
Building a Robust Software-Based Router Using
Network Processors

Tammo Spalink, Scott Karlin, Larry Peterson, Yitzchak Gottlieb

Department of Computer Science
Princeton University

35 Olden Street
Princeton, NJ 08544

{tspalink, scott, llp, zuki} @cs.princeton.edu

ABSTRACT

Recent efforts to add new services to the Internet have increased in-

terest in software-based routers that are easy to extend and evolve.
This paper describes our experiences using emerging network pro-

cessors--in particular, the Intel IXP1200~to implement a router.
We show it is possible to combine an IXP1200 development board

and a PC to build an inexpensive router that forwards minimum-
sized packets at a rate of 3.47Mpps. This is nearly an order of
magnitude faster than existing pure PC-based routers, and sufficient

to support 1.77Gbps of aggregate link bandwidth. At lesser aggre-
gate line speeds, our design also allows the excess resources avail-

able on the IXP1200 to be used robustly for extra packet process-

ing. For example, with 8 x 100Mbps links, 240 register operations
and 96 bytes of state storage are available for each 64-byte packet.

Using a hierarchical architecture we can guarantee line-speed for-

warding rates for simple packets with the IXP1200, and still have

extra capacity to process exceptional packets with the Pentium. Up
to 310Kpps of the traffic can be routed through the Pentium to re-
ceive 1510 cycles of extra per-packet processing.

1. INTRODUCTION
Software-based routers have always played a role in the Inter-

net [16], but they are becoming increasingly important as the set
of services routers are expected to support----e.g., firewalls, intru-
sion detection, proxies, level-n switching, packet tagging, over-

lay networks----continues to grow. Although software-based routers
have historically been built from PC-class machines with conven-

tional network interface cards (NICs) [13, 19], the emergence of

network processors [8, 10, 25] makes it possible to significantly
improve the performance of software-based ronters at a modest in-

crease in cost. For example, this paper describes a router, built
from a PC using a 733MHz Pentium III and an IXP1200 devel-
opment board, that demonstrates nearly an order of magnitude im-
provement in performance over a pure PC-based router, at a cost of

roughly US$1500, based on an estimated US$700 for a IXP1200
board produced in low volume.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that
copies are not made or distdbuted for profit or commercial advan-

tage and that copies bear this notice and the full citation on the first page,

To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires Ddor specific permission and/or a fee.

SOSP01 Banff, Canada
© 2001 ACM iSBN 1-58113-389-8-1101110...$5.00

Network processors are designed to operate under severe perfor-

mance requirements. For example, a network processor assigned

to an OC--48 link (2.5 Gbps) has to process up to 6.1M minimum-

sized packets-per-second (pps). Copying an OC-48 bit stream into

and out of memory requires 2 x 2.5Gbps = 5Gbps of memory
bandwidth. Network processors commonly employ parallelism to

hide memory latency. For example, the Intel IXP1200 contains six
MicroEngines, each supporting four hardware contexts. The inten-
tion is that during regular execution one of these contexts is doing

real work while the others are blocked on (hiding) a memory oper-

ation. The IBM PowerNP and Vitesse IQ2000 use similar designs
[8, 251.

This paper describes the design and implementation of a

software-based router that uses the IXP1200 network processor.

The router implements both the data plane that forwards pack-

ets, and the control plane where signalling protocols like RSVP,

OSPF, and LDP run. On a pure PC-based router, both the data and

control planes are implemented on the control processor. With the
IXP1200, it is largely possible to separate the two, with the data
plane running on the network processor and the control plane run-
ning on the Pentium. The full story, however, is a bit more compli-
cated, and is the subject of this paper.

One distinction between the data and control planes is that the

former must process packets at line speed, while the latter is ex-
pected to receive far fewer packets (e.g., whenever routes change
or new connections are established). The requirement that the data

plane runs at line speed is based on the need to receive and clas-

sify packets as fast as they arrive, so as to avoid the possibility of
priority inversion; i.e., not being able to receive important packets

due to a high arrival rate of less important packets. The expectation
that the control plane sees significantly fewer packets is only an as-

sumption. It is possible to attack a router by sending it a heavier
load of control packets than it is engineered to accept.

A second distinction between the data and control planes is how

much processing each packet requires. At one extreme, the data
plane does minimal processing (e.g., IP validates the header, decre-
ments the TTL, recomputes the checksum, and selects the appropri-
ate output port). At the other extreme, the control plane often runs
compute-intensive programs, such as the shortest-path algorithm to
compute a new routing table. However, these are just two ends
of a spectrum. In between, different packet flows require different
amounts of processing, such as evaluating firewall rules, gathering
packet statistics, processing IP options, and running proxy code.
Note that this processing can happen in the data plane, in the sense
that it is applied to every packet in a particular flow.

216

Figure 1: Three switching paths through the Pentium/IXP1200
processor hierarchy.

Taking both packet arrival rates and per-packet processing costs

into account, the key is deciding where on the router each process-

ing step should run. Our approach is to treat the router as a proces-

sor hierarchy, where packets follow switching paths that traverse

different levels of the hierarchy. Figure 1 shows the three-level

hierarchy corresponding to our prototype hardware. At the low-

est level, packets traverse only MicroEngines, while at the highest

level, packets are processed by the Pentium. An intermediate level

corresponds to a StrongARM processor on the IXP1200 chip. At

each level of the hierarchy, the packet has access to some number

of cycles, but there is overhead involved in reaching those cycles.

Higher levels (e.g., the Pentiurn) offer more cycles, but packets also

consume resources at lower levels of the hierarchy to access them.

Lower levels (e.g., the MicroEngines) have enough cycles to per-

form only certain operations at line speeds.

The main contribution of this paper is to address the resource

allocation and scheduling problems of implementing an extensible

router on a three-level processor hierarchy. Our approach is guided
by three goals:

• Performance: The router should be able to forward packets

at the highest rate the hardware is able to support. The chal-

lenge is to manage the parallel hardware contexts in a way

that fully utilizes the available memory bandwidth. This is

difficult for two reasons. First, we must assign work to each

context so as to effectively exploit the system's parallelism.

Second, we must avoid allowing synchronization among the

hardware contexts to become the limiting factor.

• Extensibility: It should be easy for a trusted entity to inject

new functionality into the router, including both new con-

trol protocols and code that processes each packet forwarded

through the data plane. The challenge in supporting extensi-

bility is defining the interface by which the control program

interacts with the code running in the data plane.

• Robustness: The router should continue to behave correctly

regardless of the offered workload or the extensions it runs.

The challenge is to simultaneously support our performance

and extensibility goals, or said another way, the system must

ensure that the performance of the various components are

isolated from each other. For example, it should not be pos-

sible to inject code into the data plane that keeps the router

from processing packets at line speed, and likewise, it should
not be possible for a high packet arrival rate to choke off the

delivery of control packets to the control plane.

We describe the design in two stages. First, we show how to pro-

gram the processor hierarchy with a fixed forwarding function that

fully exploits the parallelism available on the IXP1200, as well as

the StrongARM and Pentium processors (Section 3). This discus-

sion focuses on the performance limits of the processor hierarchy,

that is, how fast each level can forward packets that require no extra

processing. Second, we describe how the system can be made ex-

tensible without violating the router's ability to process minimum-

sized packets at line speed (Section 4). Throughout the paper, we

highlight the design decisions that impact the router's ability to pro-

vide performance isolation.

2. ARCHITECTURE
This section describes our software and hardware architectures.

In the case of the software architecture, our starting point is a

communication-oriented OS that runs on a Pentium with non-pro-

grammable NICs [12, 19], to which we add a device driver and IXP

microcode. This section gives a high-level overview of the original

Pentium-based system; later sections focus on those aspects of the

architecture that are relevant to a multi-level processor hierarchy

(i.e., the driver and microcode components).

2.1 Software
Figure 2 depicts the software architecture for the router. A classi-

fier (C) first reads packets from an input port, and based on certain

fields in the packet header, selects a forwarder (F) to process the

packet. Each forwarder then gets packets from its input queue, ap-

plies some function to the packet, and sends the modified packet to

its output queue. All transformations of packets in the router oc-

cur in forwarders. Finally, an output scheduler (S) selects one of

its non-empty output queues, and transmits the associated packet

to the output port. The scheduler performs no processing on the

packet.

Po., - . . , . _ r l T i l ~ _ i T N / P o .

Figure 2: Classifying, forwarding, and scheduling packets.

This architecture has two main attributes. First, it provides ex-

plicit support for adding new services to the router. Although the

router boots with two default forwarders (one that implements a

minimal IP forwarding fast path and one that implements the full IP

protocol, including options), additional forwarders can be installed

at runtime (e.g., TCP proxies, specialized overlays, and support for

virtual LANs). A new forwarder is installed by specifying a demul-

tiplexing key that the classifier is to match and binding that key to

the forwarder and some output port. Just to re-emphasize the point,
the core architecture supports a generic forwarding infrastructure;

even basic IP functionality is treated as an extension.

Second, the architecture does not specify where in the processor

hierarchy each forwarder is implemented: some run on the Micro-

Engines, some onthe StrongARM, and some on the Pentium. Note
that the architecture does not distinguish between forwarders that

implement traditional control protocols and forwarders that would

normally be considered on the data plane, although it is likely that
the former would be mapped to higher levels of the processor hier-

archy and the latter to lower levels of the hierarchy.

217

Figure 3" Block Diagram of an IXP1200 Evaluation System

IX

2.2 Hardware
Our router runs on a PC using a 733MHz Pentium III processor

with the IXP1200 evaluation system illustrated in Figure 3 plugged

into one PCI slot. The board consists of a IXP1200 network pro-

cessor chip (shaded area), 32 MB of DRAM, 2 MB of SRAM, 4 KB

of on-chip Scratch memory, a proprietary 64-bit 66MHz IX bus,

and a set of media access controller (MAC) chips implementing

ten Ethernet ports (8 x 100Mbps + 2 x 1Gbps). Not shown is a

32-bit 33 MHz PCI bus interface.

The IXP1200 chip itself contains a general-purpose StrongARM

processor core and six special-purpose MicroEngine cores all run-
ning at 200MHz (5ns cycle time). 1 Each of the six MicroEngines

supports four hardware contexts for a total of 24 contexts. Not

shown in the figure is a 4KB instruction store (ISTORE) associ-

ated with each MicroEngine. The StrongARM is responsible for

loading these MicroEngine instruction stores. As for the Strong-

ARM itself, it fetches instructions from a 4 KB I-cache backed by

the IXP's DRAM.
The chip also has a pair of FIFOs used to transfer packets to

and from the network ports across the IX bus. These are not true

hardware FIFOs in the sense that each has a single input, a single
output, and no address lines; rather, each "FIFO" is an addressable
16slot × 64byte register file. It is up to the programmer to use these

register files so that they behave as FIFOs.
Although not explicitly prescribed by the architecture, the most

natural use of the DRAM is to buffer packets. This is a function

of size (32MB), but also of speed. The DRAM is connected to

the processor by a 64-bit x 100MHz data path, implying a poten-

tial to move packets into and out of DRAM at 6.4Gbps. In theory,

this is sufficient to support the 2 × (8 × 100Mbps + 2 × 1Gbps) =

5.6Gbps total send/receive bandwidth of the network ports avail-

able on the evaluation board, although this rate exceeds the 4Gbps

peak capacity of the IX bus. Similarly, SRAM is a natural place

to store the routing table, along with any necessary per-flow state.

The SRAM, data path has a peak transfer rate of 32-bit × 100MHz

= 3.2Gbps.

3. FIXED INFRASTRUCTURE
This section describes and evaluates the fixed infrastructure

needed to forward minimal-sized packets through the system. It

assumes no packet processing, that is, we run only a null for-

warder. Because we do not consider actual forwarders (including

the forwarder that implements IP) until Section 4, this discussion

is largely independent of IP, and so applies equally well to a router

that supports, for example, MPLS [4].

1 Actual speed is 199.066MHz.

This section has two goals. One is to establish a performance

envelope for each level of the processor hierarchy. The second

is to describe enough of the implementation to establish the va-

lidity of the performance numbers. This is easy for the Strong-

ARM and Pentium, which have familiar architectures. However,

the MicroEngines offer a unique challenge, so we begin by describ-

ing how we managed their parallel contexts. Although the descrip-

tion is necessarily tied to the details of the IXP1200, we believe

the engineering decisions we made apply generally to any parallel,
software-based switch. It came as a surprise (but should not have)

that many of the issues we faced have direct analogs in managing

hardware switching fabrics, which are inherently parallel.

3.1 Forwarding Pipeline
The common unit of data transferred through the IXP1200 is a

64-byte MAC-Packet (MP). As each packet is received, the MAC

breaks it into separate MPs; tags each MP as being the first, an in-

termediate, the last, or the only MP of the packet; and stores the

MP in an input FIFO slot. Similarly, the individual MPs that make

up a packet must be loaded into output FIFO slots to be transmitted

by the MAC. Since only a fixed number of input and output FIFO

slots are available (16 of each), it is necessary to allocate slots to

MAC ports, and it is the responsibility of the forwarding code run-

ning on the MicroEngines to drain the input slots and fill the output

slot at a rate that keeps pace with each port's line speed.
While one might naively think that the MicroEngines could

move MPs from input FIFO slots directly to output FIFO slots in a

single step, forwarding actually requires a two-stage pipeline. This

is because port contentionmtwo or more incoming packets destined

for the same output port--makes it impractical for a single con-

text to forward a packet. Instead, packets are placed into queues,

and these queues are serviced asynchronously [15]. Using differ-

ent contexts for each stage prevents MicroEngines from being idle

during the time a packet is queued. The two pipeline stages are im-

plemented using disjoint sets of MicroEngine contexts, with MPs

transfered between the stages via DRAM.

Figure 4 summarizes the forwarding pipeline. It shows the

queues used to pass packets between the contexts that perform input

processing and the contexts that perform output processing as be-
ing implemented using a combination of SRAM and DRAM. This

is because packet contents are buffered in DRAM, while SRAM

holds the actual queue data structure (each element in a queue is

the address in DRAM where the packet is buffered).

3.2 Input Processing
Figure 5 gives pseudo-code for the loop executed once for each

MP received. In the figure, p denotes the port number on which the

MP arrived, c is an index in the input FIFO, mp.addr is the address

in memory where the contents of the MP is stored, reg_mp_data
denotes the MicroEngine registers that hold the MP, and state is a

data structure containing information about how the MP should be

processed.
The first set of operations (lines 1-4) determine whether port p

has a new MP available. If so, the load operation instructs a DMA

state-machine to copy the MP from the off-chip port memory into
the on-chip input FIFO. There is only one DMA state-machine on

the IXP1200 and requests to it are not hardware-serialized. Thus,

the mutex operations are needed to allow multiple MicroEngine

contexts to safely execute input loops in parallel.
Once the MP is in the FIFO, the MicroEngine copies the MP into

its registers for protocol_processing, which is performed in-line

and includes all protocol-specific packet header or content mod-

ifications. In terms of the software architecture described in Sec-

218

INPUT FIFO

SRAM

(packet queues)

OUTPUT FIFO

DRAM

(packet buffers)

Figure 4: Forwarding Pipeline.

INPUT_LOOP:
1 acquire_input_mutex0
2 if (! port_rdy(p)) goto INPUT_LOOP
3 load IN_FIFO[c]
4 releaseJnput_rnutex0
5 mp_addr = calculate_mp_addr0
6 copy reg_mp.data +- IN_FIFO[c]
7 state = protocol_processing(reg_mp_data)
8 copy reg_mp_data ~ DRAM[mp_addr]
9 if (at.start_of_packet(state))

10 enqueue(state, state.queue)
11 goto INPUT_LOOP

Figure 5: Pseudo-code running in each context assigned to in-
put processing.

tion 2.1, this includes both the classifier and the forwarder. In terms

of IP, as a specific example, this involves validating the header,
decrementing the time-to-live (TTL) field, recomputing the check-

sum, setting the destination MAC address to the one found in the
routing table, and setting the source MAC address to that of the
output port. For the purpose of this section, the protocol processing
step includes a trivial classifier (it selects the output port based on
the destination IP address), and the simplest possible forwarder (it

only modifies the destination MAC address). It does no other work.
Although protocol_processing is called once for every ME and

thus many times for large packets, the processing of the first MP
in a packet must determine the destination of the packet. This re-

sults from the pipeline structure of our router. Once the input stage
has produced the first MP of a packet, the output stage may start

processing it immediately and must have complete destination in-

formation available. Protocol processing is performed for each MP
to facilitate operations that modify the entire packet, or that manip-
ulate packet headers lying deeper into the packet.

After protocol processing, the (possibly modified) MP is copied
from registers to DRAM. If the MP is the first or only MP of a
packet, it is assumed to include the packet headers and the results of

packet processing must specify the destination queue of the packet.
For these MPs, the packet processing results and some identifica-
tion information for the packet are then enqueued in the destination
queue.

Exceptional packets, for example those that incur a miss in the
routing table or involve additional processing (e.g., IP options), re-
ceive all of the same processing, but they can be placed in a queue
that is serviced by the StrongARM instead of the usual output pro-
cess. Responsibility for eventually passing these packets to output
processing is also passed on to the StrongARM. We discuss this
case in more detail in Section 3.6.

3.2.1 Context Scheduling

Since it is impossible to fully predict packet traffic or arrival
times, for the sake of robustness we must assume that packets arrive

at line speed. This means we must be able to execute the input loop

once for each MP at the maximal rate the system is being designed
to support.

For simplicity, our design uses only one version of the input for-
warding stage and this version is run for each MP. This means that

the resources used for input processing are shared evenly across ar-
riving packets and that each packet has the same functions applied

to it, that is, it has the same processing options available to it. We
do this simply by statically allocating a set of MicroEngine contexts

to run only the input loop. This set of contexts must be sufficiently

large to meet line speed requirements.

Contrast this approach with the alternative of dynamically al-

locating MicroEngine contexts to various processing steps on an

as-needed basis, possibly with a number of different input stages
customized to specific protocols. One downside of this dynamic ap-
proach is that additional resources are needed to make the schedul-
ing decision; i.e., decide which context will perform what work
next. On the IXP1200 where most inter-process communication

involves memory access, our experience is that this rapidly results
in memory delays that degrade performance. In general, this ap-
proach can be viewed as adding forwarding pipeline stages that

perform some scheduling or other classification operations.

Once a static assignment of contexts to input processing is used,
scheduling the 16 input FIFO slots becomes straightforward. The

pseudo-code statically uses c as a FIFO address (slot number). By
constraining input processing to use at most 16 of the 24 available

contexts, we have a simple assignment of FIFO slots to contexts.
Since there are only 24 contexts, and some still need to be available
for output processing, this restriction has not been a problem in our
experience.

3.2.2 Mutual Exclusion

The mutex operations in pseudo-code lines 1-4 are implemented
using token passing. This token passing uses an inter-thread sig-
naling mechanism provided in hardware by the IXP1200. Impor-
tantly, this signalling mechanism is on-chip, takes a single cycle,
and is disjoint from the memory. This means that it neither in-
troduces much overhead nor interferes with the already significant
contention for memory.

Token passing can be viewed as a simple scheduler that serial-
izes contexts accessing the input DMA. The order of DMA access
is made explicit by the order in which the token is passed to maxi-
mize the possibility for useful concurrent work, thereby minimizing

219

contention delays. Specifically, we rotate the token so that a con-

text on one MicroEngine always hands the token to a context on

another MicroEngine. Passing the token to another context on the

same MicroEngine potentially results in two contexts on the same

MicroEngine having useful work to do, but only one of them gets

to run at a time. Similarly, we assign ports to contexts in such a way

that the two contexts servicing the same port are as far apart as pos-

sible in the token rotation, thereby maximizing the time one context

has to service the port before the next context gets the token.

3.2.3 Buffer Allocation
The pseudo-code calculate_mp_addr operation hides the com-

plexity of packet buffer allocation. Because a relatively large

amount of DRAM is available on our development board, we

elected to use a very simple allocation scheme. 16MB of DRAM

are divided into 8192 buffers of 2KB each, making each buffer

large enough to accommodate a maximally sized (1518 octet

frame) Ethemet packet. These buffers are then consumed by in-

put processing contexts in a circular fashion as packets arrive.

The state variable that tracks the next available buffer is shared

among the input contexts, and in principle needs to be protected

from unsynchronized concurrent access. In our implementation,

however, the serialization created by the token passing mechanism

allows us to avoid explicitly protecting this operation.

Our allocation strategy has one interesting property: Any given

packet buffer remains valid for only one pass though the circular

buffer list. Since input processing takes a fixed amount of time per

packet, the lifetime of a buffer can be calculated precisely. If a

packet is not transmitted by the output process before its buffer is

reused, the packet is effectively lost.

At some additional cost, this timing behavior could be eliminated

by using hardware support on the IXP1200 for stack operations to

implement a buffer pool. To prevent contention from causing short-

ages, it would be necessary to have a different stack of available

buffers for each output port. Since this is not strictly necessary and

adds overhead, we chose not to implement this feature.

3.3 Output Processing
Figure 6 gives pseudo-code for packet transmission. For each

output port, the select_queue operation chooses a non-empty

queue from among the set of queues associated with that port. In

terms of the software architecture described in Section 2.1, this is

the output scheduler. A packet descriptor is then dequeued from

the chosen queue. For each MP of the packet, the DRAM address

of the MP is calculated, an available output FIFO slot is selected,

the MP is copied from DRAM to the FIFO, and the FIFO slot is

activated to schedule a DMA from the on-chip FIFO memory to

the actual off-chip port memory.
The hardware interface to the output and input FIFOs are not

identical. Unlike the input FIFO, the slots of the output FIFO are

strictly ordered and the DMA machine that moves data from the
FIFO to network device memory consumes the slots in a circular

fashion.
This means that if more than one context is running the output

loop concurrently, they need to cooperate to obey the FIFO order-
ing. This can be done in several ways. We have chosen to statically

allocate FIFO slots to output contexts in a very similar manner in

which input FIFO slots were allocated to input contexts. Thus, the
calculate_fifo_addr operation always returns the same value (on a

per-context basis).
To serialize output contexts, we use a token passing loop iden-

tical to that used by the input process. This is reflected in the first

two lines of the pseudo-code. It is necessary to make sure each

OUTPUT_LOOP:
1 acquire_output_rnutexO
2 release_output_rnutexO
3 if (finished_last_packet)
4 qid = select_queue0
5 state = dequeue(qid)
6 mp_addr = first_mp(state)
7 else
8 mp_addr = next_mp(state)
9 fifo_addr = calculate_fifo_addr0

10 copy DRAM[mp_addr] -+ OUT_FIFO[lifo_addr]
11 enable IN_FIFO[fifo_addr]
12 finished_last_packet = at_end_of_packet(state)
13 goto OUTPUT_LOOP

Figure 6: Pseudo-code running in each context assigned to out-

put processing.

context activates its FIFO slots each time around the loop to match

the FIFO slot ordering. This happens even if no data is available,

resulting in garbage data sent to a non-existent port.

3.4 Queuing Discipline
For each packet, protocol processing on the first MP chooses a

destination queue for the whole packet. In our system, queues are

contiguous circular arrays of 32-bit entries in SRAM. Head and

tall pointers are simply indexes into the array, and they are stored

in Scratch memory. Buffer pointers are inserted into the queue at

the head and removed at the tall.

3.4.1 Packe t Schedu l ing

Each output port must have one or more queues associated with

it. During each iteration of the output loop for some port, all queues

associated with that port must be examined for ready packets. This
involves reading the current queue head pointer and comparing it

with the tail.

To avoid both additional synchronization costs and reading the

tall pointer from memory, queues are assigned statically to output

contexts. This allows the output contexts to keep the queue tall

pointers in registers and saves multiple memory operations on each

loop iteration. However, this restricts the number of queues that

each context can service to a maximum of 16, the number of avail-

able registers.

If multiple queues are assigned to a single output context, the

context may occasionally have multiple packets available for trans-

mission. Choosing which packet to service next is a policy deci-

sion that determines the overall packet schedule. This decision is

reflected by the pseudo-code select_queue operation. When mul-

tiple queues are used, our implementation prioritizes the queues,

such that each context drains its queues in priority order. However,

any other policy implementable with little computation, which does

not require looking deeper into the queues, can be used (e.g., round

robin).
If more complex packet scheduling policies are needed, they

must be implemented by the input contexts. When multiple queues

are available at each output context and when these have fixed pri-

ority levels, the larger computing capacity available in input-side

protocol processing could be used to select the appropriate prior-

ity queue and thereby approximate more complex schemes, such as

weighted fair queuing. We have not evaluated this in detail.

220

3.4.2 Queue Contention

There are two simple approaches to manage contention among
input contexts for accessing output queues. The first approach is

to protect each output queue with a mutex lock. Since such locks
are normally implemented using the memory subsystem, great care
must be taken to avoid unpredictable behavior during lock con-
tention. For example, the MicroEngines have a test-and-set in-
struction that can be used to implement a lock using a tight test-
until-acquired loop. However, our experiments with this strategy

reveal performance-crippling memory contention when many con-
texts attempt to acquire the lock at the same time. Fortunately,
the IXP1200 also has hardware mutex support for mutually exclu-
sive access to special SRAM regions. Because these operations are
blocking, they do not suffer from the same problem.

A second approach is to avoid having input contexts share
queues, thereby entirely avoiding the need to synchronize. This

is achieved by statically assigning queues to input contexts, effec-
tively giving each input context a private set of queues for each port.

The downside of this approach is that each output context must now

service many more queues: one per priority level, per input context.

Since we have 16 input contexts and each output context has only
16 registers to hold queue pointers, this effectively limits us to a
single priority level for each output port.

3.4.3 Optimizations

When output contexts service multiple queues, the latency intro-

duced by the memory accesses needed to check the head pointers to
determine which queues have new packets can quickly make out-

put performance unacceptable. This can be mitigated by adding a
level of indirection that summarizes queue readiness information.

Instead of checking many queues, the output process checks a sin-

gle bit-array of queue readiness flags. These can be set without

extra synchronization by the input contexts using a special bit-set
memory access mode provided in the MicroEngine instruction set.

Alternatively, if each output context services only a single queue,
memory accesses to the queue head pointer might be avoided by
batching packet transmissions. To be more specific, if the queue
head pointer is checked and if there are many ready packets in the
queue, all of the ready packets can be sent before it is necessary to
look at the head pointer again. This can avoid a number of memory
accesses during periods of high load.

3.4.4 Queue Port Mapping

If multiple MicroEngine output contexts are servicing queues for

the same output port, additional synchronization is required to en-

sure that all of the MPs for one packet are sent before those of
the next packet. Our development board has enough ports that our

prototype router can statically allocate ports to contexts. However,
if fewer ports were used, the problem could be avoided by more
complex and careful allocation of the output FIFO slots. We have
not evaluated this in more detail since it is not a problem for our
hardware configuration.

3.5 MicroEngine Evaluation
This section reports the results of several experiments designed

to evaluate how well our implementation takes advantage of the
parallel resources. It also reports some of our experiences working
with with IXP1200.

3.5.1 Performance

We initially measured the system using the 8 × 100Mbps Ether-
net ports on the evaluation board using eight Kingston KNE10OTX
PCI Ethernet cards based on the 21143 Tulip chip-set as traffic

sources. (A pair of these cards are plugged into each of four
450MHz Pentium IIs nmning a packet generator.) When con-

figured to generate minimum-sized (64-byte) packets, each card
transmits 141Kpps, which is 95% of the theoretical maximum
of 148.8Kpps (calculated from [9]). Given this traffic source,"
the MicroEngines are able to sustain line speed across all eight

ports, resulting in a forwarding rate of 1.128Mpps. This is an ex-
pected result as the theoretical forwarding capacity of the process-
ing and memory resources in the IXP1200 is much greater than the
800Mbps of testbed traffic.

To determine the maximum forwarding rate of the IXP1200, in-
dependent of the ports configured onto the board, we modified the
input process to move a single packet from a port to each FIFO slot.

Future iterations of the input process see this same packet without

port interaction, although we do still incur the overhead of acquir-
ing the mutual exclusion lock. This lets us measure the maximum

system performance from FIFO to FIFO, emulating infinitely fast
network ports.

We need to qualify this experiment in two ways. First, although

no forwarder is run in this experiment, the protoeol_proeossin 9

step in Figure 5 does perform packet classification based on the
destination IP address. It does this using a one-cycle hardware hash
of this address, and we assume a hit in a route cache. One conse-
quence of this implementation is that the performance we report is

what one would expect in the common case for a virtual circuit-
based switch, such as one that supports MPLS. Second, we elected
to not include any device interaction in the experiments because

each device is different; e.g., the 1 Gbps ports behave differently
than the 100Mbps ports, and the next version of the board promises

still different behavior. However, omitting the device interaction

does not have a significant impact on the performance numbers pre-

sented in this section as even the worst case device (the 100Mbps

ports) accounted for less than 10% of the total per-packet delay.

Because queueing packets is the primary complexity in the
router, and the router's performance is greatly influenced by the
queueing discipline selected, we measured several combinations of
queueing strategies. Table 1 lists the options that we analyzed. For
these experiments, the system was configured with 4 MicroEngines
(16 contexts) running the input loop and 2 MicroEngines (8 con-
texts) running the output loop. All 24 contexts were executing their
assigned loop for all the measurements.

Input Processing (4 MicroEngines)

(I. 1) private queues in regs 3.75 Mpps

(1.2) protected public queues no contention 3.47Mpps

(1.3) protected public queues max. contention 1.67Mpps

Output Processing (2 MicroEngines)

(O. 1) single queue with batching 3.78 Mpps
(0.2) single queue without batching 3.41Mpps
(0.3) multiple queues with indirection 3.29 Mpps

Table I: Maximum packet rates broken down by input and

output process, and by queueing discipline.

The results for input and output are presented separately to high-
light which stage becomes the bottleneck for each option. For ex-

ample, a configuration with a single queue at every output port with
batching (O. 1) must be combined with a protected queue access
mechanism on the input side (1.2 or 1.3), and the system will then
be paced by the slower input process. However, it might be reason-
able to chose private queues for each input context (I.1), although
this forces use of the multiple queueing support on the output side
(0.3), which runs at a slower rate.

221

The fastest feasible system (1.2 + O.1) is able to forward pack-

ets at a rate of 3.47Mpps. This result corresponds to the situation

where no two packets are destine for the same queue at the same

time, and so represents an upper bound on performance. Row 1.3

corresponds to the same configuration, but this time with all pack-

ets destine for the same output queue. Note that this configuration

(independent of the workload) does not support QoS since a single

queue is associated with each output port. In contrast, configura-

tion 1.2 + 0.3 corresponds to a system that supports up to 16 queues

for each output port, providing significant flexibility in differenti-

ating service. It is able to forward packets at a maximum rate of

3.29 Mpps.

Reg-

only

Input 171

Output 109

Total 280

DRAM

32 Byte

(0 / 2)

(2 / O)

(2 / 2)

SRAM

4 Byte

(2/1)

(0 / 1)

(2 / 2)

Scratch

4 Byte

(2/4)

(2 / 2)
(2 / 6)

Table 2: Instruction counts for processing one MP, broken

down by input and output processing and by type of memory
involved. Memory operations are further broken down (read /
write).

9"

8 -

7-

~ 6 .

3-

2-

1

0
0

/ /
input only
output only

• " ' I " ' " I ' " " I ' ' ' I ' ' ' I " ' ' I '

4 8 12 16 20 24

MicroEngine Contexts

Figure 7: Maximum packet rates achievable by the output and
input processes when running independently. For each dat-

apoint only the minimum number of MicroEngine are used,

hence the dip in the graph.

Memory Transfer Size Read Write

(bytes) (cycles) (cycles)

DRAM 32 52 40

SRAM 4 22 22

Scratch 4 16 20

Table 3: MieroEngine cycle times to transfer common-sized

data blocks into and out of various memories from the Micro-
Engines.

Table 2 provides detailed counts of what operations are per-
formed by the input and output stages for configuration 1.2 + O.1.

Operations are broken down into simple register-based operations

that generally take a single cycle to execute, and memory opera-

tions that take much longer. Table 3 gives the measured latency for

reading/writing each of the three memories. The latency is given

in MicroEngine cycles, each of which is approximately 5ns. Note

that each transfer moves a different number of bytes; Table 3 gives

the most common transfer size for each case.

Given these instruction counts, each packet requires 280 cy-

cles of registers instructions, plus 180 (DRAM) + 90 (SRAM)

+ 160 (Scratch) = 430 cycles of memory delay, which totals to

710 cycles. This means that a given packet experiences 3550ns

of delay as it is forwarded by one or more contexts running

at 200MHz. Since the system as a whole is able to forward

3.47Mpps--that is, it outputs a packet every 288ns--the system
is able to forward a little over 12 packets in parallel.

Looking at the numbers another way, suppose we ignore mem-

ory access times and assume that all memory operations complete

in one cycle. In reality this is unreasonable because it assumes

the hardware memory hiding techniques work perfectly; contention
for buses and other synchronization cost make this unlikely. We

calculate that one MicroEngine can process 200MHz / 280 cycles
= 714Kpps for a system total of 4.29Mpps. Our actual rate of

3.47Mpps is 80% of this optimistic upper bound. In other words,
we are within 20% of the maximal possible performance (for a sys-

tem with our instruction counts).

Finally, Figure 7 provides some insight into how a system that

chooses not to use our 4/2 MicroEngine breakdown might function.

This figure illustrates that output processing scales almost perfectly

with the number of MicroEngines added to this stage• However,

input processing benefits very little from more than 16 contexts.

This is because of the serialized access to the DMA state machine,

which dominates the performance of input processing once there

are enough threads to keep it busy. Note that to prevent interfer-

ence in these experiments, input or output contexts were nmning

exclusively at any time, never both together. To run the output pro-

cess without input, a single additional instruction was added to fool
the process into believing data was always available. Also, only the

minimum number of MicroEngines to support the listed number of

contexts were used, e.g., 1 MicroEngine for 1-4 contexts, 2 for 8, 4

for 16, and 6 for 24. This explains the small "dent" in the bottom

of the graphs.

3.5.2 Experiences

The IXP1200 is not an easy system to program. We had sev-

eral false starts in the overall approach to managing the parallel

resources, and all the code is written in assembly language--there

is no compiler for the MicroEngines. Regarding the overall ap-

proach, our experience strongly suggests that a static allocation of

resources (i.e., statically assigning tasks to contexts and contexts

to ports), coupled with implicit scheduling through the token pass-

ing mechanism (which plays the dual role of protecting the shared

DMA state machine) yields the most effective design for a router.

Regarding the lack of a compiler, while we are aware of several

efforts to address this limitation, we are not convinced that they

will prove all that helpful, at least for specialized applications like

packet forwarding. This is because our ability to achieve good per-

formance depends on having complete knowledge of how registers

are allocated. It is also the case that the most error-prone piece of
code is the sequence of instructions that deals with the FIFOs and

DMA state machine, which is necessarily written in assembly.

222

Unfortunately, our static approach means that the software needs

to be re-designed for boards configured with different ports and
port speeds. This is especially problematic for a non-homogeneous
set of ports. Having to write this code in assembly language only
complicates the situation. We see at least three possible solutions
to this problem. One would be to create a hardware indirection
stage between the actual ports and the IX bus that connects the
ports to the IXP1200. This indirection stage would present a single
"virtual" port to the IXP1200. Of course this does not solve the

problem, it just moves it from software into hardware, which seems
like the wrong thing to do considering the solution must deal with
a heterogeneous and varying number of ports.

A second solution would be to have the ports transfer packets

directly to and from DRAM, bypassing the FIFOs. Being able to

buffer packets in memory would free the MicroEngines from hav-

ing to service the FIFO slots at varying line speeds; they would
only have to keep pace with the aggregate rate. The problem with

this solution is that it forces four memory accesses for each byte

of a minimal-sized packet: port-to-DRAM, DRAM-to-registers,
registers-to-DRAM, and DRAM-to-port. This is not a problem for

longer packets, where only the header has to be brought into Micro-
Engine registers for processing, but it does halve the maximum
achievable throughput rate for 64-byte packets. One of our early
implementations used this general strategy, and saturated DRAM
while forwarding 2.69Mpps. An alternative would be to provide a

larger register bank as a staging area for packets (recall that each

FIFO is really just a 16-register bank), but it is not clear that doing
so offers a full solution, or only makes the problematic case less
likely.

The third solution would be to construct the software for a new

port configuration from a collection of building block components.
This could ultimately result in a domain-specific compiler. Our cur-

rent implementation takes the first step in this direction by defining
a set of macros that can be used in different combinations. The
hard part is knowing how to partition the resources (contexts and
FIFO slots) in the most effective way for a given configuration. We

are currently developing a resource model that supports this third
approach.

3.6 StrongARM
The StrongARM is able to directly access DRAM, so packets

are available for it to compute on with minimal additional over-

head. The only latency is the cost of a MicroEngine signalling the
StrongARM to inform it that a packet is available.

An input context processes the packet as usual, but upon detect-

ing that the packet requires service by the StrongARM (e.g., there
is a miss in the route cache or the packet contains IP options), it
enqueues the packet in a StrongARM-specific queue instead of a
queue assigned to an output port. At this point, we have two op-

tions: interrupt the StrongARM or let the StrongARM poll to see if
any packets have arrived. In both cases, the StrungARM dequeues

the next packet from this queue, performs whatever processing is
required, and places the packet on the appropriate output output
queue.

We measured the maximum rate that the StrongARM can pro-

cess packets by having it run a null forwarder, with the input con-
texts programmed to pass all their packets to the StrongARM.
With this configuration, we achieve a maximum forwarding rate
of 526Kpps using polling; interrupts where significantly slower.
By adding a delay loop that counts to a pre-determined value, we
conclude that the StrongARM has no additional cycles available to
compute on packets when receiving them at this rate.

3.7 Pentium
We move packets between the IXP1200 and the Pentium over

the PCI bus. Our implementation uses the IXP1200's DMA en-
gine, plus queue management hardware registers supporting the In-

telligent I/O (I20) standard [11]. For each logical queue from the
IXP1200 to the Pentium--where each logical queue corresponds to
the use of the term "queue" throughout the rest of this section--the

implementation uses a pair of 120 hardware queues. One queue
contains pointers to empty buffers in Pentium memory, and the

other contains pointers to full buffers in Pentium memory. On the
IXP1200 side, putting a packet onto a logical queue involves first
pulling a pointer to a free buffer from the free 120 queue, filling the
buffer using the DMA, and then placing the pointer on the full 120
queue. On the Pentium side, getting a packet from a logical queue

involves first retrieving a pointer from the full 120 queue, process-

ing the packet, and then returning the block to the free pool by

placing its pointer on the free 120 queue. Moving packets from the

Pentium to the IXP1200 works in an analogous way, and involves

a second pair of 120 queues.
We measured the maximum rate that the Pentium can process

packets by having it run a loop that reads packets of various
sizes from the IXP1200, and then writes the packet back onto the
IXP1200. (Due to a silicon error, the 120 mechanism does not
work. We therefore had to simulate it in software.) The Strong-

ARM is programmed to feed packets to the Pentium as fast as pos-
sible. We also inserted a delay loop on both sides to determine

the number of spare cycles available, that is, cycles not involved

in the data transfer. The results are given in Table 4, which shows
that the router is able to forward up to 534Kpps through the Pen-

tium. This rate saturates the StrongARM, but leaves 500 cycles per

packet available on the Pentium.

Packet Size Rate
(Bytes) (Kpps)

64 534.0

1500 43.6

Pentium StrongARM
(Cycles) (Cycles)

500 0
800 4200

Table 4: Measured Maximum Forwarding Rate and Excess

Per-Packet Processor Cycles.

Note that up to this point we have focused on 64-byte packets.

This is because processing minimal-sized packets is the worst-case
scenario. It is also the case that forwarding larger packets scales

linearly on the MicroEngines: forwarding a 1500-byte packet in-

volves forwarding twenty-four 64-byte MPs. Crossing the PCI bus
is different, however, since the DMA engine runs concurrently with
the StrongARM. Also note that even if 1500-byte packets arrive,
we do not necessarily need to move them across the PCI bus, as
many forwarders just need to inspect the packet header. To account
for this likelihood, we move just the first 64-bytes across the PCI

bus, along with an 8-byte internal routing header that informs the

Pentium of (1) the classification decision made on the IXP1200,
and (2) how to retrieve the rest of the message (lazily) should the
forwarder nmning on the Pentium need to access the packet body.

4. EXTENSIBILITY
The previous section establishes the maximum rate that each of

the three processors can forward packets with a null forwarder. This
section evaluates adding more complex forwarders to the data plane
and integrating the control plane into the system. It also demon-
strates the robustness of the system, that is, how the extent to which

223

the performance of the different layers of the processor hierarchy

are isolated from each other.

4.1 Design Issues
We start by considering the processor hierarchy as an integrated

whole. Figure 8 depicts three possible switching paths. Path A

includes the MicroEngines and the IXP memory. Path B includes

the MicroEngines, the IXP memory, and the StrongARM. Path C

includes the MicroEngines, the IXP memory, the StrongARM, the

Pentium memory, and the Pentium. The shaded boxes correspond

to the three processors, while the non-shaded boxes represent mem-

ory that implements packet queues and buffers. We know from the

previous section that path A can forward packets at a maximum

rate of 3.47Mpps, path B at 526Kpps, and path C at 534Kpps, but

there are three caveats that affect our design.

Input
MicroEngino

Context=

Pentium

Pentium
Memo,'/

StrongARM

IXP
Memory

Output
MicroEngine
Contexts

Input FIFO Output FIFO

Figure 8: Three switching paths through the Pentium/IXP1200
processor hierarchy.

First, we cannot simultaneously support paths B and C at their

maximum rates since the StrongARM is involved in both. Our

design gives priority to packets destined for the Pentium, with

the StrongARM primarily serving as a bridge between the Micro-

Engines and the Pentium. We limit the forwarders that run locally

(corresponding to path B) to those that fit within the remaining ca-

pacity. Similar interference between path A and paths B and/or C

is possible, except that in our design the work the MicroEngine has

to do to pass a packet up to the StrongARM is the same as the work

it has to do to implement path A; no additional cycles are required.
Second, more complicated forwarders require more cycles-per-

packet (cpp), possibly reducing the maximum forwarding rate. In

the case of the Pentium, we have 500cpp available at the maximum

534Kpps rate; more expensive forwarders will obviously lessen the

sustainable forwarding rate. In the case of the MicroEngines, all
of the available capacity is needed to achieve the 3.47Mpps for-

warding rate. If this matches the line speed, then only the minimal

forwarder can run here. However, if we assume a lesser line speed,

then there may be excess capacity that can be used to run additional

forwarders. We return to this issue in Section 4.2.

Deciding what forwarders to run on the StrongARM is compli-

cated by the fact that the StrongARM must support the Pentium (as

described above) and because it shares SRAM and DRAM band-
width with the MicroEngines. This means an arbitrary forwarder

running on the StrongARM has the potential to interfere with the

MicroEngine's ability to forward packets at line speed. As a conse-

quence, the StrongARM must run within the same resource budget

as the MicroEngines. It is for this reason that we elect to not run

a general-purpose OS like Linux on this processor. Instead, the

StrongARM runs a minimal OS that does two things: (1) acts as

a bridge that forwards packets to the Pentium, and (2) supports a

small collection of local forwarders.

Third, even though we know the maximum rates that can be sup-

ported by the Pentium and StrongARM, in the worst case all ar-

riving packets require more processing than the MicroEngines can

provide, and so have to be passed up the processor hierarchy. This

means the higher levels of the processor hierarchy must differenti-

ate among packets based on classification done at the MicroEngine

level and then schedule their available capacity in some meaningful

way.
Regarding classification, this means that (although not shown in

Figure 8) multiple queues feed the higher levels of the processor hi-

erarchy allowing, for example, the router to isolate OSPF updates

from ping packets. Regarding scheduling, we run a proportional

share scheduler on the Pentium, where deciding what share to al-

locate to each flow is a policy issue. For example, we allocate

sufficient cycles to the OSPF control protocol to ensure that it is

able to update the routing table at an acceptable rate, and we al-

low forwarders that implement per-flow services to reserve both a

packet rate and a cycle rate [19]. We eventually plan to run a pro-

portional share scheduler on the StrongARM, since in general it

might also run arbitrary forwarders, but we currently implement a

simple priority scheme that gives packets being passed up to the

Pentium precedence over packets that are to be processed locally.

4.2 Virtual Router Processor
Our approach to installing useful packet processing at the Micro-

Engine level of the processor hierarchy is to statically allocate the
MicroEngines to two tasks: (1) a router infrastructure (RI) that is

able to forward minimum-sized packets at line speed, and (2) a vir-

tual router processor (VRP) that runs additional code on behalf of

each packet. In effect, Section 3 defines the RI, while this section

defines the VRP. In terms of the pseudo-code in Figure 5, every-

thing except protoeol_proeossing is part of the RI, and it is useful

to think of the protocol_processing step as running on an abstract

machine (called the VRP) that supports a fixed number of cycles

for each MP.
The next question is how to characterize the capacity of the VRP

so we can understand what code it is allowed to run. Figure 9 il-

lustrates the effects of adding instructions to the null VRP of the

3.47Mpps system. The three lines in the graph represent adding

three different basic blocks of "VRP code". Blocks are either sets

of 10 register-based instructions, a single 4-byte SRAM access, or a

combination block with both 10 register instructions and the 4-byte

SRAM operation. Effectively, the graph shows the relationship be-
tween supportable line speed and VRP budget. By fixing either

of these variables, the graph can be used to determine the avail-
ability of the other. For example, at an aggregate forwarding rate

of 1 Mpps, the VRP has a budget of 32 blocks, each consisting of

10 register operations and a 4-byte read from SRAM.

However, Figure 9 is based on measurements of traffic without
any contention for output queues. Since contention is common in

practice, it is important to measure its effects on the VRP. Figure 10

224

.t. block = 4B SRAM read
- block = 10 register instr

3.0

2.5
e s ~

2.0

1.5-

~.o-

0.5-

3.5

0 . 0

0 ~'6 ;~ 4'~ 6~
Code Blocks per Packet

Figure 9: Number of blocks of VRP code that can run at differ-

ent line speeds.

shows the same experiment in the face of maximal contention--all

incoming traffic bound for the same protected queue. The graph

shows that the time otherwise lost to contention delay can be used

for VRP processing. (Note that when we apply 64 blocks of VRP

code to each packet, there is no measurable contention overhead.)

This is very important because it means that one does not need to

worry that large fraction of the system resources will be wasted due

to contention delays. In fact, these resources can be reclaimed by

increasing the VRP budget to pace input processing to not overrun

the anticipated level of contention. This is double a benefit in that

the extra VRP cycles can be used to analyze which packets actually

deserve to be sent out the contended port.

4.3 Prototype Configuration
We now turn our attention to the actual line speed available on

our development board: 8 × 100Mbps Ethemet ports. This means

that the MicroEngines are required to forward at most 1.128 Mpps,

leaving a significant VRP budget. Based on the experiment re-

ported in previous subsection and taking into consideration the state

of the MicroEngine context when the packet-specific function is al-

lowed to run, we characterize the VRP on our prototype as follows:

• The packet is fragmented into 64-byte pieces, which become

accessible to the VRP in registers one fragment at a time.

The first fragment holds both the TCP and IP headers.

• In addition to the 16 registers that hold packet data, the for-

warder has access to 8 general purpose 32-bit registers. Val-

ues stored here do not last across invocations of the VRP,

and so these registers can only be used for temporary state

(e.g. intermediate computational results or state loaded from

SRAM). An additional register contains the SRAM address
of the flow-specific state.

• The forwarder can execute up to 240 cycles worth of instruc-

tions.

• The forwarder can perform up to 24 SRAM transfers (reads

or writes) of 4 bytes each.

• The forwarder can perform 3 hashes with support of the hard-

ware hashing unit.

2 . 0 -

~, [] Overhead due to maximal contention

1.5.

i 1.0.

~ 0.5.

0 . 0 ~
0 16 32 48 64

Code Blocks per Packet

Figure 10: Forwarding time breakdown under maximal output

port contention for the case of 10 register instructions and a 4-

byte SRAM read per code block. (The "no contention" portion

corresponds to the circle points of Figure 9.)

Keep in mind that this budget is available for each 64-byte MP pro-

cessed by the MicroEngine. In addition, there are 650 instruction

slots in the ISTORE that must be allocated to the competing exten-

sions. (The next version of the chip will support 1024 additional

instructions giving the VRP room for 1674 instructions.) Finally,

since those packets passed to the StrongARM will not have yet

consumed VRP resources on the MicroEngines--in particular, the

available memory references--all this capacity is also available on

the StrongARM.

An important consequence of this analysis is that there is suffi-

cient SRAM capacity to load and store up to 96 bytes of state that

persists across packets and packet flows. This is critical because the

parallelism of multiple MicroEngine contexts working on a single

input port may prevent a specific MicroEngine from processing all

packets on a particular flow.

Note that this evaluation was done in the context of the worst-

case load we can put on the router--forwarding minimum-sized

packets arriving at line speed. We do not currently take advantage

of cycles that are available when we handle MPs other than the first

in the packet. One could imagine using the cycles available before

the input worker has to return to the top of the loop to work on some

"background" process, but we have not yet attempted to exploit this

capacity.

4.4 Extens ion Requirements
A number of router services have been proposed over the

past few years: performance monitoring, intrusion detection,

application-level proxies, application-dependent packet dropping,
packet tagging, denial-of-service detection and other assorted fil-
ters and firewalls. A characteristic of many of these services is

that they have separable control and data components. A pure PC-

based router is not able to take advantage of this separation since

the entire service must be implemented on the main processor(s). A

conventional hardware-intensive router with distinct data and con-

trol planes is not able to take advantage of this separation because
it's data plane is not programmable. Our architecture, however, can
exploit this separation. Specifically, these services may be imple-

mented by a pair of forwarders--a data forwarder running on the

225

IXP1200 that processes every packet and a control forwarder on the

Pentium that initializes and manages the data forwarder.

Performance monitoring is a typical example [20]• The data for-

warder increments one or more counters based on some property

of the packet (e.g., the input or output port, the source or destina-

tion address, the packet's protocol number, the TCP ACK or SYN

flag). The control forwarder periodically aggregates these counters

and sends summaries to a global coordinator. Based on high-level

analysis, it is possible that the control forwarder then elects to in-

stall new counters in the data forwarder. Intrusion detection often

works in a similar way: the data forwarder records events; the con-

trol forwarder analyzes them and in turn installs filters in the data

forwarder.

TCP splicing, a technique for optimizing proxy performance,

also illustrates the separation of the control and data components

[21]. A proxy running on the router that connects a private corpo-

rate network to the public Internet first inspects the data received

on a TCP connection to the external network---e.g., authenticates

the entity making the connection request and performs access con-

trol on the requested resource--but assuming the proxy is satisfied

with what it sees, it then simply forwards data between the exter-

nal and internal connections. The optimization is to splice the two

TCP connections together once the authentication phase is com-

plete, thereby eliminating the need for two TCP state machines and

the proxy. However, splicing requires modifying fields in the TCP

header of every packet being forwarded between the two connec-

tions. In this case, the full TCPs and proxy run in a control for-

warder (they operate on only a few packets per connection), while
the splicing code that patches the TCP headers runs in a data for-

warder (it operates on all subsequent packets).

It is also possible to install a smart packet dropping service that

exploits knowledge of a particular kind of application data. For ex-

ample, wavelet encoded video divides the video stream into multi-

ple layers [3]. Depending on the level of congestion experienced at

a router, packets carrying low-frequency layers are forwarded and

packets carrying high-frequency layers are dropped. In this case,

the data forwarder records the number of packets successfully for-

warded for this flow, while the control forwarder uses this informa-
tion to determine the available forwarding rate, and from this, the

cutoff layer for forwarding. The control forwarder then informs the

data forwarder of this cutoff, and the data forwarder decides what

packets to drop based on this value.

SRAM Register Registers

Forwarder Read/Write Operations Needed

(bytes) (instructions)

TCP Splicer

Wavelet Dropper

ACK Monitor

SYN Monitor

Port Filter
• I P - - - - •

24

8

12

4

20
24

45

28

15

5

26
32

Table 5: Cycle, Memory and Register Requirements of Exam-

ple Data Forwarders

We have implemented five example data forwarders. Table 5

gives the memory and cycle requirements for each. The first two

correspond to the forwarders just described. The third (ACK Mon-

itor) watches a TCP connection for repeat ACKs in an effort to de-
termine the connection's behavior [17]. The fourth (SYN Monitor)

counts the rate of SYN packets in an effort to detect a SYN attack.

Port Filter is a simple filter that drops packets addressed to a set

of up to five port ranges. The last is minimal IP processing, which

consists of decrementing the TTL, recomputing the checksum and

replacing the Ethemet header. (Note that the IP header also needs

to be validated--the checksum verified and the version and length

fields checked--but this is done as part of the classifier rather than

the forwarder.) Although far from a comprehensive study, this sim-

ple list demonstrates that it is easy to write data forwarders that can

live within the VRP budget.

In contrast, we have measured more complicated forwarders

such as TCP proxies and full IP to require at least 800 and 660 cy-

cles per packet, respectively. Also, the prefix matching algorithm

we use [22] requires on average 236 cycles per packet. These for-

warders clearly need to run on the StrongARM or Pentium.

4.5 Interface and Implementation
Taking these examples into consideration, we have defined the

following interface for a control forwarder running on the Pentium

to install and share state with a data forwarder running on the IXP.

The IXP exports this interface to the Pentium, and the operations

are implemented on the StrongARM. The StrongARM interacts

with the MicroEngines to implement the operations, but this inter-

action is hidden from the Pentium. The interface consists of four

operations:

fid = install(key, fwdr, size, where)
remove(rid)
data = getdata(fld)
setdata(fid, data)

The first operation installs forwarder fwdr on behalf of all pack-

ets that match the specified key, with size bytes of associated flow

state. The where argument indicates the processor on which the

forwarder is to run.

The key is a (src_addr, src_port, dst_addr, dst_port) 4-tuple. As

a special case, key can have the value A/L, indicating that the cor-

responding forwarder is to be applied to all incoming packets. The

4-tuple is used to bind a forwarder that implements something like

TCP splicing or wavelet video dropping to a specific end-to-end
flow, while ALL is generally used by forwarders that count various

packet events or filter certain addresses or ports. We call the former

a per-flow forwarder and the latter a general forwarder. Note that

this discussion assumes a fixed, IP-centric classifier. In general, the

classifier could itself be replaced with one that also understands,

say, MPLS labels. The current implementation does not support

incremental changes to the classification code; this would require

re-loading the entire MicroEngine ISTORE.

The where argument takes one of three values, which selects

how the fwdr argument is to be interpreted and referenced.

• ME: the fwdr argument is an executable fragment of Micro-

Engine code; it is loaded into the ISTORE of the input con-

texts and is subsequently referenced by its offset in the I-

STORE.

• SA: the fwdr argument is an executable StrongARM func-

tion; it is loaded into the DRAM and subsequently referenced
by an index into a jump table. 2

• PE: the fwdr argument is an index into a jump table that is

available on the Pentium; subsequently passing that address
to the Pentium causes the Pentium to jump to that function•

2The current implementation does not allow new forwarders to be
dynamically added to the StrongARM. Instead, the StrongARM
boots with a fixed set of forwarders, and the install function simply
binds one of them to a flow.

226

The StrongARM maintains a table of all the forwarders it has

installed; the return value lid is an index into this table. For each

forwarder, the table records the SRAM address that holds the flow
state, the function address, and the key. The getdata and setdata

operations use the rid to access the flow state. It is by manipulating

this shared state that a control forwarder is able to communicate

with its partner data forwarder. The remove operation uses the lid

to locate information about an installed forwarder, allowing it to

remove the key from the hash table and free the memory (DRAM
or ISTORE) holding the function.

The install operation is implemented on the StrongARM as fol-

lows. First, based upon the where argument, it copies the code
block passed in the fwdr argument into DRAM (where=SA) or the

ISTORE of all the input contexts (where=ME). Next, the Strong-

ARM allocates size of SRAM memory to hold the flow state, and

initializes it to zero. Finally, it updates the hash table used by the

packet classifier to map the key to the forwarder and the address of

the flow's state.

. ClaSS,F?cat!onifi

i!i_
I W I

Figure 11: Layout of extensions in MicroEngine ISTORE for
input contexts.

Focusing on extensions that run on the MicroEngines, Figure 11

shows the layout of the ISTORE on each context running the input

loop. The shaded areas at the top and bottom of the figure cor-

respond to RI component of the loop, while the clear area in the

center represents the protocol_processing step in Figure 5. The

latter area of the ISTORE is further divided into three segments:

the code block that implement packet classification, zero or more

code blocks that implement per-flow forwarders, and one or more

code blocks that implement general forwarders. The last general

forwarder (denoted Ftp--) is always present, and implements min-
imal IP processing.

To modify a MicroEngine ISTORE once the router is in oper-
ation, the StrongARM first disables the MicroEngine and writes
its ISTORE with instruction level granularity; it then re-enables
the MicroEngine. Modifying the MicroEngine program takes two

memory accesses for each instruction, meaning that adding a 10-

instruction forwarder to the ISTORE takes 800 cycles, while re-

writing the entire ISTORE takes over 80,000 cycles. Because

we want to be able to compile forwarders separately and install

them incrementally--i.e., without having to re-write the whole

ISTORE--we are not able to hard-code jump addresses into the

forwarders. Instead, general forwarders are stored in reverse order

from the end of the ISTORE, thereby allowing control to just fall

from one to the next. Also, the last instruction of each per-flow

forwarder is an indirect jump to an address maintained in a Micro-

Engine register.

Revisiting what happens for each packet that arrives, the clas-

sification code in the protocol_processing step of the input con-

text first validates the headers, then hashes the IP and TCP headers

separately. The two hashed values are combined to index into a

table that contains metadata for the flow: the key, where the for-

warder is to run, a reference to the forwarder (this is the address

of the forwarder's code in the ISTORE if the forwarder is to run

on the MicroEngine), and the addresses of the forwarder's state in

SRAM. This classification process requires 56 instructions and ac-

cesses 20 bytes of SRAM; this code is counted against the VRP

budget. Given this metadata, and assuming the forwarder is avail-

able on the MicroEngine, the context jumps to the specified offset

in its ISTORE. If the forwarder runs on the StrongARM or the Pen-

tium, the context instead enqueues the packet on the corresponding

queue and signals the StrongARM that a new packet has arrived.

The address of the flow metadata is also passed to the StrongARM,

so that it does not have to re-classify the packet.

The StrongARM manages two sets of queues; the MicroEngines

insert packets into these queues and the StrongARM services them.

The first set contains packets that are to be processed locally. The

second set contains queues for each flow that is to be passed up to

the Pentium. For packets bound for the StrongARM, it jumps to the

corresponding local function. For packets on the Pentium bound
queue, it initiates the process of copying the packet to the Pentium,

as outlined in Section 3.7. As part of the packet the StrongARM

passes the metadata along to the Pentium, so it knows what function
to apply to the packet.

4.6 Admission Control

Our design depends on an admission control mechanism that de-

cides what forwarders to install. We have not yet implemented this

mechanism, but envision it running on the Pentium.

For any forwarder to be installed on the MicroEngines, the ad-

mission control mechanism must inspect the code to determine the

number of cycles and memory accesses it requires. (The number
of cycles required is slightly larger than the instruction counts re-

ported in Table 5 since branch delays must be taken into considera-

tion.) If the VRP budget allows, and there is room in the ISTORE,

the forwarder is approved and the install operation called. Veri-

fying that the forwarder lives within the available VRP budget is

trivial since there is no reason for the forwarder to contain a loop,

and hence, a backwards jump. This is because the MicroEngines

operate on 64-byte chunks, any processing loop that a forwarder
might want to employ is already effectively unrolled. Note that

general forwarders that operate on all packets run in serial (that

is, the sum of their cycle/memory requirements is bounded by the

VRP since they are all applied to each packet), while per-flow for-

warders logically run in parallel (that is, only the most expensive
per-flow forwarder counts against the VRP budget since only the
forwarder that matches the given packet is run). We limit the num-

ber of per-flow forwarders that can be applied to any packet to one.

227

For any forwarder to be installed on the StrongARM, the admis-

sion control mechanism must both verify that the code does not

violate the VRP budget, and enough of the StrongARM capacity
is set aside to meet its obligations to move data to/from the Pen-

tium. Based on our experience to date, we do not believe that trying

to squeeze additional forwarders onto the StrongARM is justified.

Therefore, our current implementation allocates all of the capacity

on the StrongARM to passing messages up to the Pentium.

Although it is beyond the scope of this paper, the admission con-

trol mechanism must also decided how many forwarders to allow

on the Penfium. For each such forwarder, the requester specifies the

expected packet rate and the expected number of cycles expended

on each packet. From these two values, the mechanism determines

the forwarder's total cycle rate. The forwarder can be admitted only

if the processor has sufficient cycles-per-second are available and

the total packet rate remains below the maximum that the Pentium

can sustain. Admission control to the Pentium, as well as the strat-

egy for scheduling the Pentium's cycles, are discussed elsewhere

[19].

4.7 Robustness Experiments
To validate the performance of the complete system, we config-

ured the MicroEngines to run a synthetic suite of forwarders based

on the examples given in Section 4.4. The suite utilizes the full

VRP budget. We then programmed the VRP to forward a variable

number of packets to the Pentium. We found that the system was

able to forward up to 310 Kpps (out of the 1.128 Mpps offered load)

through the Pentium without dropping any packets at any level of

the processor hierarchy. Each of the 310Kpps routed through the

Pentium, in turn, receives 1510 cycles of service.
In a second experiment, we ran the base infrastructure described

in Section 3 without any VRP, and treated an increasing percentage

of the packets as exceptional, thereby simulating a flood of control

packets. These exceptional packets had no effect on the router's

ability to forward regular packets, and in fact, up to the point that a

processor higher in the hierarchy (e.g., the StrongARM) was unable

to service the stream of exceptional packets, the router was able to

sustain the full rate of 3.47 Mpps. This is because the MicroEngines

budget enough resources to classify and enqueue every packet ar-

riving at line speeds, and once enqueued for a particular forwarder,

a given flow receives whatever level of service the scheduling pol-

icy dictates.

5. RELATED WORK
Programmable network cards have been used for a number of

purposes over the years, including to provide access to high-speed

links [6, 24, 26], improve handling of multimedia streams [7], and

implement distributed shared memory [1]. All of these prior efforts
have been limited to end hosts, and the NICs support a single net-

work port. The IXP1200 is also unique in the level of parallelism it

applies to packet processing.
Several recent projects have also focused on the problem of mak-

ing it easier to extend router functionality [5, 13, 18], but to-date

these have been limited to Pentium-based implementations. The

exception is a recent effort at Washington University to study the
feasibility of implementing router extensions in FPGAs [23]. Per-

haps the work closest to our own is an ongoing effort to port the
Genesis kernel [2, 14] to the IXP1200. Genesis is designed to sup-

port virtual networks by dynamically loading routelets (similar to

our forwarders) onto the IXP1200. The main difference is that our

approach runs all forwarders for a given packet in a single thread,

which is critical to our ability to isolate performance under varying

loads.

6. CONCLUSIONS
This paper addresses the resource allocation and scheduling

problems of implementing an extensible router on a three-level pro-

cessor hierarchy. We demonstrate our design on prototype hard-

ware consisting of a Penfium augmented with an IXP network pro-

cessor. Our design results in two specific contributions. First, we

describe how to program the processor hierarchy with a fixed for-

warding infrastructure that fully exploits the parallelism available

on the IXP1200 MicroEngines. Our approach is able to achieve a

forwarding rate of 3.47Mpps. Second, we demonstrate how new

functionality can be injected into all three levels of the processor

hierarchy without jeopardizing the router's robustness in the face

of different workloads. The key innovation is to statically partition

the processing capacity of the MicroEngines into a fixed routing

infrastructure and a programmable VRP, and to ensure that any ex-

tensions programming into the MicroEngines live within the VRP's

budget.

While we have focused on a router configuration that includes a

single Pentium/IXP pair, we believe our basic architecture applies

equally well to richer configurations. For example, we next plan to

construct a router from four Penfium/IXP pairs connected by a Gi-

gabit Ethernet switch. The main difference from the configuration

described in this paper is that we will need to budget RI capacity to

service packets arriving on the "internal" link (i.e., some fraction of

the 1 Gbps Ethernet link connecting the IXP to the switch), leaving

fewer cycles for the VRP. In general, as network processors be-

come more prevalent in high-end routers, we expect our techniques

to also apply there as well. In the end, we expect the distinction be-

tween "hardware-based" and "software-based" routers to become

less meaningful.

Acknowlegements

We are indebted to Intel's Dirk Brandewie for debugging our under-

standing of the IXP1200. We would also like to thank the anony-

mous reviewers and Hari Balakrishnan, our shepherd, for helping

us improve the clarity and focus of the paper. This work supported

in part by NSF grant ANI-9906704, DARPA contract F30602-00-
2--0561, and Intel Corporation.

7. REFERENCES

[1] M. A. Blumrich, C. Dubnicki, E. W. Felten, K. Li, and M. R.

Mesarina. Virtual-Memory-Mapped Network Interfaces.

IEEEMicro, 15(1):21-28, 1995.

[2] A. T. Campbell, S. Chou, M. E. Konnavis, and V. D.

Stachtos. Implementing Routelets: Virtual Router Support

for the IXP1200 Network Processor. In/XA Univeristy

Program Workshop, Portland, Oregon, June 2001.

[3] M. Dasen, G. Fankhauser, and B. Plattner. An Error Tolerant,

Scalable Video Stream Encoding and Compression for

Mobile Computing. In Proceedings of ACTS Mobile Summit
96, pages 762-771, November 1996.

[4] B. Davie and Y. Rekhter. MPLS: Technology and

Applications. Morgan Kaufmann Publishers, Inc., 2000.

[5] D. Decasper, Z. Dittia, G. Parulkar, and B. Plattner. Router

Plugins: A Software Architecture for Next Generation

Routers. IEEF,/ACM Transactions on Networking, 8(1):2-15,

February 2000.

[6] P. Druschel, L. L. Peterson, and B. S. Davie. Experiences

with a High-Speed Network Adaptor: A Software

Perspective. In Proceedings of SIGCOMM '94 Conference,
pages 2-13, October 1994.

228

[7] M. E. Fiuczynski, R. E Martin, T. Owa, and B. N. Bershad.
On Using Intelligent Network Interface Cards to support

Multimedia Applications. In Proceedings of the 8th
International Workshop on Network and Operating System

Support for Digital Audio and Video, pages 95-98, July
1998.

[8] IBM Microelectronics Division. IBM PowerNP NP4GS3

Network Processor Solutions Product Overview, April 2001.

[9] IEEE. Standard 802.3, October 2000.

[10] Intel Corporation. IXP12OONetworkProcessorDatasheet,
September 2000.

[11] Intelligent I/O (I20) Special Interest Group. Intelligent I/O

(I20) Architecture Specification, Version 2.0, March 1999.

[12] S. Karlin and L. Peterson. VERA: An Extensible Router
Architecture. In Proceedings of the 4th International

Conference on Open Architectures and Network

Programming (OPENARCH), pages 3-14, April 2001.

[13] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. E

Kaashoek. The Click Modular Router. ACM Transactions on

Computer Systems, 18(3):263-297, August 2000.

[14] M. E. Kounavis, A. T. Campell, S. Chou, E Modoux,
J. Vicente, and H. Zhuang. The Genesis Kernel: A
Programming System for Spawning Network Architectures.
IEEE Journal on Selected Areas in Communications,

19(3):511-526, March 2001.

[15] H. C. Latter and R. M. Needham. On the Duality of
Operating System Structures. Operating Systems Review,

13(2):3-19, April 1979.

[16] D. L. Mills. The Fuzzball. In Proceedings of the SIGCOMM

'88 Symposium, pages 115-122, August 1988.

[17] V. Paxson. Automated Packet Trace Analysis of TCP
Implementations. In Proceedings of the ACM SIGCOMM '97

Conference, pages 167-179, September 1997.

[18] E Pradhan and T.-C. Chiueh. Operating System Support for
Programmable Cluster-Based Internet Routers. In
Proceedings of the 7th Workshop on Hot Topics in Operating
Systems (HotOS-VII), pages 76--81, March 1999.

[19] X. Qie, A. Bavier, L. Peterson, and S. Karlin. Scheduling

Computations on a Programmable Router. In Proceedings of

the ACM SIGMETRICS 2001 Conference, pages 13-24, June
2001.

[20] M. J. Ranum, K. Landfield, M. Stolarchuk, M. Sienkiewicz,
A. Lambeth, and E. Wall. Implementing a Generalized Tool
For Network Monitoring. In Proceedings of the Eleventh

Systems Administration Conference (LISA '97), pages 1-8,
San Diego, CA, October 1997.

[21] O. Spatscheck, J. Hansen, J. Hartman, and L. Peterson.
Optimizing TCP Forwarder Performance. IEEE/ACM

Transactions on Networking, 8(2): 146-157, April 2000.

[22] V. Srinivasan and G. Varghese. Fast address lookups using
controlled prefix expansion. ACM Transactions on Computer

Systems, 17(1): 1--40, February 1999.

[23] D. E. Taylor, J. S. Turner, and J. W. Lockwood. Dynamic
Hardware Plugins (DHP): Exploiting Reconfigurable
Hardware for High-Performance Programmable Routers. In
Proceedings of the 4th International Conference on Open

Architectures and Network Programming (OPENARCH),
pages 25-34, April 2001.

[24] C. B. S. Traw and J. M. Smith. Hardware/Software
Organization of a High-Performance ATM Host Interface.
1EEE Journal on Selected Areas in Communications (Special

Issue on High Speed Computer/Network Interfaces),

11(2):240-253, 1993.

[25] Vitesse Semiconductor Corporation. IQ2000 Network

Processor Product Brief, 2000.

[26] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A
User-Level Network Interface for Parallel and Distributed
Computing. In Proceedings of the 15th ACM Symposium on

Operating Systems Principles, pages 40-53, December 1995.

229

