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Diffuse large B-cell lymphoma (DLBCL) patients are

treated using relatively homogeneous protocols, irre-

spective of their biological and clinical variability.

Here we have developed a protein-expression-based

outcome predictor for DLBCL. Using tissue microar-

rays (TMAs), we have analyzed the expression of 52

selected molecules in a series of 152 DLBCLs. The

study yielded relevant information concerning key

biological aspects of this tumor, such as cell-cycle

control and apoptosis. A biological predictor was

built with a training group of 103 patients, and was

validated with a blind set of 49 patients. The predic-

tive model with 8 markers can identify the probability

of failure for a given patient with 78% accuracy. After

stratifying patients according to the predicted re-

sponse under the logistic model, 92.3% patients be-

low the 25 percentile were accurately predicted by

this biological score as “failure-free” while 96.2% of

those above the 75 percentile were correctly pre-

dicted as belonging to the “fatal or refractory disease”

group. Combining this biological score and the Inter-

national Prognostic Index (IPI) improves the capacity

for predicting failure and survival. This predictor was

then validated in the independent group. The protein-

expression-based score complements the informa-

tion obtained from the use of the IPI, allowing pa-

tients to be assigned to different risk categories. (Am

J Pathol 2004, 164:613–622)

Diffuse large B-cell lymphoma (DLBCL) is the most fre-

quent type of lymphoma, with a 5-year survival probability

of around 50%. Although a significant proportion of

DLBCL patients can be cured with current combination

chemotherapy regimes, at present there is no clinical or

biological score available that can accurately distinguish

patients who can be cured with standard therapy and

those who require new treatment approaches.1

Outcome with DLBCL, as in other types of cancer, is

the result of interactions between the genetic abnormal-

ities in the tumor and the clinical status of the patients.

Information concerning the molecular abnormalities

present in DLBCL, derived from genome-wide expres-

sion analysis, allows us to identify multiple markers that

suggest the existence of a vast number of underlying

genetic events in all of the major cell pathways involved in

control of proliferation, apoptosis, signal transduction,

DNA repair, and other processes.2–4 Nevertheless, until

recently, outcome-predictor systems have been based

on single genetic abnormalities, or the integration of clin-

ical data into predictive models, such as the International

Prognostic Index (IPI).5

Tissue microarrays (TMAs) are a powerful and repro-

ducible technique for demonstrating the biological vari-

ability inherent in cancer and, when applied to lymphoma

samples, are capable of identifying multiple alterations in

the regulation of critical genes and pathways.6,7

In the present study we have investigated the expres-

sion of a large number (52) of markers in a DLBCL series

using TMAs. The results yield information concerning the

variety of molecular markers that predict clinical re-

sponse. These can be integrated into a single predic-

tive model that identifies the probability of failure with

78% accuracy. This biological score can be used to

complement the information obtained by the use of the

IPI, allowing patients to be stratified into different risk

categories.
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Materials and Methods

DLBCL Samples

235 cases of DLBCL were collected. These were diag-

nosed between 1990 and 1999, the stages being evalu-

ated according to standard protocols. Patients were

treated with regimes including polychemotherapy (mainly

adriamycin-based) with or without adjuvant radiotherapy

and/or surgery. Diagnostic paraffin blocks were selected

on the basis of the availability of suitable formalin-fixed

paraffin-embedded tissue, containing enough remaining

tissue as for a minimum of 60 sections. Histological con-

firmation of DLBCL was achieved in all cases by central

review using standard tissue sections. Histological crite-

ria used for diagnoses and classification of cases were

those described in the World Health Organization classi-

fication.8 Paraffin-embedded blocks from reactive lym-

phoid tissue, cell lines and different B- and T-cell lym-

phoma samples, used for control purposes, were

obtained from the tissue archives of the CNIO Tumor

Bank.

Tissue Microarray Design

We used a Tissue Arrayer device (Beecher Instruments,

Sun Prairie, WI) to construct three different TMA blocks,

containing 502 cylinders in total, according to conven-

tional protocols.7 All cases were histologically reviewed

and the most tumor-rich areas were marked in the paraf-

fin blocks. Two selected 0.6-mm-diameter cylinders from

two different areas were included in each case, along

with 16 separate controls to ensure the quality, reproduc-

ibility and homogenous staining of the slides. Selected

controls include reactive lymph nodes and tonsils, and

paraffin-embedded cell lines.

Immunohistochemical staining was performed and

evaluated for the 50 different antibodies using standard

procedures.7 The selected markers correspond to sets of

key proteins involved in cell cycle, apoptosis (extrinsic

and intrinsic pathways), and B-cell differentiation, addi-

tionally including a large majority of the markers previ-

ously identified as survival predictors in DLBCL.

Staining of TMA sections was evaluated by three dif-

ferent pathologists (A.S., J.F.G., F.C.), using uniform cri-

teria. To guarantee the reproducibility of this method, we

decided to employ straightforward and clear-cut criteria.

After initial analysis, the pattern of staining for each Ab

was recorded as positive versus negative, or high versus

low level of expression, taking into account the expres-

sion in reactive and tumoral cells and specific cut-offs for

each marker. Specific details of the threshold used in

each case are given in Table 1. As a general criterion,

these thresholds were preferentially selected on the basis

of their reproducibility and, when possible, their ability to

correlate with previous findings using these markers

and/or specific biological events.

As cytoplasmic STAT1, STAT3, and NF�B expression

can generally be found in normal lymphoid cells and

lymphomas, we have considered as positive cases

only those showing distinct nuclear expression in the

tumoral cells, thereby indicating the activated form of

these proteins.9

Discrepancies between the two cylinders included for

each case were resolved through a reviewed joint anal-

ysis of both cores. The same procedure was applied to

discrepancies among pathologists.

The reactivity of most of the antibodies used here has

been validated in previous studies.7

In situ detection of apoptosis and EBER in situ hybrid-

ization (ISH) were performed using standard proce-

dures,7 using the appropriate controls. Apoptosis was

detected using the ApopTag Peroxidase In Situ Apopto-

sis Detection Kit (Intergen Co., Oxford, UK). Epstein-Barr

virus (EBV) was detected by ISH with fluorescein-conju-

gated Epstein-Barr Virus (EBER) PNA probe (DAKO,

Glostrup, Denmark). EBV-positive cases were consid-

ered to be those showing EBER nuclear expression in a

majority of the tumoral cells.

Validation of the Technique

The reproducibility of the results obtained was confirmed

by comparing them with those from whole sections from

42 randomly selected cases that had been stained using

the same procedures for a selection of markers including

CD20, bcl-2, and bcl-6.

Statistical Study

The Pearson �2 statistic and the Spearman correlation

coefficient were used as appropriate to analyze relation-

ships between the 52 markers studied.

Survival analyses were performed on all patients for

whom follow-up information was available for a minimum

of 24 months (approximately 70% of the overall series) and

who had complete expression analysis data. HIV-positive

patients9 were excluded from the outcome analysis. The

final number of patients included in the survival analysis

was 152, all of them treated with curative intention.

Failure was defined as the absence of complete remis-

sion, progression, or death attributable to the tumor. The

series was divided into a training group of 103 cases for

the purpose of building the predictor, and a second,

smaller group of 49 cases, to validate the model.

Overall Survival (OS) and Failure-Free Survival (FFS)

curves were plotted using the Kaplan-Meier method. Sta-

tistical significance of associations between individual

variables and OS or FFS was determined using the log-

rank test.

Cox’s univariate proportional hazard analysis was also

performed independently for each variable. Results were

validated by multiple testing and the random permutation

test.

For multivariate analysis, the series was divided into a

training group of 103 cases for the purpose of building

the predictor, and a second, smaller group of 49 cases,

to validate the model.

A logistic regression model was used to predict failure.

Only variables identified in the univariate analysis asso-
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ciated with FFS with values of P � 0.2 and in which at

least 5 cases were considered positive or negative were

included. Highly variable components in the model were

excluded, since they could have introduced uncertainty

in predictions. For comparative purposes, multivariate

models using step-up (forward) variable selection and

other heuristic procedures were also fitted. The final

model estimates values of the odds ratio (OR), 95% con-

fidence interval (CI) and P for each variable. General

applicability of the model was tested by leave-one-out

cross-validation. The stability of the model was evaluated

by influence statistics (DfBeta). Different predictor mod-

els were found, when using the leave-one-out cross-

validation, but these showed only small variations in the

weight of each marker, or selection of markers. Accuracy

was also tested by the Receiver Operating Characteristic

(ROC) curve, which allows the discriminating ability of the

model to be estimated.

Table 1. Antibodies Used in the Analyses, Indicating Source, Dilution, Threshold and Pattern of Reactivity Used and Positive
Controls

Protein Clone Source Dilution Reactivity Threshold Internal control

Bcl-2 124 DAKO 1:25 High/low �50% positive cells Small lymphocytes

Bax POLYCLONAL Santa Cruz 1:1000 Positive/negative �10% positive cells Benign B lymphocytes

Bcl-XL 2H12 ZYMED 1:10 High/low �10% positive cells TMA controls

Mcl1 POLYCLONAL DAKO 1:100 High/low �50% positive cells Proliferating cells

Survivin POLYCLONAL RD Systems 1:1500 High/low �10% positive cells TMA controls

p65/RelA F-6 (p65) Santa Cruz 1:2000 Positive/negative Nuclear expression TMA controls

Caspase 3 C92-605 PharMingen 1:25 Positive/negative �10% positive cells TMA controls

Bcl-10 331.3 Santa Cruz 1:1000 Positive/negative �10% positive cells Reactive lymphocytes

CD95 GM30 Novocastra 1:50 Positive/negative �10% positive cells Reactive lymphocytes

Oct-1 12F11 Santa Cruz 1:10 Positive/negative �10% positive cells Reactive lymphocytes

Oct-2 POLYCLONAL Santa Cruz 1:500 Positive/negative �10% positive cells Reactive lymphocytes

Bob-1 POLYCLONAL Santa Cruz 1:3000 Positive/negative �10% positive cells Reactive lymphocytes

PU1 G148-74 PharMingen 1:50 Positive/negative �10% positive cells Benign B-lymphocytes

Pax-5 POLYCLONAL Santa Cruz 1:200 Positive/negative �10% positive cells CG (germinal center) B cells

MUM-1 POLYCLONAL Santa Cruz 1:200 High/low �80% positive cells Plasma cells

STAT3 F-2 Santa Cruz 1:500 Positive/negative Nuclear expression Reactive lymphocytes,

macrophages

Bcl-6 PG-B6p DAKO 1:10 Positive/negative �10% positive cells CG (germinal center) B cells

and B-cell lymphomas

CD38 VS38 DAKO 1:25 High/low �80% positive cells Plasma cells

CD138 MI15 DAKO 1:50 High/low �80% positive cells Plasma cells

CD5 4C7 Novocastra 1:50 Positive/negative �10% positive cells Reactive lymphocytes

CD10 56C6 Novocastra 1:10 Positive/negative �10% positive cells CG (germinal center) B cells

CD20 L-26 DAKO 1:100 Positive/negative Any positive tumoral cell Reactive lymphocytes

CD30 15B3 Novocastra 1:100 Positive/negative �10% positive cells TMA controls

EMA E29 DAKO 1:50 Positive/negative �10% positive cells TMA controls

CD27 137B4 Novocastra 1:150 Positive/negative �10% positive cells Reactive lymphocytes

Cyclin A 6E6 Novocastra 1:100 Positive/negative �10% positive cells Proliferating cells (G2/M)

Cyclin B1 7A9 Novocastra 1:25 Positive/negative �50% positive cells Proliferating cells (G2/M)

Cyclin D1 DCS-6 DAKO 1:100 Positive/negative Any positive tumoral cell Macrophages and endothelial

cells

Cyclin D3 DCS-22 Novocastra 1:10 Positive/negative �50% positive cells Proliferating cells

Cyclin E 13A3 Novocastra 1:10 High/low �80% positive cells TMA controls, proliferating cells

CDK1 1 Transduction 1:1500 Positive/negative �80% positive cells TMA controls, proliferating cells

CDK2 8D4 NeoMarkers 1:500 Positive/negative �50% positive cells TMA controls, proliferating cells

CDK6 K6.83 Chemicon 1:10 Positive/negative �80% positive cells TMA controls

P21 EA10 Oncogene 1:50 Positive/negative �10% positive cells Scattered GC cells

P16 POLYCLONAL Santa Cruz 1:50 High/low �10% positive cells Normal cells

P27 57 Transduction 1:1000 High/low �10% positive cells Resting lymphoid cells

Ki67 MIB1 DAKO 1:100 High/low �50% positive cells Proliferating cells

SKP2 1G12E9 ZYMED 1:10 Positive/negative �80% positive cells Proliferating cells

P53 DO-7 Novocastra 1:50 High/low �80% positive cells Scattered GC cells

Hdm2 IF2 (Mdm2) Oncogene 1:10 High/low �10% positive cells Macrophages, endothelial cells

Rb G3-245 BD PharMingen 1:250 High/low �80% positive cells Proliferating cells

Rb-P (Phospho-Rb) sc-7986-R Santa Cruz 1:250 High/low �80% positive cells Proliferating cells

PTEN 28H6 Novocastra 1:50 Positive/negative Any positive tumoral cell Normal cells

DP-1 1DP06 NeoMarkers 1:50 Positive/negative �80% positive cells Proliferating cells

PKC� 28 Serotec 1:500 Positive/negative �10% positive cells Plasma cells, endothelial cells

TOPO Ki-S1 DAKO 1:400 High/low �50% positive cells Proliferating cells

GST 353-10 DAKO 1:150 High/low �50% positive cells Proliferating cells

c-kit POLYCLONAL DAKO 1:25 High/low �10% positive cells Stromal cells

ALK ALK1 DAKO 1:50 High/low �10% positive cells TMA internal controls

CD3 F7.2.38 DAKO 1:25 Positive/negative Any positive tumoral cell Reactive lymphocytes

DAKO, Glostrup, Denmark; Santa Cruz Biotechnology, Santa Cruz, CA; BD PharMingen, San Diego, CA; Novocastra, Newcastle, UK; Transduction
Laboratories, Lexington, KY; Neomarkers, Fremont, CA; Chemicon, Temecula, CA; Oncogene Research Products, Darmstadt, Germany; Serotec,
Oxford, UK.
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To demonstrate the predictive capacity of the model,

patients were ranked according to this score and then

divided into four equal groups, or quartiles. To validate

the model overall, the specific weight or coefficient as-

signed to each gene, as determined in the preliminary

group, was applied to calculate the outcome-predictor

score in the validation group. Once the model had been

validated, a final logistic regression model was fitted to

the entire data, allowing adjustment of the coefficients.

Statistical analyses were performed using the SPSS pro-

gram and the tools at http://bioinfo.cnio.es/ for random

permutation tests.

Results

The percentage of informative individual cores was

90.4%. As each TMA included 2 different core cylinders

from each marker, the final percentage of missing ex-

pression data values was 12% (Table 2).

To check the reliability and accuracy of TMA for this

measure of protein expression, TMA and quantitative

whole tissue stainings were compared in a subset of 42

cases. Concordances of 100%, 91.1%, and 90% were

obtained for CD20, bcl-2 and bcl-6, respectively, thus

coinciding with the results of other NHL analysis stud-

ies.10,11

Results of the overall DLBCL series are summarized in

Table 2. Figure 1 shows the expression of the markers

found to predict failure after the multivariate analysis.

Correlation between Markers

The Pearson test revealed a large number of significant

associations between the different markers analyzed. Full

details of the correlation between markers are given in

Supplementary Appendix 2 at http://bioinfo.cnio.es/data/

DLBCL_TMA.

The most striking findings were as follows:

• Higher levels of expression of specific cyclins and

CDKs were observed in varying numbers of this series:

11.7% (25 of 214) in the case of cyclin E, 52.9% (197 of

202) for cyclin A, 22.3% (40 of 179) in the case of CDK1

and 76.3% (151 of 198) for CDK2. There was a close

relationship between proliferation and apoptosis, includ-

ing the positive association observed between prolifera-

tion and apoptotic indices, and between the apoptotic

index and different CDKs and cyclins.

• EBV presence was accompanied by changes in the

expression of numerous proteins, including an increase

in CDK1, cyclin B1, SKP2, p21, CD30, and a loss of

BOB1, pax-5, and bcl-6.

• SKP2 expression, observed in 12.1% (26 of 214) of

cases, was significantly associated with changes in nu-

merous apoptosis and cell-cycle regulators, including a

strongly positive correlation with CDK1, Rb, cyclin A, B1,

D3, survivin, and a negative association with Bax and

bcl-2. A significant relationship was also observed be-

tween SKP2 expression and the increased expression

of Rb-P, CDK6, MDM2, p53, bcl-6, CD10, c-kit, EBER,

NF-kB, caspase 3 active, MCL1, MIB1, and TUNEL.

• An unexpected finding was the association of c-kit

expression with various cell cycle markers (increased

p27, SKP2, CDK1, cyclin E, and Rb-P), apoptosis (loss of

Bax and increase in bcl-XL, bcl-10, survivin), high PKC�,

Table 2. Expression of 51 of the 52 Markers Analyzed in
the Entire DLBCL Series, Indicating Number of
Positive/Total Analyzed Cases

Protein Positive cases Percentage

Apoptosis
MBcl-2 122/224 54.46
Bax 194/215 90.23
Bcl-XL 73/188 38.83
Mcl1 107/186 57.53
Survivin 70/217 32.26
p65/RelA 116/225 51.56
Caspase 3 active 17/194 8.77
Bcl-10 75/188 39.89
CD95 69/169 40.83
TUNEL 141/191 73.82

Transcription factors
Oct-1 186/187 99.46
Oct-2 189/192 98.44
Bob-1 176/180 97.78
PU1 11/194 5.67
Pax-5 209/215 97.21
MUM-1 113/206 54.85
STAT3 23/224 10.27

B-cell differentiation
Bcl-6 168/207 81.16
CD38 73/204 35.78
CD138 15/219 6.85
CD5 53/188 28.19
CD10 51/182 28.02
CD20 224/231 96.97
CD30 41/206 19.90
EMA 8/214 3.74
CD27 30/209 14.35

Cell cycle
Cyclin A 107/202 52.97
Cyclin B1 37/221 16.74
Cyclin D1 0/235 0
Cyclin D3 50/229 21.83
Cyclin E 25/214 11.68
CDK1 40/179 22.35
CDK2 151/198 76.26
CDK6 111/174 63.79
P21 20/226 8.85
P16 166/212 78.30
P27 78/216 36.11
MIB1 131/210 63.38
SKP2 26/214 12.15
P53 37/222 16.66
Hdm2 120/221 54.30
Rb 112/215 52.09
Rb-P 57/189 30.16

Other
PTEN 211/211 100
DP-1 114/155 73.55
PKC� 55/186 29.57
TOPO 186/207 89.85
GST 150/209 71.77
c-kit 60/213 28.17
ALK 1/213 0.47
EBER 20/221 9.05

CD3 was negative in all cases.
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and B-cell differentiation (elevated CD27, CD38, CD5,

CD10).

• Finally, bcl-6 expression, detected in 81% (169 of

207) of cases, was associated with profound changes in

molecules regulating cell cycle (high SKP2, CDK6,

MDM2, Rb, Rb-P, and loss of p21), apoptosis (increase in

bcl-xL and NF-kB), and B-cell differentiation (increase in

Pax5, CD10, and Bob1 expression). Notably, it was found

to be inversely correlated with EBV and epithelial mem-

brane antigen (EMA). Another interesting finding was the

existence of a group (47% of cases) that simultaneously

expressed bcl-6 and MUM1, two proteins that normal

lymphoid B cells do not express at the same time.

Correlation between Protein-RNA Expression

and Outcome in DLBCL

To detect any possible selection bias, the 152 included

patients (Table 3) were compared with those who had

been excluded due to insufficient follow-up. Comparison

of age, gender, clinical stage and IPI revealed no signif-

icant differences.

All 52 individual variables were analyzed using

Kaplan-Meier plots and Cox proportional hazard models

to determine whether the expression was significantly

associated with changes in FFS (Table 4). Ten variables

(cyclin E, CDK1, SKP2, bcl-6, p21, Oct-2, BOB1, EMA,

Bax, bcl-2) were significantly correlated with FFS (P �

0.05) and nine showed a non-significant trend (P � 0.2).

All of the significantly FFS-correlated variables, except

Rb-P, were also associated with OS probability (P �

0.05) (data not shown). Furthermore, EBER, which

showed a non-significant trend in the FFS analysis, was

found to be associated with OS (P � 0.05) (data not

shown). The result of the Cox proportional hazard analy-

sis was then validated using multiple testing and random

permutation tests (n � 1000).

Predicting Failure in DLBCL

Logistic regression analysis was used to find a DLBCL

outcome predictor, making it possible to recognize which

patients could be cured by the application of chemother-

apeutic regimes. The group of 103 cases was used to

build the predictor. Only variables identified in the uni-

variate analysis associated with FFS with values of P �

0.2, and in which at least five cases were considered

positive or negative, were included (19 variables, exclud-

ing EMA, Oct-2, BOB1). The final logistic regression

model included the following markers: cyclin E, CDK1,

SKP2, EBER, MUM1, CDK2, bcl-6, and Rb-P (Figure 1).

The predictor is a biological score, the probability of

“failure” for one patient, which is calculated as

P �
1

(1�e�z)
,

where

z � � 7.0865 � 3.0352 � cyclinE � 2.6502 � CDK1

� 2.4572 � SKP2 � 2.2494 � EBER � 1.4833

� MUM1 � 0.9639 � CDK2 � 0.9367 � bcl-6

� 0.6458 � Rb-P ,

and where coefficients from the logistic model are used

as weights for the corresponding markers.

The percentage of correct classification for this model,

using the training series, was 78.64% (81.13% for pre-

dicting FFS and 76% for patients with treatment failure).

Figure 1. Characteristics and variables included in the biological model for failure prediction in DLBCL. Representative immunohisto chemistry and in situ
hybridzation results for the eight markers selected in the multivariate analysis. A positive and a negative tumor are shown for each marker. � represents the weight
of each variable estimated from the multivariate analysis.

Table 3. Clinical Characteristics of the 152 DLBCL Patients
Included in the Outcome Analysis

Age (mean, range) 58.4 (5–96)
Gender Female 47.6%

Male 52.4%
IPI 0–1 41.8%

2 27.1%
3 17.1%
4–5 14.1%

Follow-up (median) 60.9
Overall survival 5-year cumulative

survival
59.8%

Failure Cured versus fatal/
refractory disease

50.6%/49.4%

Failure-free survival 5-year cumulative
survival

50.4%

Outcome Predictor for Diffuse Large B-Cell Lymphoma 617
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In a second step, patients were ranked according to

their protein-expression-based score (0 to 1) and divided

into four different quartiles, according to their specific

risk. Stratifying patients according to these quartiles,

92.3% of patients beneath the 25 percentile were accu-

rately predicted as “failure-free” by the score, and 96.2%

of the patients above the 75 percentile were correctly

predicted as belonging to the group of “fatal or refractory

disease”. Between the 25 and 75 percentiles the accu-

racy of prediction fell below 90% for both categories

(64% in the second quartile and 53.8% in the third quar-

tile). Thus, when assigning each patient a specific risk,

the capacity for predicting the upper and lower quartile is

much higher than for patients with intermediate quartiles.

Validating the Biological Score for Failure in

DLBCL

A Kaplan-Meier survival analysis, classifying patients ac-

cording to the quartile of assigned probability, confirmed

that the patients predicted to be cured had significantly

improved long-term survival compared with those pre-

dicted to have fatal/refractory disease (5-year OS:

91.97% below the 25 percentile, vs. 25.45% above the 75

percentile; P � 0.0001) (Figure 2A).

The prediction accuracy of the score was then as-

sessed using a leave-one-out cross-validation testing

method, withholding one case and using the remaining

set of tumors to train the model, predicting the “failure”

probability of the withheld case. The process was re-

peated until all 103 samples had been predicted in turn.

The results confirmed, with minor differences, the FFS

and OS predictive capacity of the biological score (Fig-

ure 2B). Different predictor models were found, when

using the leave-one-out cross-validation, showing only

small variations in the weight of each marker, or selection

of markers.

Although the majority of the patients of this series

received anthracycline-based chemotherapy, 12 of 103

(11.6%) patients were treated with different drugs. To

examine whether the biological model was independent

of the treatment regimes used, treatment was included as a

new variable. The specific weight of each variable in the

model remained similar (3.064 � cyclin E � 2.499 � CDK1

� 2.364 � SKP2 � 2.264 � EBER � 1.391 � MUM1 �

1.088 � CDK2 � 0.898 � bcl-6 � 0.828 � Rb-P). More-

over, the correct classification percentage in this new model

with the variable “treatment” decreased imperceptibly

(77.2% for the overall prediction). Correct prediction per-

centage in the different quartiles was 92% (quartile 1 for

Table 4. Univariate Analysis for OS and FFS in the Current Series (n: 152 Patients) and Logistic Regression Model for Failure
Prediction in the Training Set of Patients (n: 103)

Protein Reference category

Univariate analysis for FFS
(Cox regression)

Multivariate analysis for failure protein,
RNA-expression-based model and model

integrating IPI; (logistic regression)

95% CI
Beta in PEB

model

Beta in
PEB � IPI

model

Difference
between
modelsP RR Lower Higher

IPI IPI (0–2) 0.000 3.257 2.121 5.001 3.260

cyclin E �80% 0.000 3.293 1.839 5.894 3.035 2.477 0.184
CDK1 �80% 0.029 2.281 1.090 4.771 2.650 2.975 �0.123
SKP2 �80% 0.019 3.999 1.261 12.683 2.457 2.329 0.052
EBER � 0.086 1.898 0.913 3.945 2.249 2.569 �0.142
MUM1 �80% 0.071 0.065 0.409 1.037 1.483 1.758 �0.185
CDK2 �50% 0.114 0.623 0.347 1.120 0.964 0.739 0.233
Bcl-6 �50% 0.040 1.747 1.027 2.972 0.937 0.655 0.301
Rb-P �80% 0.117 1.648 0.882 3.078 0.646 1.037 �0.391

p21 � 0.001 3.042 1.601 5.780
cyclin B1 �50% 0.094 1.869 0.899 3.883
cyclin A �50% �0.2
MDM2 � 0.097 1.446 0.936 2.234
Rb �80% 0.192 1.342 0.863 2.088
CD38 �80% 0.188 1.369 0.858 2.184
CD138 �80% 0.090 1.882 0.906 3.907
Oct_2* � 0.015 4.270 1.325 13.757
BOB1* � 0.003 8.836 2.074 37.657
EMA* � 0.040 2.891 1.052 7.948
CD95 � �0.2
Bax � 0.037 3.428 1.080 10.879
Bcl-2 �50% 0.015 1.740 1.114 2.719

*, �5 values in one category; �, no data available.
PEB, protein-expression-based; RR, relative risk.
Specific weight (beta) of each variable for predicting failure in the protein and RNA-expression-based model, compared with values for model

integrating the IPI. Differences were calculated as (beta1-beta2)/beta1.
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Figure 2. Protein-expression-based model for failure prediction in DLBCL. Kaplan-Meier estimation of OS according to the assigned probability for each model
in the training set of patients. Quartiles of protein-expression-based score (A) and leave-one-out cross-validation (B). Quartiles of protein-expression-based score
for each IPI category (C) and leave-one-out cross-validation (D). Quartiles of protein-expression-based and IPI score (E) and leave-one-out cross-validation (F).
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failure-free) vs. 96.2% (quartile 4 for failure). These percent-

ages are very similar to those obtained previously.

Integration of Protein-Expression-Based Score

and IPI

This biological score yielded a 13.616-fold odds ratio

(OR) [95% CI (5.288, 35.063), P � 0.0001] for failure of

treatment (percentile 50). IPI (low risk versus high risk),

the standard clinical score for predicting the outcome in

DLBCL,5 in this series yielded a 10.151-fold OR [95% CI

(3.159, 32.616), P � 0.0001] for failure. A multivariate

analysis including both the IPI and the protein-expres-

sion-based score showed that the significance of the

biological score for failure [percentile 50; OR � 18.983;

95% CI (5.988, 60.180); P � 0.0001] seemed to be su-

perior to and independent of the IPI [OR � 15.359; 95%

CI (3.672, 64.244); P � 0.0001].

To determine whether the information contained in the

protein and RNA-expression-based model was the same

as or additional to the variables included in the IPI, pa-

tients were classified into low-risk (IPI: 0–2) and high-risk

groups (IPI: 3–5), and then the protein-expression-based

score quartiles were used in both groups. Low-risk IPI

patients were accurately stratified by the protein-expres-

sion-based score into groups with a failure probability of

95.24% (quartile 4), 81.89% (quartiles 3 and 2) and

31.59% (quartile 1), P � 0.00001. High-risk IPI patients

were also discriminated into two main groups using the

protein-expression-based score, although the difference

was not significant. These results suggest that an inte-

grated use of the IPI and the protein-expression-based

score could improve the predictive capacity of the model

(Figure 2, C and D).

The joint predictive capacity of the protein-expression-

based score and IPI was analyzed in a multivariate

model. The specific weight of each component of the

biological score in this new model remained quite similar

(Table 4), confirming that the biological and clinical

scores contain at least partially independent information.

The predictive capacity of the model incorporating the IPI

and the variables integrated in this biological score was

slightly higher than that based purely on the protein and

RNA- expression-based model, with 83% overall correct

classification of failure (92% for quartile 1 and 96% for

quartile 4).

This was correlated with a better discrimination of pa-

tients with different outcomes. Thus, patients allocated

above the 50 percentile of the integrated score had

91.73% 5-year OS versus 29.71% for patients predicted

for “failure” (Figure 2E).

Blind Test for Validation of the Predictor

The leave-one-out cross-validation confirmed the high

predictive capacity of this integrated model, with a prob-

ability of failure in each respective quartile of 12%, 24%,

68%, and 88%, reflected in the overall survival probability

(Figure 2F). The discriminating ability of this model was

better than that of the protein and RNA-expressed-based

model [ROC curve area: 0.901; P � 0.0001, 95% CI

(0.840, 0.961)].

As this evaluation was based on the same training set

of patients from which the predictive model was derived,

we decided to estimate the accuracy of the classifier with

an additional cohort of 49 patients who had not previously

been included. In this independent series, the failure

prediction and the outcome were evaluated by the model

integrating the 8 markers and IPI, using the threshold

from the training set of patients. The immunostaining and

evaluation of these tumors were performed indepen-

dently of the previous cases. The predictive capacities of

the validation and preliminary group were comparable

with respect to the assigned score for each patient by the

model (76.9% and 83.3% of correct classification into

quartiles 1 and 4, P � 0.001). Furthermore, values for

5-year OS were closely related with the assigned failure

probability for each patient (5-year OS: 100%, 81.48%,

75%, and 25% for each quartile of the score; P � 0.0001).

Once the model had been validated, a final model with

the 8 biological markers and IPI was fitted to the entire

data (training � validation series). Finally, the biological-

IPI score allowed assignment of a case-specific proba-

bility of failure, as can be observed in Figure 3.

Discussion

DLBCL seems to be the result of deregulation of multiple

genes involved in the control of cell cycle, apoptosis, cell

Figure 3. Final biological and clinical predictor model. a: Tree-view repre-
sentation of the eight markers and IPI. Each column represents a marker,
while each row corresponds to a patient, ordered according to the assigned
failure probability. Specific weight of each marker is included at the top of
each column. b: Real status of each patient (failure, black vs. maintained
complete response, white). c: Graphic representation of the relation between
the assigned probability and the real status. The graphic represents the
accuracy of the predictor model. If the probability assigned to each patient (y
axis) is less than 0.5, the model classifies the case into the group of main-
tained response. If the probability is greater than 0.5, the system classifies the
case as a failure. The curves represent the number of patients erroneously
classified as failure (in red), and those cases erroneously predicted to main-
tain a complete response (in green). Eventually, a threshold for each curve
of cumulative error could be chosen to select a group of patients with a high
probability of failure or of maintained complete remission.

620 Sáez et al
AJP February 2004, Vol. 164, No. 2



growth, DNA repair, ubiquitin degradation, and other pro-

cesses. Particularly striking is the existence of multiple

concurrent abnormalities in the genes and pathways in

the control of cell cycle and apoptosis. Subtle alterations

in this exquisitely regulated balance between cell prolif-

eration and apoptosis seem to contribute critically to

DLBCL pathogenesis.

Some of the observed changes affect the large major-

ity of cases analyzed here, such as the expression of

bcl-6. The hypothetical relevance of bcl-6 in DLBCL

pathogenesis is underlined by the increasing number of

bcl-6 targets that are being described in B cells, and for

its capacity to contribute to oncogenesis by rendering

cells unresponsive to antiproliferative signals from the

p19(ARF)-p53 pathway, as demonstrated by Shvarts et

al.12 In this respect, it is noteworthy that in this series

bcl-6 expression appears to be associated with down-

regulation of p21 and overexpression of MDM2. The po-

tential role of bcl-6 as a promoter of cell-cycle progres-

sion beyond the G1/S restriction point is suggested by

the existence of an additional significant relationship with

increased phosphorylated Rb. Our data also confirm the

prognostic significance of bcl-6 expression in DLBCL, as

previously pointed out, when taking into account bcl-6

mRNA expression levels.13

According to the results of this study, Skp2 expression,

which increased in one-fifth of the cases analyzed, is

associated with many changes in apoptosis and cell-

cycle regulators. Protein degradation throughout the

ubiquitin pathway thus seems to be indicated as a po-

tential contributory factor in the deregulation of prolifera-

tion and apoptosis in DLBCL.14,15 In addition to the con-

firmed role of Skp2 for inducing the degradation of p27

and Cdk2-unbound cyclin E, an accelerated degradation

of unknown additional substrates is likely to play a role in

oncogenic events mediated by Skp2.15

Cyclin E overexpression is highlighted by the uni- and

multivariate analyses as a clinically highly relevant ad-

verse prognostic marker, thus confirming previous obser-

vations in specific lymphoma types16,17 and other tu-

mors.18 A possible explanation for these findings is

provided by the recent demonstration that overexpres-

sion of cyclin E leads to increased chromosome instabil-

ity and impaired S-phase progression.19

In general, the results of the univariate analysis confirm

those previously published concerning single markers,

such as the case for bcl-2 or others.20,21 Nevertheless,

some of the significant markers in the univariate analysis,

can prove not significant in the multivariate analysis.

Results of this study, not based on previous hypothe-

ses of DLBCL subclassification, are difficult to match with

the three DLBCL subgroups defined by Rosenwald et al4:

germinal-center B-cell-like, activated B-cell-like, and type

3 diffuse large B-cell lymphoma. Instead, it seems that

the tumors accumulate alterations in critical pathways

stochastically, leading to the increased proliferation and

loss of apoptosis observed here. The existence of a large

group of double bcl-6� MUM1� cases demonstrates

that the mutual exclusion of these markers, as observed

in reactive germinal centers, is not preserved in

DLBCLs.22 Tumoral cells probably take advantage of the

simultaneous expression of both proteins.

The technique used here is based on large-scale anal-

ysis of protein expression, detected by immunohisto-

chemistry. The use of tissue microarrays is limited by the

relatively small number of markers chosen (52 in this

case), although it has the advantage of using protein

profiling, which probably reflects more closely the char-

acteristics of the tumoral cells than does RNA detection.

The integration of these markers into a single model

allows the assignment of a specific probability of failure to

each patient, according to the biological and clinical

characteristics of each case. This information could

eventually be used for individualized treatments, in which

patients are stratified into therapeutic groups. A clinical

application of this and other studies should, nevertheless,

first fulfill the necessity of demonstrating the reproducibil-

ity of immunohistochemistry techniques among different

groups, which would be facilitated by the application

of automated systems for scoring immunohisto-

chemical expression.
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Fernández I, Sánchez-Beato M, Sánchez E, Mollejo M, Piris MA:

Development of a real-time RT-PCR assay for C-MYC expression that

allows the identification of a subset of C-MYC� diffuse large B-cell

lymphoma. Lab Invest 2003, 83:143–152

11. Hedvat CV HA, Chaganti RS, Chen B, Qin J, Filippa DA, Nimer SD,

Teruya-Feldstein J: Application of tissue microarray technology to the

study of non-Hodgkin’s and Hodgkin’s lymphoma. Hum Pathol 2002,

33:368–374

12. Shvarts A, Brummelkamp TR, Scheeren F, Koh E, Daley GQ, Spits H,

Bernards R: A senescence rescue screen identifies BCL6 as an

inhibitor of anti-proliferative p19(ARF)-p53 signaling. Genes Dev

2002, 16:681–686

13. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A,

Boldrick JC, Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore

T, Hudson J Jr, Lu L, Lewis DB, Tibshirani R, Sherlock G, Chan WC,

Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Staudt LM, et

al: Distinct types of diffuse large B-cell lymphoma identified by gene

expression profiling. Nature 2000, 403:503–511

14. Chiarle R, Fan Y, Piva R, Boggino H, Skolnik J, Novero D, Palestro G,

De Wolf-Peeters C, Chilosi M, Pagano M, Inghirami G: S-phase ki-

nase-associated protein 2 expression in non-Hodgkin’s lymphoma

inversely correlates with p27 expression and defines cells in S phase.

Am J Pathol 2002, 160:1457–1466

15. Latres E, Chiarle R, Schulman BA, Pavletich NP, Pellicer A, Inghirami

G, Pagano M: Role of the F-box protein Skp2 in lymphomagenesis.

Proc Natl Acad Sci USA 2001, 98:2515–2520

16. Ferreri AJ, Ponzoni M, Pruneri G, Freschi M, Rossi R, Dell’Oro S,

Baldini L, Buffa R, Carboni N, Villa E, Viale G: Immunoreactivity for

p27(KIP1) and cyclin E is an independent predictor of survival in

primary gastric non-Hodgkin’s lymphoma. Int J Cancer 2001, 94:

599–604

17. Erlanson M, Portin C, Linderholm B, Lindh J, Roos G, Landberg G:

Expression of cyclin E and the cyclin-dependent kinase inhibitor p27

in malignant lymphomas-prognostic implications. Blood 1998, 92:

770–777

18. Muller-Tidow C, Metzger R, Kugler K, Diederichs S, Idos G, Thomas

M, Dockhorn-Dworniczak B, Schneider PM, Koeffler HP, Berdel WE,

Serve H: Cyclin E is the only cyclin-dependent kinase 2-associated

cyclin that predicts metastasis and survival in early stage non-small

cell lung cancer. Cancer Res 2001, 61:647–653

19. Spruck CH, Won KA, Reed SI: Deregulated cyclin E induces chro-

mosome instability. Nature 1999, 401:297–300

20. Sanchez E, Chacon I, Plaza MM, Munoz E, Cruz MA, Martinez B,

Lopez L, Martinez-Montero JC, Orradre JL, Saez AI, Garcia JF, Piris

MA: Clinical outcome in diffuse large B-cell lymphoma is dependent

on the relationship between different cell-cycle regulator proteins.

J Clin Oncol 1998, 16:1931–1939

21. Gascoyne RD, Adomat SA, Krajewski S, Krajewska M, Horsman DE,

Tolcher AW, O’Reilly SE, Hoskins P, Coldman AJ, Reed JC, Connors

JM: Prognostic significance of Bcl-2 protein expression and Bcl-2

gene rearrangement in diffuse aggressive non-Hodgkin’s lymphoma.

Blood 1997, 90:244–251

22. Carbone A, Gloghini A, Larocca LM, Capello D, Pierconti F, Canzo-

nieri V, Tirelli U, Dalla-Favera R, Gaidano G: Expression profile of

MUM1/IRF4, BCL-6, and CD138/syndecan-1 defines novel histoge-

netic subsets of human immunodeficiency virus-related lymphomas.

Blood 2001, 97:744–751
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