Building a Reactive Immune System for Software Services

Stelios Sidiroglou Michael E. Locasto Stephen W. Boyd Angelos D. Keromytis
Network Security Lab
Department of Computer Science, Columbia University
{stelios,locasto,swb48,angelos} @cs.columbia.edu

Abstract

We propose a reactive approach for handling a wide
variety of software failures, ranging from remotely ex-
ploitable vulnerabilities to more mundane bugs that
cause abnormal program termination (e.g., illegal mem-
ory dereference) or other recognizable bad behavior (e.g.,
computational denial of service). Our emphasis is in
creating “self-healing” software that can protect itself
against a recurring fault until a more comprehensive fix
is applied.

Briefly, our system monitors an application during its ex-
ecution using a variety of external software probes, try-
ing to localize (in terms of code regions) observed faults.
In future runs of the application, the “faulty” region of
code will be executed by an instruction-level emulator.
The emulator will check for recurrences of previously
seen faults before each instruction is executed. When a
fault is detected, we recover program execution to a safe
control flow. Using the emulator for small pieces of code,
as directed by the observed failure, allows us to minimize
the performance impact on the immunized application.

We discuss the overall system architecture and a proto-
type implementation for the x86 platform. We show the
effectiveness of our approach against a range of attacks
and other software failures in real applications such as
Apache, sshd, and Bind. Our preliminary performance
evaluation shows that although full emulation can be pro-
hibitively expensive, selective emulation can incur as lit-
tle as 30% performance overhead relative to an uninstru-
mented (but failure-prone) instance of Apache. Although
this overhead is significant, we believe our work is a
promising first step in developing self-healing software.

1 Introduction

Despite considerable work in fault tolerance and reliabil-
ity, software remains notoriously buggy and crash-prone.
The situation is particularly troublesome with respect
to services that must maintain high availability in the

face of remote attacks, high-volume events (such as fast-
spreading worms like Slammer [2] and Blaster [1]) that
may trigger unrelated and possibly non-exploitable bugs,
or simple application-level denial of service attacks. The
majority of solutions to this problem fall into four cate-
gories:

e Proactive approaches that seek to make the code
as dependable as possible, through a combination
of safe languages (e.g., Java), libraries [3] and com-
pilers [15], code analysis tools [8], and development
methodologies.

e Debugging aids whose aim is to make post-fault
analysis and recovery as easy as possible for the
programmer.

e Runtime solutions that seek to contain the fault us-
ing some type of sandboxing, ranging from full-
scale emulators such as VMWare, to system call
sandboxes [24], to narrowly applicable schemes
such as StackGuard [13].

e Byzantine fault-tolerance schemes (e.g., [34])
which use voting among a number of service in-
stances to select the correct answer, under the as-
sumption that only a minority of the replicas will
exhibit faulty behavior.

The contribution of this paper is a reactive approach,
accomplished by observing an application (or appropri-
ately instrumented instances of it) for previously unseen
failures. The types of faults we focus in this paper con-
sist of illegal memory dereferences, division by zero ex-
ceptions, and buffer overflow attacks. Other types of
failures can be easily added to our system as long as
their cause can be algorithmically determined (i.e., an-
other piece of code can tell us what the fault is and
where it occurred). We intend to enrich this set of faults
in the future; specifically, we plan to examine Time-
Of-Check-To-Time-Of-Use (TOCTTOU) violations, and
algorithmic-complexity denial of service attacks [9].

Our approach employs an Observe Orient Decide Act
(OODA) feedback loop and uses a set of software probes
that monitor the application for specific types of faults.
Upon detection of a fault, we invoke a localized re-
covery mechanism that seeks to recognize and prevent
the specific failure in future executions of the program.
Using continuous hypothesis testing, we verify whether
the fault has been repaired by re-running the applica-
tion against the event sequence that apparently caused
the failure. Our initial focus is on automatic healing of
services against newly detected faults (whether acciden-
tal failures or attacks). We emphasize that we seek to
address a wide variety of software failures, not just at-
tacks.

For our recovery mechanism we introduce Selective
Transactional EMulation (STEM), an instruction-level
emulator that can be selectively invoked for arbitrary seg-
ments of code, allowing us to mix emulated and non-
emulated execution inside the same process. The emula-
tor allows us to (@) monitor for the specific type of failure
prior to executing the instruction, (b) undo any memory
changes made by the function inside which the fault oc-
curred, by having the emulator record all memory mod-
ifications made during its execution, and (¢) simulate an
error-return from said function.

One of our key assumptions is that we can create a map-
ping between the set of errors that could occur during
a program’s execution and the limited set of errors that
are explicitly handled by the program’s code. This “er-
ror virtualization” technique is based on heuristics that
we present in Section 2.4. We believe that a majority of
server applications are written to have relatively robust
error handling; by virtualizing the errors, an application
can continue execution even though a boundary condi-
tion that was not predicted by the programmer allowed a
fault to “slip in.” In other words, error virtualization at-
tempts to retrofit an exception catching mechanism onto
code that wasn’t explicitly written to have such a capabil-
ity. Our experiments with Apache, OpenSSH, and Bind
validate this intuition. Evidence from other recent work
[26, 25, 33] supports our findings.

Our current work focuses on server-type applications,
since they typically have higher availability requirements
than user-oriented applications. Micro-rebooting [7] has
been proposed as another approach to dealing with er-
rors, by restarting all or parts of an application upon
recognizing a failure. However, server applications of-
ten cannot be simply restarted because they are typically
long running (and thus accumulate a fair amount of state)
and usually contain a number of threads that service
many remote users. Restarting the whole server because
of one failed thread unfairly denies service to other users.
Also, unlike user-oriented applications, servers operate

without direct human supervision and thus have a higher
need for an automated reactive system. Furthermore, it is
relatively easy to replay the offending sequence of events
in such applications, as these are typically limited to in-
put received over the network (as opposed to a user’s in-
teraction with a graphical interface). We intend to inves-
tigate other classes of applications in the future.

To evaluate the effectiveness of our system and its impact
to performance, we conduct a series of experiments us-
ing a number of open-source server applications includ-
ing Apache, sshd, and Bind. The results show that our
“virtualized error” mapping assumption holds for more
than 88% of the cases we examined. Testing with real
attacks against Apache, OpenSSH, and Bind, we show
that our technique can be effective in quickly and au-
tomatically protecting against zero-day attacks and fail-
ures. Although full emulation of these is prohibitively
expensive (3,000% slowdown), our selective emulation
degrades performance by a factor of 1.3-2, depending
on the size of the emulated code segment. We believe
that our findings show that a reactive approach such as
we advocate is a promising mechanism for dealing with
application faults.

Paper Organization. Section 2 presents our approach,
including the limitations of our system and the basic sys-
tem architecture. Section 3 briefly discusses the imple-
mentation of STEM, and Section 4 presents some prelim-
inary performance measurements of the system. We give
an overview of related work in Section 5 and summarize
our contributions and plan for future work in Section 6.

2 Approach

Our architecture, depicted in Figure 1, uses three types
of components: a set of sensors that monitor an applica-
tion (such as a web server) for faults; Selective Transac-
tional EMulation (STEM), an instruction-level emulator
that can selectively emulate “slices” (arbitrary segments)
of code; and a testing environment where hypotheses
about the effect of various fixes are evaluated. These
components can operate without human supervision to
minimize reaction time.

2.1 System Overview

When the sensor detects an error in the application’s ex-
ecution (such as a segmentation fault), the system instru-
ments the portion of the application’s code that imme-
diately surrounds the faulty instruction(s), such that the

Emulate
“Shces"

(3) Feedback control loop

(1) Sensors determine
failure

(2) Input
\ector

Input Vector I

Update Application

Wt

Hypothesis Foc
q eedback
Testlng_ & Control fgmp
Analysis
strumented
Appti on

pplication Server

(4) Update
Application

Figure 1: Feedback control loop: (1) a variety of sensors monitor the application for known types (but unknown instances)
of faults; (2) upon recognizing a fault, we emulate the region of code where the fault occurred and test with the inputs
seen before the fault occurred; (3) by varying the scope of emulation, we can determine the “narrowest” code slice we can
emulate and still detect and recover from the fault; (4) we then update the production version of the server.

code segment is emulated (the mechanics of this are ex-
plained in Section 3). To verify the effectiveness of the
fix, the application is restarted in a test environment with
the instrumentation enabled, and is supplied with the in-
put that caused the failure (or the N most recent inputs,
if the offending one cannot be easily identified, where NV
is a configurable parameter). We focus on server type
applications that have a transactional processing model,
because it is easier to quickly correlate perceived failures
with a small or finite set of inputs than with other types
of applications (e.g., those with a GUI).

During emulation, STEM maintains a record of all
memory changes (including global variables or library-
internal state, e.g., libc standard /O structures) that the
emulated code makes, along with their original values.
Furthermore, STEM examines the operands for each ma-
chine instruction and pre-determines the side effects of
the instructions it emulates. The use of an emulator al-
lows us to circumvent the complexity of code analysis, as
we only need to focus on the operation and side effects
of individual instructions independently from each other.

If the emulator determines that a fault is about to occur,
the emulated execution is aborted. Specifically, all mem-
ory changes made by the emulated code are undone, and
the currently executing function is “forced” to return an
error. We describe how both emulation and error virtual-
ization are accomplished in Sections 2.3 and 2.4, respec-
tively, and we experimentally validate the error virtual-
ization hypothesis in Section 4. For our initial approach,
we are primarily concerned with failures where there is a
one-to-one correspondence between inputs and failures,
and not with those that are caused by a combination of
inputs. Note, however, that many of the latter type of fail-
ures are in fact addressed by our system, because the last
input (and code leading to a failure) will be recognized
as “problematic” and handled as we have discussed.

In the testing and error localization phase, emulation

stops after forcing the function to return. If the program
crashes, the scope of the emulation is expanded to in-
clude the parent (calling) routine and the application re-
executes with the same inputs. This process is repeated
until the application does not terminate after we abort a
function calls sequence. In the extreme case, the whole
application could end up being emulated, at a significant
performance cost. However, Section 4 shows that this
failsafe measure is rarely necessary.

If the program does not crash after the forced return, we
have found a “vaccine” for the fault, which we can use on
the production server. Naturally, if the fault is not trig-
gered during an emulated execution, emulation halts at
the end of the vulnerable code segment, and all memory
changes become permanent.

The overhead of emulation is incurred at all times
(whether the fault is triggered or not). To minimize this
cost, we must identify the smallest piece of code that
we need emulate in order to catch and recover from the
fault. We currently treat functions as discrete entities and
emulate the whole body of a function, even though the
emulator allows us to start and stop emulation at arbi-
trary points, as described in Section 3. Future work will
explore strategies for minimizing the scope of the emu-
lation and balancing the tradeoff between coverage and
performance.

In the remainder of this section, we describe the types of
sensors we employ, give an overview of how the emu-
lator operates (with more details on the implementation
in Section 3), and describe how the emulator forces a
function to return with an error code. We also discuss
the limitations of reactive approaches in general and our
system in particular.

2.2 Application Monitors

The selection of appropriate failure-detection sensors de-
pends on both the nature of the flaws themselves and tol-
erance of their impact on system performance. We de-
scribe the two types of application monitors that we have
experimented with.

The first approach is straightforward. The operating sys-
tem forces a misbehaving application to abort and cre-
ates a core dump file that includes the type of failure and
the stack trace when that failure occurred. This informa-
tion is sufficient for our system to apply selective em-
ulation, starting with the top-most function in the stack
trace. Thus, we only need a watchdog process that waits
until the service terminates before it invokes our system.

A second approach is to use an appropriately instru-
mented version of the application on a separate server
as a honeypot, as we demonstrated for the case of net-
work worms [29]. Under this scheme, we instrument the
parts of the application that may be vulnerable to a par-
ticular class of attack (in this case, remotely exploitable
buffer overflows) such that an attempt to exploit a new
vulnerability exposes the attack vector and all pertinent
information (attacked buffer, vulnerable function, stack
trace, etc.).

This information is then used to construct an emulator-
based vaccine that effectively implements array bounds
checking at the machine-instruction level. This approach
has great potential in catching new vulnerabilities that
are being indiscriminately attempted at high volume,
as may be the case with an “auto-root” kit or a fast-
spreading worm. Since the honeypot is not in the pro-
duction server’s critical path, its performance is not a pri-
mary concern (assuming that attacks are relatively rare
phenomena). In the extreme case, we can construct a
honeypot using our instruction-level emulator to execute
the whole application, although we do not further explore
this possibility in this paper.

2.3 Selective Transactional EMulation (STEM)

The recovery mechanism uses an instruction-level emu-
lator, STEM, that can be selectively invoked for arbitrary
segments of code. This tool permits the execution of em-
ulated and non-emulated code inside the same process.
The emulator is implemented as a C' library that defines
special tags (a combination of macros and function calls)
that mark the beginning and the end of selective emula-
tion. To use the emulator, we can either link it with an
application in advance, or compile it in the code in re-
sponse to a detected failure, as was done in [29].

Upon entering the vulnerable section of code, the emula-

tor snapshots the program state and executes all instruc-
tions on the virtual processor. When the program counter
references the first instruction outside the bounds of em-
ulation, the virtual processor copies its internal state back
to the real CPU, and lets the program continue execution
natively. While registers are explicitly updated, memory
updates have implicitly been applied throughout the ex-
ecution of the emulation. The program, unaware of the
instructions executed by the emulator, continues execut-
ing directly on the CPU.

To implement fault catching, the emulator simply checks
the operands of instructions it is emulating, taking into
consideration additional information supplied by the sen-
sor that detected the fault. For example, in the case of
division by zero, the emulator need only check the value
of the appropriate operand to the div instruction. For ille-
gal memory dereferencing, the emulator verifies whether
the source or destination addresses of any memory access
(or the program counter, for instruction fetches) point to
a page that is mapped to the process address space using
the mincore() system call. Buffer overflow detection is
handled by padding the memory surrounding the vulner-
able buffer, as identified by the sensor, by one byte, sim-
ilar to the way StackGuard [13] operates. The emulator
then simply watches for memory writes to these memory
locations. This approach requires source code availabil-
ity, so as to insert the “canary” variables. Contrary to
StackGuard, our approach allows us to stop the overflow
before it overwrites the rest of the stack, and thus to re-
cover the execution. For algorithmic-complexity denial
of service attacks, such as the one described in [9], we
keep track of the amount of time (in terms of number
of instructions) we execute in the instrumented code; if
this exceeds a pre-defined threshold, we abort the execu-
tion. This threshold may be defined manually, or can be
determined by profiling the application under real (or re-
alistic) workloads, although we have not fully explored
the possibilities.

We currently assume that the emulator is pre-linked with
the vulnerable application, or that the source code of that
application is available. It is possible to circumvent this
limitation by using the CPU’s programmable breakpoint
register (in much the same way that a debugger uses it
to capture execution at particular points in the program)
to invoke the emulator without the running process even
being able to detect that it is now running under an emu-
lator.

2.4 Recovery: Forcing Error Returns

Upon detecting a fault, our recovery mechanism undoes
all memory changes and forces an error return from the
currently executing function. To determine the appropri-

ate error return value, we analyze the declared type of the
function.

Depending on the return type of the emulated function,
the system returns an “appropriate” value. This value is
determined based on some straightforward heuristics and
is placed in the stack frame of the returning function. The
emulator then transfers control back to the calling func-
tion. For example, if the return type is an int, a value of
—1 is returned; if the value is unsigned int the system re-
turns 0, efc. A special case is used when the function re-
turns a pointer. Instead of blindly returning a NULL, we
examine if the returned pointer is further dereferenced
by the parent function. If so, we expand the scope of
the emulation to include the parent function. We han-
dle value-return function arguments similarly. There are
some contexts where this heuristic may not work well;
however, as a first approach these heuristics worked ex-
tremely well in our experiments (see Section 4).

In the future, we plan to use more aggressive source code
analysis techniques to determine the return values that
are appropriate for a function. Since in many cases a
common error-code convention is used in large applica-
tions or modules, it may be possible to ask the program-
mer to provide a short description of this convention as
input to our system either through code annotations or as
separate input. A similar approach can be used to mark
functions that must be fail-safe and should return a spe-
cific value when an error return is forced, e.g., code that
checks user permissions.

2.5 Caveats and Limitations

While promising, reactive approaches to software faults
face a new set of challenges. As this is a relatively unex-
plored field, some problems are beyond the scope of this
paper.

First, our primary goal is to evolve an application pro-
tected by STEM towards a state that is highly resistant to
exploits and errors. While we expect the downtime for
such a system to be reduced, we do not reasonably ex-
pect zero downtime. STEM fundamentally relies on the
application monitors detecting an error or attack, stop-
ping the application, marking the affected sections for
emulated execution, and then restarting the application.
This process necessarily involves downtime, but is in-
curred only once for each detected vulnerability. We be-
lieve that combining our approach with microrebooting
techniques can streamline this process.

A reaction system must evaluate and choose a response
from a wide array of choices. Currently, when encoun-
tering a fault, a system can (a) crash, (b) crash and be
restarted by a monitor [7], (¢) return arbitrary values

[26], or (d) slice off the functionality. Most proactive
systems take the first approach. We elect to take the last
approach. As Section 2.4 shows, this choice seems to
work extremely well. This phenomenon also appears at
the machine instruction level [33].

However, there is a fundamental problem in choosing a
particular response. Since the high-level behavior of any
system cannot be algorithmically determined, the system
must be careful to avoid cases where the response would
take execution down a semantically (from the viewpoint
of the programmer’s intent) incorrect path. An example
of this type of problem is skipping a check in sshd which
would allow an otherwise unauthenticated user to gain
access to the system. The exploration of ways to bound
these types of errors is an open area of research. Our
initial approach is to rely on the programmer to provide
annotations as to which parts of the code should not be
circumvented.

There is a key tradeoff between code coverage (and
thus confidence in the level of security the system pro-
vides) and performance (processing and memory over-
head). Our emulator implementation is a proof of con-
cept; many enhancements are possible to increase per-
formance in a production system. Our main goal is to
emphasize the service that such an emulator will provide:
the ability to selectively incur the cost of emulation for
vulnerable program code only. Our system is directed to
these vulnerable sections by runtime sensors — the qual-
ity of the application monitors dictates the quality of the
code coverage.

Since our emulator is designed to operate at the user
level, it hands control to the operating system during sys-
tem calls. If a fault were to occur in the operating system,
our system would not be able to react to it. In a related
problem, I/O beyond the machine presents a problem for
a rollback strategy. This problem can partially be ad-
dressed by the approach taken in [17], by having the ap-
plication monitors log outgoing data and implementing a
callback mechanism for the receiving process.

Finally, in our current work, we assume that the source
code of the vulnerable application is available to our sys-
tem. We briefly discussed how to partially circumvent
this limitation in Section 2.3. Additional work is needed
to enable our system to work in a binary-only environ-
ment.

3 Implementation

We implemented the STEM x86 emulator to validate the
practicality of providing a supervision framework for
the feedback control loop through selective emulation of

code slices. Integrating STEM into an existing applica-
tion is straightforward. As shown in Figure 2, four spe-
cial tags are wrapped around the segment of code that
will be emulated.

void foo() {
int a = 1;
emulate_init ();
emulate_begin (p_args);
at+;
emulate_end() ;
emulate_term();

o

printf ("a = %d\n", a);

Figure 2: A trivial example of using STEM. The emulate_*
calls invoke and terminate execution of STEM. The code
inside that region is executed by the emulator. In order to
illustrate the level of granularity that we can achieve, we
show only the increment statement as being executed by the
emulator.

The C' macro emulate_init() moves the program state
(general, segment, eflags, and FPU registers) into an
emulator-accessible global data structure to capture state
immediately before STEM takes control. The data struc-
ture is used to initialize the virtual registers. With the
preliminary setup completed, emulate _begin() only needs
to obtain the memory location of the first instruction fol-
lowing the call to itself. The instruction address is the
same as the return address and can be found in the ac-
tivation record of emulate_begin(), four bytes above its
base stack pointer.

The fetch/decode/execute/retire cycle of instructions
continues until either emulate_end() is reached, or when
the emulator detects that control is returning to the par-
ent function. If the emulator does not encounter an error
during its execution, the emulator’s instruction pointer
references the emulate_term() macro at completion. To
enable the program to continue execution at this ad-
dress, the return address of the emulate_begin activation
record is replaced with the current value of the instruc-
tion pointer. By executing emulate _term(), the emulator’s
environment is copied to the program registers and exe-
cution continues under normal conditions.

If an exception occurs during emulation, STEM locates
emulate_end() and terminates. Because the emulator
saved the state of the program before starting, it can ef-
fectively return the program state to its original setting,
thus nullifying the effect of the instructions processed
through emulation. Essentially, the emulated code is
sliced off. At this point, the execution of the code (and
its side effects in terms of changes to memory) has been

rolled back.

The emulator is designed to execute in user-mode, so
system calls cannot be computed directly without kernel-
level permissions. Therefore, when the emulator decodes
an interruption with an immediate value of 0280, it must
release control to the kernel. However, before the ker-
nel can successfully execute the system call, the program
state needs to reflect the virtual registers arrived at by
STEM. Thus, the emulator backs up the real registers and
replaces them with its own values. An INT 0z80 is is-
sued by STEM, and the kernel processes the system call.
Once control returns to the user-level code, the emula-
tor updates its registers and restores the original values
in the program’s registers.

4 Evaluation

Our description of the system raises several questions
that need to be answered in order to determine the
tradeoffs between effectiveness, practicality, and perfor-
mance.

1. Can the system detect real attacks and faults and
react to them ?

2. How effective is our “error virtualization” hypothe-
sis as a recovery mechanism ? Does it work for real
software ?

3. What is the performance impact of emulation, and
what is the gain to be had by using selective emula-
tion ?

In the rest of this section, we provide some preliminary
experimental evidence that our system offers a reason-
able and adjustable tradeoff between the three param-
eters mentioned above. Naturally, it is impossible to
completely cover the space of reactive mechanisms (even
within the more limited context of our specific work).
Future work is needed to analyze the semantics of error
virtualization and the impact that STEM has on the secu-
rity properties of STEM-enabled applications. As noted
below, we plan to construct a correctness testing frame-
work. However, we believe that our results show that
such an approach can work and that additional work is
needed to fully explore its capabilities and limitations.

4.1 Effectiveness of Forced Return Recovery

To validate our error virtualization hypothesis using
forced function return, introduced in Section 2.4, we ex-
perimentally evaluate its effects on program execution on

the Apache httpd, OpenSSH sshd, and Bind. We run pro-
filed versions of the selected applications against a set of
test suites and examine the subsequent call-graphs gen-
erated by these tests with gprof and Valgrind [21].

The ensuing call trees are analyzed in order to extract
leaf functions. The leaf functions are, in turn, employed
as potentially vulnerable functions. Armed with the in-
formation provided by the call-graphs, we run a script
that inserts an early return in all the leaf functions (as de-
scribed in Section 2.4), simulating an aborted function.
Note that these tests do not require going back up the
call stack.

In Apache’s case, we examined 154 leaf functions. For
each aborted function, we monitor the program execu-
tion of Apache by running httperf [20], a web server per-
formance measurement tool. Success for each test was
defined as the application not crashing.

The results from these tests were very encouraging, as
139 of the 154 functions completed the httperf tests suc-
cessfully. In these cases, program execution was not in-
terrupted. What we found to be surprising was that not
only did the program not crash, but in some cases all the
pages were served (as reported by httperf). This result
is probably because a large number of the functions are
used for statistical and logging purposes. Furthermore,
out of the 15 functions that produced segmentation faults,
4 did so at start up (and would thus not be relevant in the
case of a long-running process). While this result is en-
couraging, testing the correctness of this process would
require a regression test suite against the page contents,
headers, and HTTP status code for the response. We plan
to build this “correctness” testing framework.

Similarly for sshd, we iterate through each aborted func-
tion while examining program execution during an scp
transfer. In the case of sshd, we examined 81 leaf func-
tions. Again, the results were auspicious: 72 of the 81
functions maintained program execution. Furthermore,
only 4 functions caused segmentation faults; the rest sim-
ply did not allow the program to start.

For Bind, we examined the program execution of named
during the execution of a set of queries; 67 leaf functions
were tested. In this case, 59 of the 67 functions main-
tained the proper execution state. Similar to sshd, only 4
functions caused segmentation faults.

These results, along with supporting evidence from [26]
and [33], validate our “error virtualization” hypothesis
and approach. However, additional work is needed to
determine the degree to which other types of applications
(e.g., GUI-driven) exhibit the same behavior.

4.2 Attack Exploits

Given the success of our experimental evaluation on
program execution, we wanted to further validate our
hypothesis against a set of real exploits for Apache,
OpenSSH sshd, and Bind. No prior knowledge was en-
coded in our system with respect to the vulnerabilities:
for all purposes, this experiment was a zero-day attack.

For Apache, we used the apache-scalp exploit that takes
advantage of a buffer overflow vulnerability based on
the incorrect calculation of the required buffer sizes for
chunked encoding requests. We applied selective emu-
lation on the offending function and successfully recov-
ered from the attack; the server successfully served sub-
sequent requests.

The attack used for OpenSSH was the RSAREF2 exploit
for SSH-1.2.27. This exploit relies on unchecked offsets
that result in a buffer overflow vulnerability. Again, we
were able to gracefully recover from the attack and the
sshd server continued normal operation.

Bind is susceptible to a number of known exploits; for
the purposes of this experiment, we tested our approach
against the TSIG bug on ISC Bind 8.2.2-x. In the same
motif as the previous attacks, this exploit takes advantage
of a buffer overflow vulnerability. As before, we were
able to safely recover program execution while maintain-
ing service availability.

4.3 Performance

We next turned our attention to the performance impact
of our system. In particular, we measured the overhead
imposed by the emulator component. STEM is meant to
be a lightweight mechanism for executing selected por-
tions of an application’s code. We can select these code
slices according to a number of strategies, as we dis-
cussed in Section 2.2.

We evaluated the performance impact of STEM by in-
strumenting the Apache 2.0.49 web server and OpenSSH
sshd, as well as performing micro-benchmarks on vari-
ous shell utilities such as Is, cat, and cp.

4.3.1 Testing Environment

The machine we chose to host Apache was a single Pen-
tium IIT at IGHz with 512MB of memory running Red-
Hat Linux with kernel 2.4.20. The machine was under a
light load during testing (standard set of background ap-
plications and an X11 server). The client machine was a
dual Pentium IT at 350 MHz with 256MB of memory run-
ning RedHat Linux 8.0 with kernel 2.4.18smp. The client

machine was running a light load (X11 server, sshd,
background applications) in addition to the test tool.
Both emulated and non-emulated versions of Apache
were compiled with the —enable-static-support configu-
ration option. Finally, the standard runtime configuration
for Apache 2.0.49 was used; the only change we made
was to enable the server-status module (which is com-
piled in by default but not enabled in the default con-
figuration). STEM was compiled with the “-g -static -
Jfno-defer-pop” flags. In order to simplify our debugging
efforts, we did not include optimization.

We chose the Apache flood httpd testing tool to eval-
uate how quickly both the non-emulated and emulated
versions of Apache would respond and process requests.
In our experiments, we chose to measure performance
by the total number of requests processed, as reflected
in Figures 3 and 4. The value for total number of re-
quests per second is extrapolated (by flood’s reporting
tool) from a smaller number of requests sent and pro-
cessed within a smaller time slice; the value should not
be interpreted to mean that our test Apache instances and
our test hardware actually served some 6000 requests per
second.

4.3.2 Emulation of Apache Inside Valgrind

To get a sense of the performance degradation imposed
by running the entire system inside an emulator other
than STEM, we tested Apache running in Valgrind ver-
sion 2.0.0 on the Linux test machine that hosted Apache
for our STEM test trials.

Valgrind has two notable features that improve perfor-
mance over our full emulation of the main request loop.
First, Valgrind maintains a 14 MB cache of translated
instructions which are executed natively after the first
time they are emulated, while STEM always translates
each encountered instruction. Second, Valgrind per-
forms some internal optimizations to avoid redundant
load, store, and register-to-register move operations.

We ran Apache under Valgrind with the default skin
Memcheck and tracing all children processes. While Val-
grind performed better than our emulation of the full re-
quest processing loop, it did not perform as well as our
emulated slices, as shown in Figure 3 and the timing per-
formance in Table 1.

Finally, the Valgrind—ized version of Apache is 10 times
the size of the regular Apache image, while Apache with
STEM is not noticeably larger.

4.3.3 Full Emulation and Baseline Performance

We demonstrate that emulating the bulk of an applica-
tion entails a significant performance impact. In par-
ticular, we emulated the main request processing loop
for Apache (contained in ap_process_http_connection())
and compared our results against a non-emulated Apache
instance. In this experiment, the emulator executed
roughly 213,000 instructions. The impact on perfor-
mance is clearly seen in Figure 3 and further elucidated
in Figure 4, which plots the performance of the fully em-
ulated request-handling procedure.

Apache 2.0.49 (emulated) Request Handling Performance

T T T T T T
Ibtasvm-mainloop —+—

200 1

150 | 1

100 | 1

requests per second

0 L L L L L L L
0 10 20 30 40 50 60 70 80

of client threads

Figure 4: A closer look at the performance for the fully
emulated version of main processing loop. While there is
a considerable performance impact compared to the non-
emulated request handling loop, the emulator appears to
scale at the characteristic linear rate, indicating that it does
not create additional overhead beyond the cost of emula-
tion.

In order to get a more complete sense of this performance
impact, we timed the execution of the request handling
procedure for both the non-emulated and fully-emulated
versions of Apache by embedding calls to gettimeofday()
where the emulation functions were (or would be) in-
voked.

For our test machines and sample loads, Apache nor-
mally (e.g., non-emulated) spent 6.3 milliseconds to per-
form the work in the ap_process_http_connection() func-
tion, as shown in Table 1. The fully instrumented loop
running in the emulator spends an average of 278 mil-
liseconds per request in that particular code section. For
comparison, we also timed Valgrind’s execution of this
section of code; after a large initial cost (to perform the
initial translation and fill the internal instruction cache)
Valgrind executes the section with a 34 millisecond aver-
age. These initial costs sometimes exceeded one or two
seconds; we ignore them in our data and measure Val-

Apache 2.0.49 Request Handling Performance

T T T T T T T
apache-mainloop —+—
9000 - libtasvm-mainloop ---x---]|
libtasvm-parse-uri ------
libtasvm-header-parser &
8000 - valgrind-apache --m-
7000 | i
2 6000 - i
Q
[&]
[0]
%]
% 5000 | E
Q
i}
1%}
2 4000 | i
o
o
3000 | i
2000 | i
1000 R
0
0

80

of client threads

Figure 3: Performance of the system under various levels of emulation. This data set includes Valgrind for reference.
While full emulation is fairly expensive, selective emulation of input handling routines appears quite sustainable. Valgrind
runs better than STEM when executing the entire request loop. As expected, selective emulation still performs better than

Valgrind.

grind only after it has stabilized.

Apache | trials | Mean Std. Dev.
Normal | 18 6314 847
STEM | 18 277927 | 74488
Valgrind | 18 34192 | 11204

Table 1: Timing of main request processing loop. Times are
in microseconds. This table shows the overhead of running
the whole primary request handling mechanism inside the
emulator. In each trial a user thread issued an HTTP GET
request.

4.3.4 Selective Emulation

In order to identify possible vulnerable sections of code
in Apache 2.0.49, we used the RATS tool. The tool iden-
tified roughly 270 candidate lines of code, the majority
of which contained fixed size local buffers. We then cor-
related the entries on the list with code that was in the
primary execution path of the request processing loop.
The two functions that are measured perform work on
input that is under client control, and are thus likely can-
didates for attack vectors.

The main request handling logic in Apache 2.0.49 begins
in the ap_process_http_connection() function. The effec-
tive work of this function is carried out by two subrou-
tines: ap-_read_request() and ap_process_request(). The
ap_process_request() function is where Apache spends
most of its time during the handling of a particular re-
quest. In contrast, the ap_read_request() function ac-
counts for a smaller fraction of the request handling
work. We chose to emulate subroutines of each function
in order to assess the impact of selective emulation.

We constructed a partial call tree and chose the
ap_parse_uri() function (invoked via read_request line()
in ap_read_request()) and the ap_run_header_parser()
function (invoked via ap_process_request_internal() in
ap_process_request()). The emulator processed approxi-
mately 358 and 3229 instructions, respectively, for these
two functions. In each case, the performance impact, as
expected, was much less than the overhead incurred by
needlessly emulating the entire work of the request pro-
cessing loop.

4.3.5 Microbenchmarks

Using the client machine from the Apache performance
tests, we ran a number of micro-benchmarks to gain a

broader view of the performance impact of STEM. We
selected some common shell utilities and measured their
performance for large workloads running both with and
without STEM.

For example, we issued an ’Is -R’ command on the root
of the Apache source code with both stderr and stdout
redirected to /dev/null in order to reduce the effects of
screen I/0. We then used cat and cp on a large file (also
with any screen output redirected to /dev/null). Table 2
shows the result of these measurements.

As expected, there is a large impact on performance
when emulating the majority of an application. Our ex-
periments demonstrate that only emulating potentially
vulnerable sections of code offers a significant advantage
over emulation of the entire system.

5 Related Work

Modeling executing software as a transaction that can be
aborted has been examined in the context of language-
based runtime systems (namely, Java) in [28, 27].
That work, focused on safely terminating misbehaving
threads, introduces the concept of “soft termination.”
Soft termination allows thread termination while pre-
serving the stability of the language runtime, without
imposing unreasonable performance overheads. In that
approach, threads (or codelets) are each executed in self-
encompassing transactions, applying standard ACID se-
mantics. This allows changes to the runtime’s (and other
threads’) state made by the terminated codelet to be
rolled back. The performance overhead of that system
can range from 200% up to 2300%. Relative to that
work, our contribution is twofold. First, we apply the
transactional model to an unsafe language such as C, ad-
dressing several (but not all) challenges presented by that
environment. Second, by selectively emulating, we sub-
stantially reduce the performance overhead of the appli-
cation. However, there is no free lunch: this reduction
comes at the cost of allowing failures to occur. Our sys-
tem aims to automatically evolve a piece of code such
that it eventually (i.e., once an attack has been observed,
possibly more than once) does not succumb to attacks.

Oplinger and Lam propose [23] another transactional ap-
proach to improve software reliability. Their key idea
is to employ thread level speculation (TLS) and exe-
cute an application’s monitoring code in parallel with the
primary computation. The computation “transaction” is
rolled back depending on the results of the monitoring
code.

Virtual machine emulation of operating systems or pro-
cessor architectures to provide a sandboxed environment

is an active area of research. Virtual machine monitors
(VMM) are employed in a number of security—related
contexts, from autonomic patching of vulnerabilities [29]
to intrusion detection [14].

Other protection mechanisms include compiler tech-
niques like StackGuard [13] and safer libraries, such as
libsafe and libverify [4]. Other tools exist to verify and
supervise code during development or debugging. Of
these tools, Purify and Valgrind [21] are popular choices.

Valgrind is a program supervision framework that en-
ables in—depth instrumentation and analysis of TA-32 bi-
naries without recompilation. Valgrind has been used by
Barrantes et al. [5] to implement instruction set random-
ization techniques to protect programs against code in-
sertion attacks. Other work on instruction—set random-
ization includes [16], which employs the 1386 emulator
Bochs.

Program shepherding [19] is a technique developed by
Kiriansky, Bruening, and Amarasinghe. The authors
describe a system based on the RIO [11] architecture
for protecting and validating control flows according to
some security policy without modification of IA-32 bi-
naries for Linux and Windows. The system works by
validating branch instructions and storing the decision in
a cache, thus incurring little overhead.

The work by Dunlap, King, Cinar, Basrai, and Chen
[12] is closely related to the work presented in this pa-
per. ReVirt is a system implemented in a VMM that logs
detailed execution information. This detailed execution
trace includes non—deterministic events such as timer in-
terrupt information and user input. Because ReVirt is
implemented in a VMM, it is more resistant to attack or
subversion. However, ReVirt’s primary use is as a foren-
sic tool to replay the events of an attack, while the goal
of STEM is to provide a lightweight and minimally in-
trusive mechanism for protecting code against malicious
input at runtime.

King, Dunlap, and Chen [18] discuss optimizations
that reduce the performance penalties involved in using
VMMs. There are three basic optimizations: reduce the
number of context switches by moving the VMM into
the kernel, reduce the number of page faults by allow-
ing each VMM process greater freedom in allocating and
maintaining address space, and ameliorate the penalty
for switching between guest kernel mode and guest user
mode by simply changing the bounds on the guest mem-
ory area rather than re-mapping.

An interesting application of ReVirt [12] is BackTracker
[17], a tool that can automatically identify the steps in-
volved in an intrusion. Because detailed execution infor-
mation is logged, a dependency graph can be constructed
backward from the detection point to provide forensic in-

Test Type trials | mean (s) | Std. Dev. | Min Max | Instr. Emulated
Is (non-emu) 25 0.12 0.009 0.121 | 0.167 0

Is (emu) 25 42.32 0.182 42.19 | 43.012 18,000,000
cp (non-emu) 25 16.63 0.707 15.80 | 17.61 0

cp (emu) 25 21.45 0.871 20.31 | 23.42 2,100,000
cat (non-emu) 25 7.56 7.48 7.65 0

cat (emu) 25 8.75 0.08 8.64 8.99 947,892

Table 2: Microbenchmark performance times for various command line utilities.

formation about an attack.

Toth and Kruegel [32] propose to detect buffer overflow
payloads (including previously unseen ones) by treat-
ing inputs received over the network as code fragments.
They show that legitimate requests will appear to con-
tain relatively short sequences of valid x86 instruction
opcodes, compared to attacks that will contain long se-
quences. They integrate this mechanism into the Apache
web server, resulting in a small performance degradation.

Some interesting work has been done to deal with mem-
ory errors at runtime. For example, Rinard et al. [25]
have developed a compiler that inserts code to deal with
writes to unallocated memory by automatically expand-
ing the target buffer. Such a capability aims toward the
same goal our system does: provide a more robust fault
response rather than simply crashing. The technique
presented in [25] is modified in [26] and introduced as
failure-oblivious computing. This behavior of this tech-
nique is close to the behavior of our system.

One of the most critical concerns with recovering from
software faults and vulnerability exploits is ensuring the
consistency and correctness of program data and state.
An important contribution in this area is presented by
Dempsky [10], which discusses mechanisms for detect-
ing corrupted data structures and fixing them to match
some pre-specified constraints. While the precision of
the fixes with respect to the semantics of the program
is not guaranteed, their test cases continued to operate
when faults were randomly injected.

Suh et al. [31] propose a hardware based solution that
can be used to thwart control-transfer attacks and re-
strict executable instructions by monitoring “tainted” in-
put data. In order to identify “tainted” data, they rely
on the operating system. If the processor detects the use
of this tainted data as a jump address or an executed in-
struction, it raises an exception that can be handled by the
operating system. The authors do not address the issue
of recovering program execution and suggest the imme-
diate termination of the offending process. DIRA [30]
is a technique for automatic detection, identification and
repair of control-hijaking attacks. This solution is imple-

mented as a GCC compiler extension that transforms a
program’s source code and adds heavy instrumentation
so that the resulting program can perform these tasks.
The use of checkpoints throughout the program ensures
that corruption of state can be detected if control sensi-
tive data structures are overwritten. Unfortunately, the
performance implications of the system make it unus-
able as a front line defense mechanism. Song and New-
some [22] propose dynamic taint analysis for automatic
detection of overwrite attacks. Tainted data is monitored
throughout the program execution and modified buffers
with tainted information will result in protection faults.
Once an attack has been identified, signatures are gener-
ated using automatic semantic analysis. The technique
is implemented as an extension to Valgrind and does not
require any modifications to the program’s source code
but suffers from severe performance degradation.

While our prototype x86 emulator is a fairly straight-
forward implementation, it can gain further performance
benefits by using Valgrind’s technique of caching already
translated instructions. With some further optimizations,
STEM is a viable and practical approach to protecting
code. In fact, [6] outlines several ways to optimize emu-
lators; their approaches reduce the performance overhead
(as measured by two SPEC2000 benchmarks, crafty and
vpr) from a factor of 300 to about 1.7. Their optimiza-
tions include caching basic blocks (essentially what VG
is doing), linking direct and indirect branches, and build-
ing traces.

6 Conclusions

Software errors and the concomitant potential for ex-
ploitable vulnerabilities remain a pervasive problem. Ac-
cepted approaches to this problem are almost always
proactive, but it seems unlikely that such strategies will
result in error-free code. In the absence of such guaran-
tees, reactive techniques for error toleration and recovery
can be powerful tools.

We have described a lightweight mechanism for super-

vising the execution of an application that has already
exhibited a fault and preventing its recurrence. Our work
aims to ultimately create a “self-healing” system. We use
selective emulation of the code immediately surrounding
a detected fault to validate the operands to machine in-
structions, as appropriate for the type of fault; we cur-
rently handle buffer overflows, illegal memory deref-
erences, divide-by-zero exceptions, and some types of
algorithmic-complexity denial of service attacks. Once a
fault has been detected, we restore control to a safe flow
by forcing the function containing the fault to return an
error value and rolling back any memory modifications
the emulated code has made during its execution.

Our intuition is that most applications are written well
enough to catch the majority of errors, but fail to consider
some boundary conditions that allow the fault to manifest
itself. By catching these extreme cases and returning an
error, we make use of the already existing error-handling
code. We validate this hypothesis using a set of real at-
tacks, as well as randomly induced faults in some widely
used open-source servers (Apache, sshd, and Bind). Our
results show that our system works in over 88% of all
cases, allowing the application to continue execution and
behave correctly. Furthermore, by using selective emu-
lation of small code segments, we minimize the perfor-
mance impact on production servers.

Our approach is a first exploration into a reactive system
that allows quick, automated reaction to software fail-
ures, thereby increasing service availability in the pres-
ence of general software bugs. We re-emphasize that our
approach can be used to catch a variety of software fail-
ures, not just malicious attacks. Our plans for future
work include enhancing the performance of our proto-
type emulator and further validating our “error virtual-
ization” hypothesis by extending the number of applica-
tions and attacks examined.

References

[1] CERT Advisory CA-2003-21: W32/Blaster Worm.
http://www.cert.org/advisories/
CA-2003-20.html, August 2003.

[2] The Spread of the Sapphire/Slammer Worm.

http://www.silicondefense.com/

research/worms/slammer.php, February
2003.
[3] A. Baratloo, N. Singh, and T. Tsai. Transpar-

ent Run-Time Defense Against Stack Smashing At-
tacks. In Proceedings of the USENIX Annual Tech-
nical Conference, June 2000.

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

A. Baratloo, N. Singh, and T. Tsai. Transpar-
ent Run-Time Defense Against Stack Smashing At-
tacks. In Proceedings of the USENIX Annual Tech-
nical Conference, June 2000.

E. G. Barrantes, D. H. Ackley, S. Forrest, T. S.
Palmer, D. Stefanovic, and D. D. Zovi. Random-
ized Instruction Set Emulation to Distrupt Binary
Code Injection Attacks. In 10" ACM Conference
on Computer and Communications Security (CCS),

October 2003.

D. Bruening, T. Garnett, and S. Amarasinghe. An
Infrastructure for Adaptive Dynamic Optimization.
In Proceedings of the International Symposium on
Code Generation and Optimization, pages 265—
275, 2003.

G. Candea and A. Fox. Crash-Only Software. In
Proceedings of the 9" Workshop on Hot Topics in
Operating Systems, May 2003.

H. Chen and D. Wagner. MOPS: an Infrastructure
for Examining Security Properties of Software. In
Proceedings of the ACM Computer and Commu-
nications Security (CCS) Conference, pages 235—
244, November 2002.

S. A. Crosby and D. S. Wallach. Denial of Ser-
vice via Algorithmic Complexity Attacks. In Pro-
ceedings of the 12th USENIX Security Symposium,
pages 29-44, August 2003.

B. Demsky and M. C. Rinard. Automatic Detection
and Repair of Errors in Data Structures. In Pro-
ceedings of the 18" Annual ACM SIGPLAN Con-
ference on Object Oriented Programming, Systems,
Languages, and Applications, October 2003.

E. Duesterwald and S. P. Amarsinghe. On the Run
— Building Dynamic Program Modifiers for Opti-
mization, Introspection, and Security. In Confer-
ence on Programming Language Design and Im-
plementation (PLDI), 2002.

G. W. Dunlap, S. King, S. Cinar, M. A. Basrai, and
P. M. Chen. ReVirt: Enabling Intrusion Analysis
Through Virtual-Machine Logging and Replay. In
Proceedings of the Symposium on Operating Sys-
tems Design and Implementation (OSDI), February
2002.

C. C. et al. StackGuard: Automatic Adaptive De-
tection and Prevention of Buffer-Overflow Attacks.
In Proceedings of the Tt USENIX Security Sympo-
sium, January 1998.

[14]

[16]

[17]

[19]

[21]

[22]

[24]

[25]

T. Garfinkel and M. Rosenblum. A Virtual Ma-
chine Introspection Based Architecture for Intru-
sion Detection. In 10" ISOC Symposium on Net-
work and Distributed Systems Security (SNDSS),
February 2003.

T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Ch-
eney, and Y. Wang. Cyclone: A safe dialect of C. In
Proceedings of the USENIX Annual Technical Con-
ference, pages 275-288, June 2002.

G. S. Kc, A. D. Keromytis, and V. Preve-
lakis. Countering Code-Injection Attacks With
Instruction-Set Randomization. In 10'* ACM Con-
ference on Computer and Communications Security

(CCS), October 2003.

S. T. King and P. M. Chen. Backtracking Intru-
sions. In 19*" ACM Symposium on Operating Sys-
tems Principles (SOSP), October 2003.

S. T. King, G. Dunlap, and P. Chen. Operating Sys-
tem Support for Virtual Machines. In Proceedings
of the USENIX Annual Technical Conference, June
2003.

V. Kiriansky, D. Bruening, and S. Amarasinghe.
Secure Execution Via Program Shepherding. In
Proceedings of the 11" USENIX Security Sympo-
sium, August 2002.

D. Mosberger and T. Jin. httperf: A tool for measur-
ing web server performance. In First Workshop on
Internet Server Performance, pages 59—67. ACM,
June 1998.

N. Nethercote and J. Seward. Valgrind: A Pro-
gram Supervision Framework. In Electronic Notes
in Theoretical Computer Science, volume 89, 2003.

J. Newsome and D. Dong. Dynamic Taint Analysis
for Automatic Detection, Analysis, and Signature
Generation of Exploits on Commodity Software. In
The 12th Annual Network and Distributed System
Security Symposium, February 2005.

J. Oplinger and M. S. Lam. Enhancing Software
Reliability with Speculative Threads. In Proceed-
ings of the 10" International Conference on Archi-
tectural Support for Programming Languages and
Operating Systems(ASPLOS X), October 2002.

N. Provos. Improving Host Security with System
Call Policies. In Proceedings of the 12th USENIX
Security Symposium, pages 257-272, August 2003.

M. Rinard, C. Cadar, D. Dumitran, D. Roy, and
T. Leu. A Dynamic Technique for Eliminating

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

Buffer Overflow Vulnerabilities (and Other Mem-
ory Errors). In Proceedings 20*" Annual Com-
puter Security Applications Conference (ACSAC),
December 2004.

M. Rinard, C. Cadar, D. Dumitran, D. Roy, T. Leu,
and J. W Beebee. Enhancing Server Availability
and Security Through Failure-Oblivious Comput-
ing. In Proceedings 6'" Symposium on Operating
Systems Design and Implementation (OSDI), De-
cember 2004.

A. Rudys and D. S. Wallach. Transactional Roll-
back for Language-Based Systems. In ISOC Sym-
posium on Network and Distributed Systems Secu-
rity (SNDSS), February 2001.

A. Rudys and D. S. Wallach. Termination in
Language-based Systems. ACM Transactions on
Information and System Security, 5(2), May 2002.

S. Sidiroglou and A. D. Keromytis. A Network
Worm Vaccine Architecture. In Proceedings of the
IEEE Workshop on Enterprise Technologies: In-
frastructure for Collaborative Enterprises (WET-
ICE), Workshop on Enterprise Security, pages 220—
225, June 2003.

A. Smirnov and T. .Chiueh. DIRA: Automatic
Detection, Identification, and Repair of Control-
Hijacking Attacks. In The I12th Annual Net-
work and Distributed System Security Symposium,
February 2005.

G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas.
Secure program execution via dynamic information
flow tracking. SIGOPS Oper. Syst. Rev., 38(5):85—
96, 2004.

T. Toth and C. Kruegel. Accurate Buffer Overflow
Detection via Abstract Payload Execution. In Pro-
ceedings of the 5th Symposium on Recent Advances
in Intrusion Detection (RAID), October 2002.

N. Wang, M. Fertig, and S. Patel. Y-Branches:
When You Come to a Fork in the Road, Take It. In
Proceedings of the 12" International Conference
on Farallel Architectures and Compilation Tech-
niques, September 2003.

J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi,
and M. Dahlin. Separating Agreement from Ex-
ecution for Byzantine Fault Tolerant Services. In
Proceedings of ACM SOSP, October 2003.

