
S. I . : EMERGING APPLICATIONS OF DEEP LEARNING AND SPIKING ANN

Building an efficient OCR system for historical documents with little
training data

Jiřı́ Martı́nek
1

• Ladislav Lenc
2

• Pavel Král
1,2

Received: 25 December 2019 / Accepted: 6 April 2020

� The Author(s) 2020, corrected publication 2020

Abstract

As the number of digitized historical documents has increased rapidly during the last a few decades, it is necessary to

provide efficient methods of information retrieval and knowledge extraction to make the data accessible. Such methods are

dependent on optical character recognition (OCR) which converts the document images into textual representations.

Nowadays, OCR methods are often not adapted to the historical domain; moreover, they usually need a significant amount

of annotated documents. Therefore, this paper introduces a set of methods that allows performing an OCR on historical

document images using only a small amount of real, manually annotated training data. The presented complete OCR

system includes two main tasks: page layout analysis including text block and line segmentation and OCR. Our seg-

mentation methods are based on fully convolutional networks, and the OCR approach utilizes recurrent neural networks.

Both approaches are state of the art in the relevant fields. We have created a novel real dataset for OCR from Porta fontium

portal. This corpus is freely available for research, and all proposed methods are evaluated on these data. We show that

both the segmentation and OCR tasks are feasible with only a few annotated real data samples. The experiments aim at

determining the best way how to achieve good performance with the given small set of data. We also demonstrate that

obtained scores are comparable or even better than the scores of several state-of-the-art systems. To sum up, this paper

shows a way how to create an efficient OCR system for historical documents with a need for only a little annotated training

data.

Keywords CNN � FCN � Historical documents � LSTM � Neural network � OCR � Porta fontium � Synthetic data

1 Introduction

Digitization of historical documents is an important task

for preserving our cultural heritage. During the last a few

decades, the amount of digitized archival material has

increased rapidly, and therefore, an efficient method to

convert these document images into a text form has

become essential to allow information retrieval and

knowledge extraction on such data. Nowadays, state-of-

the-art methods are usually not adapted to the historical

domain; moreover, they usually need a significant amount

of annotated documents which is very expensive and time-

consuming to acquire.

Therefore, this paper introduces a set of methods to

convert historical scans into their textual representation for

efficient information retrieval based on a minimal number

of manually annotated documents. This problem includes

two main tasks: page layout analysis (including text block

and line segmentation) and optical character recognition

(OCR). We address all these issues, and we propose several

approaches to solve these tasks.

This research is realized in the frame of the Modern

Access to Historical Sources project, presented through the

& Pavel Král

pkral@kiv.zcu.cz

Jiřı́ Martı́nek

jimar@kiv.zcu.cz

Ladislav Lenc

llenc@kiv.zcu.cz

1 Department of Computer Science and Engineering, Faculty

of Applied Sciences, University of West Bohemia, Plzeň,

Czech Republic

2 NTIS - New Technologies for the Information Society,

Faculty of Applied Sciences, University of West Bohemia,

Plzeň, Czech Republic

123

Neural Computing and Applications

https://doi.org/10.1007/s00521-020-04910-x (0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-020-04910-x&domain=pdf
https://doi.org/10.1007/s00521-020-04910-x

Porta fontium portal1. One goal of this project is to enable

an intelligent full-text access to the printed historical

documents from the Czech–Bavarian border region.

Accordingly, our original data sources are scanned texts

from German historical newspapers printed with Fraktur

from the second half of the nineteenth century.

All proposed methods are evaluated and compared on

the real data from the Porta fontium portal. We have also

built a novel annotated corpus for historical OCR based on

such data. This dataset is intended for the evaluation of

state-of-the-art OCR systems and is freely available for

research purposes.2 Based on the experiments, the reader

can very quickly build his historical OCR system.

Traditional OCR approaches usually detect and segment

words and single characters in the documents. The spaces

between the isolated characters and words are sometimes

not evident due to their particular form or by the noise in

the images. This fact brings often OCR errors. With the

development of deep learning (especially recurrent neural

networks), the methods based on processing of whole text

lines became dominant. Such methods benefit from the

context that is available when processing the text line as a

sequence of frames and are thus not affected by character

segmentation errors. High computational power and solu-

tions to the vanishing and exploding gradient issues [1]

allowed the learning of deep architectures that are capable

of accommodating such input data. A great benefit is also

the connectionist temporal classification (CTC) loss [2]

which can map the labels into specific image frames.

Traditional text segmentation methods used to be solved

by simple computer vision algorithms. Nowadays,

approaches based on deep neural networks outperform the

traditional methods. The best results in the text segmen-

tation field are obtained by fully convolutional networks

(FCN) [3]. Therefore, our proposed segmentation is also

based on this network type. The current trend in the OCR

field is to utilize neural networks which process whole text

lines using recurrent neural networks (RNN) [4] including

convolutional neural networks (CNNs) for feature extrac-

tion [5]. A great benefit of these approaches is that the

segmentation to characters is not necessary. Hence, our

OCR method is also based on the combination of convo-

lutional and recurrent neural networks. A natural ability of

RNNs is to learn an implicit language model (LM) [6–8].

To be able to learn the LM, we must provide the network

with a sufficient amount of meaningful text in the domain

we work in. A frequently used way how to obtain the texts

is generating synthetic data. Synthetic data should be cre-

ated with respect to the LM. We will show the influence of

different types of synthetic data in the experimental

section.

The main contribution of this paper is thus as follows:

1. Proposing text region and text line segmentation

approaches based on fully convolutional networks

using transfer learning for efficient training with only

few real training examples;

2. Proposing an OCR method based on recurrent neural

networks with a learning algorithm using synthetic data

and a relatively small amount of real annotated data

samples;

3. Building a novel dataset from the real historical data

available on the Porta fontium portal dedicated to

evaluation of OCR systems;

4. Evaluation of all methods on real data from Porta

fontium portal;

5. Giving an overview of how to create an efficient OCR

system with minimal costs (i.e., minimal human effort

during annotation process as well as the minimal time

required to train models).

The paper structure is as follows. The following section

gives an overview of related work. Section 3 describes our

segmentation approaches used for page segmentation into

individual blocks and lines, respectively. It also illustrates

the pipeline of the whole process. Section 4 describes the

OCR engine which is based on the combination of con-

volutional and recurrent neural networks. In Sect. 5, we

present datasets used for our experiments. Then, we present

experimental evaluation of the proposed methods on these

data. This section also includes experimental setup and

hyperparameter settings. The last section concludes the

paper and proposes some further research directions.

2 Related work

This section is focused on four related research areas:

image processing in general, segmentation, optical char-

acter recognition and, finally, tools and systems for OCR

and associated tasks (e.g., ground-truth labeling).

2.1 Image processing in general

With the development of deep neural networks in the field

of image processing, there are efforts to use an input image

without any preprocessing (binarization or thresholding)

and use an image-to-image architecture. Isola et al. [9]

defined (as an analogy to automatic language translation)

automatic image-to-image translation as the task of trans-

lating one possible representation of a scene into another,

given sufficient training data. Such a translating operation,

the goal of which is to predict pixels from pixels, has many

1 http://www.portafontium.eu/.
2 http://ocr-corpus.kiv.zcu.cz/.

Neural Computing and Applications

123

http://www.portafontium.eu/
http://ocr-corpus.kiv.zcu.cz/

applications that have an impact on the OCR task, i.e.,

binarization [10] or image segmentation [11]. Another

example of image-to-image translating is the problem of

detecting edges and object boundaries in natural images

[12]. Huang et al. [13] go even further and present an

unsupervised image-to-image translation, the goal of which

is to learn (based on a given image in the source domain)

the conditional distribution of corresponding images in the

target domain without seeing any examples of corre-

sponding image pairs.

2.2 Segmentation

Before performing any document image processing task,

layout analysis and page segmentation need to be imple-

mented. Traditional approaches [14] usually use geometric

algorithms or heuristics fine-tuned on a target domain.

However, in the following text we focus on the use of

neural networks which achieve state-of-the-art results in

many research areas including segmentation and OCR.

Page segmentation is very similar to the semantic seg-

mentation. Shelhamer et al. [15] show that a FCN trained

end to end (pixels to pixels) can reach interesting results.

The most important elements of a document are baselines

of individual text lines and blocks of texts. Annotations in

the dataset are segments of interest (baselines or text

blocks) plotted in the image (e.g., image mask). An

example of the FCN architecture—U-Net [11]—was

developed originally for medical image segmentation.

With appropriate dataset, it can be simply trained on the

text document images to perform a page segmentation.

Another technique usable for semantic segmentation,

object detection or page segmentation is a mask R-CNN

[16]. For the feature extraction, the Mask R-CNN uses an

FCN and it produces a class label and an appropriate

bounding box offset.

Breuel [17] describes the use of deep neural networks, in

particular a combination of convolutional and multidi-

mensional long short-term memory (LSTM) [18]. It is

demonstrated that the relatively simple networks are cap-

able of fast, reliable text line segmentation and document

layout analysis even on complex and noisy inputs, without

manual parameter tuning or heuristics. Furthermore, the

method is easily adaptable to new datasets by retraining.

2.3 Optical character recognition

In recent years, the popular LSTM networks have been

used for OCR tasks [4] because their training in the case of

OCR is considerably simpler than previous training meth-

ods, since all training is carried out in terms of text line

images and transcriptions. A combination of deep convo-

lutional and recurrent neural networks (CRNN) is also used

for line-based OCR [19] with even better performance.

Convolutional neural networks [20] play a significant role

in the feature extraction task. It is also a computationally

efficient technique, which allows to process large images.

Graves et al. [2] introduced the connectionist temporal

classification (CTC) alignment. According to them, the

crucial step is to transform the network outputs into a

conditional probability distribution over label sequences.

The network can then be used as a classifier by selecting

the most probable labeling for a given input sequence.

More precisely, a CTC network has a softmax output layer

with one extra unit. The activations are interpreted as the

probabilities of observing the corresponding labels at par-

ticular times. The activation of the extra unit is the prob-

ability of observing no label (so-called blank symbol). This

algorithm (architecture and the corresponding loss func-

tion) allows us to train a classifier in a very efficient way,

because we only need a ground-truth (GT) text sequence

for the CTC loss function.

Furthermore, classical RNN requires pre-segmented

training data to provide the correct target at each time step,

regardless of its ability to model long-range dependencies.

The CTC is a way to extend the RNN for this type of non-

segmented data [21].

He et al. [22] used the deep-text recurrent network

classifier with the CTC alignment for scene text reading,

which is more difficult task than OCR. In their system, the

CTC layer is directly connected to the outputs of LSTM

layers and works as the output layer of the whole RNN.

Elagouni et al. [21] used the CTC for text recognition in

videos.

Graves also introduced the sequence transduction as an

alternative to CTC, which extends the CTC from discrete

to continuous output sequences [23]. A combination of

CTC with the attention mechanism [24] was utilized by

Bluche et al. [25] in the handwritten text recognition task.

A line-based classifier which uses the CTC algorithm

needs a huge number of training examples, which leads us

to the synthetic data and data augmentation.

Jaderberg et al. presented a framework for recognition

and synthetic data generation [26]. Margner et al. [27]

presented synthetic data for Arabic OCR, and another

synthetic data generation was proposed by Gaur et al. [28].

Put simply, data augmentation is a way to increase the size

of a dataset by perturbing existing data to create more

examples. In the case of image processing, performing

such operations as light rotations or skewing is a simple

way to create new samples with low cost. If we consider

the OCR task, we can perform a data augmentation oper-

ation on blocks of text, on text lines, on individual char-

acters or even on a whole page. If we go to the extreme, we

can even replace some characters with other similar look-

ing ones (0 ! O or i ! l and so on). Perez et al. [29] tried

Neural Computing and Applications

123

to learn the best augmentations for a concrete dataset and

classification task by a neural network—neural

augmentation.

2.4 Existing tools and OCR systems

There are a number of tools (i.e., tool for Arabic OCR [27]

or Aletheia [30]) which deal with the synthetic data gen-

eration and annotation. Aletheia is a full-document image

analysis system, which allows to annotate documents for

layout evaluation (page element localization) and OCR in

the form of XML file—e.g., PAGE XML [31]. There is

also a web version of Aletheia3.

OCRopus [32] is an efficient document analysis and

OCR system. This system has a modular architecture and it

is possible to use it freely for any purpose. The main

components are dedicated to analysis of document layout,

use of statistical language models and OCR. Last, but not

least within the OCRopus, there is a tool ocropus-linegen

that allows rendering text line images, usable for training

an OCR engine.

Tesseract4 is one of the best OCR engines in terms of

integrated language support and recognition scores. It is

available for Linux, Windows and Mac OS X; however,

due to limited resources it is sufficiently tested only under

Windows and Ubuntu [33]. The current version 4.05 uses a

powerful LSTM based OCR engine and integrates models

for 116 additional languages.

Transkribus [34, 35] is another complex platform for

analysis of historical documents which covers many

research areas such as layout analysis and handwritten text

recognition. It includes also OCR using ABBYY Finer-

eader Engine 116. To the best of our knowledge, Tesseract

and Transcribus are the best performing OCR systems.

Therefore, they will be used for comparison with our

approach.

3 Page layout analysis and segmentation

3.1 Whole process description

The OCR results depend on the layout analysis. Based on

the layout analysis, we can perform image segmentation

into smaller logical units as individual text blocks and lines

which are the input of our OCR engine. The whole process

is decomposed into three main tasks: block segmentation,

line segmentation and optical character recognition itself as

depicted in Fig. 1.

The goal of the block segmentation is extracting text

regions with respect to the reading order. (An ordered set of

image regions containing text is the output.) The next task

is segmenting the regions into individual text lines.

Although there are some algorithms which can solve the

text line segmentation from the whole page in one step, we

prefer using the two-step approach, which allows to

determine logical text units and simplifies determining the

reading order. The subsequent segmentation into lines

becomes then significantly easier.

Documents that we process have mostly a two-column

layout. In the case of well separated columns, one-step

approach would be sufficient. However, there are also more

complicated pages with irregularities where the determi-

nation of reading order from coordinates of single lines is

complicated. The one-step approach can also merge lines

across column separators, which can jeopardize the reading

order too. In most cases, the presented two-step approach is

more appropriate because it takes into account the reading

order and it is also able to filter out some types of noise,

such as pictographic illustrations or various decorative

elements. The last task is the OCR which converts the

detected text lines into their textual representation.

Our segmentation method is as follows. The input page

is first preprocessed which includes binarization and page

rotation. The next step is the block segmentation. The page

is first processed by an FCN which predicts a mask indi-

cating the text region positions. Based on the predicted

mask, we extract individual regions. The list of extracted

text regions is the input to the line segmentation process. In

this step, we apply a line segmentation method in order to

obtain images of individual text lines. After a necessary

post-processing which removes noise and parts of sur-

rounding text lines, we can feed the resulting text line

images directly to the OCR engine. The above-described

layout analysis and segmentation processes are illustrated

in Fig. 2.

3.2 Text block segmentation

Recent methods for image segmentation are often based on

fully convolutional networks. A well-known example of

such an architecture is U-Net [11] which was initially

developed for semantic segmentation of medical images.

The architecture of this network is depicted in Fig. 3.

It consists of a contracting path (left side) and an

expansive path (right side). The contracting path follows

the typical architecture of a convolutional network. It

consists of the repeated application of two 3� 3 convo-

lutions (unpadded convolutions), each followed by a rec-

tified linear unit (ReLU) and a 2� 2 max pooling operation

3 https://github.com/PRImA-Research-Lab/prima-aletheia-web.
4 https://github.com/tesseract-ocr/.
5 https://github.com/tesseract-ocr/tesseract/wiki/4.0-with-LSTM.
6 https://www.abbyy.com/.

Neural Computing and Applications

123

https://github.com/PRImA-Research-Lab/prima-aletheia-web
https://github.com/tesseract-ocr/
https://github.com/tesseract-ocr/tesseract/wiki/4.0-with-LSTM
https://www.abbyy.com/

with the stride 2 for downsampling. At each downsampling

step we double the number of feature channels. Every step

in the expansive path consists of an upsampling of the

feature map followed by the 2� 2 convolution (‘‘upcon-

volution’’) that halves the number of feature channels,

a concatenation with the correspondingly cropped feature

map from the contracting path, and two 3� 3 convolu-

tions, each followed by a ReLU. The cropping is necessary

due to the loss of border pixels in every convolution. At the

final layer, the 1� 1 convolution is used to map each

Block

Segmentation

Line
Segmentation OCR

Text

Fig. 1 Whole process pipeline: source image (left), text region segmentation (blue color; middle) and individual line segmentation (red color;

right) (color figure online)

Reg1

Reg2

Reg3

Reg4

Reg5

Reg6

Reg7

RegN-1

RegN

Input Page Predicted Region Mask

Ordered List of Regions

Reg1
Line1

Text Line
Segmentation

Reg2

Segmented lines

Line2

Line3

Reg3

Line1

RegN

Line1

Region
Separation

FCN

Line1

Fig. 2 Region and line segmentation task scheme

Neural Computing and Applications

123

64-component feature vector to the desired number of

classes.

A modification of the U-Net model used for segmenta-

tion of historical document images was proposed by Wick

and Puppe [36]. The main difference from U-Net is that it

does not use skip connections. The whole architecture of

this network is much simpler (see Fig. 4), and the number

of parameters is also much lower. The encoder part has five

convolutional and two pooling layers. The size of convo-

lution kernels is set to 5, and padding is used to keep the

dimension. The decoder consists of four deconvolution

layers. We will refer this modification as U-Net (Wick).

We classify the image pixels into two classes: text

region (regardless of whether the pixel is part of the text or

background—white) and non-text region (black). The

output of the FCNs is a prediction map with the same

dimension as the input image. Each position in the map

indicates the probability that a pixel belongs to the region.

To obtain a binary image, we threshold the output. We use

the widely used Otsu’s [37] method for this task. The

resulting binary image mask contains ones within the text

regions and zeros elsewhere.

Based on the predicted segmentation mask, we divide

the image into text regions and we also determine the

reading order. We solve this task by recursive searching for

horizontal and vertical separators in the segmentation map.

Firstly, we search for horizontal separators and divide the

image into several regions according to it. In the sequel, we

attempt to divide the resulting regions. Again, we first

search for horizontal separators, and if none is found, we

search for the vertical ones. The recursion is applied, till we

reach the desired level (granularity) of segmentation. We

apply three levels of block segmentation on the data from

Porta fontium. This approach respects the logical reading

order of the processed documents. The outcome of this step

is an ordered list of image regions containing text.

An example of the recursive search of region separators

is shown in Fig. 5. The red lines represent the horizontal

separators (first level), while the green ones are the vertical

separators (second level). The blue lines then mark the

horizontal separators in the third level.

3.3 Text line segmentation

In our previous work [38], we utilized a simple projection

profile based text line segmenter. The approach works very

well for simple regions with regularly positioned lines.

However, it might not be sufficient for more complex

regions, and hence, in this paper, we present two more

sophisticated methods for text line segmentation. We will

refer to the original profile based method as Profile.

Fig. 3 U-Net architecture [11]

Neural Computing and Applications

123

3.3.1 ARU-Net

Gruning et al. [3] proposed a novel deep neural network,

called ARU-Net, which is able to detect text lines in

handwritten historical documents. This network extends

U-Net by two more key concepts—spatial attention

(A) and depth (R, residual structure). The attention mech-

anism allows the ARU-Net to focus on image content at

different positions and scales [3]. As a consequence, it

should lead to a better detection of texts with variable font

sizes. Due to the deep structures of the architecture,

residual blocks are used to address vanishing gradient

issues [39].

Our method builds on the prediction result of the ARU-

Net trained to recognize baselines. The output mask is first

binarized, and then, we extract the positions of baselines.

Next, we perform analysis of connected components on the

binarized region image and we search the components that

intersect with or are very close to the detected baseline.

Based on the relevant component statistics, we can induce

the boundaries of the text line. We are then able to extract

the line image according to the boundary. The process is

depicted in Fig. 6.

3.3.2 Kraken

Kraken7 is an open-source OCR software forked from

OCRopus. Although this tool offers a lot of features (e.g.,

script detection), we use only segmentation, more precisely

text line bounding box prediction. When deploying on the

extracted text block, it produces bounding box coordinates

in a json file. The bounding boxes, based on json file,

are depicted in Fig. 7. Since Kraken provides only

bounding boxes with a rectangular shape, it is beneficial to

reduce segmentation errors by performing image prepro-

cessing, especially deskewing and dewarping. Another

option would be to use Kraken to locate word bounding

boxes. In such a case, bounding boxes with rectangular

shape would be sufficient.

Because the line bounding boxes sometimes overlap

each other, it is necessary to remove the remainder of the

text of the previous or next line (see Fig. 8). We address

this issue by removing connected components which are

close to the bottom or top edge of the image.

7 https://github.com/mittagessen/kraken.

Fig. 4 Modified U-Net

architecture proposed by Wick

and Puppe [36]

Fig. 5 Block segmentation

example (recursive search of

horizontal and vertical

separators) (color figure online)

Neural Computing and Applications

123

https://github.com/mittagessen/kraken

4 OCR engine

The classifier utilizes a combination of a convolutional

neural network [20] and the LSTM neural network [18].

The inputs of our network are binarized line images with

a dimension of 1250� 40 pixels. Based on our preliminary

experiments, the images are padded from the left by 50

pixels, so the input layer shape increases to 1300� 40. On

the input layer, we apply two convolutional layers with 40

kernels with a shape of 3� 3 andMaxPooling layers. After

this first phase, we obtain 40 feature maps and we also

reduce dimensionality by scaling down the input to

325� 10.

Through a reshaping mechanism, we create a dense

layer which is fed into two Bidirectional LSTM layers.

Each Bi-LSTM layer comprises two LSTM layers which

process the input from opposite sides. One LSTM layer

contains 256 units. The outputs of the LSTMs from the first

Bi-LSTM layer are merged by addition operation, while the

outputs of the second pair of LSTMs are concatenated.

The concatenated output is given to a dense layer with

softmax activation. It is a representation of probability

distributions of individual symbols per each time frame.

Let A (jAj ¼ 90) be a set of symbols. It includes out of

vocabulary (OOV) and blank symbol. The most probable

symbol ât of each time frame t is determined as:

ât ¼ argmax
ai2A

pait ð1Þ

where p
ai
t is a probability of observing character ai at a

given time t. At each time t, the sum of the probabilities of

all symbols is equal to 1.

XjAj

i¼1

pait ¼ 1 ð2Þ

The final part of the classifier is a transcription layer, which

decodes the predictions for each frame into an output

sequence.

We use connectionist temporal classification (CTC)

output layer. CTC is an output layer designed for sequence

labeling with RNNs [2], and therefore, it is capable of

classifying unsegmented line images and retrieving the

character sequences. The architecture of the classifier is

depicted in Fig. 9. Figure 10 shows another input image

processed by the model and the CTC alignment. Note that

this model was already used in our previous work [38].

Fig. 6 ARU-Net text line segmentation example

Fig. 7 Kraken text line segmentation example

Fig. 8 Overlapping text line example extracted by Kraken segmenter

Neural Computing and Applications

123

5 Datasets

In this section, we describe the datasets we utilize for our

experiments. The first one is the Europeana dataset. It was

chosen because of its similarity to the data we are pro-

cessing (newspaper pages). We use it to pre-train our page

segmentation neural networks.

The second dataset is newly created from the Porta

fontium portal8. It contains newspaper pages that we pro-

cess in the frame of the Modern Access to Historical

Sources project. It contains full transcriptions of the pages

as well as layout information. It is utilized both for page

segmentation and OCR engine training. It allows us to

measure the quality of the developed methods on real data.

5.1 Europeana

The Europeana Newspapers Project Dataset [40] was cre-

ated in the context of the Europeana Newspapers Project

(ENP). The goal of the project is aggregating a represen-

tative set of historical newspapers. The dataset was created

so that it takes into consideration all the challenges and

issues related to the processing of historical document

images. The dataset contains more than 500 newspaper

pages and their ground truths containing full transcribed

text, layout information and reading order.

8 http://www.portafontium.cz/.

1300 x 40 x 1

First Convolutional Layer

Input image

1300 x 40 x 40

MaxPooling Layer

650 x 20 x 40

Second Convolutional Layer

MaxPooling Layer

650 x 20 x 40

325 x 10 x 40

Dense Layer

325 x 400

325 x 128

Reshape

d-ee--r ii-nn u-n-s d-ii-e M-ee-nn

der in uns die Men

BiLSTM

BiLSTM

325 x 256

325 x 512

325 x 90

Dense

Layer

Softmax

325 x 256

325 x 256

325 x 256

Concatenated

BiLSTMs

Fig. 9 OCR engine architecture

D-ii-ee B-a-rr-o-n-iii-n h-a-ttt-tt-e kkk-a-uu-m g-ee-e-n-d-e-ttt, a-lll-ss d-ee-rr D-ii-ee-n-ee-r

Die Baronin hatte kaum geendet, als der Diener

Fig. 10 Another example of

CTC alignment

Neural Computing and Applications

123

http://www.portafontium.cz/

From this set, we have selected a subset of 95 pages

mostly written in German and with varying layouts so that

it can provide enough flexibility for the text segmentation

model. Table 1 illustrates the relevant statistical informa-

tion, and Fig. 11 shows one page example from the

Europeana dataset.

5.2 Porta fontium

Porta fontium is a project which aims at digitizing archival

documents from Czech–Bavarian border area. The goal is

to join again the Czech and German archival materials that

come from the border area which were forcibly separated

in the past.

We have created an OCR and page layout analysis

dataset from one selected newspaper, namely ‘‘Ascher

Zeitung,’’ printed in the second half of the nineteenth

century. The main script used in this newspaper is ‘‘Frak-

tur.’’ However, there are also some parts printed in Latin

script and with different fonts. The dataset consists of 10

pages that are completely transcribed. All of them are

accompanied with ground truths containing layout infor-

mation and reading order. The ground truth is stored in the

PAGE format [31].

We have selected the pages that are printed completely

in Fraktur so that they can be used to train an OCR model

for this script. We have divided the 10 pages into training,

validation and testing parts (see Table 2 for the details). An

example of one page is shown in Fig. 12.

The second part of this dataset contains 15 additional

pages with ground truths containing only the layout

information. We have selected the pages with more com-

plicated layouts. The intended use of these additional pages

is facilitating the training of page segmentation models.

5.3 Synthetic data

Using synthetic data is very important in the proposed

OCR training procedure, because we used such data for

pre-training of the OCR models. This section analyzes

different types of synthetic data creation. It is beneficial

that these data are as similar as possible to the annotated

images depicted in Fig. 13. We have created two types of

synthetic data. The first type is referred as Hybrid

according to our previous work [38]. It is basically a

composition of images containing single characters. The

second one is referred as Generated and is produced simply

by a generator with specified font.

5.3.1 Impact of the implicit language model

Language models are often used in the OCR field to correct

recognition errors [41]. Sabir et al. [6] showed that LSTM-

based models are able to learn language model implicitly.

This LM is trained during the learning of the whole

network.

Therefore, in the following experiments we will study

the impact of this implicit language model for the final

OCR accuracy. We assume that the best results will be

obtained if we use the training data from the target domain

which are, in our case, historical German texts from the

second half of the nineteenth century. To show the influ-

ence of the implicit model, we used three text sources for

network training:

1. Completely random text—characters have a uniform

probability distribution

2. Historical German text

3. Modern German text from the Reuters dataset [42]

Although the second and the third type of data have similar

distribution of characters (see Fig. 14), the quality of the

language model will slightly differ (types of expression,

vocabulary and so on).

5.3.2 Hybrid data

The first approach to generate text lines for OCR training

consists in concatenation of the images of individual

characters. It must be done with respect to the target font

though. Based on our previous studies [38], we utilize so-

called random space approach for generating the hybrid

data. This method adds a gap of a random size (within

some reasonable bounds) between each pair of adjacent

characters.

To introduce variances in our generated text lines, we

have several different examples of each symbol and we use

a randomly selected image for a given symbol. This is

a form of data augmentation technique (e.g., Perez et al.

[29]) because from one source text line it is possible to

create several different corresponding images. Based on

our previous experiments [38], we use random gaps

between characters in the interval [1; 5] pixels. Figure 15

shows an example of generated data using this approach.

Table 1 Statistical information about the Europeana dataset

Page # Block # Line # Word # Character #

Training 68 6849 27,098 149,464 832,331

Validation 9 741 2549 15,597 81,839

Testing 18 2469 8010 41,409 234,208

Neural Computing and Applications

123

Fig. 11 Page example from the

Europeana Dataset

Neural Computing and Applications

123

Table 2 Statistical information about the Porta fontium dataset

Page # Line # Word # Character #

Training 7 955 7653 50,426

Validation 1 138 1084 6669

Testing 2 275 2163 13,828

Fig. 12 Page example from the

Porta fontium dataset

Fig. 13 Examples of Fraktur

script from Porta fontium

dataset

Neural Computing and Applications

123

5.3.3 Generated data

The second approach uses the data generated by the

TextRecognitionDataGenerator
9. This tool,

written in Python, has many parameters that influence

generated images, which includes, for example, back-

ground settings (white background or Gaussian noise).

Moreover, it allows to choose a font, source texts and

several types of image transformations (skewing or warp-

ing) to make the desired image of the text line. Figure 16

illustrates two line examples generated by this tool. These

examples clearly show that the data are significantly dif-

ferent from the previous ones generated by random space

method, because the rendered character is always the same.

6 Experiments

All presented experiments are conducted on a PC with Intel

Core i7 processor and 64GB RAM. All neural network-

based computing is performed on GPU GeForce RTX 2080

Ti with 11 GB RAM.

6.1 Layout analysis and segmentation

This experiment is carried out in order to identify the best

block segmentation approach which will be then used in all

following experiments.

Two text block segmentation approaches described in

Sect. 3, namely U-Net and U-Net (Wick), are evaluated on

both the Porta fontium dataset.

Because the amount of training data in the Porta fontium

corpus is limited, we utilize transfer learning [43] in this

case. We train the models first on a subset of the Europeana

newspaper dataset, and then, the models are fine-tuned on

the training set of the Porta fontium dataset.

In both networks, we use ReLU [44] activation function

for all layers and Adam [45] optimizer with 0.001 learning

rate. We chose the binary cross-entropy as a loss function,

since there are only two classes. (A pixel is labeled either

as a part of the text region or not.)

Tables 3 and 4 show results of this experiment. The first

table shows the ability to predict text blocks. The measures

compare directly the segmentation result with the ground-

truth map. Table 4 presents the results computed only on

foreground pixels within the text blocks.

The segmentation results are evaluated and visualized

using DIVA layout evaluator [46] which calculates usual

9 https://github.com/Belval/TextRecognitionDataGenerator.

Fig. 16 Two line examples of generated data by

TextRecognitionDataGenerator

(a) Historical dataset (b) Modern Reuters dataset

Fig. 14 Histograms of the character frequencies of the historical (left) and modern (right) text data sources

Fig. 15 Examples of hybrid data generated by random space method

Neural Computing and Applications

123

https://github.com/Belval/TextRecognitionDataGenerator

evaluation metrics for this task: exact match, F1 score,

Jaccard index and Hamming score.

We further visualize the segmentation results for qual-

itative analysis (see Fig. 17). The green color represents

correctly assigned pixels (each green pixel is predicted as a

part of a text region). The red color indicates that the model

predicted this pixel to be part of a text region, but it is not.

The blue (turquoise)-colored pixels are pixels that should

be considered as part of a text region but the model omitted

them.

Tables 3 and 4 show that the performance of both

models is comparable and both of them are suitable for our

task. The advantage of the Wick modification is its lower

number of parameters and therefore the faster training. The

results in Table 4 are very similar and comparable, and one

cannot make a unbiased decision. The numbers indicate

that both networks are able to recognize the text content

with the accuracy close to 100%. On the other hand, the

results in Table 3 show slightly better performance of

U-Net trained on Porta fontium dataset. The results of this

table are more important for us as the main goal is to

recognize the text regions. Figure 17 shows that U-Net

model tends to better differentiate text paragraphs and

could thus be more suitable for our task (significantly less

red and turquoise color).

The time needed for training of the U-Net model was

36 min on the Europeana dataset and 11 min on the Porta

fontium dataset, respectively.

Table 4 Text block segmentation: comparison of the performance of U-Net and U-Net (Wick) trained on Europeana and Porta fontium datasets,

evaluated on Porta fontium dataset, measured only on foreground (text) pixels

Model Exact match F1 score Jaccard index Hamming score

U-Net (Europeana) 99.65 99.65 99.30 99.65

U-Net (Porta fontium) 99.91 99.91 99.82 99.91

U-Net (Wick) (Europeana) 99.73 99.73 99.47 99.73

U-Net (Wick) (Porta fontium) 99.92 99.92 99.84 99.92

(a) U-Net (b) U-Net (Wick)

Fig. 17 Visualization of text

block segmentation using U-Net

and U-Net (Wick) on Porta

fontium dataset (color

figure online)

Table 3 Text block

segmentation: comparison of

the performance of U-Net and

U-Net (Wick) trained on

Europeana and Porta fontium

datasets, evaluated on Porta

fontium dataset

Model Exact match F1 score Jaccard index Hamming score

U-Net (Europeana) 94.53 94.62 89.96 94.53

U-Net (Porta fontium) 97.67 97.67 95.50 97.67

U-Net (Wick) (Europeana) 95.36 95.42 91.36 95.36

U-Net (Wick) (Porta fontium) 97.60 97.60 95.36 97.60

Neural Computing and Applications

123

6.2 OCR results when training on a small
amount of real annotated data

We assume that using only a few real annotated samples

for OCR model training will not be sufficient for reaching a

good performance.

To support this hypothesis, we performed the following

series of experiments to show the OCR results when our

engine is trained from scratch using only a little real

annotated data. To show the impact of the number of model

parameters, we used two different models. The first one

[38] has the input width of 650 pixels, while the second,

more complex one, uses input width of 1250 pixels. We

also evaluate and compare three previously described line

segmentation approaches, namely Profile, ARU-Net and

Kraken.

Our OCR engine utilizes ReLU activation function for

all hidden layers. We use the CTC loss function and

stochastic gradient descent (SGD) as an optimizer. For

training the model from scratch, we apply 0.002 learning

rate, while for fine-tuning, we set a learning rate 0.001. The

output layer uses the softmax activation function.

All models are trained with early stopping. We train it

until the validation lost begins to stagnate or decrease for

some subsequent iterations. We ran all experiments 5 times

and present the average values. This experimental settings

is used in all following experiments.

For evaluation, we use the standard word error rate

(WER) and character error rate (CER) metrics. Addition-

ally, we employ the edit distance, also known as the

Levenshtein distance. All metrics are averaged across the

text lines. For WER/CER, we first add up all deletions,

insertions and substitutions in a text line and divide this

value by the number of words/characters in the line. We

average the number across all lines in the test corpus. The

same procedure is applied to the edit distance metric.

A desirable value of CER, which is mostly reported to

evaluate the quality of OCR systems, is below 1% for good

quality printed texts. In our case, taking into consideration

a lower quality of historical scans and the old language, an

acceptable value lies around 2%.

Table 5 shows the OCR results of the smaller model

having an input width of 650 pixels while Table 6 illus-

trates the results of the OCR model with the input width of

1250 pixels. The comparison of the two tables shows that

the larger model needs the smaller number of epochs to

train. On the other side, the larger model converges worse

in the case of the Kraken line segmentation than the

smaller one (significantly higher values of the all analyzed

metrics).

The bottom line is that the training from scratch with a

small amount of annotated data is possible; however, it is

difficult to set the network hyperparameters so that the

network converges. The obtained character error rates are

also higher than desired and it is not possible to use such a

model in a production system.

6.3 OCR results when training on synthetic data

As has been proved in many previous studies [26, 47],

synthetic data are of great importance when training OCR

models. Therefore, in this experiment, we evaluate and

compare the performance of our OCR model trained only

on different types of synthetic data. Moreover, this exper-

iment evaluates the impact of the implicit language model

(LM) on the OCR results. We use the U-Net based block

segmentation and Kraken based line segmentation in this

experiment, as it achieved the best results in the previous

experiments.

Table 7 shows the results of this experiment. We use the

model with the input size of 1250� 40 pixels.

This table shows insufficient results for the model

trained only on synthetic datasets. The best CER we

obtained was around 20% for the hybrid training data based

on historical German text which is far to be usable in real

application. Moreover, the obtained average edit distance

value is also very high. (We need almost 10 operations—

deletions, insertions or substitutions on average to trans-

form the predicted text in the correct form). We can also

conclude that the model based on hybrid data significantly

outperforms the model trained on generated data.

Table 5 Comparison of the OCR results using different line segmentation methods: input width of 650 pixels and a training on a little real

annotated data from Porta fontium dataset

Line segmentation method Epoch # Validation loss WER CER Edit distance

ARU-Net 670 4.557 0.143 0.034 1.370

Kraken 568 4.142 0.142 0.030 1.216

Profile 549 3.538 0.160 0.036 1.615

Neural Computing and Applications

123

Moreover, these results show that the implicit language

model has an important impact on the final results. Hence,

the historical German language model is the best option.

To sum up, it is crucial to use a text source from the

target domain for implicit LM training. The training of the

model took 1 h and 20 min.

6.4 OCR results when training on synthetic data
with fine-tuning on few real samples

The following experiments confirm the assumption that the

models learned on synthetic data with a subsequent fine-

tuning using small amount of real annotated samples bring

a significant improvement in the OCR task. We took all

three hybrid data models and performed additional training

with all three types of extracted text line images (ARU-

Net, Kraken and Profile).

The results of this experiment are depicted in Table 8.

This table shows that the fine-tuning of the model signifi-

cantly improves the final OCR performance. This experi-

ment further shows that all results are more or less

comparable; however, the model retrained on data provided

by Kraken achieved the best results. Therefore, we chose

this setting for the final experiment.

It is also worth noting that the accuracy is around 50%,

which means that, after retraining and fine-tuning, we are

Table 8 OCR results of the

model pre-trained on synthetic

data and fine-tuned using a

small annotated dataset

Training data Epochs Val. loss WER CER Edit distance Accuracy

ARU-Net

Hybrid random 139 3.557 0.111 0.028 1.078 0.513

Hybrid historical 106 3.592 0.106 0.025 1.022 0.531

Hybrid Reuters 115 3.537 0.123 0.029 1.095 0.495

Kraken

Hybrid random 117 2.843 0.108 0.024 0.926 0.494

Hybrid historical 106 2.877 0.104 0.022 0.838 0.520

Hybrid Reuters 112 2.693 0.112 0.024 0.889 0.495

Profile

Hybrid random 90 3.291 0.130 0.030 1.308 0.455

Hybrid historical 94 3.265 0.120 0.028 1.265 0.451

Hybrid Reuters 100 3.459 0.140 0.031 1.382 0.428

Best obtained results in bold

Table 6 Comparison of the OCR results using different line segmentation methods: input width of 1250 pixels and a training on a little real

annotated data from Porta fontium dataset

Line segmentation method Epoch # Validation loss WER CER Edit distance

ARU-Net 276 3.790 0.114 0.028 1.073

Kraken 288 12.555 0.234 0.070 2.813

Profile 306 2.909 0.163 0.036 1.584

Table 7 Comparison of the

OCR results of models trained

only on different synthetic data

Training data Epoch # Val. loss WER CER Edit distance

Hybrid data

Random text 12 108.624 0.833 0.434 20.778

Historical German 10 32.830 0.664 0.205 9.613

Modern German from Reuters 9 83.857 0.805 0.358 16.927

Generated data

Random text 9 157.321 0.977 0.725 39.166

Historical German 8 145.461 0.966 0.668 32.353

Modern German from Reuters 8 159.603 1.000 0.938 45.688

Best obtained results in bold

Neural Computing and Applications

123

able to perfectly recognize a half of our testing dataset. The

training time of the fine-tuning was 15 min.

6.5 Comparison With selected OCR systems

This experiment compares the results of our OCR system on

awhole page with Tesseract and Transkribus systems. Based

on the previous experiment, we use U-Net-based block

segmentation, Kraken-based line segmentation and Hybrid

data with fine-tuning for training of our OCR engine.

In the case of Tesseract, we used two models which are

available with the system, namely deu_frak.traineddata and

Fraktur.traineddata. Both are trained on Fraktur script, which

is the most common font in our dataset. We report the results

of both models. We ran all OCR systems on ten annotated

pages with a two-column layout. To improve the significance

of this experiment, we carried out a fivefold cross-validation.

The results of this experiment are depicted in Table 9.

This table shows that our OCR system outperformed both

Tesseract and Transkribus systems; however, the results

obtained by Transkribus are almost comparable. Even

though we made the cross-validation experiment, we

obtained the best average accuracy value and we confirmed

our accuracy result obtained previously (see Table 8). This

table also shows that Transkribus using ABBYY Finer-

eader Engine 11 outperformed Tesseract significantly.

7 Conclusions and discussion

In this paper, we introduced a complex system for text

segmentation and OCR of historical German documents.

As a main result, we show that it is possible to use a small

amount of real annotated data for training and achieve good

results. We guided through the whole process of building

an efficient OCR system for historical documents from the

preprocessing steps through seeking an optimal strategy for

training the OCR system.

We divided the paper into two logical parts. The first

part dealt with page layout analysis and segmentation.

Within it, we discussed approaches for page segmentation

and we provided a comprehensive analysis. The second

part is dedicated to the OCR system itself.

A great benefit is certainly the analysis and comparison

of several methods for both the segmentation and OCR

training. In the case of historical documents, we struggle

with a lack of OCR methods that are adapted to such a

domain and they usually need a huge training dataset. We

also created a set of synthetic data with respect to the

language of the given era. We compared several methods

for synthetic data preparation and their influence on the

final results. We also evaluated and compared a set of line

segmentation approaches, namely ARU-Net, Kraken and

simple projection profile-based algorithm.

We can conclude that we have developed an efficient

domain-dependent OCR system that focuses on historical

German documents by picking the best tools and approaches

available.We also provided a comparison with several state-

of-the-art systems and showed that our system outperforms

all of them on our task. Furthermore, we have created a novel

Porta fontium historical dataset that can be used for seg-

mentation experiments as well as for the OCR evaluation.

Novelty of this paper also lies in the focus on minimal costs

needed for the system training.We analyzedmainly the costs

related to the preparation of annotated data which is a

cornerstone when preparing such a system. We also pre-

sented and evaluated several scenarios how to train the best

possible models with the limited annotated dataset.

Although this paper has presented several contributions,

we would like to highlight the most important one, that is,

the possibility to create an efficient OCR system even with

a small amount of real annotated training data.

For future work, we plan to enrich our Porta fontium

dataset with more annotated pages and we want to finish a

transcription of the rest of 25 pages. Last but not least, we

would like to state that this paper can be also considered as

an overview of the state-of-the-art methods in areas rele-

vant to historical document processing.

Acknowledgements This work has been partly supported from ERDF

‘‘Research and Development of Intelligent Components of Advanced

Technologies for the Pilsen Metropolitan Area (InteCom)’’ (no.:

CZ.02.1.01/0.0/0.0/17_048/0007267) and by Cross-border Coopera-

tion Program Czech Republic - Free State of Bavaria ETS Objective

2014-2020 (Project No. 211). We also thank Stephen Eugene Taylor

for his valuable comments and advice.

Table 9 Comparison of the

results of our OCR system with

Tesseract and Transcribus on

Porta fontium dataset

Our approach Tesseract (deu_frak) Tesseract (Fraktur) Transkribus

Avg ACC 0.488 0.221 0.217 0.398

Avg ED 1.137 2.518 2.152 1.230

Avg WER 0.118 0.191 0.187 0.120

Avg CER 0.024 0.053 0.045 0.027

Best obtained results in bold

Neural Computing and Applications

123

Compliance with ethical standards

Conflict of interest The authors whose names are listed in this paper

certify that they have NO affiliations with or involvement in any

organization or entity with any financial interest (such as honoraria;

educational grants; participation in speakers’ bureaus; membership,

employment, consultancies, stock ownership or other equity interest;

and expert testimony or patent-licencing arrangements) or non-fi-

nancial interest (such as personal or professional relationships, affil-

iations, knowledge or beliefs) in the subject matter or materials

discussed in this manuscript.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Pascanu R, Mikolov T, Bengio Y (2013) On the difficulty of

training recurrent neural networks. In: International conference

on machine learning, pp 1310–1318

2. Graves A, Fernández S, Gomez F, Schmidhuber J (2006) Con-

nectionist temporal classification: labelling unsegmented

sequence data with recurrent neural networks. In: Proceedings of

the 23rd international conference on machine learning (ACM),

pp 369–376

3. Grüning T, Leifert G, Strauß T, Michael J, Labahn R (2019) A

two-stage method for text line detection in historical documents.

Int J Doc Anal Recognit (IJDAR) 22(3):285

4. Breuel TM, Ul-Hasan A, Azawi MIAA, Shafait F (2013) High-

performance OCR for printed English and Fraktur using LSTM

networks. In: 2013 12th international conference on document

analysis and recognition, pp 683–687

5. Shi B, Bai X, Yao C (2017) An end-to-end trainable neural

network for image-based sequence recognition and its application

to scene text recognition. IEEE Trans Pattern Anal Mach Intell

39(11):2298

6. Sabir E, Rawls S, Natarajan P (2017) Implicit Language Model in

LSTM for OCR. In: 2017 14th IAPR international conference on

document analysis and recognition (ICDAR), vol 7. IEEE,

pp 27–31

7. Karpathy A, Johnson J, Fei-Fei L (2015) Visualizing and

understanding recurrent networks. arXiv preprint arXiv:1506.

02078

8. Ul-Hasan A, Breuel TM (2013) Can we build language-inde-

pendent OCR using LSTM networks?. In: Proceedings of the 4th

international workshop on multilingual OCR , pp 1–5

9. Isola P, Zhu JY, Zhou T, Efros AA (2017) Image-to-image

translation with conditional adversarial networks. In: Proceedings

of the IEEE conference on computer vision and pattern recog-

nition, pp 1125–1134

10. Afzal MZ, Pastor-Pellicer J, Shafait F, Breuel TM, Dengel A,

Liwicki M (2015) Document image binarization using lstm: A

sequence learning approach. In: Proceedings of the 3rd

international workshop on historical document imaging and

processing (ACM), pp 79–84

11. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional

networks for biomedical image segmentation. In: International

conference on medical image computing and computer-assisted

intervention. Springer, pp 234–241

12. Xie S, Tu Z (2015) Holistically-nested edge detection. In: Pro-

ceedings of the IEEE international conference on computer

vision, pp 1395–1403

13. Huang X, Liu MY, Belongie S, Kautz J (2018) Multimodal

Unsupervised Image-to-image Translation. In: The European

conference on computer vision (ECCV)

14. Bukhari SS, Shafait F, Breuel TM (2011) Improved document

image segmentation algorithm using multiresolution morphology.

Document recognition and retrieval XVIII, vol 7874. Interna-

tional Society for Optics and Photonics, p 78740D

15. Shelhamer E, Long J, Darrell T (2017) Fully convolutional net-

works for semantic segmentation. IEEE Trans Pattern Anal Mach

Intell 39(4):640. https://doi.org/10.1109/TPAMI.2016.2572683

16. He K, Gkioxari G, Dollár P, Girshick R (2017) Mask r-cnn. In:

Proceedings of the IEEE international conference on computer

vision, pp 2961–2969

17. Breuel TM (2017) Robust, simple page segmentation using

hybrid convolutional mdlstm networks. In: 2017 14th IAPR

international conference on document analysis and recognition

(ICDAR), vol 1. IEEE, pp 733–740

18. Hochreiter S, Schmidhuber J (1997) Long short-term memory.

Neural Comput 9(8):1735

19. Breuel TM (2017) High performance text recognition using a

hybrid convolutional-lstm implementation. In: 2017 14th IAPR

international conference on document analysis and recognition

(ICDAR), vol 1. IEEE, pp 11–16

20. LeCun Y, Bengio Y et al (1995) Convolutional networks for

images, speech, and time series. Handb Brain Theory Neural

Netw 3361(10):1995

21. Elagouni K, Garcia C, Mamalet F, Sébillot P (2012) Text

recognition in videos using a recurrent connectionist approach.

In: International conference on artificial neural networks.

Springer, pp 172–179

22. He P, Huang W, Qiao Y, Loy CC, Tang X (2016) Reading scene

text in deep convolutional sequences. In: Thirtieth AAAI con-

ference on artificial intelligence

23. Graves A (2012) Sequence transduction with recurrent neural

networks. arXiv preprint arXiv:1211.3711

24. Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation

by jointly learning to align and translate. arXiv preprint arXiv:

1409.0473

25. Bluche T, Louradour J, Messina R (2017) Scan, attend and read:

End-to-end handwritten paragraph recognition with mdlstm

attention. In: 2017 14th IAPR international conference on docu-

ment analysis and recognition (ICDAR), vol 1. IEEE,

pp 1050–1055

26. Jaderberg M, Simonyan K, Vedaldi A, Zisserman A (2014)

Synthetic data and artificial neural networks for natural scene text

recognition. arXiv preprint arXiv:1406.2227

27. Margner V, Pechwitz M (2001) Synthetic data for Arabic OCR

system development. In: Sixth international conference on Doc-

ument analysis and recognition, 2001. Proceedings. IEEE,

pp 1159–1163

28. Gaur S, Sonkar S, Roy PP (2015) Generation of synthetic training

data for handwritten Indic script recognition. In: 2015 13th

international conference on document analysis and recognition

(ICDAR). IEEE, pp 491–495

29. Perez L, Wang J (2017) The effectiveness of data augmentation

in image classification using deep learning. arXiv preprint arXiv:

1712.04621

Neural Computing and Applications

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1506.02078
http://arxiv.org/abs/1506.02078
https://doi.org/10.1109/TPAMI.2016.2572683
http://arxiv.org/abs/1211.3711
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1406.2227
http://arxiv.org/abs/1712.04621
http://arxiv.org/abs/1712.04621

30. Clausner C, Pletschacher S, Antonacopoulos A (2014) Efficient

OCR training data generation with aletheia. In: Proceedings of

the international association for pattern recognition (IAPR),

Tours, France pp 7–10

31. Pletschacher S, Antonacopoulos A (2010) The page (page anal-

ysis and ground-truth elements) format framework. In: 2010 20th

international conference on pattern recognition (IEEE),

pp 257–260

32. Breuel TM (2008) The OCRopus open source OCR system.

Document recognition and retrieval XV, vol 6815. International

Society for Optics and Photonics, p 68150F

33. Vincent L, Lead UT (2006) Announcing tesseract OCR, Google

Code. http://googlecode.blogspot.com.au/2006/08/announcing-

tesseract-ocr.html. Accessed 1 Nov 2015

34. Leifert G, Strauss T, Grüning T, Labahn R (2016) Citlab argus for

historical handwritten documents

35. Strauss T, Weidemann M, Michael J, Leifert G, Grüning T,

Labahn R (2018) System description of citlab’s recognition &

retrieval engine for ICDAR 2017 competition on information

extraction in historical handwritten records

36. Wick C, Puppe F (2018) Fully convolutional neural networks for

page segmentation of historical document images. In: 2018 13th

IAPR international workshop on document analysis systems

(DAS). IEEE, pp 287–292

37. Otsu N (1979) A threshold selection method from gray-level

histograms. IEEE Trans Syst Man Cybern 9(1):62

38. Martı́nek J, Lenc L, Král P, Nicolaou A, Christlein V (2019)

Hybrid Training Data for Historical Text OCR. In: 15th inter-

national conference on document analysis and recognition

(ICDAR 2019), Sydney, Australia, pp 565–570. https://doi.org/

10.1109/ICDAR.2019.00096

39. Glorot X, Bengio Y (2010) Understanding the difficulty of

training deep feedforward neural networks. In: Proceedings of the

thirteenth international conference on artificial intelligence and

statistics, pp 249–256

40. Clausner C, Papadopoulos C, Pletschacher S, Antonacopoulos A

(2015) The ENP image and ground truth dataset of historical

newspapers. In: 2015 13th international conference on document

analysis and recognition (ICDAR). IEEE, pp 931–935

41. Tong X, Evans DA (1996) A statistical approach to automatic

OCR error correction in context. In: Fourth workshop on very

large corpora

42. Lewis DD, Yang Y, Rose TG, Li F (2004) RCV1: a new

benchmark collection for text categorization research. J Mach

Learn Res 5:361

43. Oquab M, Bottou L, Laptev I, Sivic J (2014) Learning and

transferring mid-level image representations using convolutional

neural networks. In: The IEEE conference on computer vision

and pattern recognition (CVPR)

44. Shang W, Sohn K, Almeida D, Lee H (2016) Understanding and

improving convolutional neural networks via concatenated rec-

tified linear units. In: International conference on machine

learning, pp 2217–2225

45. Kingma DP, Ba J (2014) Adam: a method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980

46. Alberti M, Bouillon M, Ingold R, Liwicki M (2017) Open eval-

uation tool for layout analysis of document images. In: 2017 14th

IAPR international conference on document analysis and recog-

nition (ICDAR), Kyoto, Japan, pp 43–47. https://doi.org/10.1109/

ICDAR.2017.311

47. Jaderberg M, Simonyan K, Vedaldi A, Zisserman A (2016)

Reading text in the wild with convolutional neural networks. Int J

Comput Vis 116(1):1

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications

123

http://googlecode.blogspot.com.au/2006/08/announcing-tesseract-ocr.html
http://googlecode.blogspot.com.au/2006/08/announcing-tesseract-ocr.html
https://doi.org/10.1109/ICDAR.2019.00096
https://doi.org/10.1109/ICDAR.2019.00096
http://arxiv.org/abs/1412.6980
https://doi.org/10.1109/ICDAR.2017.311
https://doi.org/10.1109/ICDAR.2017.311

	Building an efficient OCR system for historical documents with little training data
	Abstract
	Introduction
	Related work
	Image processing in general
	Segmentation
	Optical character recognition
	Existing tools and OCR systems

	Page layout analysis and segmentation
	Whole process description
	Text block segmentation
	Text line segmentation
	ARU-Net
	Kraken

	OCR engine
	Datasets
	Europeana
	Porta fontium
	Synthetic data
	Impact of the implicit language model
	Hybrid data
	Generated data

	Experiments
	Layout analysis and segmentation
	OCR results when training on a small amount of real annotated data
	OCR results when training on synthetic data
	OCR results when training on synthetic data with fine-tuning on few real samples
	Comparison With selected OCR systems

	Conclusions and discussion
	Acknowledgements
	References

