART (2).

#define BAUD_RATE   115200
#define QUANTUM_US      10

#define INTR_UART        2

The main program structure is unchanged, except that the UART interrupt output port needs
to be connected to the correct signal in the Or1ksim wrapper:

  uart.intr( iss.intr[INTR_UART] );

10.4.  Running the Interrupt Driven Model
Compilation and linking of the program follows the same procedure as previous examples.

As a simple test, the interrupt loop program used in earlier examples is extended to demon-
strate basic interrupt handling. However the main test is booting a Linux kernel.

10.4.1.  Simple Test for the Interrupt Driven SoC Model
A simple test is provided in uart_loop_intr.c as an extension of uart_loop.c. After a character
is read, the program loops to wait until the interrupt pending flag is clear (indicating the
transmit buffer is empty).

    do {                        /* Wait for interrupts to clear */
      ;
    } while( is_set( uart->iir, UART_IIR_IPEND ) );

This is a very basic test—if all is well it behaves identically to the existing loop program. If
there is a problem clearing the transmit buffer empty interrupt, or the received data available
interrupt is not cleared when data is read, then the program will lock up waiting for the in-
terrupt pending flag to clear.

10.4.2.  Running Linux
This test uses a Linux 2.6.19 kernel built for the standalone Or1ksim as described in  Embe-
cosm Application Note 2. The OpenCores OpenRISC 1000 Simulator and Tool Chain: Instal-
lation Guide.  [2]. A configuration file, which enables the internal memory management units
(MMUs) and Programmable Interrupt Controller (PIC) of the Or1ksim is provided, linux.cfg.
This also declares additional internal memory space in Or1ksim for flash and SRAM.

The SystemC model is then run with this configuration file and the Linux kernel binary.

./IntrSocSC linux.cfg ../linux-2.6.19/vmlinux

Initially Linux copies itself from flash memory to RAM.

Copying Linux... Ok, booting the kernel.

After a pause while initial booting is taking place the serial interface is ready, allowing the
normal kernel boot messages to appear:

Linux version 2.6.19-or32 (jeremy@thomas) (gcc version 3.4.4) #59 Wed Jun 25 18:
48:06 BST 2008
Detecting Processor units:
  Signed 0x391
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Setting up paging and PTEs.
write protecting ro sections (0xc0002000 - 0xc024c000)
Setting up identical mapping (0x80000000 - 0x90000000)
Setting up identical mapping (0x92000000 - 0x92002000)
Setting up identical mapping (0xb8070000 - 0xb8072000)
Setting up identical mapping (0x97000000 - 0x97002000)
Setting up identical mapping (0x99000000 - 0x9a000000)
Setting up identical mapping (0x93000000 - 0x93002000)
Setting up identical mapping (0xa6000000 - 0xa6100000)
Setting up identical mapping (0x1e50000 - 0x1fa0000)
dtlb_miss_handler c00040c8
itlb_miss_handler c00041a8
Built 1 zonelists.  Total pages: 3953
Kernel command line: root=/dev/ram console=ttyS0

   <Lots more Linux kernel messages...>

Serial: 8250/16550 driver $Revision: 1.90 $ 4 ports, IRQ sharing disabled
serial8250.0: ttyS0 at MMIO 0x90000000 (irq = 2) is a 16450

   <Lots more Linux kernel messages...>

VFS: Mounted root (ext2 filesystem) readonly.
Freeing unused kernel memory: 104k freed
init started:  BusyBox v1.4.1 (2007-03-22 18:53:56 EST) multi-call binary
init started:  BusyBox v1.4.1 (2007-03-22 18:53:56 EST) multi-call binary
Starting pid 22, console /dev/ttyS0: '/etc/init.d/rcS'

Please press Enter to activate this console. 

This takes a simulated time of about 37 seconds, and on a modern PC an elapsed time of
around 20-25 seconds (the Or1ksim ISS in this minimal configuration runs at 150-200MHz 14).

At this point hitting return will start up a Linux shell, running some basic commands and in
this example the BusyBox utilities (see the website for more details).

Please press Enter to activate this console. 
Startingpid 25, console /dev/ttyS0: '/bin/sh'

BusyBox v1.4.1 (2007-03-22 18:53:56 EST) Built-in shell (ash)
Enter 'help' for a list of built-in commands.

# ls /proc
1              2              bus            iomem          self
10             25             cmdline        ioports        slabinfo
11             26             cpuinfo        kcore          stat
12             3              crypto         kmsg           sys
13             4              devices        loadavg        sysrq-trigger
14             5              diskstats      locks          sysvipc
15             6              driver         meminfo        tty

14 This may seem exceptionally fast for an interpreting ISS, but this model is configured with slow RAM with a 20-25
cycle access time and no caches. So 150-200MHz represents only 5-10 MIPS. That's why booting a basic Linux kernel
takes 37s of simulated time, rather than the 2-3s that might reasonably be expected!

http://www.busybox.com
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16             7              execdomains    misc           uptime
17             8              filesystems    mounts         version
18             9              fs             net            vmstat
19             buddyinfo      interrupts     partitions     zoneinfo
# busybox mount
rootfs on / type rootfs (rw)
/dev/root on / type ext2 (ro)
proc on /proc type proc (rw)
# 

The importance of choosing a suitable value for the global quantum is well illustrated here.
Rebuild the model with a global quantum of 100μs—rather longer than the time it takes to
transmit one character at 115,200 baud.

#define QUANTUM_US     100

The time taken to boot is marginally faster (19s), but this time the terminal cannot cope with
the erratic interrupt behavior.

VFS: Mounted root (ext2 filesystem) readonly.
Freeing unused kernel memory: 104k freed
init started:  BusyBox v1.4.
Please press Ent

The Linux serial driver loses interrupts and the system locks up and will eventually crash with
an unhandled interrupt exception.
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A.  Downloading the Example Models
The example models used in this application note may all be downloaded from the Embecosm
website, www.embecosm.com. They are licensed under the GNU Lesser General Public License
so are freely available to be used and incorporated in other programs.

The main directory of the distribution contains:

• A directory, sysc_models, containing the example SystemC models;

• A patch file to adapt the Or1ksim ISS as described in this application note;

• Configuration files for use with Or1ksim when running the simple models and the Linux
kernel; and

• A copy of the GNU Lesser General Public License

Within the sysc_models directory a further directory, progs_or32, contains the example pro-
grams which run on the Or1ksim ISS. They are provided as both source and compiled binary,
so that the OpenRISC 1000 tool chain need not be installed to run the models.

A.1.  Patching Or1ksim
The instructions for building standard Or1ksim may be found in  Embecosm Application Note
2. The OpenCores OpenRISC 1000 Simulator and Tool Chain: Installation Guide.  [2] on the
Embecosm website. This includes some patches to the standard distribution to fix a number
of known bugs. The ISS uses standard GNU configuration and build.

The changes required to Or1ksim are provided as a patch file. To use this download and un-
pack standard Or1ksim has in directory or1ksim-0.2.0. Apply the Embecosm bug fix patches
described above and documented in  Embecosm Application Note 2. The OpenCores Open-
RISC 1000 Simulator and Tool Chain: Installation Guide.  [2]. This is the source for a working
standard Or1ksim ISS.

Change to the or1ksim-0.2.0 directory. Assuming the Embecosm patches for this application
note are in embecosm_patch_or1ksim_an1.bz2, they can be applied by the command:

bzcat -dc ../embecosm_patch_or1ksim_an1.bz2 | patch -p1

The Or1ksim ISS can then be built from this patched source in exactly the same way as the
standard ISS.

A.2.  Building the Linux Kernel
The Linux kernel is built as described in  Embecosm Application Note 2. The OpenCores
OpenRISC 1000 Simulator and Tool Chain: Installation Guide.  [2]. This does require building
the Or1ksim tool chain. This includes patches to the Linux kernel required to get it to work
correctly on the Or1ksim ISS

http://www.embecosm.com
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Glossary

2-state
Hardware logic model which is based only on logic high and logic low (binary 0 and binary
1) values.
See also: 4-state.

4-state
Hardware logic model which considers unknown (X) and unproven (Z) values as well as
logic high and logic low (binary 0 and binary 1).
See also: 2-state.

Application Binary Interface
The low-level interface between an application program and the operating system, thus
ensuring binary compatibility between programs.
C++ notoriously suffers from lack of agreed standards in this area.

approximately timed
In TLM 2.0 a modeling style where timing information is provided at the level of transac-
tions representing the phases of data transfer in a specific bus protocol (for example the
address and data phases of an AHB read or write).
See also: loosely timed, phase.

backward transport path
In TLM 2.0 non-blocking transport, the transport function which returns the response
transaction from target to initiator.
See also: transport function, forward transport path.

base class
In object oriented programming a class from which other classes (the derived classes) are
derived, inheriting variables and functions. Specifically a term favored by C++, also referred
to as a parent class or super-class.
See also: derived class.

big endian
A description of the relationship between byte and word addressing on a computer archi-
tecture. In a big endian architecture, the least significant byte in a data word resides at
the highest byte address (of the bytes in the word) in memory.
The alternative is little endian addressing.

See also: little endian.

blocking
Within the context of TLM, a transaction which blocks the flow of control in the initiator
until the target has completed the transaction request and responded.
See also: non-blocking.

convenience socket
A TLM 2.0 wrapper, providing for simple TLM communication based on C++ callbacks.



71 Copyright © 2008 Embecosm Limited

derived class
In object oriented programming a class which has inheriting variables and functions from
another class (known as the base class). Specifically a term favored by C++, also referred
to as a child class or sub-class.
See also: base class.

direct memory interface
In hardware and software design communication between memory and a peripheral with-
out the constant intervention of the processor.
In TLM 2.0 communication between two threads (typically representing a processor and a
memory block) by direct writing through a pointer to the memory rather than by a trans-
actional exchange.

See also: transport function, backward transport path.

forward transport path
In TLM 2.0 non-blocking transport the transport function, which passes the opening trans-
action from initiator to target.
See also: transport function, backward transport path.

Generic Payload
Within TLM 2.0, a class suitable for use as payload for transactions. Recommended to
maximize the interoperability of TLMs.
See also: payload.

Hardware Description Language (HDL)
A language (Verilog and VHDL are the best known), which describes hardware. Can be
used to describe both an actual chip and its test bench.

initiator
The initiator of a transactional exchange to a target. In TLM 2.0 an initiator module must
implement an initiator socket of the appropriate type (blocking or non-blocking).
See also: target.

Instruction Set Simulator (ISS)
A software model of a CPU core instruction set. Typically completely models the instruction
semantics, but not the full microarchitecture of a particular CPU implementation. Timing
information may be just an instruction count, or may (as with the Or1ksim) offer some
estimate of timing delays due to memory accesses, caching and virtual memory access.

little endian
A description of the relationship between byte and word addressing on a computer archi-
tecture. In a little endian architecture, the least significant byte in a data word resides at
the lowest byte address (of the bytes in the word) in memory.
The alternative is big endian addressing.

See also: big endian.

loosely timed
In TLM 2.0 a modeling style, where timing information is provided at the level of transac-
tions representing a complete data transfer across a hardware bus.
See also: approximately timed.
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memory management unit (MMU)
A hardware component which maps virtual address references to physical memory ad-
dresses via a page lookup table. An exception handler may be required to bring non-exis-
tent memory pages into physical memory from backing storage when accessed.
On a Harvard architecture (i.e. with separate logical instruction and data address spaces),
two MMUs are typically needed.

non-blocking
Within the context of TLM, a transaction which allows the flow of control in the initiator
to continue immediately the transaction is sent. The response will be provided later by a
transport call from the target back to the initiator..
See also: blocking.

OSCI
See Open SystemC Initiative.

passthrough
A term describing a TLM 2.0 convenience socket which does not perform an automatic
conversion between blocking and non-blocking transport. Potentially more efficient than
the other types of convenience socket.
See also: payload.

payload
The data passed between threads by a transaction.
See also: Generic Payload.

phase
In TLM 2.0 approximately timed modeling, a transaction exchange representing a single
phase of the specific bus protocol being modeled (for example the address phase of an
AHB read or write).
See also: approximately timed.

POSIX
An IEEE standard for application programming interfaces and utilities for Unix/Linux
operating systems.

programmable interrupt controller (PIC)
A hardware component which provides a large number of interrupt ports, which are
mapped onto one or two interrupt ports on an actual processor. The PIC will provide a
lookup table of interrupt service functions for its interrupts, which the interrupt service
function on the processor can use to identify the correct handler to use.

quantum
In TLM 2.0 with temporal decoupling, the maximum time a thread may run ahead of the
main system clock. This may be regulated by a quantum keeper.
See also: temporal decoupling, quantum keeper.

quantum keeper
In TLM 2.0 with temporal decoupling, an object which enforces the rule that threads may
not run more than the quantum ahead of the main system clock
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See also: temporal decoupling, quantum.

singleton
In object oriented programming, a class which can have at most one instance. Typically
implemented by making the constructor private and providing an access function which
instantiates the class on its first call and on all other calls returns a pointer to that in-
stance.

socket
Within the context of TLM 2.0, a SystemC port and export combined with the associated
interfaces for blocking and non-blocking transport, direct memory access and debug.
See also: SystemC.

System on Chip (SoC)
A silicon chip which includes one or more processor cores.

SystemC
A set of libraries and macros, which extend the C++ programming language to facilitate
modeling of hardware.
Standardized by the Open SystemC Initiative, who provide an open source reference im-
plementation.

See also: Open SystemC Initiative.

tagged socket
A TLM 2.0 convenience socket, which incorporates a numerical tag to identify the socket
in use. This allows a single callback function to handle multiple sockets, with the tag
identifying the socket which caused the callback to be invoked.
See also: socket.

target
The responder to a transactional exchange initiated by an initiator. In TLM 2.0 a target
module must implement a target socket of the appropriate type (blocking or non-blocking).
See also: initiator.

temporal decoupling
In TLM 2.0 the concept of allowing individual threads to run ahead of the main simulation
time stamp. The maximum permitted time of run ahead is known as the quantum and may
be regulated by a quantum keeper.
See also: quantum, quantum keeper.

thread
In software, a logical parallel flow of control. In the context of SystemC, the main function
of such a thread can be specified with the SC_THREAD macro. In SystemC a SC_THREAD is
distinguished from a SC_METHOD because it can suspend execution with wait calls.
See also: SystemC.

TLM
An abbreviation for (depending on context) Transaction Level Model or Transaction Level
Modeling.
See also: Transaction Level Model, Transaction Level Modeling.
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TLM 2.0
The OSCI standard interface for writing Transaction Level Models in SystemC.
See also: Transaction Level Model, SystemC.

transaction
In TLM modeling the exchange of data between two threads.

Transaction
An exchange of data (the payload) between two parallel processes. In TLM 2.0 this transac-
tion occurs through SystemC ports implementing the TLM 2.0 interfaces, which are known
as sockets.
A full description is provided in Section 2.2.

See also: payload, socket.

Transaction Level Model
A software model in which the components of the model communicate by transferring
information to and from each other (transactions).
A full description is provided in Section 2.2.

Transaction Level Modeling
The process of writing software models using Transaction Level Model
See also: Transaction Level Model.

transport function
The C++ function which transfers data from an initiator to a target, and (for a non-blocking
interface), the response back from the target to the initiator. Within the context of TLM 2.0
blocking and non-blocking transport interfaces are defined.
See also: SystemC.
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