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Abstract

Although there are considerable site-based data for individual or groups of ecosystems, these datasets are widely

scattered, have different data formats and conventions, and often have limited accessibility. At the broader scale,

national datasets exist for a large number of geospatial features of land, water, and air that are needed to fully

understand variation among these ecosystems. However, such datasets originate from different sources and have

different spatial and temporal resolutions. By taking an open-science perspective and by combining site-based

ecosystem datasets and national geospatial datasets, science gains the ability to ask important research questions

related to grand environmental challenges that operate at broad scales. Documentation of such complicated

database integration efforts, through peer-reviewed papers, is recommended to foster reproducibility and future

use of the integrated database. Here, we describe the major steps, challenges, and considerations in building an

integrated database of lake ecosystems, called LAGOS (LAke multi-scaled GeOSpatial and temporal database), that

was developed at the sub-continental study extent of 17 US states (1,800,000 km2). LAGOS includes two modules:

LAGOSGEO, with geospatial data on every lake with surface area larger than 4 ha in the study extent (~50,000

lakes), including climate, atmospheric deposition, land use/cover, hydrology, geology, and topography measured

across a range of spatial and temporal extents; and LAGOSLIMNO, with lake water quality data compiled from ~100

individual datasets for a subset of lakes in the study extent (~10,000 lakes). Procedures for the integration of datasets

included: creating a flexible database design; authoring and integrating metadata; documenting data provenance;

quantifying spatial measures of geographic data; quality-controlling integrated and derived data; and extensively

documenting the database. Our procedures make a large, complex, and integrated database reproducible and

extensible, allowing users to ask new research questions with the existing database or through the addition of new

data. The largest challenge of this task was the heterogeneity of the data, formats, and metadata. Many steps of data

integration need manual input from experts in diverse fields, requiring close collaboration.
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Introduction
Addressing many of the most pressing global environmen-

tal problems requires data and knowledge at spatial scales

that have been historically understudied (e.g., regional,

continental, and global). For example, freshwaters are influ-

enced by eutrophication, climate and land use changes, and

the spread of invasive species, all of which have regional to

continental controls. The contribution of freshwaters to

global carbon cycles is still largely unknown [1–8]. Studying

these kinds of ‘macrosystems ecology’ questions (sensu [9])

that can inform environmental problems and developing

continental or global ecological assessments, requires both

data and understanding at broad spatial and temporal

scales. In part, our perception generally deepens or changes

when variation across both fine and broad scales is taken

into account [10]. Many current technological and comput-

ing advances are allowing this process to become a reality.

The ‘big data’ era is rapidly transforming the research

landscape in the environmental sciences [11–14]. Fast,

inexpensive computing has enabled processing of vast

amounts of data, which often originates both from mod-

ern observational technologies, such as automated sen-

sors, and from national- and global-scaled observatory

networks that are generating massive data streams of

high spatial and temporal resolution. However, large da-

tabases of unprecedented spatial and temporal extent

can also be generated by integrating many smaller, site-

level environmental datasets, collected in-situ across

continents to create highly curated integrated data prod-

ucts [12, 15]. Although site-level environmental datasets

are labor-intensive and expensive to collect, they are

fairly common in many parts of the world and have been

collected for many more decades than automated sen-

sors have been in operation. Further, because site-level

datasets often focus on relatively few sampled variables,

these datasets will be far more useful for answering

broad scale research questions when combined with

complementary geographic information system (GIS)

datasets, available at national scales for features such as

land use/cover, climate, topography and atmospheric de-

position, to name a few.

To date, much of the discussion of data integration in

ecology has focused on the importance and possible use

of ‘dark’ data in the ‘long tail’ of science, i.e., the large

number of small datasets that make up the majority of

science, that are not well indexed or stored and typically

are not publicly accessible [16]. Such datasets are essen-

tially invisible to scientists and other potential users and

therefore are more likely to remain underused and even-

tually lost [16]. For environmental data, many such

potentially underused datasets are collected by govern-

mental natural resource agencies (e.g., state/provincial,

tribal, national), researchers, industry or consulting

firms, or citizen science programs. These datasets are

often moderately well curated, involve relatively large

sample sizes, and have been used primarily for assess-

ment and reporting rather than for research. When

attempting to place monetary value on environmental

datasets, higher values are often associated with final

data products that are properly curated, as compared to

poorly curated products, with values exceeding the cost

of curation by many times (five to 200 fold [7]). How-

ever, the value gained from combining disparate datasets

to address broad-scaled research questions can only be

fully realized through data harmonization, i.e., adjusting

for differences in units, formatting, naming, and other

conventions, so that datasets collected by different data

providers can be integrated. Although the technology

and data exist, there are few existing standards or exam-

ples that provide the detailed methods and strategies

needed for integrating disparate datasets and data types.

In addition to this, environmental science needs a

change in perspective. Synthetic and integrated research

questions can only be answered in an open-science en-

vironment in which both collectors of site-based datasets

and creators of integrated databases (each requiring ex-

tensive cost and labor) are willing to share their data

products and their methods of collection, processing,

and integrating, and where they receive proper attribu-

tion of their important contributions.

The idea of combining many smaller, site-level en-

vironmental datasets into a single database for policy

or management purposes has existed for several de-

cades (e.g., for water quality: STORET [17] and NWIS

[18]). However, broader use of these datasets is limited

as they typically include only a single type of data

(e.g., water quality) or lack supporting geographic

data. In addition, data integration efforts to answer

synthetic research questions have been conducted in

the last few decades by empirical ecologists perform-

ing secondary or meta-analyses of ecological processes

(e.g., [19–23]), and by researchers in working groups

at national synthesis centers in the US and other

countries producing new knowledge through synthesis

[4, 24–27]. These two types of effort have often inte-

grated a moderate number of data types or variables,

frequently from published studies. The project that we

describe in this paper goes even further to obtain large

sample sizes across a broad geographic extent, to inte-

grate heterogeneous types of data (e.g., climate, hy-

drology, land use, in addition to the site-level data),

and to document the full geographic description of all

ecosystems within a study area. Creating databases of

all ecosystems is important to be able to quantify po-

tential biases inherent in site selection of site-based

datasets [28]. Our methods are similar to ongoing

work by scientists who are part of networked observa-

tories (e.g., FluxNet, AmeriFlux, NutNet, GLEON)
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and are responsible for documenting and maintaining

large, integrated databases.

For cases in which a relatively manageable number of

site-level datasets are integrated, merging can often be

done manually and well informed quality control and as-

surance can be completed using expert knowledge of in-

dividual datasets. However, creating large curated data

products, such as those commonly used in genomics

(e.g., [29, 30]), or through networked observatories, re-

quires methods that are done ‘at scale’, in other words

not manually, and that are automated and extensively

documented. Further, making such databases extensible,

i.e., building the database for future use, requires explicit

strategies [23]. A critical step in creating an extensible

database is to document all methods associated with in-

tegrating disparate datasets, including data provenance,

processing, modeling, and formatting. Such documenta-

tion ensures that future users of the data can fully

understand the construction and limitations of the inte-

grated data product, which is required for effective use

and extension.

In this database methods paper, we describe data in-

tegration of multi-thematic and disparate datasets.

Just as data papers benefit from peer review, so too

will database methods papers, facilitating future use

and extensibility of the database [30]. Although we de-

scribe the methods for our specific database, LAGOS

(see below), this paper serves a different purpose from

our forthcoming ‘data paper’ that will make LAGOS

fully accessible in an online repository and will include

data providing co-authors who are recognized and re-

ceive credit for their data (e.g., [31]). The purpose of

this database methods paper is to document the de-

tailed methods of data integration and database devel-

opment that our research team of ecologists,

ecoinformatics specialists, GIS specialists, and com-

puter scientists used, so that others have an example

to build upon.

We describe the major steps, challenges, and consid-

erations for building an integrated database of lake eco-

systems, called LAGOS (LAke multi-scaled GeOSpatial

and temporal database; Fig. 1). LAGOS includes two

modules. The first is a geospatial characterization of all

lakes within the study extent from ~1980 to 2011,

which we refer to as the census lakes (LAGOSGEO).

The second module is a compilation of water quality

data (including lake nutrients, water clarity measures,

and pelagic chlorophyll concentrations) from the same

time period on a subset of the lakes (LAGOSLIMNO).

The version of LAGOS described here (version 1.040.0)

is at the sub-continental scale of 17 US states spanning

1,800,000 km2 (Fig. 2) and includes 40 lake water qual-

ity datasets for ~10,000 lakes (with an additional 60

datasets remaining to be imported in the immediate

future), and geospatial data from ~21 national geospa-

tial datasets in the public domain.

Although our focus is on lake ecosystems, the steps

we outline are broadly applicable to the integration of

disparate, multi-thematic, heterogeneous databases in

any geospatial scientific discipline. In particular, our

Fig. 1 A description of the major components and data themes that are integrated to create LAGOS. P is phosphorus, N is nitrogen, C is carbon.

Further detail is provided in Figures 5 and 6
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approach for integrating broad spatial coverage data

with time series data for individual locations will be

particularly relevant to a broad range of environmental

scientists.

Review

Interdisciplinary approach for building integrated

databases

The first step when building an integrated geospatial-

temporal macrosystems ecology database is to assemble

an interdisciplinary research team (Fig. 3). There should

be expertise from a combination of disciplines including

the main domains related to the research questions (e.g.,

ecology, hydrology, biogeochemistry, climatology),

ecoinformatics, statistics or machine-learning, and geo-

graphic information systems (GIS) science. Domain ex-

perts formulate the questions that motivate the

construction of the database, but often lack the technical

expertise required to conduct macrosystems research.

Hence, ecoinformatics professionals provide essential

specialized knowledge and skills to design and build the

database and GIS science professionals provide the skills

and tools to create the geospatial component of the

database that is so critical for macrosystems ecology re-

search. Statistics and machine-learning professionals

play a critical role in the analysis of the finished data-

base, and must also be involved at the early stages to

identify database constraints for the anticipated later

statistical or machine-learning analysis software, as well

as optimal data formats. We found it helpful to have

more than one person per discipline, such that no one

discipline or disciplinary perspective is either dominant

or marginalized [32], and to have team members who

serve as ‘disciplinary brokers’; that is, who possess the

ability to bridge knowledge or approaches across

Fig. 2 The study extent of LAGOS, showing location of all lakes ≥ 4 ha (blue polygons). The study extent included 17 states in the upper Midwest

and Northeastern parts of the US. Note that there are many lakes that straddle the state boundaries but are still included in the database because

the source data for the lakes are based on natural watershed boundaries rather that state boundaries

Fig. 3 Contributions and collaborations of disciplines for developing

an integrated geospatial-temporal database for macrosystems ecology

(MSE). Ecoinformatics includes database systems, metadata, and other

informatics tools needed for documenting and integrating datasets.

Although statistics and machine learning are not used to create the

integrated database, the constraints and requirements for future

statistical and machine learning modeling should be incorporated into

the process from the beginning
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disciplinary boundaries, thus facilitating the translation

of ideas and language across disciplines [33].

We recommend several fundamental principles to help

guide the building, maintaining, and sharing of inte-

grated databases for macrosystems ecology research with

an open-science perspective (Table 1). First, it is benefi-

cial to create both a census database as well as a ‘sam-

pled’ database to facilitate extrapolation, a common

objective of macrosystems research. Second, the data-

base, the metadata of source data, technical documenta-

tion of the database integration procedures, and code

should be shared for future users in online repositories

with permanent identifiers; either immediately, at the

end of the project period, or following a suitable em-

bargo period. Third, the provenance of the original data

should be preserved to the greatest degree possible, and

existing community standards be used to facilitate inte-

gration with other efforts. In the case of macrosystems

ecology, community standards are still evolving, which

makes thorough and clear data documentation at all

steps especially important. We also recommend that the

database be fully documented via a peer-reviewed data

methods paper with a permanent identifier to allow fu-

ture use and understanding of the database, and to give

credit to the database integrators. Similarly, we suggest

that a data paper be written with co-authors who are

data providers to recognize their data provision. Finally,

it is assumed that once the database is shared, there is a

set of community policies by which other scientists use

and credit the data [34].

Table 1 Assumptions and fundamental principles in building,

maintaining, and sharing integrated macrosystems ecology

databases

• The database should include both a ‘census’ population in which all
possible ‘ecosystems’ or ‘sites’ are geographically represented in
addition to the sites with in-situ data.

• The database will be fully documented, including descriptions of: the
original data providers or sources, database design, all data processing
steps and code for all data, possible errors or limitations of the data for
the integrated dataset and individual datasets, and methods and code
for geospatial data processing.

• To the greatest degree possible, existing community data standards
are used to facilitate integration with other efforts.

• To the greatest degree possible, the provenance of the original data
will be preserved through to the final data product.

• The database will include a versioning system to track different
versions of the database for future users and to facilitate reproducibility.

• The database will be made publicly accessible in an online data
repository with a permanent identifier using non-proprietary data formats
at the end of the project or after a suitable embargo if necessary.

• A data paper will be written with the original data providers as co-
authors to ensure recognition of data providers.

• A data-methods paper is written with the data-integration team as co-
authors to ensure recognition of data integrators.

• Once the database is made available in a data repository and is open-
access, whether it is static (no further data is added to the database) or
ongoing (data continues to be added to it), there are a set of community
policies by which other scientists use and cite the database, the original
data providers, and the database-integrators.

Fig. 4 Flow chart of the sequence of research decisions relevant to the database design and integration efforts that are required prior to entering

the database development phase
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There are five important decisions to be made before

developing the database (Fig. 4): (1) identify the over-

arching and specific research questions; (2) describe the

conceptual model to guide the research and identify and

prioritize relevant predictor and response variables; (3)

identify available data sources and document spatial and

temporal gaps; (4) decide the short- and long-term plans

for the database as either a static product or an ongoing,

extensible, supported product; and (5) based on the

short- and long-term plans for the database, develop a

strategy for documenting the database integration efforts

and for incorporating metadata into the database to

make it usable to current and future users. These deci-

sions, and the team discussions leading to them, will

strongly influence database design due to the complexity

of building integrated spatial-temporal macrosystems

ecology databases. In fact, this process is iterative; refine-

ments to the research questions or conceptual models

are likely as the database plans or the availability of data

change through time. In the next section, we describe

the procedures we used to build LAGOS, including the

research decisions that guided our efforts.

Steps in building LAGOS, a multi-scaled geospatial

temporal ecology database

Next we briefly describe the steps to create LAGOS in

the text and figures, and include more detailed methods

in the additional files, including a glossary of terms that

is provided in Additional file 1. Creating a multi-scaled

geospatial temporal ecology database required four

major efforts described in detail in the following sections

(Fig. 5). First, as described above, central research deci-

sions were made to guide database design and develop-

ment (grey boxes in Fig. 5; and described in detail in

Additional file 2. As there were more datasets to inte-

grate into LAGOS than there were funds or time avail-

able (a common problem in science), prioritization of

data was critical to ensure that our research goals were

met. Second, we quantified the diverse geospatial charac-

teristics of the ecosystems under study (green boxes in

Fig. 5) at a range of spatial and temporal extents, which

involved incorporating information from a range of data-

sets such as land use/cover, topography, climate, and hy-

drology. This step required skilled analyses and the

development of novel GIS methods specific to our re-

search questions. Because the geospatial data required

such different database protocols from our site-level

data, these data were put into a separate database mod-

ule, LAGOSGEO. Third, site-level data were georeferenced

to enable linkages between the two database modules, a

step that was far more complicated and labor-intensive

than was anticipated. Fourth, we combined the site-level

datasets into one module, LAGOSLIMNO.

(1) Research decisions and database design

Research questions LAGOS was built to provide an-

swers to our overarching question about cross-scale in-

teractions (CSIs) and their drivers (see [10] for a detailed

description of CSIs). Specifically, we asked: (1) At which

spatial scales do CSI drivers explain spatial heterogeneity

in lake water quality? (2) At which temporal scales do

CSI drivers explain temporal dynamics in lake water

quality among regions? (3) What are the relative contri-

butions of spatial and temporal drivers to the CSIs that

explain spatial and temporal variation in lake water

quality? These questions motivated the following deci-

sions in our design of LAGOS. First, LAGOS covers a

broad spatial extent (or study area) to enable analysis of

lakes along broad gradients of driver variables, such as

land use, climate, hydrology, and geology. Second,

LAGOSLIMNO covers a broad temporal extent by includ-

ing as much current and historical data of sampled lakes

as possible. Third, to support multi-scaled spatial ana-

lysis and to measure and study CSI drivers, LAGOSGEO
includes measures of driver variables at spatial extents

that range from fine (near an individual lake) to coarse

(regions that the lakes are nested within) scales. Finally,

LAGOSLIMNO includes a variety of ecosystem-level vari-

ables (i.e., measures of water quality in lakes) derived

from lake sampling programs. We included all available

data from lake sampling programs that varied widely in

the timing and frequency of monitoring. LAGOS can

then be filtered to select observations at any desired and

available timing, frequency, or spatial extent. A critical

decision in building LAGOSLIMNO was to import only

data that characterized water quality and lake depth ra-

ther than other in-lake measures (e.g., acid–base chemis-

try, temperature, or conductivity). As each lake variable

required manual interpretation and harmonizing across

datasets, and thus a significant investment of time and

financial resources, we prioritized the variables that were

necessary to answer our initial research questions.

Conceptual framework We built LAGOS to answer

the following fundamental question in macrosystem

ecology: what are the CSIs that regulate spatial hetero-

geneity and temporal dynamics of ecosystems at sub-

continental scales? Despite the high probability that

CSIs influence lakes, these ecosystems have not been

studied in the spatially explicit manner required to

quantify CSIs. This is in part because of a lack of a

suitable comprehensive multi-scaled spatial frame-

work. The landscape limnology conceptual model

[35], which is based on principles of landscape and

freshwater ecology, provides a unique lens for under-

standing how a diverse set of drivers (e.g., land use,

climate, hydrology) from different scales interact to

create CSIs that affect freshwater ecosystems.
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Therefore, LAGOS was designed to include measures

of landscape, hydrology, atmospheric, and climate

driver variables that are thought to control lake eco-

systems individually and through interactions with

each other within and across scales.

Identify available data to integrate In the US, state

(and some tribal) natural resource agencies are mandated

by the US Environmental Protection Agency (EPA) to

monitor their water bodies for changes in water quality.

The EPA requires agencies to document and report the

data at regular intervals, resulting in high quality data that

have been collected using relatively similar standardized

methods. A second data-rich category of lake water qual-

ity data we targeted was information from citizen moni-

toring programs and university researchers (Table 2).

Fig. 5 The workflow used to create LAGOS, including the research decisions needed to design the database. Once the research decisions have

been made (grey boxes), the workflow is divided into three modules: building the multi-themed GEO data module (green boxes); georeferencing

the site-level data (orange boxes); and building the site-level data module (blue boxes). The black boxes with white text identify the Additional

files (AF) that describe each element in further detail and the red text provides the programming language or software used for each step.

ARCGIS is ArcGIS, Ver 10.1 (ESRI); FGDC is the Federal Geographic Data Committee metadata standard; EXCEL is Microsoft Excel; TAUDEM is the

TauDEM Version 5 suite of models to analyze topographical data; PYTHON is the Python programming language; SQL is structured query

language used in the PostgreSQL database system; R is the R statistical language [36]; and EML is ecological metadata language
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Twelve of the ecologists on our team were given the re-

sponsibility of identifying and contacting data sources in

one to three states, depending on the number of likely

sources per state. We first identified and secured state

agency data sources. Then the team identified gaps in

spatial and temporal coverage and targeted additional citi-

zen and university data sources to fill those gaps. The

minimum requirements for including lake datasets in

LAGOSLIMNO were: sufficient metadata to describe sam-

pling and sample processing methods (in any metadata

form, which was typically a Microsoft Word or.pdf docu-

ment), information on the water depth at which the water

sample was taken, information on the lake location, and

data that were not aggregated into means or medians

(i.e., only individual sample events).

Identify short- and long-term plans for the database

Our short-term plan for LAGOS was to answer the

above research questions regarding the influence of CSIs

on lake water quality, based on the landscape limnology

conceptual model. This plan guided which datasets we

collected for predictor and response variables. We also

had two important long-term plans for the database.

First, we intended to make the database available at the

end of the project period in an online open access data

repository minus any dataset in which the provider has

requested the data not be further shared. Second, we

wanted the database to be extensible, in other words, we

wanted future users to be able to incorporate different

geospatial or lake data to the LAGOS infrastructure, in

order to conduct new research on lake ecosystems

across broad spatial and temporal extents. For example,

LAGOS could be used to study how lake water

temperature responds to climate change, or how pH re-

sponds to changes in atmospheric deposition, and how

both vary through space and time. To meet these two

goals, we ensured that LAGOS could accommodate the

addition of data (such as temperature or pH variables) in

the future through a flexible database design, and

through careful documentation of the entire data inte-

gration process. This latter action was done to ensure

proper use and provenance of the underlying data and

to provide a road map for adding new data to LAGOS

in the future. We will have reached the short-term goals

of this research project if we successfully build such a

database and answer the set of research questions that

were identified a priori. We will have reached the long-

term goals of our research project if we enable other re-

searchers to build upon and use the database (through

both open-access at the end of the project and detailed

documentation described here) to answer a diverse range

of future research questions.

Identify the metadata and documentation needs for

the database and establish a metadata plan We took a

multi-pronged approach to metadata for LAGOS be-

cause no single approach would meet all of our needs.

The metadata for LAGOSLIMNO were created as follows,

which are described in more detail in Additional file 3.

First, we created a control vocabulary to provide a stan-

dardized way to describe the data, variable names, and

units. Our control vocabulary for LAGOSLIMNO is pro-

vided in Additional file 4. Second, we documented the

individual site-level metadata for each water quality

Table 2 The description of the sources of site-level datasets that were identified to integrate into LAGOSLIMNO

Program type providing
dataset

Number of
datasets

Type of
sampling

Spatial
resolution

Temporal range of
data

Temporal resolution

Federal agency 7 Survey US 1991 - 2007 Single summer sample

7 Long-term Single lake -
Regional

1984 - 2011 Weekly - Yearly

LTER program 5 Long-term Single lake -
Regional

1967 - 2013 Weekly - Monthly (up to all year)

State agency 14 Survey State 1937 - 2011 Single summer sample - Monthly

14 Long-term Watershed -
Regional

1984 - 2011 Weekly - Yearly

Citizen monitoring
program

6 Survey Regional - State 1989 - 2011 Single summer sample - Monthly

4 Long-term Regional - State 1974 - 2012 Monthly - Multi-years

Non-profit agency 3 Long-term Regional 1990 - 2011 Monthly - Multi-years

Tribal agency 5 Long-term Regional 1998 - 2011

University research
program

16 Long-term Single lake -
Regional

1925 - 2011 Single summer sample - Weekly (some fall and
winter samples)

Note that at the time of writing, we have not incorporated all of these datasets into the database. The table describes the types of programs providing data, the

type of sampling conducted, the spatial resolution, and the temporal range and resolution of the data
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dataset using ecological metadata language (EML),

which is the community standard for ecological datasets.

We wrote the documentation in this standard format

ourselves because few datasets had existing standard

metadata files. Third, to facilitate reuse of the data, we

added important components of metadata, related to the

data source and laboratory methods, directly into

LAGOSLIMNO at both the level of the dataset ‘source’

and the data ‘value’ (Fig. 5). Fourth, for all data manipu-

lations conducted prior to loading into LAGOS, we used

scripting languages for documentation (see below). For

the LAGOSGEO module, we compiled existing metadata

that was mostly in FGDC (Federal Geographic Data

Committee) format, which is the standard for GIS data-

sets. Parts of the metadata were compiled into tables in

order to document, among other things, the program

that produced the data layer, the data type, the source

metadata file URL, and the temporal and spatial reso-

lution of the data, all of which is provided in table form

in Additional file 5. For both modules, we carefully re-

corded all methods for data integration as described in

this paper and the Additional files. In addition, we cre-

ated a user documentation file for each data export ver-

sion that describes changes to the database or data.

Database design The key principles underlying the de-

sign of traditional relational databases are based on the

theory of database normalization, which dictates how

the schemas in a database should be organized to

minimize duplicate information across multiple tables,

to reduce wasted storage of null values, and to ensure

that the dependencies among data items are correctly

manifested in the database. These databases also provide

means for increased quality control by employing strong

data typing (e.g., dates go in date fields, numbers in

number fields), and by including lookup tables that elim-

inate spelling errors and constrain users to controlled

vocabularies. However, applying these principles alone

for the design of LAGOS was insufficient. We needed a

design that would resolve a range of data integration

challenges while remaining flexible enough to accommo-

date future database extensibility, requiring increased

complexity in the design and implementation of

LAGOS. A detailed description of the database design is

provided in Additional file 6.

LAGOS is a combination of two modules LAGOSLIMNO

and LAGOSGEO (Fig. 6). LAGOSLIMNO required integra-

tion of nearly 100 limnological datasets from disparate

sources. To ensure that the LAGOSLIMNO database

module would be extensible, a vertically oriented (i.e.,

long) database design was developed (Fig. 6). We pro-

vide a detailed description of our database design in

Additional file 6. This design enables new variables to be

appended to the database as new datasets are loaded,

without altering the underlying database schema. For

the database design, we chose to extend the CUAHSI

(Consortium of Universities for the Advancement of

Hydrologic Science) Community Observations Data

Model [36] that implements these characteristics and is

well accepted by a large user community for storing

hydrologic measurements.

The LAGOSGEO module includes a wide range of data

derived from publicly available information from mul-

tiple sources, including variables on climate, land use

and land cover, atmospheric deposition, hydrology, and

freshwater connectivity. LAGOSGEO primarily consists

of data values calculated at a series of spatial extents

such as lake, county, state, watershed, or region that are

described in detail in Additional file 7. LAGOSGEO is al-

most exclusively horizontal in orientation because there

are no metadata columns related to the data value col-

umns. Thus, we gain no flexibility or thoroughness of

documentation of the underlying data values by storing

them vertically (unlike with LAGOSLIMNO). Despite the

horizontal orientation of this module, it is still fairly ex-

tensible through the addition of new tables.

(2) Building the multi-themed geospatial/temporal data

module: LAGOSGEO
We built LAGOSGEO using a number of geospatial data-

sets that are available online from US federal agencies

and other research groups. Most of the available data

had to be processed before being integrated in LAGOSGEO.

Hence we created a GIS toolbox, the LAGOS-GIS tool-

box, containing multiple tools to calculate a series of

metrics from these layers, in order to define, classify, and

characterize the population of surface water environments

found in the study extent, based on their hydrologic and

landscape context. Additional file 8 provides the full docu-

mentation for the LAGOS-GIS toolbox that is provided

online in a repository.

The entire population of lakes (>50,000) across the

study extent (i.e., the census data) is simply too large

and complex to characterize manually. Instead, the

LAGOS-GIS Toolbox allows a semi-automated geopro-

cessing workflow leading to: 1) watershed delineations

for each lake, 2) robust addition of attributes to lakes

and the zones (or spatial extents) in which they reside,

3) determination of ‘connectivity’ metrics for census

lakes, and 4) tools that summarize continuous data in a

consistent way for a variety of spatial extents. This tool-

box was crucial for building LAGOSGEO and provides a

mechanism for easily repeating analyses as new data be-

come available, or when these variables need to be cal-

culated for other regions or with different sources of

data. Additional file 5 describes the metrics of climate,
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atmosphere, geology, topography, and land use and land

cover features that have been generated for LAGOSGEO
using the toolbox. In addition, Additional files 9, 10, 11

and 12 describe the underlying data and the connectivity

metrics that we calculated in order to define and classify

lakes, streams, and wetlands based on their position in

the hydrologic flowpath and according to their connec-

tion(s) with other surface water features.

The above metrics have been calculated in several dif-

ferent ways to carve up the landscape (i.e., spatial ex-

tents): (1) political boundaries, (2) hydrological units

[37], (3) lake watersheds based on topography, and (4)

buffers consisting of boundaries a specified distance

from the lake shoreline. These metrics allow the users to

choose those that best match the scientific questions ad-

dressed (e.g., understanding how nearby land use affects

lake nutrient concentrations would take advantage of

land use/cover calculated for the 100 m lake buffer).

Calculating all of these different geographical metrics,

however, results in nearly unmanageable numbers of col-

umns (e.g., calculating average catchment slope ten dif-

ferent ways results in ten different variables and hence

ten columns in the database). To circumvent this prob-

lem, we generated ‘ZoneIDs’ that are directly linked to

each spatial extent in LAGOSGEO and can be associated

with any lake in LAGOSLIMNO. We then exported,

Fig. 6 Database schema for LAGOS including the two main modules: LAGOSGEO (green box) and LAGOSLIMNO (blue box). The component that

links the two models is the ‘aggregated lakes’ table (LAGOS lakes) that has the unique identifier and spatial location for all 50,000 lakes. LAGOSGEO
data are stored in horizontal tables that are all linked back to the spatial extents for which they are calculated and ultimately linked to each of

the 50,000 individual lakes. The LAGOSGEO data includes information for each lake, calculated at a range of different spatial extents that the lake is

located within (such as its watershed, its HUC 12, or its state). Each green box identifies a theme of data, the number of metrics that are

calculated for that theme, and the number of years over which the data are sampled. LAGOSLIMNO data are stored in vertical tables that are also

all linked back to the aggregated lakes table. The ‘limno values’ table and associated tables (in blue) include the values from the ecosystem-level

datasets for water quality; each value also has other tables linked to it that describe features of that data value such as the water depth at which

it was taken, the flags associated with it, and other metadata at the data value level. The ‘program-level’ tables (in purple) include information

about the program responsible for collecting the data. Finally, the ‘source lakes’ table and associated tables include information about each lake

where available. Note that a single source can have multiple programs that represent different datasets provided to LAGOS
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separately, smaller tables that included a number of vari-

ables sharing a main theme and common data sources

(e.g., land use/ cover) for each spatial extent. Based on

analytical needs, one can then reassemble the relevant

elements using the ZoneIDs and work with a more man-

ageable database. Additional file 13 describes the strat-

egy for exporting the data for use for statistical

modeling.

The last step in building LAGOSGEO was the quality

assurance/quality control (QAQC) procedures. Our

QAQC procedures for LAGOSGEO, which are fully de-

scribed in Additional file 14, was not able to rule out

errors in the base layers themselves. Nor was our verifi-

cation intended to identify statistical outliers. Rather, we

flagged errors and egregious values that 1) do not make

ecological sense, 2) are well beyond what has been de-

tected in previous studies, 3) are not technically feasible

(e.g., lake mean depth >maximum depth), or 4) are indi-

cated as ‘not available’ when data exist. Once these basic

verifications were performed, the data were made avail-

able for use by researchers with the recognition that

QAQC is an ongoing process that benefits from continu-

ous feedback from the database users, and that different

uses of the database may require further QAQC

procedures.

(3) Georeferencing site-level data

A census lake in LAGOS is a perennial body of relatively

still water ≥ 4 ha in surface area, including natural lakes

and reservoirs, but excluding entirely artificial water

bodies such as sewage treatment or aquaculture ponds

(identified as such by our lake data source, the National

Hydrography Dataset (NHD). A threshold of 4 ha for

lakes was the best trade-off between having as many

lakes as possible included in the census dataset balanced

against minimizing errors for extrapolation purposes as

we describe in Additional file 9.

We describe how we georeferenced the lake sampling

location from monitoring and research programs to a

lake polygon in the NHD in Additional file 15. This step

was challenging because of differences in unique lake

identifiers among programs (data sources), and incon-

sistencies and sometimes errors in the locational infor-

mation provided for lakes. We concluded that using a

lake’s latitude/longitude (which was almost always pro-

vided by the water quality data providers) was the best

way to link a lake’s sampling data to its location in the

NHD dataset in an automated way. However, this ap-

proach was ‘semi-automated,’ requiring manual checking

and additional manipulations because the provided coor-

dinates sometimes fell outside the NHD lake polygon

(e.g., the coordinates indicated the shoreline or the lake

access point).

(4) Building the site-level data module: LAGOSLIMNO

A multi-step process was developed to create LAGOSLIMNO,

the site-level data module containing water quality in-

formation; steps included identifying and contacting

data providers, acquiring the data, creating metadata,

manipulating and importing data into LAGOSLIMNO,

developing QAQC procedures, and exporting the data

for statistical modeling and analysis. The strategy that

we used for identifying potential data providers is de-

scribed in Additional file 16. We prioritized datasets

that were already in the public domain, such as those

from state agencies and citizen monitoring programs,

because these datasets often had the most data, and fa-

cilitated future data sharing. Additional file 17 describes

all of the datasets that we identified and obtained data

from. When we contacted data providers, we described

the general goals of the research project and the data

needs, in order for the potential data provider to assess

their willingness and ability to contribute to LAGOSLIMNO

as we describe in Additional file 18.

Although lakes included in this module do not neces-

sarily have simultaneous measurements of all variables,

all lakes have at least one measurement of one of the 17

variables. In addition, lake depth, a variable very import-

ant for interpretation of water quality data, is also in-

cluded in LAGOSLIMNO. However, it was not always

available in the water quality databases that we obtained.

Therefore, we conducted web searches to identify add-

itional sources of lake depth data from lake associations,

fishing maps and resources, and other state databases.

LAGOSLIMNO contains 17 water quality variables.

The structural and semantic heterogeneity of the data

sources (including their diverse file formats, schemas,

naming conventions, sampling approaches, measure-

ment units, and detection limits) presented significant

challenges to the data integration task. In many cases, a

single source provided us with multiple data tables with

different information that were not easily related to each

other, or that contained a considerable amount of unre-

lated information. In some cases, no locational informa-

tion was provided and the lake locations had to be

determined manually based on lake names or other aux-

iliary information. The lack of a controlled vocabulary,

common schema, and metadata standards presented

enormous challenges in developing automated techniques

for processing and importing data into LAGOSLIMNO.

Instead, we used a semi-automated approach, which

was labor-intensive and required customized scripts to

be written for processing and loading each data source

separately.

Individual datasets were processed using scripts de-

veloped in the R statistical [37], SQL, and Python lan-

guages to transpose the data from the schema in which

the data were provided to the schema employed by
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LAGOSLIMNO which is described in detail in Additional

file 19. Individual scripts were retained to ensure data

provenance documentation and reproducibility of

procedures. Although we have written scripts for all of

the ~100 datasets that we have received, as of the writ-

ing of this paper, we have imported about half of those

datasets due to the labor-intensive nature of dataset

harmonization.

After sufficient datasets were imported to create an inte-

grated LAGOSLIMNO database, the water quality data were

exported for detailed QAQC analysis of the integrated data-

base, which we describe in detail in Additional file 20. The

goals and procedures for QAQC of LAGOSLIMNO were dif-

ferent than for LAGOSGEO due to the different data types,

processing, and potential errors. The overarching purpose

of the QAQC analysis for LAGOSLIMNO was to identify

potential problems in the data import process such as

incorrect unit conversion and to locate egregious values

that were either not feasible (e.g., dissolved fraction of a

specific nutrient having a greater concentration than

total dissolved + particulate form) or had a high likeli-

hood of exceeding the maximum possible value in a

lake. For example, of the 1,227,922 observations of all

water quality variables in LAGOSLIMNO Ver 1.040.0,

only 21 values were deleted due to exceeding the ‘egre-

gious value’ threshold. These thresholds were set at ex-

tremely high levels to ensure that no extreme but real

values would be unnecessarily dropped. After that step,

there were several other procedures to identify values

that were questionable that were then flagged in the

database with a LAGOS flag. In order to remove obser-

ver bias and ensure repeatability of the QAQC proce-

dures, we generated scripts in R that automatically

identified and flagged egregious and questionable

values based on the set of criteria explained. In total,

approximately 0.5 % of the data values were flagged as

egregious or questionable (i.e., 6,498 out of 1,227,922

observations).

The final step in building the LAGOSLIMNO data mod-

ule involved creating scripts to export the data into a

readily accessible format for statistical analysis and eco-

logical synthesis as described in Additional file 21. This

process involved transposing a multi-table, vertical-

structure database into horizontal flat files that were op-

timized for most statistical applications. Finally, with

each export, a corresponding user documentation file,

which we provide in Additional file 22, was generated,

highlighting any important changes that occurred with

the corresponding export, the data tables exported, the

fields associated with those tables, and a description of

the contents of each field exported. As described, we

have implemented a versioning system that allows users

to use the database before all datasets have been loaded

and actually recognizes the advantage to be able to

always add data to the database into the future. For each

LAGOSLIMNO version, we implement all steps described

in this section to create a functional database that can

be used for research.

Lessons learned from building an integrated database

Harmonizing measurements from many heterogeneous

datasets is a challenging task, regardless of environmental

discipline or ecosystem type. Throughout the process of

harmonizing ecological measurements from diverse lake

datasets, we were confronted with unanticipated chal-

lenges. For example, we found many different sampling

schemes and methods for recording sampling events.

Sampling approaches appeared to have been driven by a

combination of specific hypotheses and research goals;

convenience and logistical feasibility; and historic prece-

dent, all of which became incorporated into formal proto-

cols. Even when lake sampling was intended for long-term

monitoring, analytical methods were not always coordi-

nated among different lakes, lake districts, counties, or

states. We also found that detection limits of analytical

methods were lacking for many lake datasets, or that de-

tection limits changed through time or were different

across methods that were employed through time. Many

of the challenges we encountered required manual inte-

gration, interpretation, or fixing, which is labor-intensive

and thus expensive.

We developed a set of best practices for data integra-

tion to overcome these (and other) obstacles, resulting

in a highly functional, integrated, and well documented

data product that can be maintained and extended into

the future and used to answer questions that have not

yet been conceived. In particular, we suggest consider-

ation of three important design features of integrated da-

tabases: 1) a flexible database design that does not cater

to a particular type of data analysis or programming lan-

guage; 2) a controlled vocabulary with explicit definition

of terms and mappings of disparate terminology across

datasets; and 3) strategies to preserve data provenance

and detailed data provenance documentation. Below, we

elaborate on the three design features critical to produ-

cing an integrated database.

1. The data model

Although most statistical analyses require a horizontal

data array, the more flexible data model for storage and

manipulation is the long, or vertical, data matrix format.

The vertical format can easily accommodate variables

that link to other tables, describing additional data such

as sampling location and methods, data originator, data

provenance, and other metadata that may be needed for

specific analyses.
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2. Controlled vocabulary

An important part of data harmonization is the agree-

ment on a standardized vocabulary for variables. This

process not only involves basic agreement on the vari-

able definition, but it also requires extensive domain

knowledge for interpreting terminology used by each

data provider, particularly if information that would help

with interpretation is missing. A mapping between vari-

ables used by the data source and the controlled vocabu-

lary of the integrated database may involve the need to

apply major transformations of the data. Once these de-

cisions are made, they need to be implemented consist-

ently across datasets.

3. Preserving and documenting data provenance

Preserving data provenance ensures that a majority of

the original information in a given dataset is retained

during the data integration process. Similarly, data

provenance documentation refers to a record of all

changes made to a dataset during the integration

process (e.g., R script, text file, extensible markup lan-

guage (XML) file). Ensuring and documenting data

provenance are crucial for creating a valuable inte-

grated database for a variety of reasons. First, the ori-

ginal data provider needs to be acknowledged and

linked to the original and unaltered raw data and meta-

data. Ideally, the original datasets are archived and pub-

lished in a formal repository and the citation is used in

the provenance documentation of the integrated data

product. However, because few data providers have

published raw data, the link to the originator informa-

tion needs to be maintained in the data product. Next,

it is important to document all data conversions and

QAQC measures that were applied to the original data,

as well as to maintain as much information from the

source dataset as possible. Finally, the data product

should be meticulously documented, formally archived

in a data repository, and preferably published in the

form of a data paper (including all scripts and related

data provenance documentation).

The success of these three best practices was essential

to the formation of LAGOS and relied upon the close

collaboration between domain and informatics experts

on the team. For example, it was not enough to assign

data manipulation tasks to informatics staff without fre-

quent and deep interactions with domain experts. These

best practices, implemented in a highly collaborative en-

vironment, are themselves labor-intensive and fairly ex-

pensive. However, the investment is easily justified when

one takes the long view: many future research questions

can be answered with such databases, resulting in a wide

range of high-impact research outcomes (e.g., future

publications, education applications, public outreach

materials, and decision-making applications). When

these future database uses are factored in, the cost of

curation becomes quite low indeed.

Conclusions
Large, synthetic, reproducible databases, compiled from

disparate, minimally accessible, datasets and well inte-

grated with heterogeneous data sources, are required to

address some of the most important large-scale environ-

mental problems facing society. In the current big data

and open science research era, these integrated databases

require thorough harmonization and documentation to be

useable by other researchers and policy-makers and ex-

tended into the future. Despite computational and

technological advances and an increasing emphasis on

interdisciplinary research, several challenges remain to

creating such databases for synthetic ecological research.

Although traditional training in ecology has emphasized

quantitative analysis, such training has not adequately

equipped most ecologists with the ‘data-intensive

science’ skills needed to design, construct, document,

and manipulate the databases that are now available or

buildable. Based on our experience building LAGOS,

two of the largest challenges are the extreme heterogen-

eity of data sources and the lack of standards for

ecological data, both of which create problems for auto-

mation of data harmonization and integration. A major

conclusion of our effort is that even at the larger tem-

poral and spatial scales associated with macrosystems

ecology research, numerous data integration steps re-

quire manual processing from domain experts in con-

junction with site experts or data providers, and close

interactions between domain and informatics experts.

Although there are difficult challenges associated with

building these integrated datasets, these same challenges

provide substantial opportunities, especially for early-

career ecologists, for interdisciplinary training in ecoin-

formatics and database management, and classical

ecology; thus pushing the ecological boundary to answer

important macrosystems ecology questions.

Additional files

Additional file 1: Glossary of some of the terms used in creating

LAGOS. This file contains definitions of many of the commonly used

terms that were used to create LAGOS to aid future users of this

database.

Additional file 2: Research decisions that guided the creation of

LAGOS. A description of the major decisions and rationale in the

creation of LAGOS that were related to the research questions that

LAGOS was designed to answer, the conceptual framework for the

project, and the longterm plans for the database.

Additional file 3: Creating integrated metadata for LAGOSLIMNO. The

approaches that were used to document multiple forms of metadata for

LAGOSLIMNO.
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Additional file 4: Controlled vocabulary for LAGOSLIMNO. A list of

standardized vocabulary used to translate each of the disparate individual

datasets into a common vocabulary for the data itself (i.e., the variable

names) as well as for the metadata.

Additional file 5: Compilation of metadata and description of

metrics that we calculated for LAGOSGEO. This file contains three

tables, the first contains the metadata for the GIS baselayers, the second

contains a description of the metrics that we created for LAGOSGEO, and

the third contains the lookup table for the classes of surficial geology

that we created for all LAGOS metrics.

Additional file 6: LAGOS database design. A description of the

LAGOS database design, the origin and justification of the design, and

the extensibility of the database.

Additional file 7: The spatial extents for LAGOSGEO. The spatial

extents for which we calculated all GEO features that were delineated by

either political, topographical, or hydrologic boundaries.

Additional file 8: LAGOS GIS Toolbox documentation. This file is the

documentation for the LAGOS GIS Toolbox that is currently available in

an online repository.

Additional file 9: Data sources, definition, and classification of

lakes. Detailed description of the sources, definitions and classifications

that were used to describe lakes in LAGOS. We also include a description

and justification for the minimum lake size used in LAGOS based on an

error analysis of the data source.

Additional file 10: Data sources, definition, and classification of

rivers and streams. Detailed description of the sources, definitions, and

classifications that were used to describe rivers and streams in LAGOS.

Additional file 11: Data sources, definition, and classification of

wetlands. Detailed description of the sources, definitions, and

classifications that were used to describe wetlands in LAGOS.

Additional file 12: Freshwater connectivity and composition

metrics. Detailed description and justification of the freshwater

connectivity and composition metrics that we developed for LAGOS. The

metrics were designed to quantify the spatial heterogeneity in lake,

stream, and wetland abundance and surface hydrologic connectivity at a

range of spatial extents.

Additional file 13: Database export formats for LAGOSGEO. This file

contains a description of the strategies for exporting the heterogeneous

and large volume of data from LAGOSGEO.

Additional file 14: QAQC protocol for LAGOSGEO. The protocols that

we used to QAQC the data after all of it had been loaded into and then

exported from LAGOS.

Additional file 15: Georeferencing the lake sampling locations to

lake polygons using GIS. A description of the challenges and solutions

to georeference each lake in our study area and connect that location to

lake sample events.

Additional file 16: Strategy for discovering and acquiring lake

water quality datasets. The approach that we used for discovering,

requesting and acquiring lake water quality datasets from a variety of

data providers, focusing on datasets already in the public domain.

Additional file 17: LAGOSLIMNO data sources and providers. A

detailed description of the programs and sources of limnological water

quality data used in LAGOSLIMNO

Additional file 18: Example memo sent to a potential data provider

requesting a water quality dataset. This file contains the memo that we

sent to potential data providers requesting data that described the purpose of

the study as well as the short- and long-term plans for the data.

Additional file 19: Procedure for converting individual water

quality datasets into the LAGOSLIMNO schema. The steps that used to

convert the heterogeneous water quality datasets into a common format

to eventually import into LAGOS. We include an example script and log

file created for each dataset prior to loading into LAGOSLIMNO.

Additional file 20: QAQC protocol for LAGOSLIMNO. The protocols

that we used to QAQC the data after all of it had been loaded into and

then exported from LAGOSLIMNO.

Additional file 21: Database export formats for LAGOSLIMNO. This file

contains a description of the strategies for exporting the large volume of

data from LAGOSLIMNO, and the challenges in dealing with sample depth

or position in the lake.

Additional file 22: Example user documentation for LAGOSLIMNO.

This file contains the user documentation that is provided to project

participants for each new version of LAGOSLIMNO.
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documentation as noted in the Additional files; JFL served as editor of the

Additional files; PAS drafted figures with suggested changes made by many

of the above authors; and NKS drafted the map of lakes. All authors read and

approved the final manuscript.
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