
 

Article

Reference

Building an Earth Observations Data Cube: lessons learned from the
Swiss Data Cube (SDC) on generating Analysis Ready Data (ARD)

GIULIANI, Gregory, et al.

Abstract

Pressures on natural resources are increasing and a number of challenges need to be
overcome to meet the needs of a growing population in a period of environmental variability.
Some of these environmental issues can be monitored using remotely sensed Earth
Observations (EO) data that are increasingly available from a number of freely and openly
accessible repositories. However, the full information potential of EO data has not been yet
realized. They remain still underutilized mainly because of their complexity, increasing
volume, and the lack of e cient processing capabilities. EO Data Cubes (DC) are a new
paradigm aiming to realize the full potential of EO data by lowering the barriers caused by
these Big data challenges and providing access to large spatio-temporal data in an analysis
ready form. Systematic and regular provision of Analysis Ready Data (ARD) will signi cantly
reduce the burden on EO data users. Nevertheless, ARD are not commonly produced by data
providers and therefore getting uniform and consistent ARD remains a challenging task. This
paper presents an approach to enable rapid data access and [...]

GIULIANI, Gregory, et al. Building an Earth Observations Data Cube: lessons learned from the
Swiss Data Cube (SDC) on generating Analysis Ready Data (ARD). Big Earth Data, 2017, p.
1-18

DOI : 10.1080/20964471.2017.1398903

Available at:
http://archive-ouverte.unige.ch/unige:99907

Disclaimer: layout of this document may differ from the published version.

 1 / 1

http://archive-ouverte.unige.ch/unige:99907


Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tbed20

Download by: [Université de Genève] Date: 30 November 2017, At: 02:41

Big Earth Data

ISSN: 2096-4471 (Print) 2574-5417 (Online) Journal homepage: http://www.tandfonline.com/loi/tbed20

Building an Earth Observations Data Cube: lessons
learned from the Swiss Data Cube (SDC) on
generating Analysis Ready Data (ARD)

Gregory Giuliani, Bruno Chatenoux, Andrea De Bono, Denisa Rodila, Jean-
Philippe Richard, Karin Allenbach, Hy Dao & Pascal Peduzzi

To cite this article: Gregory Giuliani, Bruno Chatenoux, Andrea De Bono, Denisa Rodila,
Jean-Philippe Richard, Karin Allenbach, Hy Dao & Pascal Peduzzi (2017): Building an Earth
Observations Data Cube: lessons learned from the Swiss Data Cube (SDC) on generating Analysis
Ready Data (ARD), Big Earth Data

To link to this article:  https://doi.org/10.1080/20964471.2017.1398903

© 2017 The Author(s). Published by Taylor &
Francis Group and Science Press on behalf
of the International Society for Digital Earth.

Published online: 30 Nov 2017.

Submit your article to this journal 

View related articles 

View Crossmark data



BIG EARTH DATA, 2017

https://doi.org/10.1080/20964471.2017.1398903

RESEARCH ARTICLE

Building an Earth Observations Data Cube: lessons learned 
from the Swiss Data Cube (SDC) on generating Analysis Ready 
Data (ARD)

Gregory Giuliania,b, Bruno Chatenouxa, Andrea De Bonoa, Denisa Rodilaa,b,  
Jean-Philippe Richarda, Karin Allenbacha, Hy Daoa,c and Pascal Peduzzia,c,d

aInstitute for Environmental Sciences/GRID-Geneva, University of Geneva, Geneva, Switzerland; bInstitute for 
Environmental Sciences/EnviroSPACE, University of Geneva, Geneva, Switzerland; cInstitute for Environmental 
Sciences/Environmental Governance and Territorial Development, University of Geneva, Geneva, Switzerland; 
dScience Division, United Nations Environment Programme, Geneva, Switzerland

ABSTRACT

Pressures on natural resources are increasing and a number of 
challenges need to be overcome to meet the needs of a growing 
population in a period of environmental variability. Some of these 
environmental issues can be monitored using remotely sensed 
Earth Observations (EO) data that are increasingly available from 
a number of freely and openly accessible repositories. However, 
the full information potential of EO data has not been yet realized. 
They remain still underutilized mainly because of their complexity, 
increasing volume, and the lack of e"cient processing capabilities. 
EO Data Cubes (DC) are a new paradigm aiming to realize the full 
potential of EO data by lowering the barriers caused by these Big 
data challenges and providing access to large spatio-temporal data 
in an analysis ready form. Systematic and regular provision of Analysis 
Ready Data (ARD) will signi#cantly reduce the burden on EO data users. 
Nevertheless, ARD are not commonly produced by data providers and 
therefore getting uniform and consistent ARD remains a challenging 
task. This paper presents an approach to enable rapid data access and 
pre-processing to generate ARD using interoperable services chains. 
The approach has been tested and validated generating Landsat ARD 
while building the Swiss Data Cube.

1. Introduction

Due to pressures from climate change, demographic, and economic growth, the land cover 

is changing (Rockstrom et al., 2009; Wulder, Masek, Cohen, Loveland, & Woodcock, 2012). To 

better preserve the quality of the environment and improve the management of natural 

resources and land planning, it is useful to monitor these changes through time (Wulder  

et al., 2008). One of the main advantages of remote sensing is to provide a synoptic view of 
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2   G. GIULIANI ET AL.

a given spatial extent. With the archives from Landsat satellite sensors, the evolution of this 

coverage can be monitored all the way back to 1972 and with updates every 15 days at 30 m 

spatial resolution (Woodcock et al., 2008). Now with the introduction of new satellite sensors 

(e.g. Sentinel 2) both the spatial and temporal resolutions have increased (Gómez, White, & 

Wulder, 2016).

Remotely sensed Earth Observations (EO) data are increasingly available from a number 

of freely and openly accessible repositories. These data are highly valuable because of their 

unique and globally consistent information that they include (Lewis et al., 2016). Indeed, 

global observations together with scienti#c expertise and appropriate tools provide sub-

stantial bene#t supporting economic development, decision-making, and policy implemen-

tation for all countries (Douglas McCuistion & Birk, 2005; Lehmann et al., 2017). However, 

the full information potential of EO data has not been yet realized. They remain still underuti-

lized and stored in electronic silos of data (Gore, 1998; Lewis et al., 2016). This is due to several 

reasons: (1) increasing volumes of data generated by EO satellites; (2) lack of expertise, 

infrastructure, or internet bandwidth to e"ciently and e$ectively access, process, and utilize 

EO data; (3) the particular type of highly structured data that EO data represent introducing 

challenges when trying to integrate or analyze them; (4) and the substantial e$ort and cost 

required to store and process data limits the e"cient use of these data (CEOS, 2017; Lewis 

et al., 2016; Purss et al., 2015). Therefore, EO data can be considered as Big Data, data that 

are too large, fast-lived, heterogeneous, or complex to get understood and exploited 

(Baumann, Rossi, et al., 2016). Consequently, we need new approaches to fully bene#t from 

EO data and (1) unlock the information power of EO data; (2) broaden the use of EO data to 

a wider range of communities; and (3) support decisions-makers with the knowledge they 

require by systematically analyzing all available observations and convert them into mean-

ingful geophysical variables.

To address these Big Data challenges, it is necessary to move away from traditional local 

processing (e.g. desktop computer) and data distribution methods (e.g. scene-based #le 

download) and lower the barriers caused by data size and related complexities in data prepa-

ration, handling, storage and analysis (CEOS, 2017). This paradigm shift is currently repre-

sented by EO Data Cubes (Baumann, Mazzetti, et al., 2016; Purss et al., 2015), an approach 

that is receiving increasing attention as a new solution to store, organize, manage, and 

analyze EO data in a way that was not possible before. Data Cubes (DC) are aiming to realize 

the full potential of EO data repositories by addressing Volume, Velocity, and Variety chal-

lenges, providing access to large spatio-temporal data in an analysis ready form (Baumann, 

2017; Lewis et al., 2017). Currently, there are various operational DC like the Australian 

Geoscience Data Cube (AGDC – http://www.datacube.org.au), the Earth Observation Data 

Cube (EODC – http://eodatacube.eu), the Earth System Data Cube (ESDC – http://earthsys-

temdatacube.net), Earth on Amazon Web Services (EAWS – https://aws.amazon.com/earth/), 

and Google Earth Engine (GEE - https://earthengine.google.com). These di$erent initiatives 

are covering di$erent spatial scales (e.g. national for the AGDC, continental for the EODC, 

global for EAWS and GEE); storing di$erent data (e.g. only Landsat 8 for the EODC while the 

AGDC stores Landsat 5, 7, 8, MODIS, and Sentinel 2 data; only processed products for the 

ESDC); using di$erent infrastructure (e.g. high performance computer for the AGDC, cloud 

for EAWS and GEE); using di$erent software implementations (e.g. Open Data Cube for the 

AGDC; RasDaMan1 for the EODC; THREDDS for the ESDC); and using di$erent interfaces to 

interact with a DC (e.g. Python API for AGDC, GEE, EAWS, ESDC; OGC WCS and WCPS for 
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BIG EARTH DATA   3

EODC) (Baumann, Furtado, Ritsch, & Widmann, 1997; Baumann, Mazzetti, et al., 2016; Flach 

et al., 2016; Gorelick et al., 2017). This diversity of approaches asks also for a clear de#nition 

of an EO Data Cube. A tentative one has been recently made with the publication of “The 

Datacube Manifesto” that de#nes a Data Cube as 

a massive multi-dimensional array, also called “raster data” or “gridded data”; “massive” entails 

that we talk about sizes signi#cantly beyond the main memory resources of the server hardware. 

Data values, all of the same data type, sit at grid points as de#ned by the d axes of the d-dimen-

sional datacube. Coordinates along these axes allow addressing data values unambiguously. 

A d-dimensional grid is characterized by the fact that each inner grid point has exactly two 

neighbours along each direction; border grid points have just one. (Baumann, 2017)

The author de#nes also six principles of Data Cube services to ensure that services are sig-

ni#cantly more user-friendly, e"cient, and scalable than other data paradigms.

Currently, Geoscience Australia, the National Aeronautics and Space Administration 

(NASA), the Commonwealth Scienti#c and Industrial Research Organisation (CSIRO), and the 

United States Geological Survey (USGS) under the umbrella of the Committee on Earth 

Observation Satellites (CEOS) have joined their expertise and are leading the development 

of the Open Data Cube (https://www.ceosdatacube.org). The main objective of this initiative 

is to provide a data architecture solution to lower the technical barriers for users to exploit 

EO data to its full potential and consequently solving the problem of accessibility and use 

while increasing the impact of EO data (CEOS, 2017). The primary problems for users are 

data access, data preparation, and e"cient analyses to support user applications. The two 

#rst issues are essential challenges to tackle while building a DC. Indeed, these steps concern 

the generation of Analysis Ready Data (ARD). CEOS de#nes ARD as “satellite data that have 

been processed to a minimum set of requirements and organized into a form that allows 

immediate analysis without additional user e$ort” (Killough, 2016). It is envisioned that 

systematic and regular provision of ARD will signi#cantly reduce the burden on EO data 

users. To be considered as ARD, data should satisfy the following requirements: (1) metadata 

description; (2) radiometric calibration; (3) geometric calibration; (4a) solar and atmospheric 

calibrations (for optical sensors) or (4b) speckle #ltering (for radar sensors). ARD corresponds 

for Landsat 5/7/8 and Sentinel 2 to a surface re%ectance (e.g. Level 2) or to gamma naught 

backscatter for Sentinel 1. Landsat ARD data can be ordered and accessed at the USGS Earth 

Resources Observation and Science (EROS) Center Science Processing Architecture (ESPA): 

http://espa.cr.usgs.gov. However, getting uniform and consistent ARD remains a challenging 

task. Indeed, ESPA has not yet all the entire Landsat data archived available; data ordering 

and delivery can be long (e.g. several hours or days); and the full process from ordering to 

getting the data has not been automated yet. Similarly Sentinel 1 and 2 data are not routinely 

generated and the Sentinels Data Hub (https://scihub.copernicus.eu/) su$ers from the same 

drawbacks identi#ed for ESPA. This clearly limits the accessibility and ingestion processes 

while building and updating a DC and consequently ask to #nd alternative ways to generate 

ARD products.

Recognizing these issues, the aim of this paper is to present an approach to enable rapid 

data access and pre-processing to generate Analysis Ready Data. The approach has been 

tested and validated by signi#cantly facilitating the generation of ARD using Landsat medi-

um-resolution imagery allowing to build the #rst version of the Swiss Data Cube (SDC – http://

www.swissdatacube.org).
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4   G. GIULIANI ET AL.

2. Background: setting the scene for the Swiss Data Cube

Traditional environmental data (e.g. #eld data collection) su$ers from data inconsistencies 

caused by changes in reporting methodologies and from gaps (e.g. missing measurements/

observations). EO provides a unique opportunity to build consistent time series (i.e. same 

measurements conducted at regular intervals), to compare di$erent periods of time, and to 

derive trends. In this regard, Landsat data records are highly valuable for Global/Regional/

National/Sub-national land changes studies. Landsat observations have the longest time-se-

ries, wide extent, medium spatial, and moderate temporal resolutions (Santos & Gonçalves, 

2014; Wulder et al., 2008, 2012). Moreover, in 2008 all new and archived Landsat data held 

by the United States Geological Survey (USGS) were made freely available over the Internet 

followed by a tremendous increase in scienti#c investigations and applications (Woodcock 

et al., 2008; Wulder et al., 2012). Currently, most records of the Landsat archive are publicly 

available on platforms like USGS EarthExplorer,2 LandsatLook Viewer,3 GloVis,4 the Global 

Earth Observation System of Systems (GEOSS) portal,5 or on Google6 and Amazon7 Cloud-

based Web Services. Before the free and open access policy, a daily average of 52 scenes of 

Landsat data were distributed, but since 2008 this number has dramatically increased to 

reach a value of 5,700 scenes (Ryan, 2016). The free and open access policy of Landsat data 

is a brilliant example on how to maximize the return on the large investments in satellite 

missions (Wulder et al., 2012). The bene#ts of similar Open Data initiatives were emphasized 

by the Group of Earth Observation (GEO) when pointing out the economic bene#ts brought 

back by these initiatives: “The economic value of geospatial data lies in its utility” (Ryan, 2016). 

According to GEO, so far more than 12 million Landsat images have been delivered across 

186 countries enabling users to access multiple-year scenes for the same locations (Gray 

Davidson, 2014).

Harnessing the full potential of these EO data and getting meaningful information 

requires not only massive computing resources, but also specialized algorithms and dedi-

cated tools, which have to be brought to data instead of moving the data to processing 

centers (Evangelidis, Ntouros, Makridis, & Papatheodorou, 2014; Karmas, Tzotsos, & 

Karantzalos, 2015). Data Cubes are aiming to address these Big Data challenges by providing 

an architecture allowing a time-series multi-dimensional (e.g. space, time, data type) stack 

of spatially aligned pixels ready for analysis. The concept has been proven and validated by 

Geoscience Australia together with CSIRO and the National Computing Infrastructure of 

Australia (NCI) who implemented the Australian Geoscience Data Cube, a national/conti-

nental scale DC of thousands of terabytes of EO data (Landsat, MODIS, Sentinel-2) making 

it quicker and easier to provide information on environmental issues that can a$ect all 

Australians (Evans et al., 2015; Lewis et al., 2016; Purss et al., 2015). It has allowed mapping 

the extent of surface water across the entire Australian continent using 27 years of Landsat 

imagery (Mueller et al., 2016), gaining knowledge on %ood dynamics over Australia (Tulbure, 

Broich, Stehman, & Kommareddy, 2016), or extracting the intertidal extent and topography 

of the Australian coastline (Sagar, Roberts, Bala, & Lymburner, 2017).

Following the work done by Australia and CEOS, Switzerland has decided to follow their 

work in order to bene#t from the long-term Landsat data archive and monitor environmental 

changes through space and time. Indeed, the pressure on Switzerland’s natural resources is 

increasing and a number of challenges (e.g. pressure on surface water, land management, 

biodiversity loss) need to be overcome in order to meet the needs of a growing population 
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BIG EARTH DATA   5

in a period of environmental variability (Environment Switzerland 2015, 2015). Some of these 

important environmental issues can be monitored using remotely sensed Earth Observations 

and bene#t from di$erent data archives (e.g. Landsat, Sentinel). The Swiss Data Cube (SDC) 

is supported by the Federal O"ce for the Environment (FOEN). GRID-Geneva is a partnership 

between the United Nations Environment Program, FOEN, and the University of Geneva 

(UNIGE). The SDC has been developed, implemented and operated by the GRID-Geneva. 

The main objectives of the SDC are to support the Swiss government for environmental 

monitoring and reporting and enable Swiss scienti#c institutions (e.g. Universities) to facil-

itate new insights and research using the SDC and to improve the knowledge on the Swiss 

environment using EO data.

3. Building the Swiss Data Cube: challenges and lessons learned

A fundamental aspect while building a DC is having ARD products ingested, stored in the 

database, and readily available. Considering that ARD products are not commonly generated 

by data providers and the fact that current delivery mechanisms are not e"cient, this requires 

#nding a procedure to routinely generate ARD ensuring that all observations stored in a 

Data Cube are consistent and comparable (Figure 1). Ideally this procedure must be auto-

mated as much as possible (e.g. discover, download, and pre-processing), should be able to 

discover and access data from di$erent repositories (e.g. ESPA, Sentinels Data Hub), should 

handle di$erent sensors (e.g. Landsat MSS, TM, ETM, OLI; Sentinel 1 SAR; Sentinel 2 MSI), and 

should be interoperable (e.g. to enhance reusability).

To satisfy these requirements, the Live Monitoring of Earth Surface (LiMES) framework 

has been used. LiMES is a framework that helps automating EO data discovery and (pre-)

processing using interoperable service chains for transforming observations into information 

products suitable for monitoring environmental changes (Giuliani et al., 2017). This frame-

work is designed using a combination of large storage capacities, high performance distrib-

uted computers, and interoperable standards to develop a scalable, consistent, %exible, and 

Figure 1. General workflow for generating information products from observations.
Notes: Analysis Ready Data (ARD) are concerned by the four first steps (data acquisition, conversion to radiance, TOA reflectance 
and Surface reflectance) allowing then to analyze data and generate time-series.
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6   G. GIULIANI ET AL.

e"cient analysis system that can be used on various domains through decades of data for 

monitoring purposes (Figure 2).

While building the SDC, the LiMES framework has helped to automatically generate 

Landsat ARD products by overcoming the obstacles presented hereafter.

3.1. Landsat scenes discovery and availability

To get the full coverage of Switzerland, eight Landsat scenes are necessary. They are covered 

by the following WRS-28 Paths and Rows: 193/027, 194/027, 195/027, 196/027, 193/028, 

194/028, 195/028, 196/028 (Figure 3).

An important issue identi#ed is that any data repository used (e.g. USGS ESPA, GEE, AWS) 

does not have all the scenes available. Therefore, to have the most complete archive possible 

it is necessary to query all these repositories. A Python script was written to automatically 

generate the list of scenes available in these three repositories for a given coverage. The 

scene IDs will be further used in the next step of the work%ow (i.e. data access and process-

ing). To cover Switzerland, currently 3386 scenes for a total size of 867.5 GB over the period 

between 1984 to 2017 are available. This corresponds to 1155 Landsat 5, 1520 Landsat 7, 

and 711 Landsat 8 scenes. However, when looking at the availability of scenes across time, 

an important gap has been identi#ed in the period 1991-1998 (Figure 4).

After discussing with CEOS, it seems that there are two explanations for this gap:

Figure 2. Processing workflow.
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BIG EARTH DATA   7

(1) the European Space Agency (ESA) that is operating the Fucino (FUI) and Matera (MTI) 

ground stations in Italy have not yet provided the data. ESA is still loading those data to 

USGS and maybe reprocessing e$ort on their end is causing delays.

(2) there was a lack of data ingested over the period 1987-1999. Indeed, to ensure that 

data are of su"cient quality, scenes can be rejected for technical reasons and consequently 

not stored in the online archive. This might be caused for example by a paucity of Payload 

Correction Data (PCD). These ancillary data include information that accompanies the scenes 

(e.g. location of spacecraft during acquisition, pointing information) and are used for cali-

bration purposes (Goward et al., 2006).

It seems that this gap does not only a$ect Switzerland. The same gap over Georgia, 

Moldova, Nauru, Vanuatu, and Solomon has been identi#ed. This gap probably a$ects a 

large geographical coverage. For the SDC, the solution has been to get the data directly from 

ESA holdings, process them to Surface Re%ectance (SR), and ingest them into the SDC.

Figure 3. Landsat scenes coverage over Switzerland.

Figure 4. Data gap in Landsat scenes availability between 1991 and 1998.
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8   G. GIULIANI ET AL.

3.2. Landsat scenes access

There are several options available to access Landsat imagery. It is possible to order images 

directly on web interfaces like EarthExplorer or Glovis. Another option is to use the USGS 

Application Programming Interface (API) to programmatically retrieve Landsat scenes. 

Alternatively, GEE and AWS are accessible either directly via HTTP protocol, or via gsutil 

(https://cloud.google.com/storage/docs/gsutil), which is a Python application that gives 

access to Google Cloud Storage from command lines.

To be able to perform an automatic data acquisition %ow, it is necessary to test these 

di$erent methodologies and #nd the optimal solution to e"ciently download satellite 

imagery. Using the LiMES framework, a testing instance illustrated in Figure 2 has been 

implemented in Python. The testing instance was used to monitor and analyze di$erent 

performance parameters of the download process from each data provider on each access 

method (Table 1) referred as protocol in the following lines.

The main objective of the following tests is to de#ne and analyze which combination of 

provider and access method is faster and what are the possible network instabilities or the 

potential speed limitation after downloading a large number of scenes.

In order to avoid possible interaction between providers, each test session was performed 

randomly (i.e. protocols were run in random order). Three pro#les of bands combinations 

were randomly used as follows:

•  3 bands (e.g. 2, 3, 4) to simulate the case of a simple composite process,

•  3 bands (e.g. 2, 3, 4) and panchromatic (e.g. 8) to simulate the case of a simple composite 

process with pan-sharpening,

•  All bands (e.g. 1 to 11) to simulate the case of a more complex process.

To avoid possible download speed limitation in case of recurrent download of the same 

scene (noticed during the development phase), the sites (path and row) were selected ran-

domly. The number of acquired scenes on a site randomly varied from 1 to 3.

The way providers distribute scenes varies as well. USGS and GEE are providing a single 

zipped #le with all the bands, but they are using di$erent compression formats (respectively 

tar.gz and tar.bz). AWS allows a direct access to each band in a geoti$ format with the com-

press de%ate option (meaning they can be used directly). Consequently, unzipping of data 

was added in the test process, as well as the process of cleaning (removing zipped #le and 

unnecessary bands).

A comparison between the data access phases of two di$erent providers (GEE and AWS), 

using gsutil, is shown in Figure 5. This #gure shows the distribution of these phases (down-

load only for AWS, shown in red; and download, unzip and clean for GEE, shown in blue) 

using as an example the access of all bands of the scenes with IDs: LC81980212015103LGN00, 

LC81980212015279LGN00, and LC81980212014260LGN00. It emphasizes the di$erences in 

the data acquisition process by providers.

Table 1. Landsat data providers and accessing methods.

Provider/access method http gsutil

USGS usgs_http N/A
GEE gee_http gee_gsutil
AWS aws_ pds_http aws_pds_gsutil
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BIG EARTH DATA   9

Figure 5 emphasizes that the size of acquired bands di$ers between providers. This means 

that for a given scene the size of downloaded data (zipped or not) and of the acquired band 

will not be comparable, as well as any download speed issued from these values. Consequently, 

the total time needed to get “ready to work” bands for a given set of scenes was used as 

performance parameter (158 and 206 seconds in Figure 5). To compare protocols inde-

pendently of the size of the data-set, the total time of each protocol in each round of test 

was normalized by the minimum total time of the session (Total Time Ratio). In Figure 5, the 

minimum time was 158s, and the aws_pds_gsutil ratio was 1, while the gee_gsutil ratio was 

1.3 (206/158). This identi#es the faster combination (provider/access method) to access a 

Landsat scene.

The described benchmarking tests were performed on a server located in the University 

of Geneva Network (1 Gbps connection) on a Xen virtual machine (2.9 GHz, 8 Gb RAM, 4 

CPUs). All protocols were tested in random order every three hours during one week. Each 

protocol was then tested 56 times with 140 scenes acquired for a total of 409 Gb of 

downloads.

After analyzing the benchmark tests results, we can conclude that AWS through gsutil is 

the best combination of provider/access method, for any bands combination, in terms of 

download speed, stability, storage, and data readiness (Figure 6), indicating that USGS pro-

tocol should be used as a last option when imagery is not available through other 

protocol.

3.3. Landsat scenes pre-processing

Pre-processing is the essential step for generating ARD products. In the case of the SDC, 

using the LiMES framework, this procedure is executed in two steps. The #rst step concerns 

the assessment of clouds, cloud shadows, snow, and water, generating masks accordingly. 

All these factors can have a signi#cant in%uence on the behavior of the spectral bands of 

optical sensors and it is therefore fundamental to detect them before any type of analysis 

Figure 5. Acquisition phases comparison between GEE and AWS.
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10   G. GIULIANI ET AL.

is performed. Several solutions have been tested (Fmask, ARCSI) and compared with ESPA 

products, the best option (the most conservative) is to use the Fmask algorithm (Zhu, Wang, 

& Woodcock, 2015). All these masks are stored in the DC as they can be useful when analyzing 

data. The second step concerns the conversion to SR by applying and correcting atmospheric 

e$ect (Song, Woodcock, Seto, Lenney, & Macomber, 2001). After testing di$erent algorithms 

such as Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) (Schmidt, 

Jenkerson, Masek, Vermote, & Gao, 2013), R packages (RStoolbox and Landsat), Grass GIS 

algorithms (i.landsat.atcorr and i.atcorr), and the Simpli#é Modèle d’Atmosphérique 

Correction (SMAC) (http://www.cesbio.ups-tlse.fr/multitemp/?page_id=2975), the #nal 

choice (based on e"ciency, reliability, and easiness of integration in the work%ow) was the 

Second Simulation of the Satellite Signal in the Solar Spectrum (6S) algorithm available in 

the Atmospheric and Radiometric Correction of Satellite Imagery (ARCSI9) software (Vermote, 

Tanre, Deuze, Herman, & Morcette, 1997).

Figure 6. Total time ratio distribution per (provider, access method).
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BIG EARTH DATA   11

Before ingesting any data in the Data Cube, data should be preprocessed. In particular, 

one should generate the proper metadata that will be used in the ingestion process for 

documentation. Useful information for systematic searching and archiving practices of data 

as well as information on data processing and values important for enhancing data (e.g. 

conversion to re%ectance and radiance) are also included. However, an issue has emerged 

using multiple data providers. Indeed, USGS provides metadata in an XML-encoded #le 

whereas GEE and AWS are providing metadata in text Metadata #les (MTL.txt). Therefore, 

we modi#ed the data preparation script in order to handle both XML and MTL #les and 

generate the correct #les used in the ingestion process.

3.4. Data storage strategy

A last import challenge to consider while building the SDC regards the data storage strategy 

and how to best resample data to ensure that all observations (i.e. pixels) have the same 

spatial resolution. In the case of the AGDC, they decided to resample Landsat data to a 25 

meters’ grid resolution (Lewis et al., 2016). This is justi#ed by the fact that they also store 

MODIS data that have an original resolution of 250 meters. In the case of the SDC, all Landsat 

observations will be kept at a 30-meter resolution.

Another option can also be to keep the original resolutions for both sensors and store 

them in two di$erent collections. However, this solution will impede the use of both sensors 

at the same time in a speci#c algorithm. In our view, this can be a limitation, especially if we 

consider the potential bene#ts of using multiple-sensors in virtual constellations to integrate 

data and derived information to contribute to (quantitative) analysis/measurement objec-

tives (Wulder et al., 2015). Finally, when storing data, it is important to consider whether or 

not to keep the panchromatic band. Generally, this band is only used to pan-sharpen com-

posite images (Irons, Dwyer, & Barsi, 2012). Depending on the envisioned usage, one can 

decide to ingest this band or not.

3.5. Computing performances

A major issue identi#ed while building the SDC was the procedure to order scenes and 

download them. In particular, it takes a couple of hours from the manually requesting scenes 

before they are available for download. Within the LiMES framework, it is possible to auto-

matically discover, access, unzip, (pre-)process, index, and ingest data in less than four min-

utes per scenes on average. The current infrastructure, used for the testing phase, to do all 

these tasks is the following: Processors Intel Xeon E5-2660 v2 @ 2.2 GHz; 8 CPUs (6CPUs used 

for processing, 2CPUs for system and UI); 50 Gb RAM; 2 TB Hard Drive; Linux Ubuntu 16.04. 

In terms of processing, six processes are executed in parallel. Indexation and ingestion cannot 

be performed as separate processes and therefore a bulk ingestion strategy has been imple-

mented (e.g. by group of 50 scenes). After nine days, all Landsat data were processed, 

indexed, and ingested in the SDC. Finally, while moving to a production environment, an 

important element to consider is the optimization of computing performances. Even with 

8 CPUs and 50 Gb of RAM, executing an algorithm at the sub-national scale can be long (e.g. 

1 h for the NDVI algorithm). Being on the Cloud infrastructure of the University of Geneva, 

the SDC can be optimized for large collections by increasing the numbers of CPUs, Memory, 

HD, and best options to parallelize computing tasks will be explored.
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12   G. GIULIANI ET AL.

4. Discussion

The proposed solution is simple to implement using interoperable components, and has 

provided the solution to some important challenges and facilitated the production of 

Analysis Ready Data. Currently, the SDC contains 33 years of Landsat 5,7,8 Analysis Ready 

Data (1984–2017) corresponding to more than 3,300 scenes. A prototype platform is running 

that allows the testing and visualizing several algorithms (Figure 7). Soon Sentinel 1 and 2 

data will be added using the same methodology.

The major bene#t of this approach is that it fully automates the discovery, access, and 

pre-processing of EO data. This enhances replicability and ensures homogeneity in results. 

Moreover, this solution is scalable, easily allowing the adding of new sensors. Finally, data 

access is not dependent on one repository but instead is helping to have the most complete 

archive of Landsat data using the best data access methodology. Recognizing the need for 

having e"cient access to data, USGS has also developed the Landsat Global Archive 

Consolidation (LGAC10) process with the objective to have a single universally accessible and 

centralized global archive of analysis-ready products (Wulder et al., 2016). The proposed 

approach adds value because currently it is not possible to programmatically access this 

archive; is not yet complete; the order and download issues remain; and it allows only access-

ing Landsat data.

Among the identi#ed limitations, it should be noted that especially in a multi-sensor and 

multi-repository context, this requires the handling of di$erent protocols, interfaces, and 

APIs. One possible solution to get an homogenous access to EO data can be to go through 

the Global Earth Observation System of Systems (GEOSS) that provides a GEO Discovery and 

Access Broker (GEO DAB) API (Nativi et al., 2015). Through this API, users can discover and 

access various heterogeneous EO data in a seamless and homogenous way. This can be an 

interesting solution to investigate in order to be more %exible and access di$erent types of 

EO resources. Another challenge relates to computing performances. Building a DC requires 

addressing the Big Data characteristics of Volume, Velocity, and Variety. To address these 

issues, Cloud computing appears as a viable solution for processing data and increasing the 

Value of these data by generating usable and useful products (Yang, Huang, Li, Liu, & Hu, 

2017; Yang, Yu, Hu, Yongyao, & Yun, 2017).

The next challenge relates to the usability of the Swiss Data Cube. After the #rst run of 

ingestion, an automated update procedure is planned that will regularly add all newly avail-

able Landsat scenes. This will ensure that the SDC is always up-to-date and this will in turn 

improve the quality of the products (e.g. algorithms) that will be implemented. Developing 

speci#c algorithms to generate useful information products for supporting various govern-

mental o"ces in decision-making is a fundamental task to leverage the potential of EO data. 

Furthermore, it is also important to continue the research e$ort associated with this new 

technology. For example, applying machine learning techniques can be valuable to enhance 

extraction of information and classi#cation (Camps-Valls, 2009; Lary, Alavi, Gandomi, & 

Walker, 2016). Additionally, DC being a new promising technology, capacity building e$orts 

should be considered to ensure both technology transfer and to enable users to become 

familiar with this technology and raise awareness on how this can be useful in leveraging 

the potential of EO data (Desconnets et al., 2017; Giuliani et al., 2016).

In a broader context, the DC technology can be extremely useful for environmental mon-

itoring by providing insights into phenomena that are otherwise impossible to measure. For 
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14   G. GIULIANI ET AL.

example, it can help in answering the needs of speci#c scienti#c communities like Biodiversity 

where spatial and temporal resolution, long-term data continuity, and data accessibility are 

major concerns (Kuenzer et al., 2014).

Moreover, with the concept of Essential Variables, new opportunities are emerging for 

monitoring the state of biodiversity and ecosystems in a more systematic way and this could 

be expended to national or international indicators (e.g. Aichi targets) (Vihervaara et al., 

2017). Finally, Earth Observation can be a valuable resource for monitoring Sustainable 

Development Goals (SDG) (Anderson, Ryan, Sonntag, Kavvada, & Friedl, 2017). The Group 

on Earth Observations (GEO) together with CEOS have recently demonstrated that EO can 

be a promising complement to traditional national statistics (Group on Earth Observations, 

2017). In particular, it can provide data at di$erent scales; it can help track progress toward 

speci#c policy objectives and targets thanks to long time series and continuity; it provides 

consistent and e$ective means of comparison among di$erent countries (can contribute to 

more detailed and more harmonized indicators, without requiring any additional reporting 

by countries); and o$ers a variety of measurements and therefore potential to generate 

useful information products.

The current trend in EO (e.g. open data policies, cloud computing, data cubes) is expand-

ing the use of EO data beyond specialized scienti#c communities. These developments o$er 

new opportunities for improving the scope and strengthen environmental data and indica-

tors. In particular, e"cient environmental policies require e$ective evidences that take into 

account both the spatial distribution of environmental issues and economic activity. EO data 

can provide an invaluable and timely source of information across various scales (e.g. local 

to global) helping to overcome current data gaps and incoherent time series needed for a 

strong evidence-based environmental policy process. It can support harmonizing reporting 

on environmental issues as well as being used with other geospatial data such as demo-

graphic, economic, or administrative data to make indicators and analysis more relevant and 

targeted (Lehmann et al., 2017; OECD, 2015).

5. Conclusions

Data Cubes are revolutionizing the way users can work with EO data. It is a disruptive tech-

nology that is signi#cantly transforming the way that users interact with EO Data. It has the 

potential to routinely transform Earth Observations into useful and actionable information 

for users. To reduce the processing burden on users, generating Analysis Ready Data is a 

fundamental requirement. ARD products minimize the time and scienti#c knowledge 

required to access and prepare satellite data having consistent and spatially aligned cali-

brated surface re%ectance observations. Current methods in ARD delivery (e.g. ESPA, 

SciDataHub) are not satisfactory principally because they are not commonly generated by 

data providers and because the process to order and download data are slow.

The proposed approach makes use of the LiMES framework to build interoperable data 

processing chains for generating ARD products. This methodology has been tested in build-

ing the Swiss Data Cube, a country scale DC for monitoring the environment in space and 

time, and has allowed to e"ciently download, pre-process, and ingest thousands of Landsat 

scenes in a couple of days. In particular, it has signi#cantly facilitated the generation of ARD 

products from various sensors (Landsat 5, 7, 8). Google- and Amazon Cloud-based Web 

Services appear to be very e"cient solutions to gather Landsat data allowing the 
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BIG EARTH DATA   15

downloading of data faster than any other traditional data delivery mechanisms (e.g. 

EarthExplorer). The proposed solution lowers the barrier to ARD product generation by auto-

mating pre-processing steps and allowing users to concentrate on data analytics to support 

the utilization of the growing volume of EO data. This is a key requirement to enable unlock-

ing the information power of Big EO data, expand the number of potential EO data users, 

and allowing EO data to become an essential asset for environmental monitoring.

Notes

1.  http://www.rasdaman.org.

2.  https://earthexplorer.usgs.gov.

3.  https://landsatlook.usgs.gov.

4.  https://glovis.usgs.gov.

5.  http://www.geoportal.org.

6.  https://cloud.google.com/storage/docs/public-data-sets/landsat.

7.  https://aws.amazon.com/public-data-sets/landsat.

8.  https://landsat.gsfc.nasa.gov/the-worldwide-reference-system/.

9.  http://rsgislib.org/arcsi/.

10.  https://landsat.usgs.gov/landsat-global-archive-consolidation-lgac.
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