
Building Accountability into the Future Internet
Jelena Mirkovic

Information Sciences Institute
University of Southern California

4676 Admiralty Way Ste 1001
Marina Del Rey, CA 90292

Email: sunshine@isi.edu

Peter Reiher
Computer Science Department

University of California Los Angeles
3564 Boelter Hall

Los Angeles, CA 90025
Email: reiher@cs.ucla.edu

Abstract—This paper proposes a future Internet architecture
whose security foundations prevent today’s major threats —
IP spoofing, distributed denial-of-service attacks, distributed
scanning and intrusions, and wide-spread worm infections.

The core of the architecture are source signatures that are
attached to each packet by its creator host. These lightweight,
unforgeable signatures make senders accountable for traffic they
originate. They also enable spoofing elimination close to sources
since they are verified at each router hop.

The second layer of the architecture introduces route-
independent, lightweight, unforgeable and short-lived packet
tickets that act as capabilities. They indicate that the packet’s
destination agrees to receive traffic from a given source and
eliminate some common denial-of-service attacks close to sources
because they are verified at each router hop.

The top layer contains a reputation system that collects
server reports about malicious client behaviors. Reports include
verifiable proofs of malicious behavior, which prevents lying, and
are aggregated into a client’s reputation. Reputations provide
information about previously unseen clients to servers that
can use it to decide whether a client should be granted a
ticket. Jointly, these three architectural layers introduce strong
accountability into the future Internet.

I. INTRODUCTION AND MOTIVATION

Several large-scale security threats — IP spoofing, dis-
tributed denial-of-service (DDoS) attacks, vulnerability scan-
ning, intrusions, and wide-spread worm infections — have
long stayed unsolved because of the lack of accountability
mechanisms in the current Internet. “Accountability” is defined
as “an obligation to accept responsibility for one’s actions”,
and it assumes that actions can accurately be linked to their
sources and that sources can be punished for bad, and awarded
for good behavior.

The current Internet is very far from this goal. IP spoofing
makes it impossible to link packets to their sources. Even
though recent research shows that spoofing is not very popu-
lar today [1], the mere possibility of spoofing prevents any
punitive action against sources of malicious packets. This
is the first nugget of wisdom we would like to emphasize:
accountability mandates perfect identification of actors.
Otherwise, any punishment/reward system can be tricked by
attackers that assume good host identities to either bypass the
system or to provoke punishment of good hosts. In addition
to IP spoofing, the prevalence of DHCP, network address
translation and mobile hosts makes IP addresses unreliable
identifiers of traffic sources.

Even if destinations could reliably identify and drop spoofed
traffic, many spoofed attacks would still consume Internet
resources. For example, spoofed DDoS traffic could over-
whelm the target’s upstream link before its filter could drop it.
This leads us to the second nugget of wisdom: identification
of sources must be cheap enough to be universal. Thus
routers could afford to verify the traffic source of each packet,
and drop spoofed packets close to their sources. We propose
lightweight source signatures that meet the perfect-and-cheap
identification goals.

Assuming accurate and cheap source identification, the next
question to solve on the road to accountability is how to exact
rewards or punishments. The common approach is to punish
malicious actors by filtering their traffic. Because unwanted
traffic consumes Internet resources, traffic filtering should
occur as close to the sources as possible, which is our third
nugget. Capabilities were proposed in [2], [3] as a cheap way
for a destination to communicate to routers on the traffic path
which packets are desirable. A capability is an unforgeable,
cheaply verifiable ticket that a sender obtains from the po-
tential destination and attaches to its future packets. Routers
verify tickets, drop packets with invalid tickets and rate limit
ticket requests. Capabilities are short-lived so that a source
which turns malicious could be easily cut off by refusing
its future ticket requests. We build on current capabilities by
proposing a novel, route-independent design.

While capabilities help eliminate unwanted traffic, destina-
tions still need reliable means to decide if a source deserves
a capability. The current design [2], [3] assumes that a
destination always grants capabilities to new clients. After a
short period of malicious activity, all attackers are identified
and future capability requests are refused. This works fine for
threats that inflict damage via ongoing traffic, such as flooding
DDoS attacks, but not for threats that can succeed after a
short interaction, such as intrusions and worm infections.
The fourth nugget we emphasize is that it is desirable that
servers can identify malicious clients before having any
interaction with them. This is possible when clients have
acted maliciously toward other servers and if there is an
established, secure way of sharing this information, e.g., via
client reputations. Several studies of scanners and botnets [4]–
[6] have confirmed that hosts that were compromised in the
past tend to misbehave in the future. A reputation system



that helps identify these repeat offenders can provide input to
the capability-granting system and minimize the risk of zero-
day threats. Such a reputation system is the third part of our
proposed architecture.

A. Perfect Versus Operational Accountability

Our observation that accountability is crucial for unwanted
traffic handling is not novel. Most recently it was made in the
AIP publication [7]. However, our notion of accountability
differs from AIP’s in one key respect. We aim for perfect
accountability, meaning that no entity can spoof another, and
everyone can not only verify this but does so constantly
for each packet. We achieve perfect accountability through
novel anti-spoofing signatures that are cheap to generate and
verify, yet unforgeable. AIP’s authors aim for operational
accountability, which leaves a small but present possibility
of spoofing by well-positioned attackers. They achieve this
goal by using expensive, public-key cryptography but utilizing
routing information to minimize verification checks.

The main problem with operational accountability is that
the mere possibility of spoofing enables attackers to trick
any punishment/reward system based on observed behavior.
This is the reason why the AIP architecture requires source
cooperation to stop denial-of-service traffic, and employs
packet caching at those sources to ensure that spoofed pack-
ets cannot lead to shutdown of legitimate sources. In our
architecture, perfect accountability enables filtering of any
malicious traffic at any point on the path, via capabilities. This
is advantageous because wide-spread end-host cooperation is
difficult to achieve. Another advantage we reap from perfect
accountability is the possibility of proving without a doubt the
origin of malicious traffic to a third party. This enables us to
build client reputations and use them as input to capability-
granting decisions.

B. Contributions and Overview

Our paper makes three contributions: (1) we propose a novel
spoofing prevention scheme using lightweight, unforgeable
signatures, (2) we propose a novel capability scheme built
on top of unspoofable identities; our capabilities are to our
knowledge the only ones that are route-independent, and (3)
we propose a novel client reputation system, which cannot be
tricked by lying participants. Such a system takes capability-
based unwanted traffic handling to a new level: from mere
mechanism to filter known unwanted traffic to a sophisti-
cated framework that enables traffic prioritization based on
its source’s global behavior history.

Section II proposes lightweight, unforgeable, cheaply veri-
fiable sender signatures that enable accurate linking of packets
to sources. Section III proposes route-independent capabilities,
and Section IV proposes an Internet-wide client reputation
system, which facilitates recording and publicizing of repeat
offenders. Servers file bad reports for clients that acted ma-
liciously towards them. To prevent lying, servers also submit
proofs – samples of malicious traffic with their reports. We

discuss related work in Section V. We describe future work
and conclude in Section VI.

II. IDENTITY SPOOFING ELIMINATION

Our solution to identity spoofing attaches a source signature
— a cryptographic signature dependent on the source identity
and the packet’s header and contents — to each packet.
Routers are assumed to verify each packet’s signature. We
assume that the future Internet will separate naming and
location services, and that packets will carry both identity
(name) and location identifiers that will be globally unique.

Signatures must be verifiable by anyone, and forgeable
by no one. These two properties are important for perfect
accountability and they mandate using some method of asym-
metric cryptography so that the secret needed to create the
signature is only known to the identity owner. One mechanism
that achieves this are public-key signatures, but they are too
expensive to create and to verify at packet speeds.

A. Mechanism

We propose using trapdoor hash functions with inversion
property for signing and verification. A trapdoor hash function
is associated with the hash key (public key) HK and the
trapdoor key (private key) TK. The trapdoor hash function
h(·) is one-way hash function, which means that knowing
HK it is cheap to compute h(x) for any x, but it is very
computationally expensive to find the input x that generates
any h(x). All one-way hash functions also have the collision-
free property, which means that it is difficult to find two
inputs x and x′ so that x 6= x′ but h(x) = h(x′). Trapdoor
hash functions have a property that finding collisions is easy
if the trapdoor key TK is known. This property is used in
an online/offline signature scheme proposed in [8] to sign a
hash of a random message {m′, r′} offline, and later pair the
signature with the original message m, m 6= m′ by using
TK to find the value r so that {m′, r′} and {m, r} form
a collision, i.e., h(m′, r′) = h(m, r). Thus offline signing
can be slow (e.g., using public signatures) but the online
signing requires only finding a collision and is fast. This makes
online/offline signatures a good choice for signing streaming
data such as network packets. However, the verification is still
slow, so online/offline signatures cannot be used for the source
verification service we propose.

Trapdoor hash functions with inversion property are hash
functions such that finding the input x that generates hash
value h(x) is easy if the trapdoor key TK is known. We
propose to use them in the following manner:

1) A source publishes the hash key HK and the verification
token V. The source also enumerates packets it sends
with an incrementing sequence number — each packet
sent obtains the next sequence number even if the packet
is retransmitted at the transport layer.

2) Verifiers store HK and V and keep a short record of
sequence numbers recently seen from this source, e.g.,
by using a Bloom filter [9], to prevent replay attacks.



3) The source uses any hash function to compute a hash
over the contents and immutable header fields, including
the sequence number. This hash represents the message
m. The source then uses the trapdoor key TK to find
r so that h(m, r) = V : SEQp where : denotes
concatenation and SEQp is the sequence number of this
packet. The packet’s signature is r.

4) Verifiers check the packet’s signature by calculating
the hash over {m, r} and verifying that it is equal to
V : SEQp, and that the sequence number was not used
previously.

The sequence numbers are needed to create diversity in
hash values used for packet verification. The sequence number
space should be reasonably large, so that it will take a long
time (e.g., several days) to exhaust it. After the space is
exhausted, the source must update V and potentially HK at
verifiers, to prevent replay attacks.

B. Scalability and Cost

To make key management scalable, we propose a hierar-
chical signature scheme. Each host signs its packets using the
proposed approach, and attaches its sequence number. As the
packets leave the source autonomous system, the host-level
signature is verified by a border router and replaced by the
AS-level signature. The host sequence number is also replaced
by the AS-level sequence number. Mobile hosts that change
their location would inform the guest AS of their hash key HK
and the verification token V during a registration procedure.

Entities in the Internet need only verify AS-level signatures
to eliminate spoofing between ASes. In case of an untrusted
AS that does not verify host signatures, hosts within this AS
could still spoof one another. As a consequence, it is likely that
all hosts within that AS would suffer collective punishment, as
our capability and reputation mechanisms restrict their traffic.
This is actually a desirable property, as it alerts the source AS
to a problem that is in its power to fix.

Currently, routable ASes account for slightly more than half
of the available 216 space. While the AS number space is
expected to increase to 232 in the future, this increase must
always be smaller than the increase in the size of routing
tables. Routers of the future must be able to store and update
their routing tables efficiently. Storage and update of {HK, V}
values will require much smaller overhead, because: (1) the
number of routable ASes is always smaller than the number of
routable prefixes, since some ASes announce multiple prefixes,
(2) the size of {HK, V} information is likely to be several
hundred bits, while the size of a routing entry is often larger,
(3) {HK, V} values will be updated once every few days, while
routing updates are far more frequent.

We assume that future Internet header will provide sufficient
space for sequence numbers and for tickets described in the
next section. According to calculations in [7], few Internet
sources generate more than 50,000 packets per second. This
means that the sequence number space of 32 bits could last
close to three days. We estimate that the ticket size will be
6-7 times this, so total of 256 bits is needed to store identity

and capability information. While this sounds large for today’s
IP header, it is much smaller than the header size proposed in
[7]. Besides, security comes at a price — while our lightweight
cryptography aims to keep processing cost low, we pay for it
in key storage and IP header space.

The cost of the proposed signing is 5 modular exponentia-
tions [8], while the verification cost is one hashing operation.
This is acceptable because sources generate fewer packets than
routers must forward; thus the signing cost can be slightly
higher than verification cost. Publication [3] argues that a one-
hash-per-packet operation is currently affordable for routers.
We expect that future routers will be even better provisioned
so the verification overhead should be acceptable.

The routers also need a Bloom filter to store source sequence
numbers. To achieve a reasonable false positive rate the Bloom
filter must be large enough to minimize risk of collisions. The
false positive rate can be calculated as p = (1−(1− 1

m )kn)k ≈
(1− e

−kn
m )k, where m is size of filter in bits, k is the number

of hash functions and n is the total number of key values that
are in the filter [9]. For a 10−10 false positive rate, k = 8
and m/n = 32 we can remember ≈ 576, 000 32-bit sequence
numbers with a 32MB memory. With an average packet size
of 400 bytes, this means that we can remember about 1 second
of traffic on 2 GBps link.

C. Key Management

Since a node will periodically change its V and HK values,
all the ASes must be updated with new values. We estimate
that these updates will occur once per day via a push from the
source to a representative node (server or router) in each AS.
This node then updates all AS’s routers with new values. The
routers preserve old values for some limited time, to validate
packets that may have been delayed in the network.

We can either use our lightweight signatures (with existing
V and HK values) or traditional public-key approaches to
validate new V and HK values. In case of scheduled, periodic
updates, lightweight signatures that are already attached to
packets carrying the update provide authentication without
any additional cost. In case of key compromise and on the
initial bootstrapping of the proposed anti-spoofing system, new
V and HK values need to be authenticated using traditional
public-key approaches. ASes would exchange traditional pub-
lic keys using a chain-of-trust approach, as follows.

Peering ASes exchange their traditional public keys as they
establish a peering relationship, using out-of-band commu-
nication. On bootstrap or key compromise, the AS creating
a {V , HK} update signs it with its traditional private key
and disseminates the versions to all its AS peers. A peer
already has the originator’s public key needed to verify the
authenticity. Upon successful verification and if the {V , HK}
values are new, it stores them and then modifies the message
to propagate it further. Additionally, any unknown traditional
public keys are extracted from the message, verified, and
stored. Node modifies the message by adding its own public
key to the list, and signing the entire message with its own
traditional private key. It sends the message to all its neighbors



but the last sender-peer. The process repeats at each hop.
The overhead of this communication is roughly one flood per
several days per AS, and is affordable.

The authenticity of traditional private and public keys of
ASes is proved in the established manner, via certificates
issued by trusted certificate authorities (CAs). Thus, traditional
public keys provided by neighbor ASes for other ASes are
verified by the CA’s signature, not merely the word of the
neighbor AS. If a private key is compromised, we must
revoke the certificate and issue new keys. These new keys are
propagated invoking the mechanism described in the previous
paragraph.

III. REDUCING UNWANTED TRAFFIC

While capabilities have been proposed before [2], [3], these
approaches generate route-dependent capabilities via cooper-
ation of routers on the traffic path. Such capabilities become
invalid if the route is changed or if there is multipath routing.
Multipath routing is present even today [10] for load-balancing
purposes, and it may be prevalent in the future Internet [11] for
reliability reasons. Our proposed approach generates tickets
(capabilities) at the destination, without cooperation from
routers and without dependence on the route; it is thus well-
suited for a dynamic routing environment.

We assume that all routers on the path verify the tickets
in forwarded traffic and drop packets with invalid tickets. All
packets in the Internet, including ticket requests and tickets,
also carry the lightweight signatures described in Section II
vouching for their authenticity.

A. Mechanism

The tickets are generated and used in the following manner:
1) The client issues a ticket request to a server. This request

carries the “server ticket” 1, which the server will include
in the reply so that its traffic is authorized to reach the
client. The server tickets have identical structure and use
to the client tickets, except that they have a different
value in the type field. We explain the necessity of
separating ticket types in the next section.

2) The server decides whether it will grant the access to the
client, and on a positive decision generates the “client
ticket” T = {sID, sAS, cID, type, lastValidTime, Sh},
where sID is the server’s identity, sAS is the
servers’ AS number, cID is the client’s identity,
the ticket type is “client” and lastValidTime is the
timestamp when the ticket should expire. Sh =
sign(sID, sAS, cID, type, lastValidTime), is constructed
using the lightweight signatures proposed in Section II.

3) The server’s border router verifies Sh and replaces it
with the AS-level signature SAS .

4) The client uses the ticket T in future packets, by
attaching T and SAS to each packet p, along with the

1The terminology used here to describe tickets is that a ticket type is
identified by its user, not its issuer or destination. Thus, client tickets are
used by clients to validate their packets to routers and servers, and server
tickets are used by servers to validate their packets to routers and clients.

value Ts, which is generated using the client’s trapdoor
hash function so that h(Ts, m) = SAS : SEQp, where
m is a hash over the contents and immutable header
fields of p, including the sequence number SEQp.

5) Routers on the path verify tickets in all packets they
forward. This is done by first verifying that the ticket
is fresh. The freshness check assumes that the client’s,
server’s and routers’ clocks are loosely synchronized,
which can be ensured by using the NTP protocol. A
router then extracts cID and sID from the ticket and
verifies that the source and destination identities in the
packet match these fields. It extracts the SAS and verifies
that it is valid for the sAS and T . Finally, it hashes Ts

and p with sender AS’s HK and verifies that the output
matches SAS : SEQp.

When a client first requests a ticket from the server, the
server has no direct experience of client behavior to verify
that it is not malicious. The server may decide to obtain a
client’s reputation from the reputation system, described in
the next section, and to grant tickets only to clients with a
high reputation score, or it may decide to grant the ticket to
each new client. Like in existing capability approaches [2],
[3] tickets should be short-lived, since a client’s behavior may
change. We expect that the validity period of several seconds
is short enough so that the server is not severely disabled if
the ticket is misused for a flooding attack, and long enough
to keep the ticket exchange cost affordable.

IV. BUILDING CLIENT REPUTATIONS

Reputation systems are commonly used to aid a user in
selection of a trustworthy provider [12] [13] [14]. There is a
significant body of research on provider reputation systems,
with proven methods to handle the problem of lying partici-
pants and defamation attacks. We propose a client reputation
system, which aids service providers in deciding to grant or
decline tickets to a given client. During the ticket-granting
process, each server may choose to rely more or less on a
client’s reputation score than on its personal, prior interaction
with this client. This will likely depend on the server’s prior
experience with the client and the freshness of this experience
versus the freshness of the reputation score.

A reputation can also be used during ticket-request floods
to prioritize request handling. We assume that ticket requests
are small, so they cannot overwhelm a server’s network, but
they can exhaust its CPU. A reputation check involves a table
lookup and is cheaper than processing ticket requests. If a
server’s network is very limited, the server may request ticket
request prioritization and filtering based on reputation scores
from its upstream provider. The provider obtains reputation
scores either from the server or from the reputation system.

A key insight behind client reputations is that a given
host tends to be well-administered or poorly-administered
over a considerable time, and that hosts that have behaved
maliciously in the past warrant a lower trust since they are
likely to misbehave in the future [4]–[6].



Client reputations differ from provider reputations in two
aspects: (1) Providers tend to be consistently good or bad (e.g.,
an E-bay seller will consistently ship promptly) but clients
tend to sporadically act maliciously towards a small set of
targets. A compromised machine is not constantly misused for
attacks – most of the time it is used by its owner for legitimate
activities. Even when engaged in attacks, some attack types
such as DDoS have a small target set. Thus existing provider-
reputation approaches that detect lying through voting do not
apply in case of client reputations: good votes would always
outnumber bad ones. (2) Clients can afford to reject providers
even at weak evidence of misbehavior, but providers that
reject clients without a good cause suffer business loss. This
makes the price of a false positive much higher in case of
client reputations. Both these facts argue for (1) bad reports
only, since good reports are expected to be plentiful even for
malicious clients and (2) strong proofs of malicious behavior
to minimize false positives.

A. Mechanism

The reputation system we propose works by collecting
reports from servers about clients who have misbehaved. We
assume servers have means of identifying misbehavior. The
report contains the client’s identity and the context of the
misbehavior, i.e., “worm traffic with a rate of x scans to port
y per second”, “DDoS of type y with a rate of x packets per
second”, etc. We plan to closely specify the format for the
context field in our future work, and we expect it will depend
on the type of reported misbehavior. At the minimum, each
context contains the packet rate and some description of mali-
cious traffic features that can be verified by others if a traffic
sample is provided. Server reports to a reputation center must
be authenticated. We plan to provide this authentication with
the anti-spoofing signatures from Section II that each packet
carries already. After collecting reports, the reputation system
serves them aggregated into a reputation score. Determining
the correct aggregation method is part of our future work.

To prevent server lying, we require that each report be
accompanied with a traffic sample proving that the alleged
activity occurred. Using the proposed lightweight signatures
and tickets, the reputation system can easily verify that the
malicious traffic is authentic, recent, carries a client ticket (i.e.
the behavior was unsolicited) and that its rate and features
correspond to the context of the report. Since information
needed to verify authenticity expires after a few days (when V
and HK values are changed) reports must be filed soon after
the malicious activity is detected. Note that the verification
process does not prove that the traffic was malicious, it only
verifies that it fits the reported context. Destinations are free
to decide which traffic warrants a bad report based on private
criteria.

We now explain the reason for separating server and client
ticket types. Without this separation, a client could contact a
server requesting a large file download, then use this traffic to
prove that the server has sent it a packet flood. Separate client

and server tickets prevent such an attack because the reputation
system accepts only proofs that carry a client ticket.

Because a bad behavior may be rare, we must remember bad
reports for a sufficiently long time to identify repeat offenders.
On the other hand, a previously bad client that was cleaned and
secured should have a way of redeeming itself and regaining
a high reputation score. We plan to address these issues by
providing short-term and long-term reputations. Short-term
reputations are built by giving a higher weight to recent reports
and discounting old ones, while long-term reputations are built
using all reports submitted in a recent, long time interval.
Short-term reputations are used by servers to accept redeemed
clients’ traffic during normal operation. Long-term reputations
are used during an attack, which leads to dropping of redeemed
clients’ traffic; but this effect will be infrequent, short-lived
and limited to those clients whose traffic reaches servers that
experience attacks at the time.

A client that was an object of a bad report should be notified
about this by the reputation system. The client should be
provided with the complete bad report. In case that the client
was compromised and the report was true, notification will
alert the machine’s owner about the compromise. Otherwise,
if the client mistakenly contacted a malicious server, the
notification will serve as a warning to avoid this server.

B. Deployment

For robustness and scalability reasons, as well as trust,
the reputation system must be distributed, and a peer-to-peer
design seems like a natural fit. A local reputation center could
be deployed at each AS, or customer ASes could use the
reputation center of their providers. This bounds the com-
munication cost of the reputation center, because it collects
and processes only local servers’ reports. Reputation centers
peer with each other to propagate reports or reputation scores.
Messages between reputation centers, and reputation scores
delivered to servers, are authenticated using anti-spoofing
signatures already present in packets.

Compromised centers cannot forge false reports, but they
can intentionally miscalculate reputation scores or selectively
suppress true reports. Existing approaches from provider rep-
utation systems can be applied to ensure that compromise
of a reputation center cannot jeopardize credibility of client
reputations in the entire system [12], [14]–[16]. For example,
a center’s peers can monitor its updates and vouch for cor-
rect score calculation. A server may need to contact several
reputation centers for an update to minimize risk of lying.

Communication overhead for report submission may be
large in case of large-scale security incidents such as a worm
spread, so reputation centers may be overwhelmed. To control
this overhead, we propose that a server aggregates all its
reports within some interval into a combined report, and files
it at the end of the interval. The combined report size may also
be limited, e.g., by requesting that a server choose reports that
describe the top N security incidents in the previous interval.

Reputation scores can be periodically (e.g., once a day)
downloaded by reputation users (servers) from local centers.



These downloads can be staggered to minimize congestion.
Since a client is presumed good in absence of bad reports,
reputation users and centers need only store identities and
scores of bad clients. Given that the largest botnet to date
contained up to 50 million bots [17], such storage is affordable.

Reputation centers can also push reputations at times when
numerous bad reports indicate a large-scale Internet incident
such as worm propagation. To support this, local reputation
centers would keep identities of servers associated with them
on the notification list.

We now briefly discuss the bootstrapping process. When the
reputation system is deployed, it will lack information about
already compromised machines. As a result, it would initially
regard all nodes as well-behaved, and would gradually develop
information about which nodes are not. Certain aspects of
our overall security architecture, such as the defense against
identity spoofing, would work at once, since they are not
based on knowledge of node behaviors. Others, such as
issuing of tickets and reputation building, would improve over
time. Given that misbehavior would quickly be detected and
reported, the period before the architecture reaches its full
effectiveness would be short.

V. RELATED WORK

Unwanted traffic handling. Publication [3] proposed a
DoS-limiting network architecture, TVA. The architecture en-
ables routers to mark packets en route to the destination. If the
destination is willing to accept this client’s traffic, it returns the
accumulated marks to the client as a capability. The routers are
also engaged in filtering traffic with invalid capabilities. They
prioritize traffic by giving priority to capability-carrying traffic,
then to capability-request traffic and finally to legacy traffic.
A main drawback of this architecture is that capabilities are
route-dependent and thus become invalid during route changes
or when multipath routing is used. Further, this architecture
inflicts collateral damage on legitimate traffic during ticket-
request floods, because all ticket requests are treated with equal
priority, while our client reputations facilitate prioritization of
requests based on clients’ prior behaviors. TVA provides little
guidance on how a destination could differentiate between
good and bad clients, which is the major motivation for our
client reputations.

In SIFF [2] authors propose a system very similar to TVA,
with respect to how capabilities are generated and used. But
SIFF capabilities are valid for a limited time, like our tickets,
while TVA capabilities are valid for a limited number of
packets. Recent work [18] attaches computational puzzles to
ticket requests to prevent ticket-request flooding, whereas we
use client reputations. Computational puzzles do not prove
a client’s “goodness” but just limit its request rate, and are
biased against well-behaved but poorly provisioned clients.
We have proposed reputation-based capabilities in [19]. These
reputations are built locally at the server based on the recent
source’s traffic rate only, whereas reputations we propose here
are built collaboratively to let servers benefit from experience
of others.

In [20] authors propose PATRICIA, an edge network col-
laboration framework that enforces communication approval
at the source and the destination network during attacks.
Destinations express their approval via capabilities, and source
networks can blacklist sources that misbehave or fail to obtain
a capability. While the prevailing theme in [20] and our work
is the same — traffic regulation via collaboration — the
mechanisms are very different. Additionally, [20] does not
address handling of misbehaving participants and does not
elaborate on how to build malicious source blacklists, while
we address both these problems via reputations.

Spoofing Elimination. Packet passports proposed in [9]
are used to verify the source of a packet by attaching a
sequence of marks, where each mark is created using a secret
shared between the source and one AS on the path to the
destination. This not only requires extensive secret sharing
when deployment is large, but also cannot properly validate
packets during route changes or multipath routing.

Spoofing prevention method (SPM) [21] associates a pair of
source-destination ASes with a cryptographic secret exchanged
between them, and carried in the packets. Packets are checked
for the proper mark as they exit the source AS and on entry
to the destination AS. SPM provides lower security than our
solution because the packet mark is not bound to the specific
packet, which allows sniffing. Even if this were fixed, use of
a shared secret for authentication cannot provide the perfect
accountability that the future Internet needs. Other spoofing
prevention approaches [22]–[26] do not eliminate spoofing
completely, but only provide means to routers [22]–[24] or
to the target [25], [26] to detect and filter some amount of
spoofed traffic.

Client Reputations. In [27] Allman et al. propose an archi-
tecture for behavioral history that could be applied to “actors”
such as Internet hosts, mail servers, mail addresses, etc. This
is similar to our client reputations, but the system is discussed
at a very high level, which prevents direct comparison. One
vulnerability of [27] is that lying is handled by valuing higher
those reports that were labeled as useful by other reporters, or
where activity was witnessed by others. This is not reasonable
in case of isolated malicious behavior, such as denial-of-
service attacks, and it is unclear how attackers would be
prevented from labeling each other’s reports. Our traffic proofs
successfully eliminate false reports.

Publications [12], [14]–[16] propose various reputation
models where voting is used to detect lying. This does not
apply to our client reputations because of the isolated nature
of malicious behavior and because attackers could participate
in voting. It does however apply to detecting lying reputation
centers.

VI. FUTURE WORK AND CONCLUSIONS

While the design described here is convincing at the
conceptual level, for it to provide an effective means for
accountability in the future Internet, we need to solve many
practical problems. Of critical importance is implementation
of the proposed mechanisms in real hosts and routers to prove



that they can operate at packet speeds. This is our immediate
next step.

Other real-world issues must also be considered. For ex-
ample, our design, like many others, requires a ubiquitous
PKI for bootstrapping source signatures. Such a PKI has never
been accepted in today’s Internet, and some of the reasons for
that failure remain in the future Internet. For instance, there
are administrative questions about who is allowed to provide
signatures at the root of the PKI hierarchy. Such organizations
have substantial control over Internet activities, so assigning
this authority is an issue of great real-world importance. In
our proposed system, the owner of the root of the PKI could
make it impossible for entire segments of the Internet to
provide accountability for their packets, likely with unpleasant
consequences for users in that segment of the network. The
problem is not unique to our proposed system, but must be
resolved for the system to achieve its promise.

More thought is also required to deal with the issue of
handling packets that come from sources that have been
identified as malicious. We have already determined that long-
term and short-term behavior make a difference in reputation,
and that the weight servers put on a malicious behavior will
depend on private criteria and on current server load. Other
questions, including the type of the traffic or perhaps some
kind of indemnification system, could bear on the issue of
how to handle traffic from nodes that have behaved badly. A
related issue is aggregation of reports of bad behavior, i.e.
the exact algorithm that reputation centers use to compute a
reputation score from bad reports. While reports are authenti-
cated to prove that the client did indeed send the packets being
complained of, we believe there is no lightweight, universally
acceptable way to prove that the behavior was malicious.
Sophisticated aggregation methods must be used to balance
the necessity of a quick misbehavior punishment via lowering
of a reputation score against a possibility of a bias.

Today’s Internet is a difficult and mysterious environment,
in large part because one can never be sure whether a particular
packet, data stream, or application-level communication comes
from its purported source. Full solution of this problem would
allow Internet users to make others accountable for their
actions. Proper, reliable attribution of network traffic to its
originator is a precursor to any system of accountability.
Attempts to retrofit such attribution onto today’s Internet have
failed. Building accountability into the core of any future
version of the Internet is thus critical. This paper describes
a promising approach to ensuring that, in the Internet of the
future, every packet can be tied to the machine that sent
it. This insurance allows both highly automated handling of
ongoing attacks via tickets and reliable higher level analysis
and long-term memory of host behaviors, via a reputation sys-
tem. Jointly, source signatures, tickets and a client reputation
system will provide the accountability today’s Internet lacks.

REFERENCES

[1] Advanced Network Architecture Group. ANA Spoofer Project. http:
//spoofer.csail.mit.edu/.

[2] A. Yaar, A. Perrig, and D. Song. SIFF: A Stateless Internet Flow Filter
to Mitigate DDoS Flooding Attacks. In IEEE Symposium on Security
and Privacy, 2004.

[3] X. Yang, D. Wetherall, and T. Anderson. A DoS-limiting network
architecture. In ACM SIGCOMM, 2005.

[4] V. Yegneswaran, P. Barford, and S. Jha. Global Intrusion Detection
in the DOMINO Overlay System. Proc. the Network and Distributed
Security Symposium (NDSS) 2004.

[5] D. Dagon, G. Gu, C. Zou, J. Grizzard, S. Dwivedi, W. Lee, and
R. Lipton. A Taxonomy of Botnets. Unpublished paper, May 2005.

[6] P. Barford and V. Yegneswaran. An Inside Look at Botnets. Special
Workshop on Malwar Detection, Advances in Information Security,
Springer Verlag, 2006.

[7] D Andersen, H Balakrishnan, N Feamster, T Koponen, D Moon, and
S Shenker. Accountable Internet Protocol (AIP) . In Proc. of ACM
SIGCOMM, 2008.

[8] A. Shamir and Y.Tauman. Improved Online/Offline Signature Schemes.
In CRYPTO, 2001.

[9] Xin Liu, Xiaowei Yang, David Wetherall, and Thomas Anderson.
Efficient and Secure Source Authentication with Packet Passports. In
SRUTI, 2006.

[10] Wolfgang Muhlbauer, Anja Feldmann, Olaf Maennel, Matthew
Roughan, and Steve Uhlig. Building an AS-Topology Model. In ACM
SIGCOMM, 2006.

[11] W. Xu and J. Rexford. MIRO: Multi-path Interdomain ROuting. In
ACM SIGCOMM, 2006.

[12] K. Aberer and Z. Despotovic. Managing Trust in a Peer-2-Peer Infor-
mation System. In Proceedings of the Tenth International Conference
on Information and Knowledge Management, 2001.

[13] EBay. EBay Feedback Forum. http://pages.ebay.com/services/forum/
feedback.html.

[14] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati.
Managing and Sharing Servers’ Reputations in P2P Systems. In
IEEE Transactions on Knowledge and Data Engineering, vol. 15, n.4,
July/August 2003, pp. 840-854.

[15] M. Hou, X. Lu, X. Zhou, and C. Zhan. A trust model of p2p
system based on confirmation theory. ACM SIGOPS Operating Systems
Review, Volume 39 Issue 1, January 2005.

[16] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati,
and F. Violante. A Reputation-based Approach for Choosing Reliable
Resources in Peer-to-Peer Networks. In Proc. of the 9th ACM Con-
ference on Computer and Communications Security, Washington, DC,
USA, November 17-21, 2002.

[17] InformationWeek. Storm Worm Botnet More Powerful Than
Top Supercomputers. http://www.informationweek.com/news/internet/
showArticle.jhtml?articleID=201804528.

[18] B. Parno, D. Wendland, E. Shi, A. Perrig, B. Maggs, and Y. Hu.
Portcullis: Protecting Connection Setup from Denial-of-Capability At-
tacks. In Proceedings of the ACM SIGCOMM, 2007.

[19] M. Natu and J. Mirkovic. Fine-Grained Capabilities for Flooding DDoS
Defense Using Client Reputations. In Proceedings of the Large-Scale
Attack and Defense Workshop, 2007.

[20] L. Wang, Q. Lu, and D. Luong. Engaging Edge Networks in Preventing
and Mitigating Undesirable Network Traffic. In Proc. of NPSec, 2007.

[21] A. Bremler-Barr and H. Levy. Spoofing Prevention Method. In
Proceedings of INFOCOM’05, March 2005.

[22] K. Park and H.Lee. On the effectiveness of route-based packet filtering
for distributed DoS attack prevention in power-law internets. In
Proceedings of SIGCOMM 2001.

[23] J. Li, J. Mirkovic, M. Wang, P. Reiher, and L. Zhang. SAVE: Source
Address Validity Enforcement Protocol. In INFOCOM, 2002.

[24] Z. Duan, X. Yuan, and J.Chandrashekar. Constructing Inter-Domain
Packet Filters to Control IP Spoofing Based on BGP Updates’. Pro-
ceedings of INFOCOM’06, April 2006.

[25] C. Jin, H. Wang, and K.G. Shin. Hop-count filtering: an effective defense
against spoofed DDoS traffic. Proceedings of the 10th ACM conference
on Computer and communications security, 2003.

[26] A. Perrig, D. Song, and A. Yaar. StackPi: A New Defense Mechanism
against IP Spoofing and DDoS Attacks. Carnegie Mellon University
Technical Report, CMU-CS-02-208, February 2003.

[27] Mark Allman, Ethan Blanton, and Vern Paxson. An Architecture for
Developing Behavioral History. In Proceedings of SRUTI 2005, pp
45-51.


