Building and Using the ATLAS Transactional Memory System

Njuguna Njoroge, Sewook Wee, Jared Casper, Justin Burdick, Yuriy Teslyar, Christos Kozyrakis, Kunle Olukotun

Computer Systems Laboratory
Stanford University
http://tcc.stanford.edu

Today's Agenda

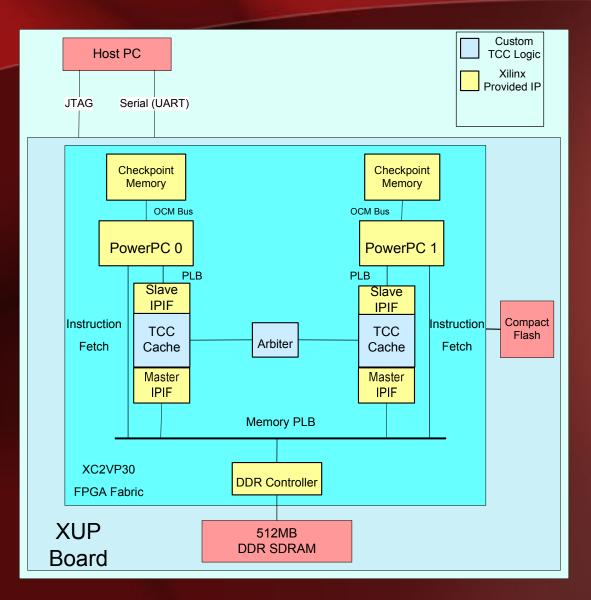
ATLAS Overview

ATLAS Status and Roadmap

Experience of Building ATLAS

Results and evaluation

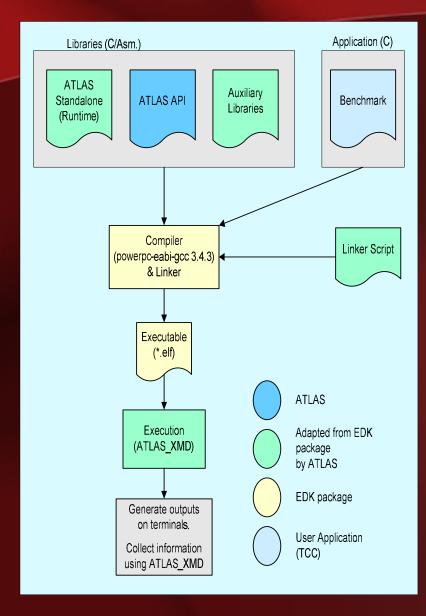
Conclusions


ATLAS Overview

- ATLAS is an UMA implementation of TCC
 - TCC = Transactional Coherence and Consistency
 - Shared memory with continuous transactions
- ATLAS' objectives
 - Provide a fast platform for software development
 - For user applications and system software
 - Direct transactions support, tuning & debugging tools
 - Provide reasonable performance accuracy
 - Compared to ASIC designs or detailed simulation
 - Use commodity FPGA HW/SW for rapid design
 - A tool for research, not a final project demo
 - Not a goal: highest possible GOPS/GFLOPS

ATLAS Status and Roadmap

- ATLAS' status
 - Implemented on XUP board with XC2VP30 FPGA
 - 2-CPU TCC system at 100 MHz
 - Using the built-in PowerPC 405 cores
 - Rich debugging, profiling & tuning environment
- Next → ATLAS on BEE2 board (RAMP-Red)
 - 10x more LUTs/BRAMs than XUP board
 - Allows for 8-CPU TCC system on the 4 user FPGAs
 - DRAM, interconnect, Linux I/O on control FPGA


2-way ATLAS Hardware Platform

HW Highlights

- 100 MHz CPU & bus
 - Internal PPC I-Cache on
 - Internal PPC D-caches off
- Transactional cache
 - 8KB DM or 16KB 2-way or 32KB 4-way cache
 - 32B lines
 - 2KB or 4KB or 8KB write address FIFO
- Main memory
 - 512 MB DDR SDRAM
- I/O
 - UART for each PPC
 - PPC0: RS232
 - PPC1: JTAG UART
 - File I/O: Compact Flash
- See [PACT'05] for architectural model

2-way ATLAS Software Platform

SW Highlights

- TCC API for parallel programming
 - Written in assembly for speed
 - See [ASPLOS'04] for prog. model
- Robust debugging infrastructure
 - Xilinx's Microprocessor Debugger (XMD)
 - -JTAG port access to PPC debugging ports
 - -GDB stub on-top of XMD
 - Extended XMD → ATLAS XMD
- Rich support for intuitive performance profiling & tuning
 - Integrated into the API
 - See [ICS'05] for tuning process

Come watch our demo!

Experience of using Commodity HW and SW

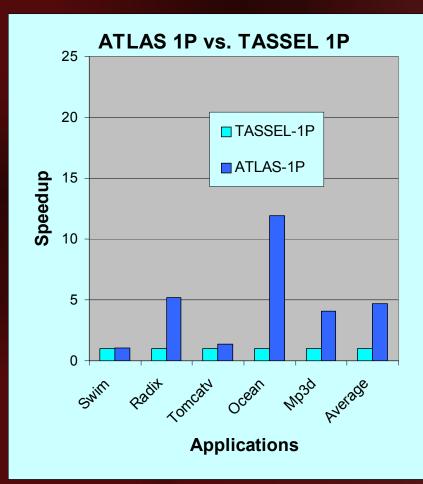
- Tools and Documentation (EDK)
 - Examples & GUI-wizards assume 1-CPU systems
 - ATLAS stresses scarcely documented features
- Provided IP and SW libraries
 - Convenient but often slow or missing functionality
 - PLB DDR can't run below 100 MHz
 - I/O from CF card is too slow
 - Had to implement syscalls from scratch
- Challenging coding API in assembly
 - API tethered to EDK's gcc, which lags latest version

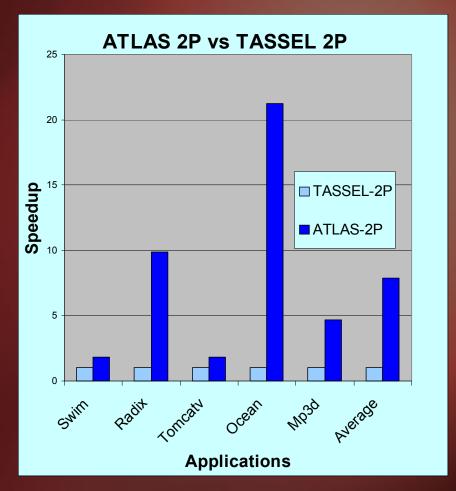
Hardcore vs. Softcore Processor

Cons

- Cannot modify CPU internal datapath/cache
 - 10 cycles for TCC cache hit
- No internal FPU no interface for external FPU
 - FP operations are emulated
- Maximum 2 processors per FPGA

Pros


- Same ISA with our software simulator
- Can run full software frameworks
 - PowerPC Linux, PowerPC Jikes RVM
- Observed similar speedup trends with simulator
 - Despite stalls on cache hits


So how does ATLAS perform?

Wall-clock time: ATLAS vs. TASSEL (TCC Simulator)

−Atlas-1P is ~5x faster Tassel-1P

-Atlas-2P is ~8x faster Tassel-2P

TASSEL runs on a 2.5GHz Apple G5 workstation

Discussion of Results

- TASSEL uses fast-forwarding
 - Significant sections of application skipped
 - Explains small ATLAS gains on swim, tomcatv, mp3d
 - But programmer must be very careful
 - May miss a critical section → meaningless speedups
 - TASSEL does not require such tradeoffs
- FPU emulation is a major bottleneck
 - Radix: 90% to gen FP data, 10% integer sorting
 - ATLAS-2P: 75x speedup in sorting, 22x overall
- Scalability
 - TASSEL gets slower with more processors
 - ATLAS scales with number of FPGAs

Summary of Experience: FPGAs are promising, but...

- CMP research targets 8 to 16 CPUs
 - Desire to scale ATLAS to ≥8 processors
 - XUP boards insufficient for the task
 - Limited to ring topology: high latency, limited bandwidth
 - XC2VP30 FPGA has limited LUT/BRAM resources
 - Need a better platform → BEE2
- Diagnosis:
 - Commodity boards and tools need to mature for CMP research