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Abstract

Building and Optimizing Declarative Networked Systems

by

David Chiyuan Chu

Doctor of Philosophy in Computer Science

University of California, Berkeley

Dr. Joseph M. Hellerstein, Chair

In the face of progressively diverse networking technologies and application traffic, it is in-

creasingly infeasible to custom engineer networked systems for each scenario. Moreover, an

expanding class of networks, networked embedded systems, are very difficult to program, yet

require a high degree of per-deployment programming customization.

We investigate a declarative approach to building and optimizing networked systems, with

emphasis on networked embedded systems. Our findings indicate that ideas from data manage-

ment may yield dividends for the design of networked systems in two key areas: (1) declarative

interfaces for simplicity yet breadth of expressiveness, and (2) automatic optimizations for

automatic performance improvements on the users’ behalf.

This dissertation reports on three efforts. First, we designed and implemented DSN: a

declarative language, runtime and compiler for networked embedded systems. The new logic-

based language in DSN has been highly intuitive for programming – in one case, an algorithm

designers’ pseudocode mapped nearly line-for-line to working DSN code. Typically, lines-of-code

are reduced by an order of magnitude vs. implementations in traditional embedded languages.

We built a complementary compiler and runtime that showed negligible performance drop off
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vs. hand-tuned C implementations. As a result, we have been able to build whole system stacks

– save for device drivers – entirely declaratively in under a hundred lines of code.

Next, we designed and implemented netopt, a network optimizer that relieves program-

mers from having to manually solve two general networking problems: rendezvous and proxy

selection. As part of this effort, we created novel program analysis and transformation algo-

rithms to automatically select optimal communication rendezvous and proxies based on traffic

and network conditions. When combined with either the DSN system, or similar systems for

PC-class devices, user programs get 1-2 orders of magnitude performance improvement without

need for programmers’ assistance.

Lastly, we designed and implemented wireless-netopt, an extension of netopt for wire-

less networking. wireless-netopt includes three wireless network optimizations from different

layers of the networking stack. We show that the declarative interface readily supports such

new domain-specific optimizations. Furthermore, these optimizations can be applied automat-

ically and without added programmer effort, benefiting programs by 2× in energy savings.

Dr. Joseph M. Hellerstein
Dissertation Committee Chair
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Chapter 1

Introduction

Networks are growing increasingly diverse. The causes of this diversity stem from both

novel workload demands and new resource availability. From above, we are witnessing many

new applications such as Video-on-Demand, multi-party telephony, and distributed sensing and

actuation. From below, we are seeing infrastructure composed from satellites, cellular networks,

urban WiFi, and short-range radio like 802.15.4 and bluetooth. As applications and networks

evolve, the leading methodology for addressing workload and resource diversities has been to

engineer custom networked systems one environment at a time. This approach may be difficult

to scale; the combinations of environments and applications that will coexist are poised to

outstrip the ability to address each combination individually.

Wireless sensor networking is one class of networking that exemplifies this situation. Over

the past five to ten years, wireless sensors have been employed in novel and varied uses – from

forecasting nature’s course in landslide and animal husbandry prediction (1; 2), to monitoring

large man-made structures, such as the modern computer data center and San Francisco’s

Golden Gate Bridge (3; 4). These small, untethered and embedded devices have and continue

to expose new insight about our physical environments by obviating the wired infrastructure

that has encumbered traditional distributed monitoring.

However, the short history of sensornets indicates that each new deployment is very taxing
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to bring online. Practitioners in the field regard rolling out each new deployment as nontrivial,

as evidenced by the ample reporting on deployment experiences in the literature, and by the

anecdotal statistics on man-months required per deployment (5; 6; 7; 8).

In large part, deployment challenges stem from the fact that sensor networks are notori-

ously difficult to program, given that they encompass the complexities of both distributed and

embedded systems. Many programming tools and frameworks have attempted to address pro-

grammability (9). In this wide spectrum of approaches, some have even eschewed programma-

bility altogether, opting instead for a black-box interface to entire sensor networks (10). Unfor-

tunately, sensornets are embedded, and embedded systems are fundamentally closely coupled

with their application and the physical world. As a result, some degree of deployment-specific

customization is frequently necessary. Moreover, deployment users often want to retask their

systems weeks, months or even several years later (11; 12). Ultimately, programmability is,

and will remain, essential to networked systems, and especially sensor networks.

Fortunately, we can look to the field of data management, where analogous challenges ex-

isted several decades ago. Current networking design methodology bears some resemblance

to early pre-relational data management. In that context, application developers initially en-

coded data requests (what is wanted) jointly with data access (how to get it). This approach

ultimately proved unsustainable for two reasons. First, new applications and their request work-

loads continually evolved. Second, available resources, specifically memory and disk technology,

advanced unabated. Such workload and resource evolution constantly pressured application de-

velopers to rethink data access. As a result, the philosophy of data independence emerged to

decouple the what from the how, and automated optimization of data access flourished and is

now commonplace (13).

This dissertation takes the lessons of data independence and applies them to networking,

with an emphasis on sensornets. Fundamentally, we ask whether a declarative approach can

help us program networked systems. As a result, two hypothesis emerge.

• Declarative languages are high-level languages. Therefore, declarative user code should be

more concise and easier to understand than imperative code. We quantify conciseness by
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counting lines of code. While code complexity is a challenging metric to quantify, orders of

magnitude differences in program lines-of-code suggest true qualitative differences in code

complexity. Furthermore, writing programs declaratively should be easier than writing

them imperatively. We qualitatively assess the ease of programming by writing many

programs, and by building entire systems declaratively.

• Declarative languages separate user specification from system execution. Therefore,

declarative programs should be amenable to automatic optimization. Users should re-

alize automatic performance gains without additional programming effort. We assess

the capacity for automatic optimization by comparing the performance of unoptimized

declarative code to optimized declarative code.

The bulk of this dissertation is dedicated to testing these hypothesis for networked systems.

1.1 Contributions

We have developed a database-inspired compiler, optimizer and runtime for wireless sensor

networks. Diversity is pronounced in sensornets, and resources are rarely over-provisioned, and

thus optimized executions are very important. In addition, we also show that our optimizations

are applicable to many PC-class networking problems.

Conceptually, the contributions of this dissertation stem from viewing networking data

and application data through the same lens. Specifically, we built DSN, a declarative lan-

guage compiler and runtime for sensornets; built netopt, a network optimizer architecture,

and designed several new optimization algorithms to solve networking problems; and built

wireless-netopt, an extension of netopt incorporating three commonly used wireless-specific

optimizations. These contributions are described in more detail below.

• DSN language, compiler and runtime. We developed a new language, netlog, as our

declarative programming interface (Chapter 2.2). netlog is a dialect of the venerable logic

language Datalog with adaptations for both networked and embedded computing. We
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show that the language is a natural fit not only for end-users, but also for systems builders.

We accomplish this by specifying several very different classes of traditional sensor network

protocols, services and applications entirely declaratively – these include tree routing,

geographic routing, link estimation, data collection, event tracking, version coherency,

and localization (Chapter 2.3). To our knowledge, this is the first time these disparate

sensornet tasks have been addressed by a single high-level programming environment. In

addition, the programs are typically very concise, in one case matching designer pseudo-

code nearly line for line. Moreover, the declarative approach accommodates the desire for

architectural flexibility and simple management of limited resources (Chapter 2.4). These

results suggest that declarative languages are well-suited to sensornet programming.

To realize netlog programming, we designed and implemented DSN, a declarative sen-

sor network platform consisting of a sensornet compiler and runtime (Chapter 2.5-2.6).

Notably, DSN-compiled executables show no runtime performance drop-off compared to

C implementations across a variety of applications. The price has been a manageable

(typically 3-5KB) increase in memory footprint (Chapter 2.7).

• netopt optimizer. We built netopt, a network optimizer into the compiler for DSN

and for Evita Raced (14), a declarative language compiler and runtime for PC-class

devices. When netopt optimizations are enabled, declarative programs often increase

performance by an order of magnitude, and sometimes by two orders of magnitude over

unoptimized programs (Chapter 3.6). These optimizations are automatically applied to

source programs – the programmer need not invest added effort.

netopt focuses on rendezvous and proxy selection in the network (Chapter 3.3-3.4). Ren-

dezvous and proxy selection are common design decisions in many networked systems,

and optimization algorithms to solve these problems are well known (15). Some examples

where rendezvous and proxy selection are important include sensornet event detection,

content distribution networks, publish-subscribe systems, client-server state management,

Internet QoS, and ad hoc routing (16; 17; 18; 19; 20; 21; 22). Yet all too often, rendezvous

and proxy selection decisions are either (1) made with much manual effort on a case-by-

case basis, or (2) ignored entirely. In the latter case, developers write naive programs
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that do not account for possible changes in rendezvous and proxy selection. We designed

and implemented algorithms to automatically (1) identify rendezvous and proxy selection

opportunities from naive program source, (2) rewrite naive program source to expose

rendezvous and proxy choices, and (3) call out to graph algorithms to search for optimal

configurations. The result is that users can write simple programs, and the optimizer

takes care of program tuning on the users’ behalf.

The netopt algorithms are inspired by traditional database query optimization, namely

recursive selection push down. Beyond the previously mentioned performance benefits

that programmers receive, a conceptual contribution of the work is demonstrating the

fruitful cross-pollination of traditional database query optimization and network engi-

neering.

• wireless-netopt optimizer. wireless-netopt extends the original optimizations in

netopt with three optimizations that are simple, yet important to the wireless domain:

(1) choosing whether or not to redirect traffic to an intermediary, (2) deciding between

broadcast or unicast transmission, and (3) setting nodes’ channel polling intervals. These

optimizations span the networking stack. To date, cross-layer network optimizations are

often performed in isolation of one another, in part due to limited visibility between

network stack abstraction boundaries. While abstractions remain available to DSN pro-

grammers, the declarative nature of the DSN language means that the optimizer retains

the ability to perform analysis across network stack boundaries. We evaluated the algo-

rithmic, architectural, and performance implications of such cross-layer optimization for

a network optimizer. Our results indicate that the wireless-netopt optimizer is capable

of supporting isolated as well as cross-layer optimization algorithms, and cross-layer per-

formance improvements exceed isolated optimization by an order of magnitude in energy

savings.
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1.2 Organization

The remainder of this dissertation is organized as follows. Chapter 2 presents the design

and implementation of DSN, the language, compiler and runtime for sensornets. Chapter 3

presents the design of several network optimization algorithms, and the design and implemen-

tation of netopt, the network optimizer. Chapter 4 presents the design and implementation of

wireless-netopt, an extension of netopt with several wireless network optimizations. Chap-

ter 5 discusses related work. Chapter 6 discusses current limitations of DSN, netopt and

wireless-netopt, and interesting directions for future work. Chapter 7 concludes the disser-

tation.
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Chapter 2

Declarative Sensor Networks

2.1 Motivation

Sensornets and the environments they monitor are fundamentally closely coupled – after

all, we are embedding devices in the physical world. As a result, deep customization is often

necessary for each sensornet deployment (12; 3; 4; 5; 6; 7; 23). Moreover, even with deployment

specific customization, end users often want to reconfigure functionality after initial exploratory

anlaysis, or on a periodic basis (11; 12).

However, despite years of research, sensornet programming is still very hard. Most sensor-

net protocols and applications continue to be written in low-level embedded languages, and must

explicitly contend with issues of wireless communication, limited resources, and asynchronous

event processing. This kind of low-level programming is challenging even for experienced pro-

grammers, and hopelessly complex for typical end users. The design of a general-purpose,

easy-to-use, efficient programming model remains a major open challenge in the sensor network

community.

This chapter presents the design and implementation of a declarative sensor network (DSN)

platform: a programming language, compiler and runtime system to support declarative speci-
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fication of wireless sensor network applications. Declarative languages are known to encourage

programmers to focus on program outcomes (what a program should achieve) rather than im-

plementation (how the program works). Until recently, however, their practical impact was

limited to core data management applications like relational databases and spreadsheets (24).

This picture has changed significantly in recent years: declarative approaches have proven use-

ful in a number of new domains, including program analysis (25), trust management (26), and

distributed system diagnosis and debugging (27; 28). Of particular interest in the sensornet

context is recent work on declarative networking, which presents declarative approaches for

protocol specification (29) and overlay network implementation (30). In these settings, declar-

ative logic languages have been promoted for their clean and compact specifications, which can

lead to code that is significantly easier to specify, adapt, debug, and analyze than traditional

procedural code.

Our work on declarative sensor networks originally began with a simple observation: by

definition, sensor network programmers must reason about both data management and network

design. Since declarative languages have been successfully applied to both these challenges, we

expected them to be a good fit for the sensornet context. To evaluate this hypothesis, we devel-

oped a declarative language that is appropriate to the sensornet context, and then developed

fully-functional declarative specifications of a broad range of sensornet applications. In this

work, we present some examples of these declarative specifications: a data collection applica-

tion akin to TinyDB (31), a software-based link estimator, several multi-hop routing protocols

including spanning-tree and geographic routing, the version coherency protocol Trickle (32), the

localization scheme NoGeo (33) and an event tracking application faithful to a recently deployed

tracking application (34). The results of this exercise provide compelling evidence for our hy-

pothesis: the declarative code naturally and faithfully captures the logic of even sophisticated

sensornet protocols. In one case the implementation is almost a line-by-line translation of the

protocol inventors’ pseudocode, directly mapping the high-level reasoning into an executable

language.

Establishing the suitability of the declarative approach is of course only half the challenge:

to be useful, the high-level specifications have to be compiled into code that runs efficiently on
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resource-constrained embedded nodes in a wireless network. We chose to tackle this issue in

the context of Berkeley Motes and TinyOS, with their limited set of hardware resources and

lean system infrastructure. Our evaluation demonstrates both the feasibility and faithfulness of

DSN for a variety of programs, showing that the resulting code can run on resource-constrained

nodes, and that the code does indeed perform according to specification in both testbed and

simulation environments.

2.1.1 Declarative Sensornets: A Natural Fit?

While declarative languages are famous for hiding details from the programmer, they are

correspondingly infamous for preventing control over those details. Our experience confirms

this, and suggests DSN is not well-suited to all sensornet tasks. Like most database-style

languages, the language in DSN is not adept at natively manipulating opaque data objects

such as timeseries, matrices and bitmasks; nor is it fit for providing real-time guarantees. In

addition, as a variant of Datalog, the core of DSN’s language is limited to expressing the class

of programs that are computable in polynomial time. As a result of these shortcomings, we

have taken the pragmatic approach and provided flexible mechanisms to interface to external

code, as discussed in Section 2.2.

That said, we have been pleasantly surprised at the breadth of tasks that we have been able

to program concisely within DSN. In Section 2.4.1 we describe a fully-functioning data collection

implementation expressed entirely declaratively, save for natively implemented device drivers.

Also, in Section 2.4.2 we discuss features of our language that allow for simple declarative

management of resources, a vital concern for sensornets. A goal of our implementation is

to allow programmers the flexibility to choose their own ratio of declarative to imperative

code, while attempting in our own research to push the boundaries of the declarative language

approach as far as is natural.

DSN’s declarative approach does not fit exclusively into any one of the existing sensor-

net programming paradigm clusters. In its family of expressible network protocols, DSN can

model spatial processing inherent to region-based group communication (35; 36; 37). While
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DSN’s execution runtime consists of a chain of database operations resembling the operator-

based data processing common to dataflow models (38; 39), DSN users write in a higher-level

language. DSN also provides the runtime safeguards inherent to database systems and virtual

machines (31; 40; 41). Section 5.1 discusses this work’s relationship to other high level sensornet

languages in the literature in detail.

This chapter is organized as follows. Sections 2.2 and 2.3 outline the declarative language,

and provide examples of a variety of services and applications. Section 2.4 discusses addi-

tional features of DSN that suit sensor networks. Sections 2.5 and 2.6 present an architectural

overview of the system, along with implementation concerns. Section 2.7 discusses evaluation

methodology, measurements and results. Sections 2.8 and 2.9 outlines limitations of our system

and summarizes this chapter’s results.

2.2 An Introduction to netlog

In this section we give an overview of our declarative language netlog. netlog is a di-

alect of Datalog, a classic deductive database query language (42). netlog supports features

fundamental to sensornets: networked execution, and interfacing with the physical world. The

typical DSN user, whether an end-user, service implementor or system builder, writes only a

short declarative specification using netlog.

The main language constructs are relations, tuples, facts and rules. netlog programs

consist of period-terminated statements. The following is a representative, but simplified,

example of these elements.
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% r u l e

temperatu reLog (Time , TemperatureVal ) :−

thermometer ( TemperatureVal ) ,

TemperatureVal > 15 ,

t imestamp (Time ) .

% f a c t s

thermometer (24) .

t imestamp ( day1 ) .

The relations above are temperatureLog, thermometer and timestamp. These are analogous to

the tables of a database. Tuples are relations with all parameters assigned. A fact, such as

thermometer(24), instantiates a tuple at the beginning of execution.

A rule instantiates tuples based on the truth of a logical expression. Each rule consists of

a head and body that appear on the left and right respectively of the rule’s deduction symbol

(“:−”). The body defines a set of preconditions, which if true, instantiates tuple(s) in the head.

Viewed operationally, this model is extremely simple: relations are best thought of as tables

with columns in a database, tuples as table rows with values assigned to columns, and rules

simply generate new table rows from existing table rows.

For example, temperatureLog(TemperatureVal,Time) is the head of the rule above, while the

thermometer and timestamp relations form its body. This rule creates a temperatureLog tuple when

there exist thermometer and timestamp tuples and the temperatureVal of the thermometer tuple is

greater than 15.

The two facts establish the time and thermometer reading. The tuples given by these facts

make the rule body true, so the rule creates a new tuple temperatureLog(24, day1). Following

Datalog convention, relations and constants start with lowercase while variables start with

upper case letters: TemperatureVal is a variable, while day1 is a constant.

Unification further limits valid head tuples by detecting repeated variables among relation
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parameters in the body. For example, in the following program, evidence is true if temperatureLog

and pressureLog each have tuples whose first parameters, both named Time, match.

e v i d en c e ( TemperatureVal , P r e s s u r eVa l ) :−

temperatu reLog (Time , TemperatureVal ) ,

p r e s s u r eLog (Time , P r e s s u r eVa l ) .

p r e s s u r eLog ( day1 , 1017 ) .

p r e s s u r eLog ( day2 , 930 ) .

Combined with the listed pressureLog facts and the temperatureLog(day1,24) tuple yielded from

the previous example, the rule results in evidence(24,1017). In relational database terminology,

unification is an equality join.

2.2.1 Distributed Execution

In a fashion similar to (30), each relation is horizontally partitioned such that each node

holds a subset of the tuples of each relation. A relation’s first argument is the horizontal

partition key, or location specifier. This is indicated explicitly by marking each tuple’s first

argument with the at symbol “@”. A single rule may involve tuples hosted at different nodes.

For example, the following facts are hosted at the node whose identifier is node1.

consume (@node1 , base ) .

produce (@node1 , data1 ) .

Distributed rules specify relations with different location specifiers.

s t o r e (@Y, Object ) :− produce (@X, Object ) , consume (@X,Y) .

With the two facts above, this instantiates store (@base,data1). The different nodes that

appear in a rule such as base and node1 have to be within local communication range for the

tuples in the head relation to be instantiated. This is done by sending messages addressed

to the tuple host node. For broadcast, a special asterisk symbol “*” is used as the location

specifier.
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s t o r e (@∗ , Ob ject ) :− produce (@X, Object ) .

p r o c e s s (@X, Object ) :− s t o r e (@X, Object ) .

The first rule broadcasts the store tuple. In the second rule, any neighboring node X that

receives this broadcast replaces the location specifier of the tuple with its local id.

2.2.2 Interfacing to the Physical World

In order to link declarative programs to hardware such as sensors and actuators, users may

specify built-in relations. For example, the prior example’s thermometer relation may read values

from the underlying temperature sensor.

b u i l t i n ( temperature , ’ Temperature Implementor . c ’ ) .

ThermometerImplementor.c is a external module (written in a language like nesC (43)) im-

plementing the thermometer relation. This method of exposing sensors as tables is similar to

TinyDB. Actuation is exposed similarly. Here, sounder tuples result in sound as implemented

by the SounderImplementor.c.

b u i l t i n ( sounder , ’ Sounder Implementor . c ’ ) .

sounde r (@Node , f r e qu enc y ) :− p r o c e s s (@Node , Object ) .

2.2.3 Querying for Data

Users pose queries to specify that certain relations are of interest and should be output

from the DSN runtime. Queries are indicated by a tuple terminated by a question mark.

i n t e r e s t i n g R e l a t i o n ( @Al lHosts , I n t e r e s t i n g V a l u e ) ?

When a new tuple of this type is generated, it is also transmitted to the user. Currently the

Serial interface is used for this purpose. If no query is specified in a program, all the relations

are considered of interest and delivered.
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Additional netlog constructs will be presented in the following sections as needed. A

comprehensive DSN tutorial is also available for interested programmers (44).

2.3 A Tour of Declarative Sensornet Programs

In this section, we investigate netlog’s potential for expressing core sensor network proto-

cols, services and applications. Through a series of sample programs, we tackle different sensor

network problems, at multiple, traditionally distinct levels of the system stack. For the sake

of exposition, we will tend to explain netlog programs in rule-by-rule detail, though auxiliary

statements like type definitions are elided from the listings. Complete program listings are

availabe at (44)

2.3.1 Tree Routing: A Common Network Service

In-network spanning-tree routing is a well-studied sensor network routing protocol. Tree

construction is a special case of the Internet’s Distance Vector Routing (DVR) protocol. Nodes

simply construct a spanning tree rooted at the base by choosing the node that advertises the

shortest cost to the base as their next hop neighbor. This tree construction in netlog is

presented in Listing 2.1.

Each node starts with only information about link qualities of neighboring nodes given by

the relation link (@Host,Neighbor,Cost). For all nodes, the root of the tree is explicitly specified

with a fact (line 2), and a bootstrap value for the shortest cost to the root is also set (line 3).

To establish network paths to the root, first nodes that are one hop neighbors from the

root use local links to the destination as network paths to the root. This corresponds to the

rule in line 5, which reads, “If a node Source wishes to reach a destination Dest and has a local

link to this destination with cost Cost, then establish a network path path from Source to Dest

with next hop of Dest and cost Cost.”

The tilde symbol “∼”, such as in this rule’s dest relation, indicates that the arrival of new
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1 % I n i t i a l f a c t s f o r a t r e e r oo t ed at ‘ ‘ r o o t ’ ’

2 de s t (@AnyNode , r oo t ) .

3 s h o r t e s t C o s t (@AnyNode , root , i n f i n i t y ) .

4 % 1−hop n e i g hbo r s to r oo t ( base ca se )

5 path ( @Source , Dest , Dest , Cost ) :− de s t ( @Source , Dest ) ˜ ,

l i n k ( @Source , Dest , Cost ) .

6 % N−hop n e i g hbo r s to r oo t ( r e c u r s i v e ca s e )

7 path ( @Source , Dest , Neighbor , Cost ) :− de s t ( @Source , Dest ) ˜ ,

l i n k ( @Source , Neighbor , Cost1 ) ,

nextHop ( @Neighbor , Dest , Ne ighbor sParent , Cost2 ) , Cost=Cost1+Cost2 ,

Source !=Ne ighbo r sPa ren t .

8 % Cons i d e r on l y path wi th minimum co s t

9 s h o r t e s t C o s t ( @Source , Dest ,<MIN , Cost >) :− path ( @Source , Dest , Neighbor , Cost ) ,

s h o r t e s t C o s t ( @Source , Dest , Cost2 ) ˜ , Cost < Cost2 .

10 % Se l e c t nex t hop pa r en t i n t r e e

11 nextHop ( @Source , Dest , Parent , Cost ) :− s h o r t e s t C o s t ( @Source , Dest , Cost ) ,

path ( @Source , Dest , Parent , Cost ) ˜ .

12 % Use a n a t i v e l y implemented l i n k t a b l e manager

13 b u i l t i n ( l i n k , ’ L inkTab l e Imp lemento r . c ’ ) .

Listing 2.1: Tree Routing

tuples from the associated body relation do not trigger the reevaluation of the rule. This is

useful in the cases that reevaluation is unwanted or unnecessary.

Second, nodes that are more than one hop from the root establish paths by deduction. A

node Source that has a neighbor Neighbor that already has a established a path to the root can

construct a path that goes through this neighbor with a cost that is the sum of the link cost

Cost1 to neighbor and the neighbor’s cost to the root Cost2 (line 7).

Here, path tuples are possible paths to the root, whereas nextHop tuples are only the shortest

paths to the root. The reduction of possible paths to the shortest path occurs in the two rules

of line 9 and 11. We employ a MIN database aggregation construct over the set of possible

paths to find the minimum cost.

After successful tree construction, each node has selected a parent with the least cost to
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get to the destination. This information is captured in the nextHop(@Source,Dest,Parent,Cost)

relation and represents the network-level forwarding table for all nodes.

So far we have glossed over how the local link table link is populated and maintained.

For now, let us assume a link table manager provided by an external component (line 13). In

Section 2.4, we discuss several reasonable alternatives to constructing this link table, including

a link estimator constructed declaratively.

This program does not downgrade tree paths when link qualities decrease. We can addi-

tionally add this mechanism with three more rules.

Besides serving as data collection sinks, trees often serve as routing primitives (45; 46; 10).

Construction of multiple trees based on this program is very easy; a second tree only

requires the addition of two facts for the new root such as dest(@AnyNode,root2) and

shortestCost (@AnyNode,root2, infinity ).

2.3.2 Multi-hop Collection: An Initial User Application

To perform periodic multi-hop collection, we forward packets on top of tree routing at

epoch intervals. This is very similar to a popular use-case of TinyDB (31). The program is

shown in Listing 2.2.

We first import our previous tree routing such that we can use its nextHop forwarding

table (line 2). The two built-ins used are timer for interacting with the hardware timer, and

thermometer for reading the temperature (line 3 and 4).

A fact sets the initial timer (line 7). A timer relation on the right side (body) is true when

the timer fires, and a timer relation on the left side (head) evaluating to true indicates the

timer is being set. Therefore, having the same timer relation in the body and head creates a

reoccurring timer (line 8). This timer’s main purpose is to periodically sample temperature and

initiate a multi-hop send (line 11).

Conceptually, multi-hop routing on a tree involves recursively matching a transported mes-

sage with the appropriate forwarding tables along the path to the destination. This recursion
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1

2 impor t ( ’ t r e e . s n l ’ ) .

3 b u i l t i n ( t imer , ’ Timer Implementor . c ’ ) .

4 b u i l t i n ( thermometer , ’ ThermometerImplementor . c ’ ) .

5

6 % Schedu l e p e r i o d i c data c o l l e c t i o n

7 t ime r (@AnyNode , c o l l e c t i o nT ime r , c o l l e c t i o n P e r i o d ) .

8 t ime r ( @Src , c o l l e c t i o nT ime r , Pe r i od ) :− t ime r ( @Src , c o l l e c t i o nT ime r , Pe r i od ) .

9

10 % Sample t empe ra tu r e and i n i t i a t e mu l t i hop send

11 t r a n sm i t ( @Src , Temperature ) :− thermometer ( @Src , Temperature ) ,

t ime r ( @Src , c o l l e c t i o nT ime r , Pe r i od ) .

12

13 % Prepare message f o r mu l t i hop t r a n sm i s s i o n

14 message ( @Src , Src , Dst , Data ) :− t r a n sm i t ( @Src , Data ) ,

nextHop ( @Src , Dst , Next , Cost ) ˜ .

15

16 % Forward message to next hop pa r en t

17 message (@Next , Src , Dst , Data ) :− message ( @Crt , Src , Dst , Data ) ,

nextHop ( @Crt , Dst , Next , Cost ) ˜ , Crt != Dst .

18

19 % Rece i v e when at d e s t i n a t i o n

20 r e c e i v e ( @Crt , Src , Data ) :− message ( @Crt , Src , Dst , Data ) , i n t e r e s t ( @Crt , Data ) ,

Crt == Dst .

Listing 2.2: Multi-hop Collection

is expressed succinctly in an initialization rule (line 14), recursive case (line 17) and base case

(line 20) above. The initialization rule prepares the application level send request into a generic

message suitable for forwarding. The recursive case forwards the message (at either an originat-

ing or intermediate node) according to each recipient’s nextHop entry for the final destination.

Finally, upon receipt at the final destination, the message is passed upward to the application

layer if it matches its interest (line 20).

The message relation takes the place of the standard network queue. As such, we are able
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to design any queue admission policy through our operations on relations, such as unification

and database-style aggregation. On the other hand, queue eviction policies are limited by

the system-provided table eviction mechanisms. We discuss provisions for table eviction in

Section 2.4.

2.3.3 Distributed Version Coherency: Translating From Pseudocode

Various sensor network protocols utilize a version coherency dissemination algorithm to

achieve eventual consistency. Listing 2.3 illustrates a declarative implementation of a lead-

ing approach, version coherency with the Trickle dissemination algorithm. (32). Despite the

algorithm’s complexity, we were very pleasantly surprised by how easy it was to implement

in netlog. In fact, the comments in Listing 2.3 are directly from the original Trickle paper

pseudocode (32). Save for setting timers in lines 2-6, each line of pseudocode translates directly

into one rule. This example in particular lends evidence to our claim that netlog is at an

appropriate level of abstraction for sensor network programming.

The Trickle algorithm provides conservative exponential-wait gossip of metadata when there

is nothing new (line 9), aggressive gossip when there is new metadata or new data present

(lines 15 and 18), both counter-balanced with polite gossip when there are competing announc-

ers (line 12). Underscores in a relation’s arguments, such as in timer of line 9, represent “don’t

care” unnamed variables.

The algorithm is inherently timer intensive. Trickle’s timerT, corresponding to tTimer in

the listing, performs exponential-increase of each advertisement epoch. Timer τ , corresponding

to tauTimer, performs jittered sending in the latter half of each epoch in order to avoid send

synchronization. Lines 24 and 25 store and update to the new version once the new data is

received.
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1 % Tau e x p i r e s : Double Tau up to tauHi . Reset C , p i c k a new T.

2 tauVa l (@X, Tau∗2) :− t ime r (@X, tauTimer , Tau ) , Tau∗2 < tauHi .

3 tauVa l (@X, tauHi ) :− t ime r (@X, tauTimer , Tau ) , Tau∗2 >= tauHi .

4 t ime r (@X, tTimer ,T) :− tauVa l (@X, TauVal ) , T = rand ( TauVal /2 , TauVal ) .

5 t ime r (@X, tauTimer , TauVal ) :− tauVa l (@X, TauVal ) .

6 msgCnt (@X, 0 ) :− tauVa l (@X, TauVal ) .

7

8 % T e x p i r e s : I f C < k , t r a n sm i t .

9 msgVer (@∗ ,Y , Oid , Ver ) :− v e r (@Y, Oid , Ver ) , t ime r (@Y, tTimer , ) , msgCnt (@Y,C) ,

C < k .

10

11 % Rece i v e same metadata : I nc r ement C .

12 msgCnt (@X,C++) :− msgVer (@X,Y, Oid , CurVer ) , v e r (@X, Oid , CurVer ) , msgCnt (@X,C) .

13

14 % Rece i v e newer metadata : Set Tau to tauLow . Reset C , p i c k a new T.

15 tauVa l (@X, tauLow ) :− msgVer (@X,Y, Oid , NewVer ) , v e r (@X, Oid , OldVer ) , NewVer >

OldVer .

16

17 % Rece i v e newer data : Set Tau to tauLow . Reset C , p i c k a new T.

18 tauVa l (@X, tauLow ) :− msgStore (@X,Y, Oid , NewVer , Obj ) , v e r (@X, Oid , OldVer ) ,

NewVer > OldVer .

19

20 % Rece i v e o l d e r metadata : Send updates .

21 msgStore (@∗ ,X , Oid , NewVer , Obj ) :− msgVer (@X,Y, Oid , OldVer ) ,

v e r (@X, Oid , NewVer ) , NewVer > OldVer , s t o r e (@X, Oid , NewVer , Obj ) .

22

23 % Update v e r s i o n upon s u c c e s s f u l l y r e c e i v i n g s t o r e

24 s t o r e (@X, Oid , NewVer , Obj ) :− msgStore (@X,Y, Oid , NewVer , Obj ) .

s t o r e (@X, Oid , OldVer , Obj ) , NewVer > OldVer .

25 v e r (@X, Oid , NewVer , Obj ) :− s t o r e (@X, Oid , NewVer , Obj ) .

Listing 2.3: Trickle Version Coherency
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1 b u i l t i n ( t r a c k i n g S i g n a l , ’ TargetDetectorModu le . c ’ ) .

2 impor t ( ’ t r e e . s n l ’ ) .

4 % On de t e c t i o n , send message towards c l u s t e r head

5 message ( @Src , Src , Head , SrcX , SrcY , Val ) :− t r a c k i n g S i g n a l ( @Src , Val ) ,

de tec to rNode ( @Src ) , l o c a t i o n ( @Src , SrcX , SrcY ) , c l u s t e rHead ( @Src , Head ) .

6 message (@Next , Src , Dst ,X,Y, Val ) :− message ( @Crt , Src , Dst ,X,Y, Val ) ,

nextHop ( @Crt , Dst , Next , Cost ) .

7

8 % At c l u s t e r head , do epoch−based p o s i t i o n e s t ima t i o n

9 t r a c k i n gLog (@Dst , Epoch ,X,Y, Val ) :− message (@Dst , Src , Dst ,X,Y, Val ) ,

epoch (@Dst , Epoch ) .

10 e s t ima t i o n (@S , Epoch ,<AVG,X>,<AVG,Y>) :− t r a c k i n gLog (@S , Epoch ,X,Y, Val ) ,

epoch (@S , Epoch ) .

11

12 % P e r i o d i c a l l y i n c r ement epoch

13 t ime r (@S , epochTimer , Pe r i od ) :− t ime r (@S , epochTimer , Pe r i od ) .

14 epoch (@S , Epoch++) :− t ime r (@S , epochTimer , ) , epoch (@S , Epoch ) .

Listing 2.4: Tracking

2.3.4 Tracking: A Second End-User Application

Listing 2.4 shows a multi-hop entity tracking application implemented in netlog. The spec-

ification is faithful to what has been presented in recently deployed tracking applications (34).

The algorithm works as follows. A node that registers a detection via the trackingSignal sends

a message to the cluster head indicating the position of the node (lines 5 and 6). The clus-

ter head node periodically averages the positions of the nodes that sent messages to estimate

the tracked object’s position (line 10). To correctly compute the destination for each epoch,

the trackingLog relation labels received messages with the estimation epoch in which they were

received (line 9). Periodic timers update the current epoch (lines 14-13).

This application uses a fixed cluster head. Four additional rules can be added to augment

the program to specify a cluster head that follows the tracked target.
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2.3.5 Additional Examples

All of the preceding examples discussed in this section compile and run in DSN. We imple-

mented and validated basic geographic routing (47), NoGeo localization (33) and exponentially

weighted moving average link estimation (48) as well. These program appear in Appendix A.

Additionally, we have sketched implementations of other sensor network services such as: in-

network data aggregation (49), beacon vector coordinate and routing protocol BVR (45), data-

centric storage protocol pathDCS (46), and geographic routing fallback schemes such as right

hand-rules and convex hulls (50; 47). Our conclusion is that netlog implementations of these

applications pose no fundamental challenges, being expressible in code listings of no more than

several dozen rules while all running over the same minimal DSN runtime discussed in Sec-

tion 2.5.

2.4 Beyond Expressing Sensornet Services

In the previous section, we showed that the declarative approach is natural for defining a

wide range of sensornet services. In this section, we discuss two additional advantages. First,

the declarative approach naturally accommodates flexible system architectures, an important

advantage in sensornets where clear architectural boundaries are not fixed. Second, DSN facil-

itates resource management policies using simple declarative statements.

2.4.1 Architectural Flexibility

Disparate application requirements and the multitude of issues that cut across traditional

abstraction boundaries, such as in-network processing, complicate the specification of a single

unifying sensornet architecture: one size may not fit all. DSN strives to accommodate this need

for architectural flexibility.

First, it is both possible and reasonable to declaratively specify the entire sensornet applica-

tion and all supporting services, save for hardware device drivers. The previous section showed
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specifications of both high-level applications such as tracking and intermediate services such

as Trickle. In addition, we have specified cross-layer applications such as in-network aggrega-

tion (49) and low-level protocols such as link estimation. For link estimation, we implemented a

commonly-used beaconing exponentially weighted moving average (EWMA) link estimator (48)

in netlog, detailed in Appendix A. The combination of the link estimator with tree routing

and multi-hop collection presented in Section 2.3 constitutes an end-user application written

entirely in netlog, except for the hardware-coupled built-ins thermometer and timer.

At the same time, it is straightforward to adopt packaged functionality with built-in re-

lations. For instance, we initially implemented link as a built-in, since it allows us to expose

radio hardware-assisted link-estimations in lieu of our declarative link estimator. As a third

option, we also used SP (51), a “narrow waist” link layer abstraction for sensor networks as

a built-in. In the next subsection, we outline how a substantial system service, energy man-

agement, can be incorporated into declarative programs. Similarly, higher-level functionality

implemented natively such as a network transport service can also be incorporated. In this

way, DSN facilitates users who want to program declaratively while retaining access to native

code.

Architectural flexibility in DSN is also attractive because relations can provide natural

abstractions for layers above and below, such as link (Node,Neighbor,Cost) for the neighbor table

and nextHop(Node,Destination,Parent,Cost) for the forwarding table. These relations’ tuples are

accessed just like any others, without special semantics assigned to their manipulation. We

can also see similar intuitive interfaces in other instances: geographic routing also provides

a nextHop forwarding table like tree routing; geographic routing and localization, which are

naturally interrelated, use and provide the location (Node,X,Y) relation respectively, which is

simply a table of each node’s location. Both geographic routing and localization are presented

in Appendix A. In these cases, the declarative approach facilitates program composition with

intuitive abstraction interfaces.

Yet, the right level of declarative specification remains an open question. While a single

sensornet architecture has not emerged to date, one may yet crystallize. By enabling users to
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freely mix and match declarative programming with existing external libraries, DSN enables

the future exploration of this subject.

2.4.2 Resource Management

As a consequence of the physical constraints of sensornet platforms, DSN offers flexibility

in the management of three fundamental resources: memory, processor and energy.

2.4.3 Memory

Since current sensornet platforms are memory constrained, DSN makes several provisions

for managing memory effectively. At the programming level, the user is able to specify: the

maximum number of tuples for a relation, tuple admission and eviction strategies, and insertion

conflict resolution policies. The materialize and typedef statements set these policies for a

relation.

m a t e r i a l i z e ( re la t ionName , entryTimeout , maxEntr i e s , e v i c t P o l i c y ) .

t y p ed e f (#re la t ionName , ˆ u i n t 1 6 t , u i n t 3 2 t , ˆ u i n t 8 t ) .

The materialize statement sets a maximum number of entries for relationName and a timeout

value for each tuple after which it will be removed. The eviction policy specifies how tuples

should be removed when the maximum number of allocated tuples has been exceeded. Standard

policies included in the runtime are random, least recently used and deny. This construct,

borrowed from (30), permits the user to effectively specify static memory usage more simply

than traditional sensornet programming systems.

The typedef statement specifies the relation’s argument types, as well as properties of the

relation’s primary key. The primary key is indicated by the hat symbol “ˆ” next to the argu-

ments that are part of the primary key. In the above statement, the first and third argument

comprise the primary key of relationName. Primary keys are useful for memory management

because only one copy of a tuple of the same primary key is stored. The hash symbol “#”

preceding relationName indicates that the policy is to replace old entries with new entries when
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primary keys are equal. The absence of the hash symbol indicates that the policy is to keep

old entries. Explicit materialize and typedef are often optional, because of reasonable defaults

settings and program type inference.

Because we use a high-level language, the compiler has significant opportunity for optimiza-

tion. For example, we have implemented two different memory layout schemes for generated

DSN binaries, trading off between code and data memory. Since sensor network platforms

separate code from data, i.e., ROM from RAM, the compiler can optimize binary generation

depending on the particular type of hardware platform. Section 2.6 discusses this more in depth.

The combination of programming and compilation options enables a deductive database in a

reasonable memory footprint.

2.4.4 Processor

Determining execution preferences among competing, possibly asynchronous, events is im-

portant, especially in embedded systems. For example, it may be desirable to prioritize event

detection over background routing maintenance. DSN uses a priority mechanism to let the user

specify tuple processing preference. For example, high temperature detection is prioritized over

the rest of the processing below:

p r i o r i t y ( h ighTemperature , 100 ) .

% Background r u l e s

r e po r tHum id i t y ( . . . ) :− . . . .

d i s s em i n a t eVa l u e ( . . . ) :− . . . .

% Rule f i r e d by p r i o r i t i z e d r e l a t i o n

r epo r tH ighTempera tu re ( . . . ) :− h ighTemperature ( . . . ) , . . . .

In the above example, if multiple new tuples in the system are ready to be processed, the

highTemperature tuples will be considered for deductions first, before the other regular priority

tuples.
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Prioritized deduction offers a simple way for users to express processing preferences, without

worrying about the underlying mechanism. It also differs from traditional deduction where

execution preferences are not directly exposed to users.

Additionally, priorities can address race conditions that may arise when using intermediate

temporary relations, since DSN does not provide multi-rule atomicity. These races can be

avoided by assigning high priority to temporary relations.

2.4.5 Energy

Effective energy management remains a challenging task. Several systems have attempted

to tackle this problem, such as Currentcy (52) for notebook computers, and a somewhat similar

sensornet approach (53). These energy management frameworks provide (1) a user policy

that allocates and prioritizes energy across tasks, and (2) a runtime energy monitor and task

authorizer.

Since declarative languages have been previously used for policy, we wished to assess the

suitability of adopting energy management into DSN. Below, we outline how netlog programs

can naturally incorporate energy management.

For user policy, it is straightforward to specify relations concerning desired system lifetime,

energy budgets for individual sensors, and resource arbitration of energy across system services.

As one example, facts of the form em PolicyMaxFreq(@host,actionId,frequency) set up maximum

frequencies allowed by the energy manager for different actions.

For task authorization, checks to the energy accounting module occur as part of

a rule’s body evaluation. To do this, we make authorization requests by including a

em Authorize(@host,actionId) relation in the body of rules that relate to actionId . This means

that these rules must additionally satisfy the authorization check to successfully execute.

The two new relations mentioned map fairly naturally to the native energy management

interface envisioned by the authors in (53) and (52). Listing 2.5 provides an example of an

netlog program with these energy management features.
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1 % Energy Manager−s p e c i f i c r e l a t i o n s

2 b u i l t i n ( em Author ize , EMModule ) .

3 b u i l t i n ( em Pol icyMaxFreq , EMModule ) .

5 % Permit l i g h t a c t i o n s at most 10 t imes pe r minute

6 em Pol icyMaxFreq ( @Src , l i g h tA c t i o n , 1 0 ) .

7

8 % Permit t empe ra tu r e a c t i o n s at most 20 t imes pe r minute

9 em Pol icyMaxFreq ( @Src , t empe ra tu r eAct i on , 2 0 ) .

10

11 % Log l i g h t r e a d i n g s

12 l i g h t L o g ( @Src , Reading ) :− photometer ( @Src , Reading ) ,

em Author i ze ( @Src , l i g h t A c t i o n ) .

13

14 % Sample t empe ra tu r e r e a d i n g s and send them to the base

15 t empe ra tu r eRepo r t (@Next , Reading ) :− thermometer ( @Src , Reading ) ,

nextHop ( @Src , Dst , Next , Cost ) , em Author i ze ( @Src , t empe r a tu r eAc t i on ) .

Listing 2.5: Specifying Energy Policy

The energy-aware program specified in Listing 2.5 stores light readings locally, and forwards

temperature samples to a base station. Different policies are associated with each of the two

main actions, lightAction and temperatureAction. (lines 6 and 9). Authorization for lightAction is

requested when logging light readings, while the request for temperatureAction is processed when

sampling and sending the temperature readings (line 12 and 15 respectively). If the energy

budget is depleted, the underlying EMModule will evaluate these requests in accordance to the

specified user policy.

In addition to addressing energy, a vital resource constraint in sensornets, this exercise also

demonstrates flexibility in incorporating a new system service into DSN’s existing architecture.

The DSN programming tutorial provides further assistance and examples for interfacing DSN

with native system services (44).
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Figure 2.1: DSN Architecture. netlog is compiled into binary code and distributed to the

network, at which point each node executes the query processor runtime.

2.5 System Architecture

In this section we present a high level view of our system design and implementation. The

high level architecture for transforming netlog code into binary code that runs on motes is

shown in Figure 2.1. At the core of the framework lies the netlog compiler that transforms the

netlog specification into the nesC language (43) native to TinyOS (54). The generated com-

ponents, along with preexisting compiler libraries, are further compiled by the nesC compiler

into a runtime implementing a minimal query processor. This resulting binary image is then

programmed into the nodes in the network.

As an overview, each rule from the netlog program gets transformed in the compiled code

into a sequence of components that represent database operators like join, select, and project,

which, to facilitate chaining, implement uniform push/pull interfaces. The runtime daemon
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Figure 2.2: DSN Runtime. Each rule is compiled into a dataflow chain of database operators.

manages the dataflow processing of tuples from and to tables and built-ins while the network

daemon manages tuples arriving from and destined to the network. Figure 2.2 presents an

overall view of this runtime activity.

2.5.1 The Compiler

A fundamental choice of DSN is heavy use of PC-side program compilation as opposed

to mote-side program interpretation. This relates directly to our goals of reducing runtime

memory footprint and providing predictable operation.

The compiler parses the netlog program and does a set of initial rule-level level trans-

formations on distributed rules (those whose location specifiers are not all the same). Next,

it translates the program into an intermediary dataflow representation that uses chains of
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database operators (such as joins and selects) to describe the program. Then, for each chain,

the compiler issues nesC code by instantiating components from a set of compiler library generic

templates. Finally, the generated components, the system runtime and any necessary library

runtime components are compiled together into a binary image using the nesC compiler.

2.5.2 The Runtime

We chose to implement the runtime system as a compiled dataflow of the user provided

rules in the netlog program. As is well known in the database community, declarative logic

maps neatly to dataflow implementations. An example compiled runtime is shown in Figure 2.2.

The constrained resources and predictability concerns of sensor nodes make full fledged

query processors for our purposes (e.g., runtime rule interpreters) difficult to justify. While

interpreters are used in several high-level sensor network languages for data acquisition (40; 31),

we were wary of the performance implications of interpreting low-level services such as link

estimators. In addition, we felt static compiler-assisted checks prior to deployment were worth

any loss of flexibility. As a result of aggressive compilation, the resulting runtime system is

equivalent to a dedicated query processor compiled for the initial set of rules, allowing new

tuples (but not new rules) to be dynamically inserted into the network.

2.5.3 Code Installation

We rely on traditional embedded systems reprogrammers to distribute initial binary images

onto each node prior to deployment. Users are free to install different rules and facts on different

nodes, while retaining a common relation set definition (database schema) across nodes. This

permits basic support for different nodes requiring different functionality, as in heterogeneous

sensor networks.

2.6 Implementation

In this section we discuss implementation design decisions and detail compiler and runtime

interactions.
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2.6.1 Implementation Choices

In the following, we explain the most important implementation choices we made and how

they affect the performance and semantics of the system. The resulting system exhibits sizeable

dissimilarities from existing networked deductive databases (30).

2.6.2 Dynamic vs Static allocation

TinyOS does not have a default dynamic memory allocation library. On the other hand,

database systems often make substantial use of dynamic memory allocation, and previous sys-

tems like TinyDB (31) have implemented dynamic memory allocation for their own use. In

our implementation, we decided to use static allocation exclusively. While dynamic allocation

may better support the abstractions of limitless recursion and flexible table sizes, static alloca-

tion remained preferable for the following reasons. First, we believe that static allocation with

a per-relation granularity gives programmers good visibility and control over the case when

memory is fully consumed. By contrast, out-of-memory exceptions during dynamic allocation

are less natural to expose at the logic level, and would require significant exception-handling

logic for even the simplest programs. Second, our previous experiences indicated that we save a

nontrivial amount of code space in our binaries that would be required for the actual dynamic

allocator code and its bookkeeping data structures. Finally, because tuple creation, deletion

and modification of different sizes is common in DSN, the potential gains of dynamic allocation

could be hard to achieve due to fragmentation. Instead, in our system all data is allocated

at compile time. This is a fairly common way to make embedded systems more robust and

predictable.

2.6.3 Memory Footprint Optimization

In general, in our implementation we chose to optimize for memory usage over computation

since memory is a very limited resource in typical sensor network platforms, whereas processors

are often idle.
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Code vs. Data Tradeoff: Our dataflow construction is convenient because, at a minimum,

it only requires a handful of generic database operators. This leads to an interesting choice

on how to create instances of these operators. Code-heavy generation generates (efficient) code

for every operator instance, whereas data-heavy generation generates different data parameters

for use by a single generic operator. This choice affects the sizes and ratios of code and

data memory of the generated binary. Many microprocessors common in current sensor nodes

present strict boundaries between code and data memory (i.e., ROM vs. RAM). The choice is

further influenced by the volatile/nonvolatile characteristics of the different memory modules

(e.g., typically only ROM is persistent, holding both code and data constants). We have

implemented both modes of parameter generation. For our primary platform TelosB (55),

it typically makes sense to employ data-heavy generation because of the hardware’s relative

abundance of RAM. However, for other popular platforms that DSN supports, the reverse is

true. The choice ultimately becomes an optimization problem to minimize the total bytes

generated subject to the particular hardware’s memory constraints. Currently this decision is

static and controls dataflow operators in a program, but in principle this optimization could be

automated based on hardware parameters.

Reduce Temporary Storage: To further improve memory footprint, we routinely favored

recomputation over temporary storage. First, unlike many databases, we do not use temporary

tables in between database operators but rather feed individual tuples one at a time to each

chain of operators. Second, all database operator components are implemented such that they

use the minimal temporary storage necessary. For instance, even though hash joins are com-

putationally much more efficient for evaluating unifications, our use of nested loop joins avoids

any extra storage beyond what is already allocated per relation. Our aggregation withholds

use of traditional group tables by performing multiple table scans on inputs. Finally, when

passing parameters between different components, we do not pass tuples but rather generalized

tuples, Gtuples, containing pointers to the already materialized tuples. Gtuples themselves

are caller-allocated and the number necessary is known at compile time. The use of Gtuples

saves significant memory space and data copying, and is similar to approaches in traditional

databases (56).
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2.6.4 Rule Level Atomicity

In our environment, local rules (those whose location specifiers are all the same) are guar-

anteed to execute atomically with respect to other rules. We find that this permits efficient

implementation as well as convenient semantics for the programmer. In conjunction with rule

level atomicity, priorities assist with execution control and are discretionary rather than manda-

tory. In addition, by finishing completely the execution of a rule before starting a new rule we

avoid many potential race conditions in the system due to the asynchronous nature of relations

(e.g., tuples received on the network) and to the fact that we share code among components.

2.6.5 Implementation Description

Below we present more details on the DSN system implementation such as component

interactions and the network interface. We call a “table” the implementation component that

holds the tuples for a relation.

2.6.6 Compiler

Frontend and Intermediary The frontend is formed by the following components: the lexical

analyzer; the parser; the high level transformer and optimizer (HLTO); and the execution

planner (EP). The parser translates the rules and facts into a list which is then processed by

the HLTO, whose most important goal is rule rewriting for distributed rules. The EP translates

each rule into a sequence of database operators. There are four classes of operators our system

uses: Join, Select, Aggregate and Project. For each rule, the execution planner generates several

dataflow join plans, one for each of the different body relations that can trigger the rule.

Backend nesC Generator The nesC Generator translates the list of intermediary operators

into a nesC program ready for compilation. For each major component of our system we

use template nesC source files. For example, we have templates for the main runtime task

and each of the operators. The generator inserts compile-time parameters in the template

files, and also generates linking and initialization code. Examples of generated data are: the
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number of columns and their types for each relation, the specific initialization sequences for each

component, and the exact attributes that are joined and projected. Similarly, the generator

constructs the appropriate mapping calls between the generated components to create the

desired rule.

2.6.7 Runtime Interactions

Our dataflow engine requires all operators to have either a push-based open/send/close

or pull-based open/get/close interface. The runtime daemon pushes tuples along the main

operator path until they end up in materialized tables before operating on new tuples, as in

Figure 2.2. This provides rule-level atomicity. To handle asynchrony, the runtime daemon and

network daemon act as pull to push converters (pumps) and materialized tables act as push to

pull converters (buffers). This is similar to Click (57).

A challenging task in making the runtime framework operate correctly is to achieve the

right execution behavior from the generic components depending on their place in the execution

chain. For instance, a specific join operator inside a rule receiving a Gtuple has to pull data from

the appropriate secondary table and join on the expected set of attributes. A project operator

has to know on which columns to project depending on the rule it is in. Furthermore, function

arguments and returns must be appropriately arranged. To manage the above problem under

data-heavy generation, we keep all necessary data parameters in a compact parse tree such

that it is accessible by all components at runtime. The component in charge of holding these

parameters is called ParamStore. The task of ensuring the different operational components

get the appropriate parameters is done by our compiler’s static linking. Under code-heavy

generation, we duplicate calling code multiple times, inlining parameters as constants.

2.6.8 Built-in Relations

Well-understood, narrow operator interfaces not only make it very easy to chain together

operators, but also facilitate development of built-in relations. In general, users can write
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Figure 2.3: 28 mote Omega Testbed at UC Berkeley

arbitrary rules containing built-in relations and can also include initial facts for them. Some

built-ins only make sense to appear in the body (sensors) or only in the head (actuators) of

rules, while others may be overloaded to provide meaningful functionality on both the head

and body (e.g., timer). We permit this by allowing built-ins to only provide their meaningful

subset of interfaces.

2.7 Evaluation

In this section we evaluate a subset of the netlog programs described in Section 2.3. We

analyze DSN’s behavior and performance in comparison with native TinyOS nesC applications

using a 28 node testbed (58) shown in Figure 2.3 and TOSSIM (59), the standard TinyOS

simulator.
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2.7.1 Applications and Metrics

We present evaluations of tree formation, collection, and Trickle relative to preexisting

native implementations. Furthermore we describe our experience in deploying a DSN tracking

application at a conference demo.

Three fundamental goals guide our evaluation. First, we want to establish the correctness

of the netlog programs by demonstrating that they faithfully emulate the behavior of native

implementations. Second, given the current resource-constrained nature of sensor network

platforms, we must demonstrate the feasibility of running DSN on the motes. Finally, we

perform a quantitative analysis of the level of effort required to program in netlog, relative to

other options.

To demonstrate the correctness of our system, we employ application-specific metrics. To

evaluate tree-formation, we look at the distribution of node-to-root hop-counts. We then run

collection over the tree-formed by this initial algorithm, measuring end-to-end reliability and

total network traffic. For Trickle, we measure the data dissemination rate as well as the number

of application-specific messages required. To demonstrate feasibility, we compare code and data

sizes for netlog applications with native implementations. Finally, we use lines of code as a

metric for evaluating ease-of-programming.

2.7.2 Summary of Results

The results indicate that DSN successfully meets algorithmic correctness requirements.

DSN Tree forms routing trees very similar to those formed by the TinyOS reference implemen-

tation in terms of hop-count distribution and our collection implementation achieves nearly

identical reliability as the native implementation. Finally, DSN Trickle provides near-perfect

emulation of the behavior of the native Trickle implementation.

In terms of feasibility, DSN implementations are larger in code and data size than native

implementations. However, for our profiled applications, our overall memory footprint (code

+ data) is always within a factor of three of native implementation and all our programs fit
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Figure 2.4: Tree-formation and collection on the 28 node testbed.

within the current resource constraints. Additionally, several compiler optimizations which we

expect will significantly reduce code and data size are still unimplemented.

Concerning programming effort, the quantitative analysis is clear: the number of lines

of nesC required for the native implementations are typically orders of magnitude greater

than the number of rules necessary to specify the application in netlog. For example tree

construction requires only 7 rules in netlog, as opposed to over 500 lines of nesC for the native

implementation.
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2.7.3 Tree/Collection Correctness Tests

For tree formation, we compared our DSN Tree presented in Section 2.3 to MultihopLQI,

the de facto Native Tree implementation in TinyOS for the Telos platform. To compare fairly to

Native Tree, we augmented DSN Tree to perform periodic tree refresh using the same beaconing

frequency and link estimator. This added two additional rules to the program.

To vary node neighborhood density, we used two radio power levels: power level 3 (-28dBm),

which is the lowest specified power level for our platform’s radio, and power level 4 (-25dBm).

Results higher than power level 4 were uninteresting as, given our testbed, the network was

entirely single-hop. By the same token, at power level 2, nodes become partitioned and we

experienced heavy variance in the trials, due to the unpredictability introduced by the weak

signal strength at such a power level.

Figure 2.4a shows a distribution of the frequency of nodes in each hop-count for each

implementation. As a measure of routing behavior, we record the distance from the root, in

terms of hops, for each node. Node 11, the farthest node in the bottom left corner in Figure 2.3

was assigned the root of the tree. We see that both DSN Tree and Native Tree present identical

distributions at both power levels.

The collection algorithm for DSN, presented in Section 2.3, runs on top of the tree formation

algorithm discussed above. For testing the Native Collection, we used TinyOS’s SurgeTelos

application, which periodically sends a data message to the root using the tree formed by

the underlying routing layer, MultihopLQI. Link layer retransmissions were enabled and the

back-channel was again used to maintain real-time information.

Figure 2.4b shows the results of the experiments for two metrics: overall end-to-end relia-

bility, and total message transmissions in the network. The network-wide end-to-end reliability

of the network was calculated by averaging the packet reception rate from each node at the

root. We see that DSN Collection and Native Collection perform nearly identically, with an

absolute difference of less than 1%.
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DSN Trickle Native Trickle

Total Messages Sent 299 332
Suppressed Messages 344 368

Table 2.1: Trickle Messages

2.7.4 Trickle Correctness Tests

In order to demonstrate that the netlog version of Trickle presented in Section 2.3 is

an accurate implementation of the the Trickle dissemination protocol, we compare the runtime

behavior of our implementation against a widely used native Trickle implementation, Drip (60).

To emulate networks with longer hopcounts and make a more precise comparison, we performed

the tests in simulation rather than on the previous two hop testbed. Data is gathered from

simulations over two grid topologies of 60 nodes: one is essentially linear, arranging the nodes in

a 30×2 layout and the other is a more balanced rectangular 10×6 grid. The nodes are situated

uniformly 20 feet apart and the dissemination starts from one corner of the network. We used

lossy links with empirical loss distributions.

Figure 2.5 presents simulation results for the data dissemination rate using the two imple-

mentations. These results affirm that the behavior of the DSN and the native implementation

of Trickle are practically identical.

In addition, we counted the total number of messages sent by the two algorithms and

the number of message suppressions. Table 2.7.4 presents the total number of Trickle mes-

sages sent by both implementations and the total number of suppressed messages for the 30×2

topology. Again, these results demonstrate the close emulation of native Trickle by our DSN

implementation.

2.7.5 Tracking Demo

We demonstrated the tracking application specified in netlog (and presented in Section 2.3)

at a conference (61). Our set-up consisted of nine TelosB nodes deployed in a 3×3 grid with

the communication range set such that each node only heard from spatially adjacent neighbors.
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A corner-node base station was connected to a laptop, which was used for displaying real-time

tracking results and up-to-date network statistics collect from the network. A tenth “intruder”

node broadcasted beacon messages periodically and the stationary nodes then tracked the

movement of this intruder and reported their observations to the base station. The demo

successfully highlighted the specification, compilation, deployment, and real-time response of a

tracking application similar to actually deployed tracking applications (34).

2.7.6 Lines of Code

Measuring the programmer level of effort is a difficult task, both because quantifying such

effort is not well-defined and a host of factors influence this effort level. However, as a coarse

measure of this programming difficulty, we present a side-by-side comparison of the number of

lines of nesC native code against the number of lines of netlog logic specifications necessary to

achieve comparable functionality. This approach provides a quantifiable metric for comparing

the level of effort necessary across different programming paradigms.

Table 2.7.6 provides a comparison in lines of code for multiple (functionally equivalent)

implementations of tree routing, data collection, Trickle and tracking. The native version
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Program Lines of Code
Native NLA TinyDB DSN

Tree Routing 580 106 - 7 Rules (14 lines)
Collection 863 - 1 12 Rules (23 lines)

Trickle 560 - - 13 Rules (25 lines)
Tracking 950 - - 13 Rules (34 lines)

Table 2.2: Lines of Code Comparison

refers to the original implementation, which is currently part of the TinyOS distribution (54).

NLA, or network layer architecture, is the implementation presented in (62), which decomposes

sensornet network protocols into basic blocks. It is not fit for expressing non-routing services.

The reduction in lines of code when using netlog is dramatic at roughly two orders of

magnitude. TinyDB is also extremely compact, consisting of a single line query. However, as

Section 5.1 discusses, TinyDB is limited to only data acquisition, rather than entire protocol and

application specification. We conjecture that such a large quantitative distinction translates

into a qualitatively measurable difference in programming effort level. To this we also add our

subjective (and admittedly biased) views that during the development process, we strongly

preferred programming in netlog, as opposed to nesC.

2.7.7 Feasibility

In this section we evaluate the feasibility of our system to meet the hard memory constraints

of the current sensor network platforms. We show that there is a significant fixed cost for our

runtime system, but this is manageable even for the current platforms and comparable to

existing proposals.
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2.7.8 Code/Data size

The TelosB mote, the main platform on which DSN was tested, provides 48KB of ROM

for code, and 10KB of RAM for data.1 Given these tight memory constraints, one of our initial

concerns was whether we could build a declarative system that fits these capabilities.

Table 2.7.8 presents a comparison in code and data size for the three applications profiled in

Table 2.7.6. For a fair comparison, the presented memory footprints for the native applications

do not include modules offering extra functionality which our implementation does not support.

Note however that the extracted modules still have a small impact on the code size due to

external calls and links to/from them.

Program Code Size (KB) Data Size (KB)
Native NLA DSN Native NLA DSN

Tree Routing 20.5 24.8 24.8 0.7 2.8 3.2
Collection 20.7 - 25.2 0.8 - 3.9

Trickle 12.3 - 24.4 0.4 - 4.1
Tracking 27.9 - 32.2 0.9 - 8.5

Table 2.3: Code and Data Size Comparison

The main reason for the larger DSN code size is the size of the database operators. As

an important observation, note that this represents a fixed cost that has to be paid for all

applications using our framework. This architectural fixed cost is around 21kB of code and

1.4kB of data. As we can see in Table 2.7.8, constructing bigger applications has only a small

impact on code size.

On the other hand, the main reason for which the DSN data size is significantly larger than

the other implementations is the amount of parameters needed for the database operators and

the allocated tables. This is a variable cost that increases with the number of rules, though,

for all applications we tested, it fit the hardware platform capabilities. Moreover, although not

yet implemented, there is significant room for optimization and improvement in our compiler

1The Mica family of platforms are also supported but compiler optimizations favorable to the Micas are not
implemented.
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backend. Finally, if data size were to become a problem, the data memory can be transfered into

code memory by generating more operator code and less operator parameters (see Section 2.6).

The overall memory footprint (measured as both code and data) of DSN implementations

approaches that of the native implementations as the complexity of the program increases.

Such behavior is expected given DSN’s relatively large fixed cost, contrasted with a smaller

variable cost.

We also mention that our system is typically more flexible than the original implementa-

tions. For instance, in the collection tree routing implementation, we are able to create multiple

trees with the addition of two netlog initial fact, and no additional code (unlike the native

implementation).

As a final note, technology trends are likely to produce two possible directions for hardware:

sensor nodes with significantly more memory (for which memory overhead will be less relevant),

and sensor nodes with comparably limited memory but ever-decreasing physical footprints and

power consumption. For the latter case, we believe we have proved by our choice of Telos

platform and TinyOS today that the overheads of declarative programming are likely to remain

feasible as technology trends move forward.

2.7.9 Execution Overhead

Two additional potential concerns in any system are network packet size overhead and

runtime delay overhead. Our system adds only a single byte to packets sent over the network,

serving as an internal relation type identifier for the tuple payload. Finally, from a runtime

delay perspective, we have not experienced any delays or timer related issues when running

declarative programs.
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2.8 Limitations

We divide the current limitations of our approach into two categories. First, there are

certain drawbacks that are inherent to a fully declarative programming approach, which we

have only been able to ameliorate to a degree. Second, DSN has certain limitations. The

restrictions that fall into the second category can typically be lifted by introducing additional

mechanisms/features; we leave these for future work. Conversely, while the shortcomings of

the declarative approach can potentially be mitigated, they still remain as fundamental costs

of declaratively specifying systems.

As noted in Section 2.1.1, a declarative language hides execution details that can be of

interest to the programmer. This has two implications. First, it is less natural to express some

programming constructs where imperative execution order is required. Second, the declarative

approach is not appropriate for code with very high efficiency requirements such as low level

device driver programming. For instance, in our declarative program, the granularity of user

control is the rule; the user cannot preempt rule execution. This also implies that real time

requirements may be hard to guarantee in the declarative system. Therefore, we expect the low

level programming for device drivers to be done natively and incorporated through built-ins.

Going one step further, we observe that while the high level language offers more room

for compiler optimizations, the overall efficiency of a system implemented declaratively will

most likely not surpass a painstakingly hand-tuned native one. Fundamentally, we are trading

expressivity and programming ease for efficiency, and this may be the right tradeoff in a variety

of scenarios.

Finally, a declarative sensor network system has to interface with the outside world, and

the callouts to native code break the clean mathematical semantics of deductive logic languages.

In this case there is some potentially useful prior work on providing semantic guarantees in the

face of such callouts (63).

A few of the limitations of DSN were briefly discussed in Section 2.1.1, namely the ability to

do only polynomial-time computation and the lack of support for complex data objects. These
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are somewhat ameliorated by the ability of DSN to call out to native code via built-in predicates.

While the computational complexity restraint will not likely affect DSN’s practicality, the lack

of complex data objects may. One might consider implementation of an Abstract Data Type

system akin to that of Object-Relational databases, to enable more natural declarations over

complex types and methods (64). In addition, we recognize that many embedded programmers

may be unfamiliar with netlog and its predecessor Datalog. We actively chose to retain

netlog’s close syntactical relationship to its family of deductive database query languages,

though certainly more familiar language notations may facilitate adoption.

Currently, users can only select among a fixed set of eviction policies for tables. We are

considering a language extension which would allow users to evict based on attribute value, a

construction that we expect to fit most practical eviction policies.

Finally, in Section 2.4.2 we presented several mechanisms to increase the user control over

the execution, such as with priorities to express preference for the tuple execution order. We

note that these constructs take the expressive power of our language outside the boundaries of

traditional deductive database semantics, and a formal modeling of these constructs remains

an important piece of future work.

2.9 Summary

Data and communication are fundamental to sensor networks. Motivated by these two

guiding principles, we have presented a declarative solution to specify entire sensor network

system stacks. By example, we showed several real netlog programs that address disparate

functional needs of sensor networks. These programs’ text were often orders of magnitude fewer

lines of code, yet still matched the designer’s intuition. In addition, DSN enables simple resource

management and architectural flexibility by allowing the user to mix and match declarative and

native code. This lends considerable support to our hypothesis that the declarative approach

may be a good match to sensor network programming. The DSN system implementation
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shows that these declarative implementations are faithful to native code implementations and

are feasible to support on current sensor network hardware platforms.
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Chapter 3

Rendezvous and Proxy Selection

3.1 Motivation

Declarative languages traditionally offer ease and compactness of expressiveness, as well

as separation of policy from mechanism. Having found DSN to be a good fit for expressing a

mutlitude of sensornet programs, we next investigate opportunities to automatically optimize

execution. This is analogous to how standard SQL statements are optimized by a general-

purpose database optimizer before execution. The key difference is the challenges posed by

networked systems. We focus on optimizations that address prototypical networking rendezvous

and proxy placement concerns.

• Where should messages from communicating parties rendezvous? Should the rendezvous

occur via push, pull or some of both?

• Who should hold the conversation state of an ongoing communication?

• Should applications send (application) data to routers, or conversely should routers send

(routing) data to applications? Is a mixture of each the most appropriate?
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These concerns are not limited to sensornets, but often arise in traditional networked

systems as well. System builders often wrestle with these choices in concrete instances to

achieve better performance. Section 3.1.1 discusses some of these situations in detail. Our

optimizer, netopt, mitigates the need for case-by-case consideration of rendezvous and proxy

selection. This is timely in the networking environment, given increasingly diverse and varying

workloads and resources.

In addition to the utility of our optimizations, a conceptual contribution of our work is in

exposing the congruence between network design and recursive query optimization, a traditional

topic in database theory. Specifically, we show that optimal network rendezvous and proxy

selection are analogous to cost-based selection pushing in the presence of recursive queries.

To examine the utility of our network optimizations, we apply them to both traditional

networking and sensornet settings. In simulation, gains are by as much as two orders of magni-

tude. On testbeds, gains are by as much as one order of magnitude. In both settings, netopt

effectively identifies and executes better strategies.

This chapter is organized as follows. Section 3.1.1 takes a closer look at our two chosen

application scenarios. Section 3.2 introduces our distributed and recursive query language and

offers initial attempts at network optimization. Section 3.3 discusses the main rendezvous

optimization in detail. Section 3.4 extends this to proxy placement optimization. Section 3.5

discusses their execution on our implementation platforms. Section 3.6 reports on prototype

implementation and deployment of our optimizations. Section 3.8 summarizes this chapter’s

results.

3.1.1 Two Networking Settings

This section takes a closer look at two networking settings: wireless sensing and content dis-

tribution. In each, we pay attention to aspects where manual rendezvous and proxy placement

decisions have significantly impacted system design.
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Sensornets

One predominant application class for sensornets is event detection and distribution. In

the naive variant, an event source sends event notifications to the sink i.e., rendezvous only at

the sink. Yet rendezvous at other locations in the network is conceptually possible and often

beneficial. For example, if many events are generated but only a few are of interest to the sink,

it may be more energy efficient to pass the sink’s selection criteria (part of the way) to the

source. Furthermore, in the case of multiple source and sink pairs, limited node buffer space

may preclude every pair from using its preferred rendezvous. The optimization problem is akin

to ones encountered outside sensornets e.g., in Pub-Sub (65) and Content Distribution Net-

works (21) where it is known to correspond to the NP-complete facilities location problem (15).

We show how netopt can automatically identify naive cases from program source, rewrite them

to expose rendezvous flexibility, and assign lower cost rendezvous.

Recently, many common Internet services such as interactive login, remote debugging and

point to point routing are being ported to sensornets. A challenge that arises repeatedly is that

of configuring state allocation on storage-constrained platforms. Such state varies in form and

use, from interactive login sessions to routing table entries. Should it reside at either endpoint,

at intermediate proxies, or in packets? And who makes these decisions? These alternatives are

illustrated in Figure 3.1. The service designer implementing something like interactive login

will not know the needs and constraints of a each specific deployment. On the other hand,

the end system deployer can not be expected to be intimately familiar with reconfiguring the

protocols of every packaged service. Unfortunately, this implies that neither is in the best

position to optimize state allocation. The result is that conservative service designers minimize

node state at the expense of increasing in-flight packet state. Since the radio is frequently

the most power-intensive hardware unit, the increased communications directly decrease the

overall network lifetime. We tackle this problem with automated techniques for exposing and

optimizing proxy placement.
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(c) “Stateless” execution

Figure 3.1: Three alternate executions for client-server communication. m represents the mes-

sage from client to server. Upon reaching the server, m is modified to m′. s represents the

session state held at the server on behalf of the client-server communication. It is also modified

upon m reaching the server.

Content Distribution Networks

Website operators that wish to offer more responsive sites often turn to Content Distribu-

tion Networks (CDNs) such as Akamai and Limelight (66; 67). CDNs host third party content
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on their large server collections, ideally placing popular items close to interested consumers.

Optimal event notification and content distribution are known to be related problems. There-

fore, optimizer-driven rendezvous selection applies to both sensornet and CDN settings.

Each client that connects to a server allocates its own session state, as shown in Figure 3.1a.

As the number of clients increases, server responsiveness may suffer due to session state ex-

hausting available server memory. To alleviate the problem, session state can be repackaged

into messages for transportation between client and server, allowing the server to be stateless,

as shown in Figure 3.1c (19; 68). Similarly, as a hybrid alternative, session state packaged in

messages can be picked up from and dropped off at an intermediate proxy on the path connect-

ing client and server, as shown in Figure 3.1b. This proxy placement problem is complementary

to rendezvous selection, and in the same mold as the proxy placement problem described for

sensornets.

3.2 Example Program Optimization

As a basis for optimization, we continue to employ netlog. This section revisits an example

application, and probes an initial attempt to expose more rendezvous choices for the application.

A main tool used throughout the optimizations, network selection pushing, is also introduced.

3.2.1 An Initial Program

Listing 3.1 revisits the core event distribution logic introduced earlier in Chapter 2.3, and

is very similar to Listing 2.2. It implements multi-hop message forwarding from sources to

sinks with message filtering at sinks. We shall call this program BasicProg. The data is routed

via the second rule of BasicProg by recursively defining the contents of the message relation

with respect to the nexthop relation. Intuitively, message tuples are traversing the nexthop

routing tables (lines 7-9). Upon arrival at the sink, the message tuple, if it matches any

tuples in interest, generates consume tuples at the destination via the third rule of BasicProg

(lines 12-14). The query indicates that asks for the consume queried relation (line 17).

50



1 % Prepare f o r t r a n sm i s s i o n

2 message ( @Source , Source , Sink , Data ) :−

3 produce ( @Source , Data ) ,

4 nexthop ( @Source , Sink , Next ) .

5

6 % Route message to next hop pa r en t

7 message (@Next , Source , Sink , Data ) :−

8 message ( @Current , Source , Sink , Data ) ,

9 nexthop ( @Current , Sink , Next ) .

10

11 % Rece i v e i f message i s o f i n t e r e s t

12 consume ( @Sink , Data ) :−

13 message ( @Sink , Source , Sink , Data ) ,

14 i n t e r e s t ( @Sink , Data ) .

15

16 % What i s consumed?

17 consume ( @Sink , Data ) ?

Listing 3.1: Original BasicProg, event distribution from source to sink with filtering by interest.

3.2.2 Pushing Selections One-Hop

As an example, consider a two node network x and y represented by a previously-defined

set of facts (sometimes called an “Extensional Database (EDB)” (69)) D consisting of three

relations:

produce (@y , foo ) . nexthop (@y , x , x ) .

i n t e r e s t (@x , foo ) .

The EDB is the set of relations that are never in the head of any rule; its tuples are defined

exogenously, perhaps via a data structure in a persistent store. Conversely, the Intensional

Database (IDB) is made of the derived relations that occur in rule heads. The IDB of D is:

message (@y , y , x , f oo ) . message (@x , y , x , f oo ) .

consume (@x , foo ) .
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In BasicProg, produce and interest rendezvous at a node x by sending message from

some node y to x. Conceptually, this rendezvous could also take place at y as long as the

query returns the same answer, consume(@a, foo). To accomplish this, let interest send its

own “message” from x to y. We’ll call it message∗, and use it in the following rules:

message ∗( @Current , Cur rent , Data ) :−

i n t e r e s t ( @Current , Data ) .

message ∗( @Current , Sink , Data ) :−

message ∗(@Next , Sink , Data ) ,

nexthop ( @Current , Sink , Next ) .

consume ( @Sink , Data ) :−

produce ( @Current , Data ) ,

message ∗( @Current , Sink , Data ) .

The first rule prepares interest tuples as message∗ tuples. The second rule passes message∗

backward along nexthop, and is similar to how message was routed in Listing 3.1. The third rule

derives consume. For the one-hop network, these rules produce the desired result of rendezvous

at y, with the queried consume at x. As a result, we have “pushed” the selection condition

i.e., interest back to produce.

3.2.3 Pushing Selections into the Network

As the network topology grows to multiple hops, we would like to add a bit more flexibility

to this rewrite attempt. At the moment, we must choose between either endpoint, which is

similar to a technique mentioned in (29). In a multi-hop network, rendezvous at any inter-

mediary hop should be an option. We next provide some intuition on how network selection

pushing generalizes to the multi-hop case. A program’s network execution can be visualized

with a network derivation graph. Figure 3.2a shows the network derivation graph for BasicProg

over a four hop linear network with nodes x-y-z-w. Each network derivation graph node ρξ

represents a horizontal partition of relation ρ at location ξ (relation names are abbreviated
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(d) Fully path-restricted

Figure 3.2: Alternative executions of BasicProg. Exclamation marks indicate neighboring

hosts are not connected in the network topology.

by their first letter). A directed edge leads from derivation input to derivation output. For

example, nz represents the rows of nexthop that are stored at location z, and the edge from

pw to mw indicates that the program derives message at w from produce at node w. A node

with a fan-in greater than one indicates a join among the node’s children, as in the case of mz

and the join of mw and nw.

We can push selections to achieve a different network execution. Figure 3.2b shows the
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network derivation graph resulting from an initial selection push. Here, the join of message

and interest is performed earlier, resulting in subsequent message tuples already filtered by

interest (denoted m − i). Conceptually, the “pushing down” of interest changes rendezvous

of message and interest from x to z. However, x and z are not neighbors in the underlying

network topology (as indicated by the exclamation mark). Hence, they cannot communicate

directly with each other and the partitions interestx and messagez cannot directly join. In

general, netlog programs require the following property for proper distributed execution.

Definition 3.2.1. A rule is path-restricted if all head and body relation partitions are located

on the same host or neighboring hosts in the underlying network topology. A program is path-

restricted if its rules are path-restricted.

We assume that input programs are path-restricted, and we would like to maintain the

property for any rewritten programs. Figure 3.2c suggests an alternate join rearrangement

that is path-restricted for interestx. It is roughly the result of combining Listing 3.1 with the

rules in Section 3.2.2. producew is converted to message and travels from w to z, interestx

is converted to message∗ and travels from x to y to z. This leaves message∗z and messagez

ready to join at z.

However, the derivation of consumex involves z and x that are not neighbors. To resolve

this issue, we can “package up” consumex as a new relation message∗∗ and send it along the

network topology via a path we already know about from z to x. Figure 3.2d shows this as part

of the fully path-restricted network derivation graph with rendezvous at z. This is just one

possible rendezvous choice. The “Meet-in-the-Middle” MiM Rewrite we discuss next transforms

input programs to expose many possible rendezvous choices.

3.3 Meet-in-Middle Rewrite

The netopt network optimization architecture executes in three stages:
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• Analysis identifies optimization opportunities from input programs. We show how to

identify rendezvous and proxy selection opportunities.

• Rewriting primes programs for optimization by transforming input programs to optimiz-

able variants.

• Decision Making selects optimized configurations. The optimizer installs its chosen con-

figuration by simply filling in tables initialized by Rewriting to list selected rendezvous

and proxies.

This section first sets forth the correctness criteria of any netopt optimization, and de-

scribes the MiM Rewrite procedure precisely in terms of its analysis and rewrite phases. Any

netopt optimization must preserve the intent of the original program. The intent is captured

by the query.

Definition 3.3.1. Two programs P1, P2 are query equivalent if, given any EDB, the contents

of their queried relations are equivalent.

Definition 3.3.2. A rewriter R : P1→P2 is query preserving if for all programs P1, P2 is

query equivalent to P1.

Note that neither of these definitions constrains the contents of the IDB in general, only

the queried relations.

3.3.1 Analysis

Analysis identifies certain rules and relations as rewrite components. We first introduce

some terminology from classic work in the deductive database literature (69).

Definition 3.3.3. A rule-goal graph contains one relation-node for each relation and one

rule-node for each rule. A directed edge leads from rule-node R to relation-node a if the head

of rule R is relation a. A directed edge leads from relation-node a to rule-node R if relation a

is in the body of rule R.
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Definition 3.3.4. A rule with head relation a is a linearly recursive rule (LR rule) if a

appears exactly once in the body. It is an initializer rule if a does not appear in the body.

Definition 3.3.5. A program is a linearly recursive program (LR program) if every rule

with head a is (1) either an initializer rule or LR rule, and (2) for every relation b in the body,

b 6= a, relation-node b in the rule-goal graph is not reachable from relation-node a.

Definition 3.3.6. A relation a is an LR relation if a is the head of an LR rule. The other

relations in the body of the LR rule are base relations.

Without loss of generality, we can restrict our discussion to scenarios in which the LR rule

body contains only one base relation.1 Our focus on networking programs leads us to consider

the following type of LR rule.

R1 a (@bi , d1 , . . . , dNa−1 ) :− a (@a1 , . . . , aNa ) , b (@b1 , . . . , bNb ) .

In the rule, the value bi determines the new location specifier. Therefore, the partition of

the head a is potentially different from the partition of the body a upon every recursion. Hence,

we can interpret the base relation b as defining a network for the LR relation a to “hop along”.

For BasicProg, message is the only LR relation. nexthop is a base relation of message. Both

LR and base relation identification can be accomplished by traversing the rule-goal graph.

Looking at the attribute variables in the example, note that each di can correspond to any

ai or bi to get data values from the input to the output. Furthermore, bi’s can correspond to

ai’s to capture join conditions between a and b.

Lastly, we are only interested in recursive relations that can (possibly indirectly) derive the

queried relation because only they can impact query equivalency.

Definition 3.3.7. Given queried relation c and LR relation a, a rule R is an answer rule if

(1) a is in the body of R but not the head, and (2) in a rule-goal graph traversal, rule-node R

can reach relation-node c.

1When this is not so, it is straightforward to rewrite the program to include a rule that derives a single base
relation by joining multiple base relations.
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Given a program and queried relation, Analysis identifies LR and base relations, and LR,

initializer and answer rules.

3.3.2 Rewriting

Using the rules and relations identified in Analysis, Rewriting invokes the MiM Algorithm.

The MiM Algorithm transforms LR program P to a query equivalent program PMiM . The

advantage of PMiM over P is that its rendezvous can be tuned by Decision Making by filling

in tuples for a special rendezvous relation.

A preliminary procedure of the MiM Algorithm, common in the deductive database liter-

ature (70), canonicalizes the input program. First, recursive relation a is renamed a ans in

every answer rule for a. Second, for each rule, each variable is renamed to a unique variable

name that does not appear elsewhere in the program (this is also known as “skolemization”).

Third, a binding list for each recursive relation a is produced. A binding list α is a sequence of

“b”s (bound) and “f”s (free), with each character representing an attribute of a. An attribute

of a is bound (“b”) if possible values are (1) already known since they are join keys with EDB

relations, and (2) useful since the join happens in an answer rule. Informally, the binding list

is a template that guides the search for derivations that might actually matter to the queried

relation. For ease of exposition, we describe the algorithm only as it applies to the following

type of answer rule where c is the head and e is in the EDB.

R0 c (@c1 , . . . , cNc ) :− e (@e1 , . . . , eNe ) , a (@a1 , . . . , aNa ) .

In this basic yet common case, the binding list α is assigned as follows: αi is “b” if ai joins

with some ej . Otherwise αi is “f”. Furthermore, with some trivial variable reordering, we can

safely assume that α is a sequence of “b”s followed by a sequence of “f”s.

With these preliminaries, the core MiM Algorithm in Listing 3.2 is invoked. The shorthand

notation it uses allows us to present MiM Algorithm compactly as a series of rule manipulations

and variable list rearrangements. A term with a bar (“¯”) represents a list of variables, and

consists of a letter and optionally a digit, e.g., a1. The letter indicates that the size of the list
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Figure 3.3: Steps of MiM Algorithm

is the number of attributes of the corresponding relation e.g., a1 is a variable list of size Na.

The digit is just an identifier.

To manipulate variable lists, we use three functions. unique takes as input a list size and

returns as output a list of distinct variables that do not appear anywhere else in any rule.

boundlist takes as input a variable list for a and returns the prefix of the input for which α is

“b”. Conversely, freelist returns the suffix of the input for which α is “f”.

Each variable list originates from either (1) the input program P or (2) the function unique.

Lastly, a term may have a subscript “b” or “f” to represent the application of the function

boundlist or freelist respectively. For example, a1b = boundlist(a1). In such case, the length

of a1b may be less than that of a1.

The MiM Algorithm generates new rules and introduces new relations a ans, a∗ and a∗∗.

In networking settings, tuples of a, a∗ and a∗∗ can be thought of as messages. Each message

consists of a message header (some prefix of attributes) and message payload (remaining suffix

of attributes). The header may change on every recursion but the payload does not.

The MiM Algorithm consists of three main steps traced by Figure 3.3. Figure 3.3a shows

the input program as an abstract network derivation graph in which messages of a flow from
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INPUT: A LR input program P with a binding list α for each recursive relation a. Recursive rules for a
take the form:

R1 a (a1) :− a (a2) , b (b) .

OUTPUT: An output program PMiM having all the rules of P , with additional EDB relation r

(rendezvous) and with each rule R1 replaced by rules R1.1, R2, R3.1, R4.2, R5 and R6 as defined below.

PROCEDURE:

1. Invert recursion order. Generate Pinv, a version of P that processes derivations via “pull” rather than
“push”. The rules of Pinv are the rules of P with each rule R1 replaced by three rules:

R2 a ∗(a0b ,a0b ) :− . . . % answer rule dependent, refer to text

R3 a ∗(a2b ,a0b ) :− a ∗(a1b ,a0b ) , b (b) .

R4 a ans (a0b ,a3f ) :− a ∗(a3b ,a0b ) , a (a3) .

w i th a0b = . . . % answer rule dependent, refer to text

and a3 = unique(Na).

2. Hybridize recursion order. Generate Phyb by combining Pinv and P . In addition, add rendezvous
relation r and modify selected rules to:

a. Limit derivations of the queried relation to the rendezvous point. Replace R4 with:

R4.1 a ans (a0b ,a3f ) :− a ∗(a3b ,a0b ) , a (a3) , r (a3b ) .

b. Limit “push” execution to before the rendezvous and limit “pull” execution to after the rendezvous.
Replace R1 and R3 with:

R1.1 a (a1) :− a (a2) , b (b) , −r (a2b ) .

R3.1 a ∗(a2b ,a0b ) :− a ∗(a1b ,a0b ) , b (b) , −r (a1b ) .

3. Localize for network processing. Generate PMiM by modifying Phyb to ensure network topology path
restrictions. This enables correct distributed execution. Replace rules R4.1 with:

R4.2 a ∗∗(a3b ,a0b ,a3f ) :− a ∗(a3b ,a0b ) , a (a3) , r (a3b ) .

R5 a ∗∗(a1b ,a0b ,a3f ) :− a ∗∗(a2b ,a0b ,a3f ) , b (b) .

R6 a ans (a0b ,a3f ) :− a ∗∗(a0b ,a0b ,a3f ) .

Listing 3.2: MiM Algorithm

source to sink. After arriving at the sink, a generates a ans, which participates in answer rules

(not shown). More precisely, sources are locations where initializer rules generate a, and sinks

are locations where answer rules use a.

Step 1 inverts the recursive order of the original program. Its objective is the same as to
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that of the Magic Sets algorithm from database theory (71): pushing selection past recursion.

This is done by constructing a∗ to recurse backward from sink to source (Figure 3.3b). In

networking terms, pushing down selections in this setting can be thought of as a sink-initiated

“pull” execution vs. the original source-initiated “push” execution.

In Step 1 of Listing 3.2, R2 is underspecified and we complete its specification here. Recall

that given a queried relation c, α tells us that some attributes of a are already bound to specific

values in an EDB relation. These are simply copied over to make a∗, a superset of a. In the

case of example R0, R2 takes the form:

a ∗(a0b ,a0b ) :− e (e) . w i th a0 = @a1 , . . . , aNa o f R0

Note that two copies of the join keys are made. The first copy is like a message header that

may need to go through some number of recursive modifications to find its join partners. The

latter “pristine copy” is like a message payload with a return address, used to remember the

original join keys for the answer rules.

Step 2 hybridizes the recursion order by combining push and pull execution to “meet-in-the-

middle”. It further introduces the EDB relation r whose tuples indicate the precise rendezvous

meeting point between push and pull. While a traverses forward from source and a∗ traverses

backward from sink, both stop at the rendezvous point to derive a ans (Figure 3.3c). Whereas

Pinv pushes selection past recursion, Phyb pushes selection into a tunable middle point in the

recursion.

Step 3 localizes the program for network processing by ensuring that topology paths are

respected. Essentially, a ans is additionally packaged as a payload in another message, a∗∗,

and sent from rendezvous to sink. Upon reaching the sink, a ans is unpackaged and can be

used in answer rules, just as in the original program.

Steps 1 and 2 are applicable to any LR Datalog program. Step 3 is necessary for netlog

programs that are expected to run on networks of nodes. We next present an example appli-

cation of MiM Algorithm.
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1 % Prepare f o r t r a n sm i s s i o n

2 message ( @Source , Source , Sink , Data ) :−

3 produce ( @Source , Data ) ,

4 nexthop ( @Source , Sink , Next ) .

5

6 % Route message to next hop pa r en t u n t i l r endezvous

7 message (@Next , Source , Sink , Data ) :−

8 message ( @Current , Source , Sink , Data ) ,

9 nexthop ( @Current , Sink , Next ) ,

10 −r endezvous ( @Current , Sink , Data ) .

11

12 % Route i n t e r e s t back a long next hop u n t i l r endezvous

13 message ∗( @Current , Cur rent , Data ) :−

14 i n t e r e s t ( @Current , Data ) .

15 message ∗( @Current , Orig , Data ) :−

16 nexthop ( @Current , Sink , Next ) ,

17 message ∗(@Next , Orig , Data ) ,

18 −r endezvous (@Next , Sink , Data ) .

19

20 % At rendezvous , j o i n message and i n t e r e s t and send to S ink

21 message ∗∗( @Current , Sink , Data ) :−

22 message ( @Current , Src , Sink , Data ) ,

23 message ∗( @Current , Sink , Data ) ,

24 r endezvous ( @Current , Sink , Data ) .

25 message ∗∗(@Next , Sink , Data ) :−

26 message ∗∗( @Current , Sink , Data ) ,

27 nexthop ( @Current , Sink , Next ) .

28 consume ( @Sink , Data ) :−

29 message ∗∗( @Sink , Sink , Data ) .

30

31 % What i s consumed?

32 consume ( @Sink , Data ) ?

Listing 3.3: Rewritten BasicProg, message and interest meet in the middle.

3.3.3 Example Application of MiM Algorithm
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Listing 3.3 illustrates the result of a full application of the MiM Algorithm on BasicProg,

with some variable renaming for ease of exposition. Appendix B shows the rewrite before vari-

able renaming. In the rewritten BasicProg of Listing 3.3, the precise rendezvous location is

chosen by simply filling in the rendezvous relation e.g., with rendezvous(@b, a, foo). The orig-

inal recursion of message along nexthop is amended to include a negated term, −rendezvous

which modifies the interpretation of message routing to be: “Route message along nexthop

until encountering rendezvous” (line 10). A similar negated term is applied to the routing

back of interest (line 18). Additionally, MiM Rewrite amends BasicProg to deliver consume

tuples in a multi-hop fashion to the Sink (lines 21-29) according to network path restrictions

mentioned earlier.

Note that we have not specified nor constrained the tuples in the rendezvous relation. The

decision of what to put there will be the task of Decision Making , discussed in Section 3.5.

Next, we establish the correctness of MiM Rewrite by proving the following theorem.

Theorem 3.3.8. The MiM Rewrite is query preserving and path-restricted.

3.3.4 MiM Rewrite Correctness Proof

To prove this Theorem, we need some preliminary definitions and results. the structure of

our discussion mirrors Listing 3.2.

[1. Inverting Recursion Order] We need the following constraint to show query equivalency

of Pinv and P .

Constraint 1 (Free Variable Constraint). For each recursive rule having head a, the free

variables of a in the head must be the same as the free variables of a in the body.

This constraint says that the free variables of a are carried along unmodified from source

to sink. Conversely, the bound variables of a may change upon every recursion. By analogy

to networking, free variables are message payloads and bound variables are message routing

headers. Provided this constraint, we borrow results from (69) (specifically Theorem 15.1) to

claim that:
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Lemma 3.3.9. P and Pinv are query equivalent.

Informally, we have already discussed how the construction of R2 causes a∗ to be filled with

an initial superset of join key values for a starting at sink. R3 takes the current set and asks

what prior set is necessary to derive the current set, much like a depth first search from sink to

source. Recall also that R2 and R3 store a “pristine copy” of the initial set, a0b, in the latter

half of a∗. Like a semi-join (72), (a subset of) a∗ may eventually join with a at the source

by R4.
2 If this happens, since the free variables a3f do not change with recursion (due to the

constraint), they can be copied over directly from a to a ans. Similarly, a∗ copies its pristine

copy a0b to a ans. The result is a ans, which can now be used by any answer rule since free

variables for a ans have now been assigned values. The proof of Lemma 3.3.9 is by induction

on the length of the path from source to sink.

[2. Hybridizing Recursion Order] We can simultaneously enact push and pull processing

by combining P and Pinv. However, this naive hybrid program causes many unnecessary

derivations of identical a, a∗ and a ans tuples because neither push nor pull can detect when

it has started duplicating the other’s work; a goes completely from source to sink, a∗ goes

completely from sink to source, and at each point along the path, the same a ans tuples are

(re)derived. Limiting redundant derivations is not necessary for correctness but is preferable

especially when redundant derivations lead to network communications overhead.

First, to limit redundant a ans derivations, we name a particular rendezvous in a special

rendezvous relation r. In Step 2.a, Rewriting adds r to the body of R4, creating R4.1. Decision

Making populates the tuples of the r relation. It may choose any r as long as it obeys the

following constraint.

Constraint 2 (Selection Constraint). Any source and sink pair that share at least one path

must have at least one rendezvous on one of the shared paths.

Figure 3.4a shows an example where this constraint is respected. There are two paths from

source to sink and at least one path, the top one, includes a rendezvous. No derivations of

2Recall that initializer rules can also generate a.

63



a

a*

source sink

rendezvous

a a*

a_ans

(a) Selection Constraint OK

a a*

rendezvous

source2 sink4

source1 sink3

a_ans

(b) Branching Constraint OK

a a*

rend1

rend2

source2 sink4

source1 sink3

a_ans

(c) Branching Constraint OK

a
a*

source2 sink4

rend1
source1 sink3

rend2

a_ans

(d) Branching Constraint OK

a a*

rend1

rend2

source2 sink4

source1 sink3

(e) Branching Constraint BAD

Figure 3.4: MiM Algorithm constrains the location of rendezvous.

a ans occurs on the bottom path due to failure to rendezvous i.e., no entry of r lies on the

bottom path.

Second, to limit redundant a and a∗ derivations, we add r to the body of R1 and R3,

creating R1.1 and R3.1. Here, r is negated, which means a and a∗ traverse from source and sink

respectively until encountering a rendezvous, but no further. To maintain correctness, Decision

Making respects the following constraint in addition to Constraint 2.

Constraint 3 (Branching Constraint). Any single path between source and sink can have at

most one rendezvous.

Figures 3.4b-3.4e show three examples respecting this constraint and one example violating
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this constraint. The setting is one in which source1 and source2 both have paths to sink3 and

sink4. Such path “branches” at an intersection are analogous to network multicasts/one-to-

many communication. Figure 3.4e is a violation because a from source1 and a∗ from sink3

do not rendezvous at the same place. Provided Constraint 2 and 3, we have query equivalency

after Step 2.

Lemma 3.3.10. P and Phyb are query equivalent.

Proof. First consider Phyb without the negated r terms. Since r’s a3b is a subset of a’s a3, R4.1

cannot derive a ans tuples that were not derived by R4 (soundness). For completeness, proceed

by induction on the choice of rendezvous. For the base case, choose the sink as the rendezvous,

in which case Phyb simplifies to P . For the induction, we can assume that query equivalency

holds were we to pick the rendezvous one step closer to the sink at point i + 1 rather than the

current rendezvous choice at point i. By Lemma 3.3.9, LR relation a at i + 1 implies a at i.

Apply R3 to a∗ at i + 1 to derive a∗ at i. Finally apply R4.1 to a, a∗ and r (all at i) to derive

a ans. Constraint 2 ensures there is at least some rendezvous between source to sink for the

inductive step.

Next consider Phyb with the negated r terms. The addition of a negated term cannot make

more derivations than without the negated term (soundness). Constraint 3 ensures that one

path’s rendezvous choice does not “block” rendezvous along another path, as seen in Figure 3.4e

(completeness).

[3. Restricting Derivations to Network Paths] R4.1 is not a path-restricted rule. From the

perspective of Figure 3.3c, a ans is derived at the rendezvous but answer rules are expecting

to use it at the sink. This is not an issue in a centralized Datalog execution. However, since

the location specifier horizontally partitions relations in netlog, Phyb needs path-restricting.

Path-Restricting Subprocedure modifies R4.1 to ensure that head and body location speci-

fiers are the same or are neighbors. It accomplishes this by providing hop-by-hop delivery of

a ans from body location to head location. Conceptually, Path-Restricting Subprocedure is a
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generalization of link-restricted rewrites first proposed in (73) from the one-hop/non-recursive

rules to multi-hop networks/recursive rules.

Specifically, Path-Restricting Subprocedure prepends “message header” attributes to a ans

as new relation a∗∗ (akin to encapsulation used in network tunneling). The message header

is copied directly from a since it already had the appropriate header to get to the sink. This

converts R4.1 to R4.2. Next, Path-Restricting Subprocedure constructs R5 to let a∗∗ mimic

a’s multi-hop delivery. Lastly, R6 unpackages a∗∗ into a ans upon detecting that the outer

message header is the same as the inner message header.

Finally, we claim Theorem 3.3.8.

Theorem 3.3.11. The MiM Rewrite is query preserving and path-restricted.

Proof. From Lemma 3.3.10 we already know P and Phyb are query equivalent. To see that

P and PMiM are also query equivalent, observe that the message payload in a∗∗ representing

a ans is always copied and never modified. To see that PMiM is path-restricted (provided P is

path-restricted), proceed by induction on the choice of rendezvous, starting from the sink. To

verify the base case, use the assumption that the input program is already path restricted.

We shall reuse the core of MiM Rewrite in the forthcoming rewrites.

3.4 Additional Rewrites

This section discusses two rewrites that address proxy placement, and both extend naturally

from MiM Rewrite. Interestingly, in networking, proxy placement and rendezvous selection are

typically not seen as related, but the connection is clear through the lens of query optimization.

This section also discusses a third rewrite that increases rendezvous flexibility by enabling off-

path redirection.
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Figure 3.5: Abstract network derivation graphs for session state placement alternatives. The

“loop” in 3.5a is stretched across the network to rendezvous in 3.5b.

3.4.1 Session Proxies

Many protocols and services maintain per-conversation session state at endpoints. However,

a server may get many simultaneous connections, or multiple services might need to coexist.

Either case may exhaust session state buffer space. As a result, a systems builder may prefer to

offload the state to proxies (proxied server) or even to shuttle the session state back and forth

with the client in each packet (stateless server). Protocols that eschew endpoint state for packet

state are often termed “stateless,” even though state exists in the packets. This conversion of

session state is applicable in many settings (19), and is often handled manually. We next show

how Session Rewrite can automatically and fluidly reassign session state to endhosts, packets,

or proxies by simply filling in entries in a rendezvous relation.

Listing 3.4 shows a client-request/server-response sequence with server responses based on

session state. The Client packages interest as request message tuples and sends these requests

toward the Server (lines 2-3). Upon receipt, Server modifies Data in its local session according

to the request and EDB relation transition, a relation capturing the protocol state machine.3

It then returns a response message to the Client (lines 6-14). It is possible for Client to make

followup requests by expressing more interest tuples, with responses dependent upon the state

of session.

Figure 3.5a shows the abstract network derivation graph corresponding to Listing 3.4 client-

3Modification occurs via insertion of tuples with existing primary keys (14).
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1 %C l i e n t : Send r e q u e s t message to S e r v e r .

2 message ( @Cl i en t , C l i e n t , Se rve r , Request ) :−

3 i n t e r e s t ( @Cl i ent , Se rve r , Request ) .

4

5 % Se r v e r : Upon r eque s t , t r a n s i t i o n s e s s i o n s t a t e

6 s e s s i o n ( @Server , C l i e n t , NewData ) :−

7 message ( @Server , C l i e n t , Se rve r , Request ) ,

8 s e s s i o n ( @Server , C l i e n t , Data ) ,

9 t r a n s i t i o n ( @Server , Data , Request , NewData ) .

10

11 % . . . and re spond to C l i e n t .

12 message ( @Server , Se rve r , C l i e n t , NewData ) :−

13 message ( @Server , C l i e n t , Se rve r , Request ) ,

14 s e s s i o n ( @Server , C l i e n t , NewData ) .

15

16 % C l i e n t : Consume r e s pon s e .

17 consume ( @Cl i ent , Data ) :−

18 message ( @Cl i en t , Se rve r , C l i e n t , Data ) ,

19 i n t e r e s t ( @Cl i ent , Se rve r , Data ) .

20

21 % Query : What i s consumed?

22 consume ( @Cl i ent , Data ) ?

23

24 % Message f o rwa r d i n g used by both S e r v e r and C l i e n t .

25 message (@Next , Sender , Rece i v e r , Pay load ) :−

26 message ( @Current , Sender , Rece i v e r , Pay load ) ,

27 nexthop ( @Current , Sender , Next ) .

Listing 3.4: Original SessionProg, client-server roundtrip with session state. session

initialization rules not shown.

request/server-response sequence with server responses based on session state. At the server,

both the current message and session help to derive the next logical message and session.

Also, the queried relation in this case, consume, is actually at the client; we are interested in
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the client’s status after a roundtrip communication with the server. Before discussing Session

Rewrite, we first define an extension to the class of LR programs.

Definition 3.4.1. Two IDB relations a and b are linearly mutually recursive (LMR) if

in the rule-goal graph, there is exactly one distinct path from a to itself that visits b one time

before returning to a.

Definition 3.4.2. A program is a linearly recursive program with linear mutual recur-

sion (LR-LMR program) if it is a LR program except for some relations that are LMR.

LR-LMR programs exhibit “linearity” equivalent to linearly recursive programs. The rule-

goal graph path from a (b) to b (a) is linear (without branches), just as is the rule-goal graph

path from a to a for LR relation a in a LR program.

Our primary interest in LR-LMR programs for session state is when LMR relations a and

b both participate in their own LR rules, and one (say b) has LR rules for which the location

specifier does not change. In such a scenario, a is analogous to messages, and b is analogous

to session state. It is this pattern upon which Session Rewrite operates. For the example in

Figure 3.5a, message and session map to a and b respectively.

The main idea of Session Rewrite is to use MiM Rewrite as a subprocedure, and its result

is shown in Figure 3.5b. We treat message as if it were the queried relation, and apply MiM

Rewrite to session as if it participated in answer rules for message. First, session generates

bindings at Server which get pushed down into message’s recursion until some rendezvous

r (the proxy). message’s recursion also arrives at r, and MiM Rewrite operates as before,

returning message ans to Server. When this occurs, answer rules may derive new message

tuples. Because message and session are LMR, this in turn may derive new session tuples.

The new session tuples generate new bindings, and are resent from Server back to r to seek

additional joins with message. The net effect is that r acts as proxy for Server’s session.

Proxy selection is determined by filling in the rendezvous relation. Moreover, deciding

among stateless, stateful and state proxy protocol variants is as straightforward as setting

rendezvous to Client, Server or intermediate locations. The fully rewritten program after
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Figure 3.6: Extensions to Session Rewrite capture two common session state features.

applying path-restrictions is shown in Appendix B. We prove that our example generalizes via

the following corollary to Theorem 3.3.8.

Corollary 3.4.3. Session Rewrite is query preserving and path-restricted for LR-LMR pro-

grams.

Proof. LMR relations are essentially LR relations with aliasing. Therefore, using MiM Rewrite

as a subprocedure is query preserving for “queried relation” a by Theorem 3.3.8. This means

that if either a or b participates in answer rules for actual queried relation c, c is unaffected. If

they do not participate, then query preservation is trivially true.

There are two additional features of typical session state that we also consider. First,

session state changes are often based on a combination of input messages and protocol state

machines. Listing 3.4 encodes the state machine as the transition relation. If the new session

state is highly dependent upon the data in the input message (e.g., Request is a very selective

join key in lines 6-6), then generating all possible bindings may result in a superset of message

that is very large. To mitigate this issue, we can choose to let some join key variables remain

“free”, even though their values are known. This scenario is depicted in Figure 3.6a. Choosing

to exclude some join key bindings does not effect Corollary 3.4.3 as long as Constraint 1 is still

observed. Such an optimization is essentially the same as that proposed in (74) for traditional

single-site datalog execution optimization.
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(b) Hybrid source routing and distributed routing.

Figure 3.7: Routing state placement alternatives.

Second, under some circumstances, we have the opportunity to reduce messages by piggy-

backing. For example, consider a scenario in which proxy also was on the path from server to

client, in addition to being on the path from client to server, as in Figure 3.6b. Then, rather

than sending message∗ backward from server to proxy, we could piggyback message∗ onto

message traveling from server to client, and drop off the message∗ portion at proxy. This is

possible provided the following constraint.

Constraint 4 (Proxy Revisited). The proxy must be visited on both the inbound path to and

outbound path from the server.

This implies that any subsequent message that goes from client to server will see the

latest session at proxy, thereby preserving Corollary 3.4.3.

3.4.2 Routing Proxies

Just as servers can become overloaded with too much session state, routers can likewise

exceed their capacity for holding routing state. One solution is to let packets and proxies carry

the routing state instead (75). Another is to maintain routes only to a few resource-rich proxies

that in turn maintain many routes (46). The Routing Rewrite exposes these options: it can

reassign routing state to packets, proxies or some mixture of the two by filling in the rendezvous

relation.

Specifically, we apply Routing Rewrite to distributed routing and source routing (SR) which
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differ mainly in whether routing state resides in routers or packets. The prototypical message

routing rule we have encountered thus far is line 7 of BasicProg (Listing 3.1). This resembles

distributed routing akin to distance vector routing (DVR), in that nodes send message tuples

to seek joins with nexthop. Conversely, SR sends nexthop tuples to seek joins with message.

Routing Rewrite transforms a DVR-style program to SR, or some hybrid of DVR and SR.

Figure 3.7 illustrates an application of this procedure on BasicProg. Figure 3.7a explicitly

draws out two hops x and y between which the optimization operates. Figure 3.7b shows the

rewritten form with SR occuring between rendezvous and y.

Routing Rewrite is applied in the same way as Session Rewrite except that the answer

rules are set to a’s LR rules (such as R1 in Listing 3.2). Consequently, the base relations

generate initial bindings, and the rest proceeds as described for MiM Rewrite. For Listing 3.1

where message is the LR relation, this means nexthop generates bindings and sends these back-

ward according to the nexthop relation. This relation “self-traversal” effectively mirrors what

happens in networking when data about the network (such as local connectivity information)

is sent on the network. The following result follows the same proof by induction pattern as

Theorem 3.3.8.

Corollary 3.4.4. Routing Rewrite is query preserving and path-restricted for LR programs.

As with the previous rewrites, Decision Making can select among alternatives simply by

filling in the rendezvous table after Routing Rewrite has been applied to the source program.

To keep DVR, we set rendezvous to the original sink. To convert to SR, we set rendezvous

to the source. To have some mixture of DVR and SR, we set rendezvous to an intermediate

location. The final result of Routing Rewrite on BasicProg is shown in Appendix B.

3.4.3 Generalized Redirection

Thus far, our rewrites have relied solely upon on-path rendezvous and proxies. We have

also extended MiM Rewrite and Session Rewrite to support redirection, a frequently used

networking tool (76). Redirection opens up possibilities for alternate paths.
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Figure 3.8: Redirector points to off-path proxy.

With the generalized redirection modification, MiM Rewrite and Session Rewrite are

able to expose every network location as a potential rendezvous and proxy candidate. The

modification introduces an additional three rules for each recursive relation, and a new

redirect(redirector, rendezvous) relation in the EDB. Its two attribute lists represent the (on-

path) redirector, and the (off-path) rendezvous. The idea is that when any message headers

of LR relation a or inverted relation a∗ encounter a matching message header redirector, the

message body is combined with a new message header rendezvous. This leads to a and a∗ both

being redirected to the off-path proxy, as in Figure 3.8. The relations redirect and rendezvous

are now both available for the optimizer to populate. Off-path proxies require additional path-

restrictions for correctness.

Constraint 5 (Off-path Proxy). A path must exist from the redirector to proxy and from proxy

to sink.

As with many of the other constraints, checks on Constraint 5 require data and rule-

dependent analysis. Decision Making choose redirectors and proxies that observe this con-

straint.

To summarize netopt thus far, given an input program: Analysis identifies recursive, base

and rewrite-specific reordering candidate relations; Rewriting performs join reordering of the

reordering candidate, applies path restrictions as appropriate, and, in the case of MiM Rewrite

and Session Rewrite, generates additional rules for redirection. Optimization is now ready to

fill in rendezvous and (possibly) redirect relations to specify the optimal execution.
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Figure 3.9: netopt architecture. Here it is shown embedded in the DSN compiler. We also

embedded it in the Evita Raced compiler for PC-class devices.

3.5 Decision Making

The preceding sections covered the application of three rewrites to netlog programs to

expand their possible rendezvous and proxy choices. These phases require only the source

program for transformation. We now turn to Decision Making : searching for the optimal

strategy. Figure 3.9 shows how the three steps of netopt are incorporated into DSN.

Inputs of Decision Making are network link costs and traffic profiles. Both the networking

and database communities have extensively studied the problem of gathering such statistics (77;

78; 79). In the context of netlog, input data are all represented as relations. This information

can be monitored regularly, and if sufficiently different, can trigger re-optimization.

Outputs of Decision Making are tuples for the relations rendezvous and redirect initial-
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ized by Rewriting . We implemented exhaustive search algorithms for each rewrite. For MiM

Rewrite, we also adapted a greedy heuristic from the networking literature (80). In principle,

our rewrite-specific optimizations are replaceable by a general purpose dynamic programming

optimizer, akin to those used widely by databases (81).

A benefit of the netopt architecture is that the analysis and rewrite to identify the opti-

mization opportunity are distinct from the policy side of optimization. We have not focused

on designing a better search algorithm for any specific scenario. Rather, we adopt an extensi-

ble framework which allows for the automated application of specific algorithms as appropri-

ate (14; 82; 83). This permits users to drop in custom optimizers that best suite the task at

hand.

3.6 Prototype Evaluation

We built a prototype netopt system that performs Analysis, Rewriting and Decision Mak-

ing . The implementation uses Evita Raced, an extensible database optimizer (14), and the

resulting programs run on declarative networking platforms P2 (30) and DSN. Our prototype

still requires some user assistance to link together the three steps.

We evaluate the netopt prototype in four scenarios involving the two settings of CDNs and

sensornets discussed in Section 3.1.1. We test against Emulab and Motelab testbeds (84; 85)

for the CDN and sensornet settings respectively, as well as in simulation. The objective of our

experiments is to measure the change in application performance over original, unoptimized

programs that do not adapt to workload and resource changes. The metric to quantify per-

formance depends upon the setting. For CDNs, we consider content access delay while for

sensornets, we consider energy usage.

In both scenarios, we see optimized programs outperforming unoptimized original programs.

In the CDN setting, delay is decreased by as much as two orders of magnitude. In the sensornet

setting, radio operations which dominate energy consumption, are decreased by as much as one

order of magnitude. In both settings, netopt effectively identifies and executes better strategies.
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The overhead of optimization is a manageable increase in memory footprint for the installed

program, as we will see in Section 3.6.5.

As with any optimizer study, the main point of our experiments is not to “invent” novel

query plans (or in our case, protocol variants) that outperform well-known implementations

from the literature. Rather, we wish to demonstrate that an optimizer can automatically

choose variants that are well-suited to current input parameters, providing significant wins

over well-known protocol variants that are not well-suited to the parameters.

3.6.1 CDN rendezvous selection

The goal of the CDN is to decrease access time of client requests while working within stor-

age and topology constraints. Two popular CDNs, Akamai and Limelight, differ significantly

in their storage layout (66; 67). Akamai distributes content to tens of thousands of servers

around the Internet, whereas Limelight maintains a few concentrated datacenters. We sought

to model both during testing.

We tested by simulation and on Emulab. For simulation, we randomly generated a 200

node Internet Autonomous System (AS) topology with BRITE (86). Some nodes are selected

as content producers and others as content consumers. Producers and consumers are placed at

nodes of low edge degree.

Content consisted of 150 unique items. Each consumer expressed a weighted demand

for each content item. This query workload was modeled as a Zipfian distribution (17). To

experiment against varying workloads, we varied the skew of the Zipfian distribution.

Each node was also assigned an amount of available storage. To experiment against varying

resources, we used two schemes for storage assignment, mimicking Akamai and Limelight con-

figurations. In the first Akamai-like scheme, available storage was spread evenly among nodes.

In the second Limelight-like scheme, available storage was highly concentrated at a few nodes

in the network. Well-connected nodes were favored to receive available storage. The amount

of aggregate storage was the same in both configurations.
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Figure 3.10: CDN rendezvous selection strategy performance under varying storage distribu-

tions and workloads in simulation.

We experimented with four CDN assignment schemes. The first, the Original scheme,

consists of BasicProg in Listing 3.1 in which all consumer requests go directly to the content

producers; available CDN storage is not utilized.

The remaining three schemes all use the rewritten BasicProg produced by MiM Rewrite

in Listing 3.3. They differed in the Decision Making scheme employed, and the extent to which

the schemes use workload and resource information in planning the CDN. From the standpoint

of the rewritten BasicProg, each scheme fed in its own rendezvous and redirection relation.
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Figure 3.11: CDN rendezvous selection strategy performance under varying storage distribu-

tions and workloads on Emulab.

The second, Random scheme, consisted of randomly assigning content items to available

storage. Here, resources are fully utilized, but the workload is not considered during assignment.

The third, Optimized scheme, consisted of assigning content items to available storage such that

consumer requests are serviced with lowest cost. The scheme used a greedy heuristic (by order

of demand weight) for this assignment adapted from the literature since the optimal assign-

ment is known to be in NP-Complete (80). The fourth, the Exhaustive scheme, implemented

the exponential version of the assignment algorithm. While the running time of Exhaustive
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was prohibitive on our test networks, we found that in the small settings, Exhaustive made

assignments that were 8-12% better than those of Optimized.

Figure 3.10 shows the results of Original, Random and Optimized schemes under varying

workloads and resources. Under the Concentrated storage configuration in Figure 3.10a, Ran-

dom and Optimized performed 1.3-1.4× and 1.5-1.6× better than Original respectively as the

workload varies from slightly skewed to highly skewed. Under the Dispersed storage configu-

ration in Figure 3.10b, Random and Optimized perform 0.95-1.2× and 2.3-24.4× better than

Original respectively. Optimized is able to outperform Original considerably under Dispersed

because it is able to assign content items to edge storage sites where there is also heavy con-

sumer demand. Random can even underperform Original with Dispersed since poor selections

can be worse than doing nothing. On Concentrated, Optimized and Random start to converge

since there are relatively fewer places to choose from. In all cases, increased skew leads to lower

aggregate delay because there are fewer requests that access poorly placed content in highly

skewed distributions.

We also ran the same experiments on modest ten node Emulab networks generated by

BRITE. Random and Optimized outperformed Original by 1.5-1.9× and 2.8-3.3× with Con-

centrated, and by 1.2-2.3× 6.4-480× with Dispersed. The trends remained the same, and are

shown in Figure 3.11. These results indicate that MiM Rewrite can automatically find lower cost

rendezvous points given original source program, consumer workload and network resources.

3.6.2 Server session state proxy selection

We next test the Session Rewrite. We use a five node linear Emulab network with node

four making requests to node zero via nodes three, two and one. The linear network allowed us

to isolate the study to the hop distance, and exclude fan-out considerations. The workload is

varied from 100 to 1000 requests, with each request requiring 1Kb of session state. Two storage

configurations are used, Even and Skew. In Even, each node is allotted session storage of 15Mb,

which is meant to represent prime main memory. In Skew, Node One is allotted 100MB for
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Figure 3.12: Server session state allocation strategy performance.

session state, whereas the other nodes are allotted 15MB. The Skew configuration models a

scenario in which a resource rich proxy is located close to the server.

The optimization objective is to minimize the total data transfer while serving all requests.

Three schemes are compared. In the first, Stateful, all session state is allocated at Node 0,

regardless of whether the node storage constraint is surpassed. This corresponds to our original

SessionProg of Listing 3.4. In the second scheme, Stateless, all session state is packaged in

request and response messages. A minimal amount of storage is allocated at Node 0 to service
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these stateless requests. In the third scheme, Optimized, session state is assigned to proxies so

as to minimize the total data transfer. This scheme tends to use as much storage available at

proxies closer to the server, Node 0, before using storage further from the server. The Optimized

scheme runs the rewritten SessionProg shown in Listing 3.4.

Figure 3.12 shows the memory allocation and data transfer of each scheme under varying

numbers of requests and storage configurations. As expected, Stateless maintains an almost

negligible amount of storage usage across all nodes regardless of the number of requests, while

its amount of data transfer grows very rapidly since it must package all of its request state

in packets. Conversely, as seen in Figure 3.12a, storage usage under Stateful at Node 0 scales

with the number of requests, well surpassing the 15MB constraint under 250 or more requests.

On the other hand, the amount of data transfer with Stateful remains low even when there

are many requests. Neither Stateful nor Stateless take advantage of the potential to use other

nodes as proxies in the network, and therefore do not act differently when storage configurations

change.

The Optimized scheme is able to take into account varying storage configurations. In Fig-

ure 3.12a, the “opt-even” and “opt-skew” labels show the resulting memory allocation on each

node when the Session Rewrite optimizes against Even and Skew configurations respectively.

At 100 requests when the storage limit is not yet reached, Optimized behaves just like Stateful.

At higher request counts, the constraint is respected by the Optimized scheme, and storage is

allocated from neighboring proxies rather than at node zero. Each segment of the stacked bars

in Figure 3.12b indicates the amount of data transfer as a result of session state held at the

corresponding proxy. For a given request workload, the optimized version transfers less data

than Stateless, but more data than Stateful (while respecting storage constraints). This hybrid

of stateless and stateful is a compromise when storage constraints are present. Furthermore,

the optimizer is able take advantage of the resource-rich proxy in the Skew configuration, and

transfer lower amounts of data by using Node One more when storage limits become an issue

at higher request counts.

The use of proxies does come at a cost: there is a small penalty of two bytes per session
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that is incurred for both storage and in each packet transfer. These two bytes are needed for

the join parameters which relink a request with its session state at the proxy.

The results indicate that the rewritten SessionProg can have its server session state au-

tomatically assigned to proxies and packets effectively by an optimizer, lowering overall data

transfer versus stateless variants. At the same time, the optimizer can automatically respect

storage constraints, unlike the original stateful SessionProg.

3.6.3 Sensornet session state proxy selection

Next, we measure the effectiveness of Session Rewrite on sensornet programs. The optimizer

attempts to minimize packets sent and received, since radio operations are often the most power-

intensive activity on sensornets.

Four traditionally stateful services that have been implemented on sensornets were chosen

from the literature: a network Reprogrammer, a network Debugger, an SNMP-like service, and

an Interactive Shell service (87; 88; 60; 89). For each service, we estimated the state required

as the service’s RAM footprint as reported in the literature. These were 0.15Kb, 1Kb, 1.2Kb

and 2.2Kb for Reprogrammer, Debugger, SNMP, and Interactive Shell respectively. For testing

purposes, we ran placeholder programs.

These services are generally auxiliary to the main sensornet application. Therefore, the

typical usage model is that it is highly desirable, though not critical, to deploy these services

alongside the main application. We worked with two scenarios: the first in which the main

application consumed 8Kb, and the second in which the shell consumed 5Kb, both of which we

estimated from prior experience with sensornet applications. Given the mote platform we were

using, this left 2Kb and 5Kb of main memory for our desired services (55).

We deployed Stateful, Stateless and Optimized programs on the Motelab testbed using

DSN. The Stateful program consisted of the session state of all four services plus the main

application. The Stateless program consisted of the main application, but no session state.

Rather, state is transported in packets, whose data payload is a typical 20B in size (54). The
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Figure 3.13: Packets sent by sensornet session state strategies.

Optimized program consisted of the main application plus a portion of each service’s session

state as allocated by the optimizer, with the rest pushed into packets. In each case, requests are

made from a base station node across five hops to a node in the testbed that runs either Stateful,

Stateless or Optimized. The workload consisted of varied distributions of calls made to each of

the four services. We considered three synthetic workloads: W1, an evenly distributed workload;

W2, a network monitoring workload in which SNMP and Interactive Shell were called two and

three times more; and W3, a debugging workload in which Debugger and Reprogrammer were

called two and ten times more.

The packets sent for the 2Kb storage limit scenario are shown in Figures 3.13. The number

of packets sent for Optimal are 1.7-12.6× lower than that for Stateless, with the difference

increasing as the workload becomes more skewed in W2 and W3 (Figure 3.13). Optimized

allocates the most frequently called services’ session state to keep on the node, thus lowering

the amount of packet state necessary. Stateless, on the other hand, uses very little of the

available memory, and hence is required to send more packets. It is not possible to test the

packets sent for Stateful since the session state exceeds availability.

At the 5Kb storage limit, each of the four services has enough memory for its entire session

state. Therefore, Stateful and Optimized perform similarly in packets sent and storage allo-
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Figure 3.14: Sensornet routing state placement strategy performance.

cated. Stateless, which does not change operationally with an increased storage limit, sends

the same high number of packets as before.

3.6.4 Sensornet routing state placement

Lastly, we look at routing state placement in the sensornet, and measure the ability of

Routing Rewrite and optimization to choose routing state proxies. We chose a Motelab net-

work of four hops starting from the base station. Storage is constrained such that nodes only

have space for a limited number of routing entries, varying from three to eleven. Typical sen-

sornet routing services contain four entries (54). The base station node initiated sends to nine

destinations located four hops away in the network according to a Zipfian distribution.

Figures 3.14 demonstrate the results of Source Routing (SR), Distance Vector Routing

(DVR), Caching, and Optimized. SR is essentially stateless, and is able to route with very few

available routing entries, albeit at more packets sent. On the other hand, DVR only routes

when it has enough space for all nine destinations (such that semantics were equal). Caching

uses the hybrid approach of SR as the default case and residual space for DVR routing entries

as requests arrive. It tends to have very high variance in packets sent due to variability of

which request arrives first for caching. This variability would decrease were Caching to allow
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Optimization ROM % Inc. RAM % Inc.

Rendezvous 25.2 13 3.4 63
Session 27.4 8 4.9 44
Routing 32.1 36 6.5 185

Table 3.1: Optimization Overhead in KB

for cache eviction. Optimized considers the workload such that the hotter destinations receive

higher priority as DVR entries. As a result, it tends to achieve the lowest number of packets

sent at all routing table sizes.

We have modeled each source route segment to correspond to one packet when in SR mode.

This is a conservative assumption, and partially based on the inability of Session Rewrite and

the DSN runtime to bundle multiple tuples into a single packet. Were segments to be bundled,

the difference between packets sent for SR and DVR would decrease proportionally to the

number of segments fitting in one packet.

3.6.5 Optimization Overhead

The overhead of optimization is primarily an increase in program rule count, resulting in

larger memory footprints of optimized programs. Table 3.1 shows the optimized programs’

memory usage when programs are compiled with DSN. For most cases, the increase is manage-

able – in the 8% to 63% relatively, and only 1.3-2.8KB in absolute terms. The outlier is Routing

where the rewrite meta-application is more complex and produces many more rules than the

original program. More details on the rewrite complexity can be found in Appendix B. In all

cases, the programs fit comfortably on the target platform (55).

3.7 Other Application Scenarios

We chose to focus on rendezvous and proxy placement for a number of reasons: (a) they are

fundamental to multiple layers of both networks and distributed systems, (b) decisions on these

two fronts form key differentiators between many implementation alternatives in networks, and
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(c) declarative networking bring these issues into sharper focus than they had been in other

programming models. In this section we mention several other scenarios to which our results

are readily applicable, due to the fundamental nature of rendezvous and proxy selection.

3.7.1 Packet filtering

Packet filtering is used to eliminate unwanted traffic based on rules about addressing,

content, and volume. If a recipient node x wishes to ensure that packets are filtered on its

behalf, it can either (a) receive all packets addressed to it, and filter them before processing

them further (filter at receiver), (b) force all senders to evaluate packet filters (filter at sender),

or (c) appoint a proxy or proxies in the network to intercept traffic between and senders and

the recipient (filter at proxy). The choices amount to selecting a node or nodes where filtering

rules and the messages destined for x will rendezvous; these nodes must maintain a copy of the

packet filer rules for x (and must be trusted by x by some means, typically cryptographically).

3.7.2 Quality of Service

Work on providing scalable Internet quality of service has also investigated using stateless

protocols and proxies in place of stateful ones (20). In these scenarios, a primary goal is to

permit the large majority of core Internet routers to remain stateless while pushing quality of

service state into packets and proxies at edge routers. These demonstrated that a variety of

objectives such as per flow bandwidth fairness, admission control, and route pinning could all

be achieved while shifting router state to packet state.

3.7.3 Publish-Subscribe

Publish-Subscribe systems have long dealt with the trade-offs of stateful vs. stateless mes-

sage processing, message overhead and system implementation complexity. Historically, these

systems have isolated data processing from networking, and the literature has explored the op-

timization space of the two (90). This work takes the view that it can be very beneficial to view
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networking data just like application data, applying the same optimization techniques across

both. It is even the case that some specific techniques developed for the Publish-Subscribe

domain, such as specialized select-join processing methods (91), appear to map quite naturally

to our rendezvous selection setting.

3.8 Summary

As sensornet workloads and resources continue to diversify, one-size-fits-all protocols are

increasingly infeasible, while custom solutions require careful crafting for each environment.

We investigated automatic program analysis, rewriting and optimization of network protocols

along dimensions of rendezvous and proxy selection. This work naturally leads to further

opportunities such as dynamic reoptimization, application to non-netlog programs, and new

optimizations within the optimization architecture. Our study indicates that under a variety of

sensornet settings, an informed optimizer can choose program executions that are much better

than that of the original source program.
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Chapter 4

Cross-layer Optimization

4.1 Motivation

Continuing the theme of the previous chapter, this chapter looks at network optimizations.

Whereas the previous chapter explored optimizations “horizontally” across network nodes, this

chapter delves “vertically” down the network stack. This chapter also turns the focus back to

sensornets, where we look at the possibilities for energy savings during wireless communication.

Wireless radio communication dominates the energy consumption of many modern sensor-

net devices, often at a power consumption level ten to twenty times that of the processor in

active mode, and one hundred times that of the processor in standby mode (55). Therefore,

a wealth of energy optimization schemes have been proposed to minimize sensornet communi-

cation costs. The schemes use wide-ranging approaches at different layers of the system stack,

from high-level application level data compression (92), to low-level MAC scheduling (93).

Many of these energy saving optimizations are elegant, yet few are widely deployed in

practice. The most popular sensornet operating system, TinyOS, contains almost none of them

ready to use. This is due to two main factors. First, it is challenging for end users to properly

configure each scheme’s settings to be optimal for their applications, especially when end users
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may not have intimate knowledge of the mechanics of the optimization. Second, optimization

designers may not have considered interactions across different optimizations. As a result,

TinyOS offers users a minimalistic substrate, with the burden on the end user to assemble

every optimization from scratch.

We conjecture that automating optimization decisions will spur the adoption of these many

schemes because user will no longer need to worry about proper configuration settings. DSN

is well-positioned to automate these optimizations because of its declarative interface. We

investigate these ideas by automating three simple and well-known wireless optimizations in

wireless-netopt, an extension of netopt for wireless networks. Each optimization occurs at

a different level of the network stack. As we will see shortly, each is capable of energy savings

from a few percent up to 3×. Hence, each of the optimizations is immediately useful for building

longer-lasting sensornets.

Of course, it is possible to apply these three optimizations one after the other in sequence

as independent optimizations. But, it is often the case that the combination of locally optimal

solutions does not necessarily lead to global optimum. The alternative is to consider joint

optimization, where parameters for all optimizations are considered simultaneously.

We show two main results for joint optimizations composed in wireless-netopt. First,

interfacing individual optimizations for joint optimization is quite feasible, and is aided by the

ease of netlog program analysis and rewriting. Second, jointly solving all three optimiza-

tions yields significantly greater savings than independent sequential application. We use a

combination of simulation and sensornet testbed experimentation to compare unoptimized, in-

dependently optimized, and jointly optimized solutions. In simulation, optimal solutions use

17× less energy than unoptimized solutions. On the sensornet testbed, optimal solutions beat

unoptimized solutions by over 2×.

In addition, this chapter charts the design and implementation of these optimizations in a

declarative sensornet programming system, wireless-netopt. As a main result of this exercise,

we demonstrate that the declarative programming model’s simplicity makes program analysis
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and program transformation very easy. It is not difficult to incorporate new optimizations even

when they are specific to particular networking domains, such as sensornets.

4.1.1 Organization

This chapter is organized as follows. Section 4.1.2 introduces the three specific network

optimizations that we seek to study in this work. Section 4.2 formalizes these optimizations,

presents algorithms for solving them, and shows how wireless-netopt can automatically an-

alyze and transform source programs to benefit from the optimizations. Section 4.3 presents

the implementation and evaluation of wireless-netopt. Section 4.4 summarizes this chapter’s

results.

4.1.2 Optimizing Energy Consumption in the Networking Stack

We look at three specific and separate optimizations in the networking stack: (1) setting re-

ceivers’ polling intervals, (2) choosing whether to broadcast or unicast packets, and (3) deciding

whether to redirect packets through a one-hop intermediary. Figure 4.1 shows the typical layers

in the networking stack where these decisions are made. For example, typically the Broadcast

vs. Unicast decision is made by the Network layer and carried out by the MAC layer.

Furthermore, we focus on a wireless local area mesh, where each node is connected directly

to others in the local area. For a fair number of applications, the entire application is one

mesh (94; 95; 96). For other applications, multi-hop networking is expected, with multiple

local areas stitched together to form the multi-hop network. Although our discussion focuses

on a mesh, our results apply to multi-hop settings as well. As in the previous chapter, we

seek to take advantage of heterogeneity, either in the workload distribution or in the resource

distribution.
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Figure 4.1: The networking stack and points at which three optimizations are typically made.

Low Power Listening

Radio operations dominate energy consumption on modern wireless sensornet platforms.

Radio operations can be broken down into five modes: transmit, receive, carrier sense, idle

listening and sleep. The first four modes draw approximately the same amount of power,

whereas sleep mode is often several orders of magnitude less power intensive (55). For a large

class of sensornet applications, data rates are low enough to warrant switching off the radio

when there are neither ongoing transmissions nor receptions (97). Therefore time spent in idle

listening – that is, in active radio receive mode when not actually receiving – is particularly

deleterious to network lifetime because of lost sleeping opportunity.

Many MAC protocols have been proposed to maximize sleep time and minimize idle lis-

tening (93). Among these, Low Power Listening (LPL) is the default MAC in many sensornet

systems (54; 98), and is illustrated in Figure 4.2. It is a variant of a carrier sense protocol and

works as follows: a receiver and sender agree on some period tp. The sender can send a packet

at any time, provided that it prefaces every packet with a preamble of length tp. The receiver

is guaranteed to receive the packet as long as it wakes up every tp to check the channel. LPL

presents a direct trade-off between the sender cost vs. receiver cost; increasing tp lowers the

idle listening incurred by receivers while raising the preamble burden for senders.

Given application-level data rates, finding the optimal LPL period is straightforward (99).

It is possible to make this calculation either at coarse granularity, with one tp for the entire
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Figure 4.2: Low power listening MAC protocol. Both sender and receiver agree on polling

interval tp a priori.

network, or at fine granularity, with one tp per node. Yet, even with this modest degree of

deployment-specific input required, this exercise is rarely carried out in practice at either the

coarse or the fine grain. Automatic optimization should be able to deliver the benefits of this

mechanical tuning task without overburdening the user.

Broadcast or Unicast

Our second optimization considers how to ship data: either by unicast or by broadcast.

A sender can decide to either to communicate one-to-one directly with each desired receiver

(unicast communication), or to communicate one-to-all with every node (broadcast communi-

cation). For unicast, the send and receive costs are proportional to the number of intended

destinations, which could be lower than the size of the entire network. For broadcast, the send

cost is the cost to send a single packet. However, the receive cost is proportional to the number

of nodes in the local area, since every node will receive the packet, even those that are not an

intended destination.

The trade-off between broadcast and unicast can be characterized by the degree of payload
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sharing, which can range from one to the size of the local area. Lower payload sharing indicates

that fewer receivers are interested in a given payload and unicast may be a better option,

whereas higher payload sharing indicates that more receivers are interested in a given payload

and broadcast may be a better option.

The decision of when to use unicast or broadcast can dramatically impact the design of

a system, wireless or wired. For instance, much research in the field of replicated systems

concentrates on when to use each mode of communication to maximize throughput and minimize

response times, and how to architect entire protocols around that decision (100; 101). The

best choice depends not only upon the number of intended destinations (which is application-

dependent) but also upon the relative costs of transmission and reception (which is dependent

on the radio technology used). It is difficult and unusual for programmers to consider these

factors jointly, so this is a compelling target for automatic optimization.

Redirection via Intermediary

Our third optimization looks at how senders might benefit from redirecting packets to

an intermediary, rather than sending directly to receivers. Chapter 3 dealt extensively with

rendezvous selection across a network. Here, we only consider redirection to an intermediary

restricted to the local area. Also unlike Chapter 3, the intermediary is not “on-path” – that is,

it is not on the original route between sender and receiver.

It turns out that even this limited case of redirection presents very useful opportunities for

optimization, especially in cases where there are high degrees of node heterogeneity. First, just

as in the broadcast case, the sender has the opportunity to reduce transmission costs by taking

advantage of payload sharing when redirecting to the intermediary. For example, suppose a

sender needs to transmit the same payload to several receivers. Rather than directly sending

the payload multiple times, the sender can pass the payload once to the intermediary, and let

the intermediary take the on responsibility of forking the packet for multiple sends. This makes

the most sense when payload sharing is high, and the intermediary is energy-rich.

Second, both sender and receiver can take advantage of discrepancies in the intermediary’s
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LPL settings. A well-provisioned intermediary may be capable of frequent idle listening; the

sender can arrange to transmit to the intermediary with a very short preamble. Additionally,

the well-provisioned intermediary may be able to send very long preambles; the receiver can

wake up at very long intervals to receive messages from the intermediary. In this way, both

sender and receiver transmit and receive at very low cost with the assistance of the interme-

diary. Note that this second potential benefit of off-path intermediary emerges naturally if

intermediary choices are considered jointly with optimal LPL settings, but is otherwise only

possible opportunistically.

4.2 Optimizations

This section formalizes the three optimizations of wireless-netopt.

• Redirection-via-Intermediary

• Broadcast-or-Unicast

• LPL-Tuner

Each optimization opens with an overview of the optimization problem, and then looks at how

program rewriting transforms the input program to the optimal output program.

The optimizations ultimately seek to minimize the cost of communication. Specifically, we

seek to minimize the maximum energy expenditure at any one node as a percentage of each

node’s energy level. In other words, we aim to limit the worst case node energy drain. This

objective is especially sensible when each node’s individual functionality is important to the

overall network’s operation. Though we could have also looked at cumulative node energy costs

and other metrics, these do not fundamentally alter the application of wireless-netopt.

We continue by building on our use of netlog, and introduce the concept of a rule-sender,

a pair of one rule and one sending node. The rule-sender is the granularity at which wireless-

netopt performs optimization. The rule must be a distributed rule, meaning that the location

specifier for the head must differ from the location specifier for the body. The rule-sender unit
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is a good granularity at which to make decisions. A rule by definition groups a batch of logically

related tuples. Were we to smooth optimization across rules, we might lose naturally occurring

intra-rule correlations. Similarly, were we to smooth optimization across nodes, visibility of

high inter-node variability would be lost.

Associated with each rule-sender are two statistics. The first is a map of receivers to data

rates. A flow is defined as a sender, receiver and data rate. Therefore, a rule-sender with

its map of receivers and data rates defines one or more flows. The second statistic for each

rule-sender is the degree of payload sharing (PS) for any payload produced by this rule-sender.

Intuitively, a high PS indicates that more receivers can potentially share the same broadcasted

tuple.

4.2.1 Redirection-via-Intermediary

We tackle Redirection-via-Intermediary in two stages. First, we focus on the case of

optimizing a single rule-sender. This can be solved in time linear to the size of the local area

network. Second, we look at the general problem of optimizing multiple rule-senders. This

problem is in NP, and therefore we suggest a greedy algorithm that runs in time cubic to the

size of the local area network. This is tolerable since we only anticipate local area sizes in the

range of a dozen nodes or fewer.

Optimization Problem

Given a single rule-sender, the problem is to select the best intermediary node i such that

the maximum percentage energy drain of any node is minimized. We restrict the intermediary

to one hop; we do not consider chains of intermediaries and we are not trying to solve the general

routing problem. In the local area mesh, there are significantly diminishing returns for con-

sidering routes greater than one hop unless pairwise connectivity is systematically asymmetric,

which is unusual.

Finding the best intermediary can be accomplished by evaluating each node n ∈ N as the
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p l anEva l (ruleSender , intermed)

totalCost = 0

totalV olume = 0

mac = getMacModel ( )

totalCost += mac . send (ruleSender.sender , intermed ,totalV olume/ruleSender.ANR)

f o r (receiver ,volume) i n ruleSender.receiverV olumes

totalCost += mac . send ( intermed ,receiver ,volume)

totalV olume += volume

re tu rn totalV olume/totalCost

mac . send (from ,to ,volume) // . . . to be d e f i n e d

Listing 4.1: Plan Evaluation

intermediary, where N is the set of nodes in the network. We perform this evaluation with the

function planEval(ruleSender, n), shown in Listing 4.1. The weight assigned to the plan is the

total volume shipped divided by the total ship cost.

So far, we have not yet specified how an over-the-air mac.send() is evaluated.

This evaluation can differ, depending on whether Redirection-via-Intermediary is

to be considered independently from, or jointly with other optimizations. When the

Redirection-via-Intermediary is considered independently from other optimizations,

a simple model is used where transmission and reception costs are inversely propor-

tional to node energy levels. Section 4.2.4 discusses the evaluation implications when

Redirection-via-Intermediary is considered jointly with other optimizations.

For multiple flows, finding the best intermediaries maps to the NP-hard multi-commodity

flow problem (102). Therefore, we employ an iterative greedy algorithm shown in Figure 4.2.

On every major iteration, the ruleSender with the best planEval score is assigned to the

intermediary that led to that best score. Any node that incurred transmissions or reception

costs due to that ruleSender has those costs deducted permanently from its energy budget. All

unassigned rule-sender have their scores reevaluated with respect to the updated node energy

levels before another major iteration to select the next best ruleSender. In Section 4.3, we

show that our iterative algorithm performs well in practice.
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s o l v e (ruleSenders ,nodes)

f o r i i n 0 . . l e n (ruleSenders)

a l l P l a n s = [ ] // p a i r s o f (score ,ruleSender ) s o r t e d by score

f o r ruleSender i n ruleSenders

f o r intermed i n nodes

allP lans . add ( ( p l a nEva l (ruleSender , intermed) ,ruleSender ) )

(bestScore ,bestRuleSender ) =allP lans . top ( )

a s s i g nP l a n (bestRuleSender ) // deduc t s node ene rgy c o s t s as w e l l

ruleSenders . remove (bestRuleSender )

Listing 4.2: Multi-flow Iterative Solver

Program Analysis and Rewriting

Recall that in general, a distributed rule can take the following form.

head (@Dst , . . . ) :− body1 ( @Src , . . . ) , . . . , bodyN ( @Src , . . . ) .

The following distributed rule, DR, serves as our running example instance of the general

distributed rule.

r e c v (@Dst , Fid , Uid ) :− send ( @Src , Dst , Fid , Uid ) .

The intent of DR is that Src generates tuples for Dst with some flow id Fid and some

unique id Uid. It is not consequential that the body only contains one predicate. We can

simplify all distributed rules to have one body predicate as a pre-processing stage if necessary.

Redirection-via-Intermediary, makes the following transformation on DR.

% O r i g i n a l e x e c u t i o n : no i n t e rme d i a r y

r e c v (@Dst , Fid , Uid ) :− send ( @Src , Dst , Fid , Uid ) , x l noproxy RN ( @Src ) .

% Rewr i t e ( pa r t 1) : s ou r c e r e d i r e c t s to i n t e rm e d i a r y

x l i n t e rmed RN ( @Xl prx , Dst , Fid , Uid ) :− send ( @Src , Dst , Fid , Uid ) ,

x l p roxy RN ( @Src , X l p r x ) .

% Rewr i t e ( pa r t 2) : i n t e rm e d i a r y sends to d e s t i n a t i o n

r e c v ( @Xl dst , Fid , Uid ) :− x l i n t e rmed RN ( @Xl prx , Dst , Fid , Uid ) .
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Three rules are emitted. The first rule retains the original execution where Src directly

sends to Dst. However, note that the rule does not execute unless an appropriate entry in

xl noproxy RN exists. The second and third rule realize the alternative execution where

Src sends indirectly to Dst via Xl prx using the relation xl intermed RN . As with the

rewrites in Chapter 3, the optimizer installs its chosen intermediaries by filling in entries in

configuration tables. In this case, the configuration tables xl proxy RN and xl noproxy RN

simply indicate which rule-senders are getting redirected via an intermediary, and the identity

of that intermediary.

During actual Redirection-via-Intermediary optimization, the predicate suffix RN is

replaced with the system-assigned rule number for the original distributed rule DR. This allows

us to differentiate the rewriting and optimization of multiple distributed rules.

The rewrite shown so far does not perform payload aggregation for shared payloads. We

will show this part of the rewrite in conjunction with Broadcast-or-Unicast next.

4.2.2 Broadcast-or-Unicast

Optimization Problem

For each rule-sender, the problem of deciding whether to broadcast or unicast is nominally

straightforward. Given the number of receivers, network size, send cost, and receive cost, the

following comparison can be made:

UnicastCost = (NumReceivers)(SendCost + RecvCost)

BroadcastCost = SendCost + (NetSize)(RecvCost)

NumReceivers is dependent upon the degree of payload sharing, and can be measured

from workload observation. If a sender sends the same payload to many receivers, then

NumReceivers is high. Otherwise, it is low.

The modeling of SendCost and ReceiveCost depend on whether Broadcast-or-Unicast is

optimized independently from or jointly with other optimizations. When Broadcast-or-Unicast
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is optimized independently from other optimizations, SendCost and ReceiveCost are modeled

after physical radio properties, and on relative node energy levels only. A common simplifica-

tion is to assume that sending an receiving are of equivalent cost, in which case SendCost and

ReceiveCost are both inversely proportional to a node’s energy level. Section 4.2.4 discusses

the important implications when Broadcast-or-Unicast is considered jointly with other

optimizations.

Program Analysis and Rewrite

The analysis phase of this optimization is not complicated, and simply looks for distributed

rules. In particular, if Broadcast-or-Unicast runs after Redirection-via-Intermediary,

any distributed rules generated by Redirection-via-Intermediary are candidate rules.

The main idea of the rewrite is to generate a set of rules that decide whether to use a unicast

or a broadcast version of the rule for a particular payload produced by the rule. Payloads consist

of tuples in the rule head with the location variable excluded. For example, given the head

predicate recv(@Dst, F id, Uid), the payloads for recv are tuples with attributes Fid and Uid.

The following rewrite retains options for both the original unicast execution and the broadcast

execution, and lets the optimizer choose between the two.

% O r i g i n a l Execu t i on : Un i c a s t

r e c v (@Dst , . . . ) :− send ( @Src , . . . ) , x l u c a s t RN ( @Src ) .

% Rewr i t e ( pa r t 1) : Aggregate pay l oad s

r e c v p a y l o a d ( @Src , SET<Dst > , . . . ) :− send ( @Src , . . . ) , x l b c a s t RN ( @Src ) .

% Rewr i t e ( pa r t 2) : Broadcas t each pay load once

r e c v b r o a d c a s t (@∗ , DstSet , . . . ) :− r e c v p a y l o a d ( @Src , DstSet , . . . ) .

% Rewr i t e ( pa r t 3) : Rece i v e pay load on l y i f a t i n t ended d e s t i n a t i o n .

r e c v (@Snk , . . . ) :− r e c v b r o a d c a s t (@Snk , DstSet , . . . ) , @Snk i n DstSet .

Part 1 of the rewritten execution is a rule that buffers each unique payload along with
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the destination set that indicates where the payload is to be sent. This is done by grouping

into distinct payloads and aggregating along the location variable i.e., a group-by aggregation

operation.

The SET aggregation operator forms the set of all destinations for each unique payload.

It is a straightforward user-defined aggregate. For example, assume the following rule runs at

node0.

r e c v (@Dst , Fid , Uid ) :− send ( @Src , Dst , Fid , Uid ) .

If the result set of recv is the tuple set:

r e c v ( @node1 , flowA , uidB ) .

r e c v ( @node2 , flowA , uidB ) .

r e c v ( @node1 , flowA , uidC ) .

then the tuples generated by part 2 are:

r e c v p a y l o a d (@node0 , {node1 , node2 } , f lowA , uidB ) .

r e c v p a y l o a d (@node0 , {node1 } , f lowA , uidC ) .

where the second field contains the set of intended destination for each unique payload.

Part 2 of the rewrite performs the actual broadcast of recv payload. Since every node in the

local area will receive this tuple, Part 3 has each node look in the set DstSet to check whether

or not it is an intended destination. Those that are in the set convert the received tuples into

recv tuples. Once again, the exact choice of broadcast vs. unicast is decided by entries in the

xl bcast RN and xl ucast RN tables. These are populated by Broadcast-or-Unicast.

4.2.3 LPL-Tuner

We now refine our notions of message SendCost and ReceiveCost introduced earlier. Fun-

damentally, there is some necessary amount of coordination required to communicate, and

an optimization decision is to decide how to split this coordination cost between sender and

receiver. Previous work has formulated this problem before for specific MAC implementa-
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tions (99). We tackle the optimization of parameters for a particular MAC, LPL, used in many

sensornet deployments (103).

Optimization Problem

Previous work derived optimal LPL settings based on the data rate from sender to re-

ceiver (99). Briefly, if the sender is often sending data, the receiver should wake up frequently

to check the channel. Alternatively, if the sender is rarely sending data, the receiver should be

allowed to sleep for long intervals between checks. We make two extensions to the analysis (99).

First, we are interested in arbitrary communication patterns, rather than fixed all-to-all com-

munication used in (99). Second, we are interested in node heterogeneity, and specifically in

cases where some nodes have orders of magnitude more energy than others. Our goal is to

minimize node energy drain as a percentage of energy budget.

At the moment, consider the case of a single sender and receiver, with data rate rdata

(Recall that a rule-sender, may have more than one receiver, each with its own data rate). We

seek to minimize the combined energy expenditure of sender and receiver as a percentage of

energy level (capacity).

Etotal = Esender/Csender + Ereceiver/Creceiver (4.1)

A summary of the variables used in our analysis are provided in Table 4.1. The sender and

receiver energy expenditures are the sum of energy spent in carrier sense, transmission, polling,

reception and sleep modes. Energy expenditure in each mode can further be broken down into

the power consumed and time spent in the respective mode.
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Variable Description
tp polling interval
rdata data rate
Esender, Ereceiver sender/receiver energy expenditure
Csender, Creceiver sender/receiver energy level
tcs time in carrier sense mode
ttx time transmission mode
tpoll time in channel poll mode
trx time in reception mode
tsleep time in sleep mode

Constant Description
Pcs power to perform carrier sense
Ptx power to perform transmission
Ppoll power to perform channel poll
Prx power to perform reception
Psleep power to sleep
tcsl time to sense carrier
tpl time to poll channel
tpkt time to send/receive a packet

Table 4.1: Low Power Listening parameters

Esender = Ecs + Etx + Esleep (4.2)

= Pcstcs + Ptxttx + Psleeptsender sleep (4.3)

Ereceiver = Epoll + Erx + Esleep (4.4)

= Ppolltpoll + Prxtrx + Psleeptreceiver sleep (4.5)

The power consumed in each mode is a function of the radio, and can be obtained from

manufacturers’ datasheets (104). The times spent in each mode is dependent upon the radio,

the data rate rdata and polling interval tdata.
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tcs = tcslrdata (4.6)

ttx = (tp + tpkt)rdata (4.7)

tpoll = tpl/tp (4.8)

trx = (2.5tpkt)rdata (4.9)

tsender sleep = 1 − tcs − ttx (4.10)

treceiver sleep = 1 − tpoll − trx (4.11)

We briefly describe Equations (4.6)-(4.11) above, each of which defines the time spent in

a particular radio mode with respect to a unit time interval (i.e., 1 second). Equations (4.6)-

(4.9) were originally formulated in (99). Equations (4.10)-(4.11) are variations of formulas

found in (99). Equation (4.6) defines the time in carrier sense mode as a single carrier sense

operation’s time scaled by the data rate. Equation (4.7) defines the time in transmission mode

to be the time needed to transmit the preamble plus the time to send a packet scaled by the

data rate. Equation (4.8) defines the time spent in polling mode as the time to perform one

poll inversely scaled by the polling interval. Equation (4.9) defines the time spent in reception

mode as the time to receive 2.5 packets scaled by the data rate. The 2.5 packets come from our

usage of the BMAC+ protocol, an improved version of the standard LPL protocol (103). In

the BMAC+ protocol, the first preamble packet is received when a polling check on the channel

succeeds. Its payload contains a counter that indicates when the receiver should wake up to

receive the actual data packet. On average, the receiver will wake up and need to wait half the

length of a packet before receiving the start of a preamble packet. The second packet is the

actual data packet. Equation (4.10) and Equation (4.11) define the time spent sleeping as the

time not spent in other modes. From these equations, it is clear that a longer polling interval

both (1) increases transmission time and (2) decreases polling time.

To find the optimal polling interval and minimal energy expenditures, we differentiate

Equation (4.1) with respect to tp, set the result to zero, and solve for tp. The result is as follows,

where the parameters K1 − K7 are arithmetic combinations of the constants in Table 4.1.
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tp∗ = K1

√

Csender

Creceiverrdata

(4.12)

Esender∗ = K2 + K3rdata + K4

√

Csenderrdata

Creceiver

(4.13)

Ereceiver∗ = K2 + K5rdata + K4

√

Creceiverrdata

Csender

(4.14)

Several properties of this relationship are worth mentioning. First, higher data rates cause

shorter polling intervals. Second, increases in sender energy relative to receiver energy cause

longer polling intervals, more sender energy expenditure, and lower receiver energy expenditure.

This analysis can be similarly extended to the case of multiple receivers of varying energy

capacities. The objective is to minimize the total energy which is now defined with respect to

the sender and receivers 1..n.

Etotal = Esender/Csender + Er,1/Cr,1 + . . . + Er,n/Cr,n (4.15)

The optimal polling interval and minimum receiver energy expenditures are revised as

follows.

tp∗ = K6

Combo

Sequ

√

Csender

rdata

(4.16)

Esender∗ = K2 + K3rdata + K7

Combo

Sequ

√

Csenderrdata (4.17)

Er,i∗ = K2 + K5rdata + K8

Sequ

Combo

√

rdata

Csender

(4.18)

Combo =

√

K9

∑

1≤i≤n

Cr,1 . . . Cr,i−1 . . . Cr,i+1 . . . Cr,n (4.19)

Sequ =
∏

1≤i≤n

Cr,i (4.20)

In the formulation above, rdata is the average data rate for all receivers 1..n. In this work,

we use the Tmote platform and its CC2420 radio (104). The radio-dependent constants for

this case are shown in Table 4.2.
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Constant Value
K1 0.0243
K2 0.003
K3 0.180
K4 1.27
K5 0.108
K6 0.000379
K7 0.0198
K8 81.1
K9 4099

Table 4.2: Optimal polling interval and minimum en-

ergy expenditure parameters derived from CC2420 radio-

specific constants.

Program Transformation Mechanics

wireless-netopt assigns the optimal polling interval tp∗ to the user program with the help

of builtins, introduced in Section 2.2. We use the builtin preambleLen and builtin pollingInt

builtins as controls for adjusting the send and receive cost. For example, sender node node0

and receiver node node1 can set these with facts as follows.

b u i l t i n p r e amb l e L e n (@node0 , preambleLen ) .

b u i l t i n p o l l i n g I n t ( @node1 , p o l l i n g I n t ) .

These facts set the preamble length and polling interval statically per node. However, this

does not meet our initial requirement of setting the preamble per rule-sender. This requirement

can be met by setting the preamble length dynamically on a per rule basis. This is accomplished

with a rule transformation, which we demonstrate with the example distributed rule DR.

b u i l t i n p r e a mb l e ( @Src , X l p r eamb l e ) :−

send ( @Src , Dst , Fid , Uid ) ,

x l p reamb le RN ( @Src , X l p r eamb l e ) .

r e c v (@Dst , Fid , Uid ) :−

send ( @Src , Dst , Fid , Uid ) ,

b u i l t i n p r e a mb l e ( @Src , X l p r eamb l e ) .
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In the example above, the first rule sets builtin preamble based on the entry in the

xl preamble RN , which is a configuration table set on a per rule-sender basis. After the

setting is complete, the second rule sends the actual payload. This transformation is equally

applicable to any distributed rule, including the output of Redirection-via-Intermediary

and Broadcast-or-Unicast.

LPL-Tuner illustrates a different approach to optimization than the previous two optimiza-

tion encountered so far. Even though the exact mechanics of the MAC external module are

opaque, it can still be modeled analytically. This is enough for wireless-netopt to gather op-

timization inputs and make optimization decisions off of it via a relation-like builtin interface.

Combined with Redirection-via-Intermediary and Broadcast-or-Unicast, LPL-Tuner po-

tentially lowers the total processing cost of a given distributed rule by choosing the best

application-dependent LPL parameters.

4.2.4 Joint Optimization

Thus far we have discussed three optimizations and how they can each be independently

applied in sequence. It is possible to further improve the result by jointly solving all three

optimization problems.

First, consider the combination of Redirection-via-Intermediary and LPL-Tuner.

When an energy-rich intermediary is in the presence of a sender and receiver, the indepen-

dent optimization of Redirection-via-Intermediary will not choose to use the intermediary

if payload aggregation alone offers no gain for switching to an intermediary. However, in con-

junction with LPL-Tuner, the intermediary can offer very substantial gains by using a very

short preamble with the sender, while using a very long preamble with the receiver.

Second, consider the combination of Broadcast-or-Unicast and LPL-Tuner.

Broadcast-or-Unicast’s decision of whether to send broadcast messages or unicast mes-

sages effects the set of receivers. This impacts decisions made by LPL-Tuner in setting the best

preamble length. Likewise, the preamble length impacts whether broadcast or unicast is more

efficient; a long preamble favors broadcast with fewer transmissions.
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Table Name Description
xl noproxy RN(@Sender) This rule-sender does not use an intermediary.
xl proxy RN(@Sender, Xl prx) This rule-sender uses the intermediary Xl prx.
xl ucast RN(@Sender) This rule-sender uses unicast.
xl bcast RN(@Sender) This rule-sender uses broadcast.
xl preamble RN(@Sender, Xl preamble) This rule-sender uses preamble Xl preamble.

Table 4.3: Configuration tables that are populated by the optimizer, and the implications of

an entry in the table.

It is also possible for the combination of Redirection-via-Intermediary and

Broadcast-or-Unicast to benefit from joint optimization. However, we project the gains to

be quite minor, since an energy-rich intermediary picked by Redirection-via-Intermediary

will unlikely need to resort to broadcasting, which is meant to save the sender energy. Therefore

we do not consider it further.

To interface the optimization algorithms to one another, we make the following modifi-

cations. The method mac.send in Listing 4.1 for Redirection-via-Intermediary links to

Broadcast-or-Unicast. The SendCost and ReceiveCost variables in Equation (4.1) link to

LPL-Tuner. Ultimately, both independent optimization and joint optimization set the following

configuration tables summarized in Table 4.3.

As mentioned on several occasions in this section, the actual rewriting of each optimization

operates on distributed rules, including those emitted by other optimizations.

4.3 Implementation and Evaluation

We implemented each of the three optimizations discussed in Section 4.2 into the DSN

compiler. In addition to the source program, the compiler takes as input rule-sender data.

Recall that an rule-sender specifies a rule, a sender, a mapping of receivers to data rates, and

an PS. The rule-sender data can be collected much like any other network statistic. Techniques

for doing so were discussed in Section 3.5. We assume that such rule-sender data is available.

Our evaluation consists of both simulation and sensornet testbed evaluation. In simulation,
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we test many different types of network and workload configurations at larger scale. On the

testbed, we validate our simulation results, as well as directly measure the time spent in each

of the various radio operational modes. As a summary of our experiments, energy savings

can be as much 17× in larger-scale simulated networks, and are over 2× in smaller scale

testbed networks. The greatest savings are possible when networks are heterogeneous, and

when joint optimizations are employed. Furthermore, our optimizer is able to model actual

energy consumption very accurately, with over 0.9 correlation between optimizer’s expected

energy consumption and actual energy consumption.

4.3.1 Simulation

All simulations used a ten node network with five rule-senders. Ten nodes is a reasonable

neighborhood size for the local area (105). rule-sender traces were generated by sampling

uniformly from data rates of 10, 1, .1 and .01 packets per second. Senders and receivers were

chosen uniformly from all nodes. The following parameters were investigated in simulation.

• Energy Heterogeneity. We experimented with both homogeneous and heterogeneous node

energy distributions. In the homogeneous setting, every node started with the same base

energy level. In the heterogeneous setting, nodes modeled a tiered environment, with one

node having 100× the base energy level, and two nodes having 10× the base energy level.

• Number of Receivers. Each rule-sender is assigned a number of receivers. The number

of receivers can be either: uniform from one up to the number of neighbors in the net-

work; high, involving at least 75% of the neighbors; or low, involving at most 25% of the

neighbors.

• Degree of Payload Sharing. Each rule-sender is assigned a degree of payload sharing.

The payload sharing can be uniform, from one to the number of receivers for the rule-

sender; high, involving at least 75% of the receivers; or low, involving at most 25% of

the receivers. Note the preceeding parameter, number of receivers, inherently limits the

maximum degree of payload sharing.
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The following are the optimization combinations that we tested. An abbreviation for the

combination is shown in parenthesis.

• No Optimization (∅).

• Redirection-via-Intermediary Only (R).

• Broadcast-or-Unicast Only (B).

• LPL-Tuner Only (L).

• Redirection-via-Intermediary and LPL-Tuner Jointly (R+L).

• Broadcast-or-Unicast and LPL-Tuner Jointly (B+L).

• All Three Independently (R/B/L).

• All Three Jointly (R+B+L).

In the combinations that did not involve LPL-Tuner, we assigned a single coarse grained

polling interval for all network nodes by running the LPL optimization with the average data

rate across all flows as input (99). Note that we are making a rather generous assumption that

even in the No Optimization (∅) case, a coarse level of optimization is performed.

The results of testing each set of parameters with each optimization combination is shown

in Table 4.4. The numerical values are the magnitude gain over no optimization. Hence, ∅ is

always 1×. Each numerical value is the median of one hundred test trials.

The most striking gain is 17.49× for Setting 2 with R+B+L, and several instances offer

gains of one order of magnitude or more. Note that R and B are often 1×. This indicates

that gains from independent optimizations may not be so striking as to warrant consideration

on their own. In one case, optimization even decreases performance very slightly (0.99×),

suggesting that isolated optimizations may be working with models that are too simple to

model actual performance.

Min, max, 25th and 75th percentile trends were similar. Next we take a closer look at the

parameter settings and their impact on optimization.
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Setting Optimization
# receivers sharing ∅ R B L R+L B+L R/B/L R+B+L

heterogeneous
1 uniform uniform 1.00 1.33 1.48 3.62 13.36 3.73 3.62 14.98
2 high high 1.00 1.51 3.79 3.00 16.26 5.28 3.81 17.49
3 high low 1.00 1.00 0.99 2.74 9.95 2.69 2.24 9.95
4 low * 1.00 1.00 1.00 3.68 9.00 3.51 4.25 8.21

homogeneous
5 uniform uniform 1.00 1.00 1.71 3.07 3.07 3.53 3.51 3.53
6 high high 1.00 1.00 4.77 3.15 3.17 5.31 4.64 5.31
7 high low 1.00 1.00 1.00 2.94 2.94 3.36 3.43 3.36
8 low * 1.00 1.00 1.00 2.80 2.80 2.80 2.69 2.80

Table 4.4: Energy savings relative to no optimization (∅).

Homogeneous vs. Heterogeneous Node Energy Levels

As a general rule, heterogeneous environments have a lot more to gain from optimization

than homogeneous environments. This is mostly due to the fact that many protocols such as

LPL are not designed with node heterogeneity in mind. Presently, we focus on node energy-level

heterogeneity. In every comparable parameter configuration (Setting 1 vs. 5, 2 vs. 6, 3 vs. 7,

4 vs. 8), heterogeneous environments have more to gain from optimization than homogeneous

environments. Specifically, in heterogeneous environments, energy-poor senders and receivers

can pass on a good deal of the communication burden to energy-rich neighbors by combining

intermediary selection and LPL tuning. For example, Settings 1, 2, 3 and 4 derive a substantial

benefit from R+L, whereas the benefit from either R or L alone is much less. R+L is in fact

quite close to R+B+L in these settings, and even besting R+B+L in Setting 4. This is due

to the greedy nature of Listing 4.2. Moreover, R+L handidly beats R/B/L in each case. This

strongly argues for joint optimization.

On the other hand, energy savings are much less when node energy levels are homogeneous.

Here, we cannot take advantage of resource heterogeneity, but we can still expose workload

heterogeneity (who is sending to whom and at what data rate) to our benefit; idle nodes can

share in the communication burden with frequently communicating nodes.
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Number of Receivers and Payload Sharing

A rule-sender’s number of receivers and degree of payload sharing significantly impact the

optimization gains possible. For instance, compare Settings 2 vs. 3 which differ only in the de-

gree of payload sharing. On a range of optimizations, Setting 2 typically outperformed Setting 3

by 51-76%. This is because Redirection-via-Intermediary and Broadcast-or-Unicast

benefit substantially from high payload sharing, and the ability to perform sender-side payload

aggregation. In fact, the overall highest gains are in Setting 2 with R+B+L, precisely when

there is a high degree of payload sharing combined with joint optimization.

Payload sharing is important for homogeneous settings as well. Optimizations in Set-

ting 6 outperform those in Settings 5, 7 and 8. One interesting note here is that pay-

load sharing in homogeneous settings benefits Broadcast-or-Unicast much more than

Redirection-via-Intermediary. Setting 6’s B and B+L perform quite closely to R+B+L,

suggesting that the optimal choice is often to broadcast when payloads are heavily shared. This

contrasts with the heterogeneous case, where the better choice is to redirect via an intermediary.

A rule-sender’s number of receivers is an upper limit on the degree of payload sharing.

Therefore, when the number of receivers is low, we see very similar performance to when the

number of receivers is high and there is low sharing i.e., in Settings 3 vs. 4, and 7 vs. 8.

Reserve Nodes

In the experiments discussed thus far, the senders and receivers for each rule-sender were

selected from among all available nodes. We next experimented with homogeneous settings

where one node is kept in reserve e.g., for the sole purpose of serving as an intermediary.

Table 4.5 shows the result of joint optimization when the reserve node’s energy level is varied.

Reserve nodes at 2× and even 10× the energy level of other network nodes do not provide

significant benefit. However, at 100×, the benefits of the reserve node are pronounced. Energy

levels often vary dramatically in practice (e.g., AA batteries vs. solar-charged car battery).
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Reserve Node Energy Rela-
tive to Other Nodes

R+B+L gain over ∅

1× 3.67
2× 3.93
10× 4.35
100× 13.06

Table 4.5: Energy savings of including one reserve node relative to no optimization.
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Figure 4.3: wireless-netopt performance on six node mesh testbed.

These findings suggest it is better to use wireless-netopt at a coarse granularity (e.g., per-

deployment) rather than as a fine-tuning measure.

4.3.2 Testbed

Our testbed consisted of six Tmote devices in the same local area. Three nodes took the

role of energy-rich nodes, with 1 at 100× base and 2 at 10× base. We ran a simple program with

one distributed rule shown in Section 4.2. For the MAC, we used BMAC+, an implementation

of LPL for the Tmote platform. It is summarized in Section 4.2.3 and discussed in (103). We

generated four rule-senders for testing, each with a different sender. The number of receivers

and degree of payload sharing were chosen uniformly, mirroring Setting 1 in Table 4.4. To

arrive at energy usage, we measured active radio time. We opted not to construct detailed
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Figure 4.4: Actual testbed performance correlates strongly with predicted performance.

records of times in various radio modes because the power draw for Carrier Sense, Transmit,

Receive and Polling modes are all very similar for the Tmote platform. Conversely, Sleep mode

is very insignificant for this platform. It was not within our capabilities to accurately measure

energy usage directly for six nodes simultaneously. As a sanity check, we also made sure that

the message delivery ratio to receivers was the same under all optimizations.

Figure 4.3 shows the effect of applying optimizations to minimize active radio time normal-

ized by node energy. The “max” series indicates the normalized active radio time with respect

to our primary objective, minimizing the maximum normalized energy drain. The “avg” series

indicates the average normalized energy drain. We discuss the “max” series first.

The radio time trends match the energy savings trends that we saw in simulation. R+B+L

is able to save 2.2× in active radio time compared to ∅. The magnitude of gains are not as big

here because of two factors. First, we used only a single data rate, .1 packets per second, for

all flows. This caused the data rate for the default LPL setting to be quite accurate to begin

with, since we used the generous setting of the average of all flow data rates. We would expect

to see a greater magnitude of gain had we used more varied data rates. Second, a six node

network has less chances for payload sharing than a ten node network simply due to its size. This
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subsequently cuts down on the magnitude of benefit for both Redirection-via-Intermediary

and Broadcast-or-Unicast.

Interestingly, both R and B perform worse than ∅. This is because R and B use a basic

model for message transmission and reception costs (discussed in Section 4.2) that does not

take into account MAC interactions. This mirrors the findings in Table 4.4 where R and B

alone rarely provide the best gains. When an accurate MAC model is used (as in R+L and

B+L), the energy savings improve significantly.

The “avg” series followed the same trend as the “max” series. This is convenient outcome

because it means that as a side benefit, minimizing the maximum energy drain also yields

acceptable average energy drains.

Figure 4.4 shows how well the optimizer did at predicting actual runtime costs. It turns out

that the optimizer’s predicted costs are highly correlated with the actual costs with a correlation

value of 0.928. This means that the optimizer is able to accurately gauge the magnitude of actual

performance gain. This result is a pleasant surprise since database optimizers are traditionally

not well-known for their accuracy at modeling absolute execution costs.

4.4 Summary

Wireless communication is the most power-intensive operation of modern embedded and

networked systems, and can dominate other operations by an order of magnitude or more. Many

clever optimization schemes have emerged to minimize communication, and these schemes vary

widely in terms of positioning within the networking stack. Unfortunately, many of these

schemes are not used by programmers because programmers often need to understand, and

then tune the optimizations to best suite their application.

This chapter looked at taking three of these optimizations and applying them automat-

ically to program source. We found that automatic optimization is indeed quite practical

within the declarative programming model because programs are very easy to analyze and

rewrite. Furthermore, when combinations of optimizations are considered, joint optimization
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often outperforms a series of independent optimizations. The energy savings can be over 2× in

heterogeneous node settings.
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Chapter 5

Related Work

5.1 Declarative Sensor Networks

Numerous deployment experiences have demonstrated that developing low-level software for

sensor nodes is very difficult (6; 106). This challenge has led to a large body of work exploring

high-level programming models that capture application semantics in a simple fashion. By

borrowing languages from other domains, these models have demonstrated that powerful subsets

of requisite functionality can be easily expressed. TinyDB showed that the task of requesting

data from a network can be written via declarative, SQL-like queries (31) and that a powerful

query runtime has significant flexibility and opportunity for automatic optimization. Abstract

regions (35) and Kairos (36) showed that data-parallel reductions can capture aggregation over

collections of nodes, and that such programs have a natural trade off between energy efficiency

and precision. SNACK (38), Tenet (10), Regiment (37) and Flask (39) demonstrated that a

dataflow model allows multiple data queries to be optimized into a single efficient program.

Following the same multi-tier system architecture of Tenet, semantic streams (107) showed

that a coordinating base station can use its knowledge of the network to optimize a declarative

request into sensing tasks for individual sensors.

From these efforts it appears that declarative, data-centric languages are a natural fit for

116



many sensor network applications. But these works typically focus on data gathering and pro-

cessing, leaving many core networking issues to built-in library functions. Tenet even takes the

stance that applications should not be introducing new protocols, delegating complex commu-

nication to resource-rich higher-level devices. Our goal in DSN is to more aggressively apply

the power of high-level declarative languages in sensornets to all levels of a system’s data ac-

quisition, the networking logic involved in communicating that data, and the management of

key system resources, while retaining architectural flexibility.

In the Internet domain, the P2 project (29; 30; 73) demonstrated that declarative logic

languages can concisely describe many Internet routing protocols and overlay networks. Fur-

thermore, the flexibility the language gives to the runtime for optimization means that these

high-level programs can execute efficiently.

DSN takes these efforts and brings them together, defining a declarative, data-centric lan-

guage for describing data management and communication in a wireless sensor network. From

P2, DSN borrows the idea of designing a protocol specification language based on the recur-

sive query language Datalog. Sensornets have very different communication abstractions and

requirements than the Internet, however, so from systems such as ASVMs (40), TinyDB (31),

and VM* (41), DSN borrows techniques and abstractions for higher-level programming in the

sensornet domain. Unlike these prior efforts, DSN pushes declarative specification through

an entire system stack, touching applications above and single-hop communication below, and

achieves this in the kilobytes of RAM and program memory typical to sensor nodes today.

5.2 Rendezvous and Proxy Selection

Related work stems from both networking and databases.

5.2.1 Network Protocol Optimization

Prior work in network protocol optimization generally focuses on packet processing perfor-

mance on the single node, usually by adapting techniques from general compiler optimization
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to increase single-node packet processing performance: inlining, outlining, code cloning, rear-

ranging branches, and IPC to function call conversion (108; 109; 110; 111; 112). On the other

hand, our focus is automated multi-node protocol optimization.

Several efforts have attempted to enable greater network flexibility. Active networks re-

search moved aggressively to introduce greater programmability into networks (113). Our work

introduces a limited amount of network reprogramming, driven by optimizer decisions rather

than node-level code injections. Like our work, i3 identifies rendezvous and proxy selection as

fundamental to network design, and provides great flexibility for their selection (76). Unlike

our work, i3 does not aim to optimize rendezvous and proxy selection from program source.

5.2.2 Database Query Optimization

The network optimization mechanisms introduced in this work can be viewed as general-

izations of query processing and optimization mechanisms familiar to the database community.

Changing rendezvous is conceptually very similar to reordering database join operations. Sys-

tem R popularized the ideas of optimizing join ordering with respect to disk IO, CPU, and

table statistics (81). Like (114), the current work fundamentally adopts the same optimization

framework, extended to the networked setting. We significantly broaden the scope of what

can be reordered, and thus what reordering is capable of by viewing “application data” and

“networking data” under the same lens.

In the past, deductive database query optimization focused on combining “push” with

“pull” query processing (69). The main result was the Magic Sets algorithm that transforms

programs to take advantage of the benefits of pull processing while executing in a push con-

text (71). The work of (29) extended this to the networked setting, specifically applying an

entirely pull processing approach to the example of routing as in Section 3.4.2. In contrast,

this work suggests that hybrids using a mixture of push and pull offer the best cost for many

practical networking scenarios.

We suspect it is possible to generalize MiM Rewrite to all recursion, just as algorithms for

LR have been subsumed by the Magic Sets algorithm (69). However, our experience indicates
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that LR is the most common recursion, especially in networking. This also echoes the remarks

of (69) for traditional Datalog.

5.3 Cross-Layer Optimization

Cross-layer network optimization has received considerable attention in the literature. We

discuss specific efforts at cross-layer optimization, general cross-layer optimization frameworks,

and programmer support for cross-layer optimization.

There is much work on specific cross-layer optimizations in sensornets. For example, the

author of (115) investigates the joint optimization of transmission energy and circuit energy,

and the joint optimization of MAC, link layer and routing for sensornets. The authors of (116)

also looks at cross-layer energy optimization of MAC and routing for sensornets. The authors

of (117) reconfigure routing components and radio components at runtime in a flood sensornet

monitoring application to optimize for energy consumption and event notification latency. Spe-

cific cross-layer optimizations have also been proposed for other networking contexts, such as

Internet and Mobile Ad-hoc Networks (MANETs). Future work is to investigate the challenges

in integrating these disparate point solution optimizations into wireless-netopt.

A lot of work has also attempted to generalize cross-layer optimization. The authors

in (118) survey recent work that looks at network layering as optimization decomposition. The

spirit of this field is in fact very similar to that of our network optimizer: the entire network

and networking stack forms an optimization problem whose objective is provided by the user

application. The main lessons of the field are that if convexity holds, it is possible to compute

globally optimal solutions from local subproblems. Also, much like in our work on three specific

optimizations, related subproblems are linked by optimization variables. These optimization

variables form the interface between layers. The work in (119) provides a tutorial on advances

in cross-layer optimization for wireless single-hop networks, and describes several challenges

to extending the work to multi-hop networks. The approach uses convex optimization as an

important tool. A main goal in that work is to have loosely coupled layers, which translates
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into few shared optimization variables between layers. Unlike our work, this field has focused

primarily on formalizing the optimization problem, rather than on programmer support for

realizing the automatic application of the optimizations.

Several efforts have looked at making cross-layer variables more visible to programmers. A

representative work is (120), which lets nesC programmers annotate certain variables as shared

across component boundaries. Layers can coordinate usage of the shared data, and save on

storage space by only maintaining a single copy of the variables. Conceptually, it would be

possible to perform joint optimization in this model. However, unlike wireless-netopt, the

burden is on the programmer to configure data sharing, as well as optimizations.
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Chapter 6

Discussion

Based on our investigation thus far, the benefits of declarative programming appear sub-

stantial. However, significant innovation is still needed before automated network optimization

becomes commonplace. Technical challenges ahead can be clustered with respect to key par-

ticipants in the networking ecosystem: declarative programmers; optimization designers; and

external developers.

6.1 Declarative Programmers

DSN has served declarative programmers fairly well, from those that want to simply pose

SQL-like queries, to those that wish to develop new services at all layers of the system down

to the device drivers. However, the initial language learning curve is not trivial. To aid ac-

cessibility, the power of declarative programming needs to be reconciled with the familiarity

of imperative programming. One approach is to more tightly integrate imperative and declar-

ative programming, as the Microsoft LINQ project has done (121). A much more ambitious

alternative approach is to bring the ideas of network optimization to widely used imperative

languages such as Java or Python. This avenue is appealing because it would benefit a large
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programmer population. At the same time, the challenge is sizable, as tractability concerns for

program analysis arise (122; 123).

6.2 Optimization Designers

netopt aids optimization designers by providing an architecture for automatic optimiza-

tion. Currently, the compile-time optimization decreases the per-deployment manual optimiza-

tion effort. Opportunities may also arise for adaptivity to environmental dynamics during a

deployment when environment changes occur frequently; environment state is uncertain or ob-

scured to the optimizer; or visibility of workload and network state changes are delayed to the

optimizer.

One way to incorporate adaptivity is to replan execution by iteratively running the one-

time centralized optimization process. The main advantage is that the optimization procedures

port naturally from the static optimization setting. Additionally, replanning retains its opti-

mality with respect to the environment snapshot. The main disadvantage is that as frequency

of execution increases, so does the overhead of snapshot gathering and optimization parame-

ter redistribution. Additionally, partially obscured or time delayed environment state is still

unresolved.

An alternative to more frequent centralized planning is optimizing directly for adaptiv-

ity (124; 125). For the rendezvous and proxy optimizations as well as some of the cross-layer

optimizations, we have sketched initial rewrites that emit programs that embed dynamic opti-

mization logic. By making decisions in a distributed and continuous fashion, it may be possible

to react faster to changing conditions, and also react to conditions not visible in a timely man-

ner at the central planner. The possible disadvantage of this approach is that it is not clear

that distributed (often greedy) decisions lead to optimal execution, The subtle connections

between the fields of databases and networking may again offer insight since similar trade-offs

were encountered in earlier work on continuous query processing adaptivity.

Extending netopt in another way may also appeal to the optimization designers. In many
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scenarios, two program executions may both satisfy the user even though the exact query

response may differ. For example, probabilistic approximate responses can be as acceptable

as exact responses while offering significant performance gains (126). Lossy data compression

may be as good as lossless compression. Best-effort communication may be as good as reliable

communication. These disparate scenarios indicate that it will be formidable to construct a

general architecture to support this flexibility. To start, query semantics need to encompass

additional constraints that bound navigation within the query response space. Then, we need

to outline program equivalence classes for programs that provide similar properties in some

dimensions but differ in others. The last step is to build out netopt architectural interfaces

to support the variety of existing optimized point solutions already in the community. The

main challenge is scaling the mapping of designers optimizations to equivalence classes. We

suspect that this will not be an easy task to perform automatically, and may require additional

metadata such as designer annotations. Yet the benefit is that programmers will continue to

capture gains from automatic optimization of their programs.

6.3 Developers of External Systems

netopt needs to continue to demonstrate interoperability with external systems. Many

DSN users apply the declarative language selectively. That is, they enjoy the flexibility of

calling out from DSN to native code. Yet interconnected networked systems must consider inter-

program interoperability as well. Inter-program interoperability can be thought of in terms of

packets, execution and state, and the declarative model does not seem to be a hindrance to

interoperability in these areas. In fact, the model may even ease interoperability by natively

supporting proxies, a common interop mechanism.

In terms of packet interoperability, database schema definitions can serve the role of packet

format definitions. Schemas specify field layouts and data types for relations, and since packets

are tuples in our programming model, the application is straightforward. In terms of execution

interoperability, it is the case that a DSN program and traditional program that do not un-

derstand each other’s protocols will not be able to interoperate. However, this is no different
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than the current incompatibility between TCP and UDP, or between any other two protocols

not designed with the same properties in mind.

A valid concern is state interoperability. That is, the optimization process changes node-

to-state mappings. External systems (e.g. under separate administrative control or legacy

nodes) wishing to interoperate may receive incomplete or unexpected protocol state. Manually

optimized programs also face this issue when desiring to interoperate. The natural solution is

to bridge the two incompatible protocols via proxies, for which netopt is already well suited.

Through additional declarative “hint” statements, netopt might let users influence or constrain

the placement of proxies where interfacing with external systems occurs. This offers a path

for incremental deployment on networks with external systems, while preserving the benefit of

automatic optimization. It very much follows the spirit of manually engineered solutions to

interoperability: use of proxies (127).
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Chapter 7

Conclusion

Applications and their workloads, as well as networks and their client devices, are continuing

to evolve at healthy rates. As they do, we would like to see new combinations of applications

and networks work together efficiently. The driving theme of this dissertation has been to ask

whether it is possible to achieve respectable application efficiency, while foregoing much of the

manual engineering that is the state of the art in building networked systems today.

The field of data management greatly inspired our work. From it, we saw the appeal

of taking a declarative approach to programming networked systems. Namely, it might be

possible for programmers to succinctly express what they want, rather than how they want it,

and; efficient execution would be the responsibility of the programming system, and not the

programmer.

To explore the extent of these possibilities, we developed DSN, netopt and wireless-

netopt: a declarative programming environment targeted at networked and embedded systems.

This set of compiler, optimizer and runtime simplifies the task of the sensornet programmer in

two primary ways. First, programmers write very concise declarative programs that perform

quite comparably to hand-crafted imperative implementations, and in one case even matched

original pseudocode nearly line-for-line. We demonstrated that a wide spectrum of interesting

sensornet problems, as well as a full system stack implementation can be implemented in our
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declarative programming language. Second, program source is automatically analyzed and

optimized on the programmer’s behalf. The optimizations target design decisions that occur

frequently in general networking and wireless networking. Programs often receive one order

of magnitude, and up to two orders of magnitude benefit versus unoptimized variants. Most

importantly, the programmer need not invest added effort to realize these gains.

Ultimately, we found strong opportunities to mold ideas from the field of data management

into new applications in the field of networked systems. This even led us to shape network

engineering as a form of query optimization. These rich relationships are our main thematic

contribution.
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Appendix A

Additional Program Examples

A.1 Link Estimation

The literature indicates that good link estimators are important in wireless environ-

ments (48). Several of the examples in Section 2.3 relied upon a built-in link table for managing

local neighbors and their link costs. We initially implemented link this way, since it allows us

to expose radio hardware-assisted link-estimations e.g., Link Quality Indicator (LQI).

Hardware-independent link estimators provide an alternative to radio-hardware assisted

link estimators. These typically use periodic beaconing to calculate packet reception rate

(PRR) as an indicator of a neighbor’s link cost. Listing A.1 shows the specification of the

commonly-used beaconing exponentially weighted moving average (EWMA) link estimator to

calculate PRR. The link relation of this program can be used by other programs such as tree

routing in place of the built-in link relation.

In this specification, each node periodically sends beacons with sequence numbers (lines 2-

4). Upon receiving a beacon, a node updates the PRR by applying EWMA: the previous PRR

is weighted against the difference between the last two sequence numbers received (line 7).

The initial link table entries need bootstrapping. The specification accomplishes this by
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1 % P e r i o d i c a l l y b r oadca s t beacons

2 t ime r (@Node , beaconTimer , Pe r i od ) :− t ime r (@Node , beaconTimer , Pe r i od ) .

3 seq (@Node , Seq++) :− t ime r (@Node , beaconTimer , ) , seq (@Node , Seq ) .

4 beacon (@∗ ,Node , Seq ) :− seq (@Node , Seq ) .

5

6 % Est imate l i n k PRR by we ighted comb inat i on o f l a t e s t beacon and p r e v i o u s

PRR

7 l i n k (@Node , Neighbor , NewPrr ) :− beacon (@Node , Neighbor , NewSeq ) ,

l a s tNe i ghbo rS eq (@Node , Neighbor , OldSeq ) ˜ , l i n k (@Node , Neighbor , PrrOld ) ˜ ,

NewPrr=we ight ∗(NewSeq−OldSeq )+(1−we ight ) ∗OldPrr .

8

9 % Update the l a s t n e i ghbo r sequence number heard

10 l a s tNe i ghbo rS eq (@Node , Neighbor , Seq ) :− l i n k (@Node , Neighbor , PrrNew ) ,

beacon (@Node , Neighbor , Seq ) ˜ .

11

12 % I n i t i a l i z e l i n k s t ha t have no p r e v i o u s PRR r e c o r d

13 l i n k (@Node , Neighbor , i n i t i a l L i n k C o s t ) :− beacon (@Node , Neighbor , Seq ) ,

− l i n k (@Node , Neighbor , ) .

Listing A.1: Exponentially Weighted Moving Average Link Estimation

checking new beacons against the lack of a corresponding link entry (line 13). DSN employs

negation using the dash symbol “-” for checking nonexistence. With minor modifications, the

specification can be adapted to variants of time-series link estimation other than EWMA, such

as sliding windows.

A.2 Geographic Routing

Geographic routing is a well-studied routing mechanism for sensor networks. Greedy geo-

graphic routing sends packets toward the neighbor with the minimum distance to the destina-

tion (47). Listing A.2 presents this protocol.

In line 2 neighboring nodes exchange location information. When a message tuple is re-

ceived, we compute the distances from all neighbors to the destination location and then we
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1 % Announce own l o c a t i o n to n e i g hbo r s

2 l o c a t i o n (@∗ , Src , SrcX , SrcY ) :− l o c a t i o n ( @Src , Src , SrcX , SrcY ) .

3

4 % Compute n e i g hbo r s ’ d i s t a n c e s to message ’ s d e s t i n a t i o n

5 % Funct i on f d i s t a n c e i s the Euc l i d e an d i s t a n c e between the two p o i n t s

6 computedDis tances ( @Crt , Nei , DstX , DstY , D i s t ) :−

message ( @Crt , Src , Dst , DstX , DstY , Data ) , l i n k ( @Crt , Nei , Cost ) ,

l o c a t i o n ( @Crt , Nei , NeiX , NeiY ) , D i s t = f d i s t a n c e (DstX , DstY , NeiX , NeiY ) , Dst

!= Src .

7

8 % Se l e c t the c l o s e s t n e i ghbo r as the next hop

9 s h o r t e s t C o s t ( @Src , DstX , DstY ,<MIN , Dis t >) :−

computedDis tances ( @Src , Nei , DstX , DstY , D i s t ) .

10 nextHop ( @Crt , Next , DstX , DstY ) :− s h o r t e s t C o s t ( @Crt , DstX , DstY , D i s t ) ,

computedDis tances ( @Crt , Next , DstX , DstY , D i s t ) ,

l o c a t i o n ( @Crt , Crt , CrtX , CrtY ) , D i s t < f d i s t a n c e (DstX , DstY , CrtX , CrtY ) .

11

12 % Invoke f a l l b a c k r o u t i n g e . g . r i g h t −hand r u l e o r convex h u l l

13 f a l l b a c k ( @Crt , Xd , Yd , D i s t ) :− s h o r t e s t C o s t ( @Crt , DstX , DstY , D i s t ) ,

computedDis tances ( @Crt , Next , DstX , DstY , D i s t ) ,

l o c a t i o n ( @Crt , Crt , CrtX , CrtY ) , D i s t >= f d i s t a n c e (DstX , DstY , CrtX , CrtY ) .

Listing A.2: Geographic Routing

chose as the next hop the node with the smallest distance (line 6-10). The euclidean distance

between two coordinates is computed by f distance . In line 2, the forwarding is straightforward

and is similar to Listing 2.2.

Departing from tree routing, geographic routing determines the next hop dynamically on a

per-message basis. However, a user is still free to interchange these two routing protocols with

only a minimal amount of work since they both ultimately export similar nextHop relations.

Fallback routing, which occurs when the current node responsible for a message is the

local minimum but not the end destination, is not shown in the example above but is invoked

from line 13. Basic fallback schemes such as planarization (47) are also easy to implement
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declaratively. However, more advanced schemes such as (50) require several dozens of rules,

due to the algorithm’s inherent complexities.

A.3 Localization

The previous example left unanswered how location information is initially established.

One option is to provide location as a built-in e.g., as an interface to GPS. Due to cost, most

individual nodes are typically not equipped with direct location sensors. A second reasonable

option is to manually specify locations with location facts; this is the common case in some

deployments. The third option, localization, computes node coordinates. Among the many

algorithms in this space, NoGeo is is noteworthy for its ability to do without bootstrap location

information (33). This service is shown in Listing A.3.

The NoGeo algorithm has three levels of complexity. For ease of exposition, we only present

the first which assumes a region’s perimeter nodes know their locations. The algorithm proceeds

as follows. At short beaconing intervals, neighbors periodically exchange their current locations

(line 2). At long estimation intervals, interior nodes compute their own new location estimates

by averaging together locations heard from all neighbors (line 5). Perimeter nodes always send

the same fixed location estimation and never update their own estimate (line 8). We omit the

simple one-line facts that specify the fixed locations of perimeter nodes and initial randomly-

estimated locations of interior nodes. After several rounds, nodes’ locations converge to points

in network connectivity-based coordinate space. The result is a location relation which can be

exported for use by other services such as geographic routing in listing A.2.
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1 % Send c u r r e n t round l o c a t i o n to n e i g hbo r s

2 ne i ghbo r (@∗ , Src , SrcX , SrcY , Round ) :−

t ime r ( @Src , l o c a l i z a t i o nBea conT ime r , Pe r i od ) ,

e s t imatedLoc ( @Src , SrcX , SrcY , Round ) , round ( @Src , Round ) .

3

4 % I n t e r i o r nodes ave rage n e i g hbo r s ’ l o c a t i o n s f o r upda t i ng t h e i r own

l o c a t i o n ( r e l a x a t i o n s t ep )

5 e s t imatedLoc ( @Src ,<AVG, SrcX>,<AVG, SrcY >,Round ) :−

ne i ghbo r ( @Src , Src , SrcX , SrcY , Round ) , round ( @Src , Round ) ,

t ime r ( @Src , l o ca l i z a t i onWindowTimer , ) , −p e r ime t e r ( @Src ) .

6

7 % Per ime t e r nodes j u s t r e f r e s h t h e i r f i x e d l o c a t i o n

8 e s t imatedLoc ( @Src , SrcX , SrcY , Round ) :− f i x e dLo c ( @Src , SrcX , SrcY ) ,

round ( @Src , Round ) , t ime r ( @Src , l o ca l i z a t i onWindowTime r , ) , p e r ime t e r (@S) .

9

10 % I n c r e a s e the round a f t e r we have computed the new e s t ima t e

11 round ( @Src , Round++) :− e s t imatedLoc ( @Src , SrcX , SrcY , Round ) .

13 % Prov i de the e s t ima t ed l o c a t i o n as the node ’ s l o c a t i o n

14 l o c a t i o n ( @Src , SrcX , SrcY ) :− e s t imatedLoc ( @Src , SrcX , SrcY , ) .

16 % Set p e r i o d i c e s t ima t i o n windows and beacon t ime r s

17 t ime r ( @Src , l o ca l i z a t i onWindowTimer , 1000 ) :−

t ime r ( @Src , l o ca l i z a t i onWindowTimer , 1000 ) , round ( @Src , Round ) , Round < 1000 .

18 t ime r ( @Src , l o c a l i z a t i o nBea conT ime r , 200 ) :−

t ime r ( @Src , l o c a l i z a t i o nBea conT ime r , 2 00 ) , round ( @Src , Round ) , Round < 1000 .

Listing A.3: Virtual Coordinates Localization
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Appendix B

Additional Rewrite Output

B.1 MiM Rewrite

Listing B.1 shows the result of applying unique variable names to Listing 3.1. This is one

of the preliminary steps of MiM Rewrite, as described in Chapter 3.3. Listing B.2 shows the

application of MiM Rewrite using the unique variable names of Listing B.1. Rule numbers

according to Listing 3.2 are also listed in comments.

Note that there is some redundancy in the attributes of the tuples of message∗ and

message∗∗. For example, this redundancy arises in line 14 of Listing B.2 where interest

attributes SinkJ and DataK are each projecting multiple times to message∗ attributes. This

can lead to bigger than necessary tuples (and hence larger network messages).

It is possible to prune redundant attributes to avoid multiple projections of the same at-

tribute with the following observations. Recall that the bound variables for message are in the

first, third and fourth attributes (m1, m3 and m4) because these attributes join with interest

in the answer rule. However, according to the recursive rule, only m1 changes between the head

and the body (CurrentI to NextE), whereas m3 and m4 are directly copied from body to head

(m3 stays as SinkG, and m4 stays as DataH). We call m3 and m4 pseudo-free variables since
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1 % Prepare f o r t r a n sm i s s i o n

2 message ( @SourceA , SourceA , SinkB , DataC ) :−

3 produce ( @SourceA , DataC ) ,

4 nexthop ( @SourceA , SinkB , NextD ) .

5

6 % Route message to next hop pa r en t (R1)

7 message (@NextE , SourceF , SinkG , DataH ) :−

8 message ( @Current I , SourceF , SinkG , DataH ) ,

9 nexthop ( @Current I , SinkG , NextE ) .

10

11 % Rece i v e i f message i s o f i n t e r e s t ( Answer Rule )

12 consume ( @SinkJ , DataK ) :−

13 message ( @SinkJ , SourceM , SinkJ , DataK ) ,

14 i n t e r e s t ( @SinkJ , DataK ) .

15

16 % What i s consumed?

17 consume ( @Sink , Data ) ?

Listing B.1: Original BasicProg with unique variable names applied.

they are bound variables but, like free variables, happen to obey Constraint 1 of Chapter 3.3.

It is redundant for message∗ to contain free variables that have the same value as some pseudo-

free variable. In particular, in message∗, the pseudo-free variable m∗2 (which is the mapping

of m3) is redudant to m∗4 and m∗5; any joins or projections that involve either m∗4 or m∗5

can use m∗2 instead because the recursive rule does not change m∗2. Similarly, the pseudo-free

variable m∗3 (which is the mapping of m4) is redundant to m∗6. Therefore, m∗4, m∗5 and m∗6

can be cut from message∗ without data loss. We can similarly prune redundant attributes for

message∗∗. In general, pruning redudant attributes is a straightforward program analysis and

rewrite post-processing procedure. After some variable renaming for clarity of exposition, the

result is Listing 3.3.
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1 % Prepare f o r t r a n sm i s s i o n

2 message ( @SourceA , SourceA , SinkB , DataC ) :−

3 produce ( @SourceA , DataC ) ,

4 nexthop ( @SourceA , SinkB , NextD ) .

5

6 % Route message to next hop pa r en t u n t i l r endezvous (R1 . 1 )

7 message (@NextE , SourceF , SinkG , DataH ) :−

8 message ( @Current I , SourceF , SinkG , DataH ) ,

9 nexthop ( @Current I , SinkG , NextE ) ,

10 −r endezvous ( @Current I , SinkG , DataH ) .

11

12 % Route i n t e r e s t back a long next hop u n t i l r endezvous (R2 , R3 . 1 )

13 message ∗( @SinkJ , SinkJ , DataK , SinkJ , SinkJ , DataK ) :−

14 i n t e r e s t ( @SinkJ , DataK ) .

15 message ∗( @Current I , SinkG , DataH , SinkJ , SinkJ , DataK ) :−

16 message ∗(@NextE , SinkG , DataH , SinkJ , SinkJ , DataK ) ,

17 nexthop ( @Current I , SinkG , NextE ) ,

18 −r endezvous (@NextE , SinkG , DataH ) .

19

20 % At rendezvous , j o i n message and i n t e r e s t and send to S ink (R4 . 2 , R5 , R6)

21 message ∗∗(@U1 ,U3 , U4 , SinkJ , SinkJ , DataK ,U2) :−

22 message (@U1 ,U2 , U3 , U4) ,

23 message ∗(@U1 ,U3 , U4 , SinkJ , SinkJ , DataK ) ,

24 r endezvous (@U1 ,U3 , U4) .

25 message ∗∗(@NextE , SinkG , DataH , SinkJ , SinkJ , DataK ,U2) :−

26 message ∗∗( @Current I , SinkG , DataH , SinkJ , SinkJ , DataK ,U2) ,

27 nexthop ( @Current I , SinkG , NextE ) .

28 consume ( @SinkJ , SinkJ , DataK ,U2) :−

29 message ∗∗( @SinkJ , SinkJ , DataK , SinkJ , SinkJ , DataK ,U2) .

30

31 % What i s consumed?

32 consume ( @Sink , Data ) ?

Listing B.2: Rewritten BasicProg before pruning redundant attributes.
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B.2 Session Rewrite

Listing B.3 and Listing B.4 show the result of applying Session Rewrite to Listing 3.4.

Specifically, we show the execution according to Figure 3.6a. Also, variable names have been

renamed and redundant attributes have been pruned for comprehensibility.

B.3 Routing Rewrite

Listing B.5 shows the result of applying Routing Rewrite to Listing 3.1. The rewritten

program performs multiple instances of Routing Rewrite at once, because every forwarding

node is simultaneously considered a “stateful server” with a proxy decision to be made. In

other words, using Figure 3.7b as reference, hop y is just one “stateful server”; every forwarding

node between rendezvous and sink is also a“stateful server.”

In the general case, the optimizer can reassign any forwarding node’s state. More typically,

the optimizer considers path segments consisting of a sequence of forwarding nodes, and assigns

the state for all nodes in the path segment to the same rendezvous. For example, in Figure 3.7b

all forwarding nodes between rendezvous and hop y have their state reassigned to rendezvous.

To specify this, Routing Rewrite employs a helper relation, rendezvousIn, to indicate the path

segment that is to be source routed. Like rendezvous, Decision Making fills in entries for

rendezvousIn to correspond to its optimal decision making.

Listing B.5 perform the familiar message forwarding along nexthop until the rendezvous

(lines 2-5). nexthop ships its data back toward the rendezvous via nexthop∗ messages (lines 8-

19). Note that rendezvousIn limits the nexthop tuples to which this applies. Once nexthop∗

and message rendezvous, nexthop∗∗ tuples are created from nexthop∗, and these serve as the

source route for message as it traverses forward (lines 22-34).
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1 % C l i e n t : Send r e q u e s t message to Proxy .

2 message ( @Cl i en t , C l i e n t , Se rve r , Request ) :−

3 i n t e r e s t ( @Cl i ent , Se rve r , Request ) .

4 message (@Next , C l i e n t , Se rve r , Request ) :−

5 message ( @Current , C l i e n t , Se rve r , Request ) ,

6 nexthop ( @Current , Se rve r , Next ) ,

7 −r endezvous ( @Current , C l i e n t , Se rve r , Request ) .

9 % Se r v e r : Send s e s s i o n message to Proxy

10 message ∗( @Server , Se rve r , C l i e n t , Data ) :−

11 s e s s i o n ( @Server , C l i e n t , Data ) ,

12 message ∗( @Prev , Se rve r , C l i e n t , Data ) :−

13 message ∗( @Current , Se rve r , C l i e n t , Data ) ,

14 nexthop ( @Prev , C l i e n t , Cu r r en t ) ,

15 −r endezvous ( @Current , C l i e n t , Se rve r , Request ) .

17 % Proxy : Combine r e q u e s t and s e s s i o n and send to S e r v e r

18 message ∗∗( @Current , C l i e n t , Se rve r , Data , Request ) :−

19 message ( @Current , C l i e n t , Se rve r , Request ) ,

20 message ∗( @Current , Se rve r , C l i e n t , Data ) ,

21 r endezvous ( @Current , C l i e n t , Se rve r , Request ) .

22 message ∗∗(@Next , C l i e n t , Se rve r , Data , Request ) :−

23 message ∗∗( @Current , C l i e n t , Se rve r , Data , Request ) ,

24 nexthop ( @Current , Se rve r , Next ) .

26 % Se r v e r : Upon message , t r a n s i t i o n s e s s i o n s t a t e

27 s e s s i o n ( @Server , C l i e n t , NewData ) :−

28 message ∗∗( @Server , C l i e n t , Se rve r , Data , Request ) ,

29 t r a n s i t i o n ( @Server , Data , Request , NewData ) .

31 % . . . and re spond to C l i e n t .

32 message ( @Server , Se rve r , C l i e n t , NewData ) :−

33 message ∗∗( @Server , C l i e n t , Se rve r , Data , Request ) ,

34 s e s s i o n ( @Server , C l i e n t , NewData ) .

Listing B.3: Rewritten SessionProg, a client-server roundtrip with session state proxy.

151



35 % C l i e n t : Consume r e s pon s e .

36 consume ( @Cl i ent , Data ) :−

37 message ( @Cl i en t , Se rve r , C l i e n t , Data ) ,

38 i n t e r e s t ( @Cl i ent , S e r v e r ) .

40 % Query : What i s consumed?

41 consume ( @Cl i ent , Data ) ?

Listing B.4: Rewritten SessionProg, a client-server roundtrip with session state proxy. (Cont.)
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1 % Regu la r message r o u t i n g u n t i l r endezvous

2 message (@Next , Src , Sink , Data ) :−

3 message ( @Curr , Src , Sink , Data ) ,

4 nexthop ( @Curr , Sink , Next ) , Curr != Sink ,

5 −r endezvous ( Next ) .

6

7 % Bu i l d i n g s ou r c e r ou t e : s e l f −t r a v e r s a l backward

8 nexthop ∗( @Curr , Curr , Sink , Next ) :−

9 r e nd e z vou s I n ( @Curr ) ,

10 −r e nd e z vou s I n ( @Next ) ,

11 nexthop ( @Curr , Sink , Next ) .

12 nexthop ∗( @Curr , Curr , Sink , Next ) :−

13 r e nd e z vou s I n ( @Curr ) ,

14 r e nd e z vou s I n ( @Next ) ,

15 nexthop ( @Curr , Sink , Next ) ,

16 nexthop ∗( Curr , Next , Sink , ) .

17 nexthop ∗( @Prev , Link1 , Sink , L ink2 ) :−

18 nexthop ( @Prev , Sink , Curr ) ,

19 nexthop ∗( @Curr , Link1 , Sink , L ink2 ) .

20

21 % Using sou r c e r ou t e : s e l f −t r a v e r s a l f o rwa rd

22 nexthop ∗∗(@Next , Link1 , Sink , L ink2 ) :−

23 nexthop ∗( @Curr , Link1 , Sink , L ink2 ) , Curr != Sink ,

24 message ( @Curr , Src , Sink , Data ) ,

25 nexthop ( @Curr , Sink , Next ) .

26 nexthop ∗∗( Next , Link1 , Sink , L ink2 ) :−

27 nexthop ∗∗( Curr , Curr , Dest , Next ) ,

28 message ( Curr , Src , Dest , Data ) ,

29 nexthop ∗∗( Curr , L ink1 , Sink , L ink2 ) , L ink1 != Curr .

30 message ( Next , Src , Sink , Data ) :−

31 nexthop ∗∗( Curr , Curr , Dest , Next ) ,

32 message ( Curr , Src , Dest , Data ) ,

33 nexthop ∗∗( Curr , L ink1 , Sink , L ink2 ) , L ink1 != Curr ,

34 −nexthop ( Curr , L ink1 , Sink , L ink2 ) .

Listing B.5: Rewritten Routing Rewrite, a DVR-SR hybrid.
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