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Abstract 

Neural Message Passing for graphs is a promising and relatively recent approach for applying Machine Learning to 
networked data. As molecules can be described intrinsically as a molecular graph, it makes sense to apply these 
techniques to improve molecular property prediction in the field of cheminformatics. We introduce Attention and 
Edge Memory schemes to the existing message passing neural network framework, and benchmark our approaches 
against eight different physical–chemical and bioactivity datasets from the literature. We remove the need to intro-
duce a priori knowledge of the task and chemical descriptor calculation by using only fundamental graph-derived 
properties. Our results consistently perform on-par with other state-of-the-art machine learning approaches, and set 
a new standard on sparse multi-task virtual screening targets. We also investigate model performance as a function of 
dataset preprocessing, and make some suggestions regarding hyperparameter selection.
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Introduction
QSAR (Quantitative Structure Activity Relationships) 

have been applied for decades in the development of rela-

tionships between physicochemical properties of chemi-

cal substances and their biological activities to obtain a 

reliable mathematical and statistical model for prediction 

of the activities of new chemical entities. The major aim 

of QSAR study is to reduce the number of compounds 

synthesized during the drug development, a notoriously 

long and costly process, hence the desire to improve 

its efficiency from a drug discovery perspective. After 

Hansch proposed the QSAR concept [1], engineering 

molecular descriptors to build accurate models for the 

prediction of various properties has become the standard 

approach to QSAR modelling. Researchers [2–6] have 

proposed numerous descriptors to represent molecular 

2D and 3D structures, aiming to correlate these descrip-

tors with predicted endpoints. Approaches to generat-

ing representations using the graph representation of 

a molecule include graph kernels [7], and perhaps most 

importantly in the present context, ECFP (Extended 

Connectivity Circular Fingerprints) [8]. Once a descrip-

tor set has been defined, various modelling methods, 

including linear mapping methods like linear regression, 

partial least square and non-linear methods like support 

vector machine, random forest etc., are applied to build-

ing models. Recently, deep neural network methods have 

become the latest weapon in a Cheminformatician’s arse-

nal for doing QSAR.

Over the past decade, deep learning has become a 

staple in the machine learning toolbox of many fields 

and research areas [9, 10]. Notably in the pharmaceuti-

cal area, in recent years AI has shown incredible growth, 

and is being used now not just for bioactivity and physi-

cal–chemical property prediction, but also for de novo 
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design, image analysis, and synthesis prediction, to name 

a few. This rapid growth is due in part to the substantial 

increase in available biochemical data thanks to the rise 

of techniques such as High Throughput Screening (HTS) 

and parallel synthesis, and also to the recent surge in par-

allel computational power that can be feasibly attained by 

harnessing General Purpose computing on Graphics Pro-

cessing Units (GPGPU).

Efforts have also been taken to enable neural networks 

to do representation learning, i.e. the neural network is 

able to learn descriptors itself instead of relying on pre-

defined molecular descriptors. Among these, the graph 

convolution network (GCN) is gaining popularity and 

various architectures have been proposed in data science 

community. The first Graph Neural Networks (GNNs) 

was put forward by Gori et  al. in 2005 [11], presenting 

an architecture for learning node representations using 

recurrent neural networks capable of acting on directed, 

undirected, labelled, and cyclic graphs. This work was 

later expanded upon by Micheli [12] and Scarselli et  al. 

[13] In 2013, the Graph Convolutional Network (GCN) 

was presented by Bruna et al. [14] using the principles of 

spectral graph theory. Many other forms of GNN have 

been presented since then, including, but not limited to, 

Graph Attention Networks [15], Graph Autoencoders 

[16–19], and Graph Spatial–Temporal Networks [20–23].

In GCNs and some other forms of GNNs, information 

is propagated through a graph in a manner similar to 

how conventional convolutional neural networks (CNNs) 

treat grid data (e.g. image data). However, whilst graph-

based deep learning shares some connection with CNNs 

with respect to local connectivity of the component 

data, CNNs exploit the properties of regular connectiv-

ity, shift-invariance, and compositionality to achieve 

their noteworthy performance. In order to cope with the 

irregularity of graph data, alternative approaches must be 

designed, most notably to circumvent the issue of irregu-

lar non-Euclidean data, and to be invariant to the graph 

representation.

Whilst many implementations are designed for use on 

a single large graph, such as social networks or citation 

graphs, approaches designed for use on multiple smaller 

graphs such as graphs of small molecule are also desired 

for their potential use in, amongst other things, drug 

design. Duvenaud [24] proposed the neural fingerprint 

method, describing it as an analogue of ECFP, as one of 

the first efforts in applying graph convolution model on 

chemistry related problems. The notable advancement 

embodied in the neural fingerprint approach with regards 

to predecessing concepts such as graph kernels and 

ECFP, is that the generation of descriptors is adapted—

learned—during training. Other molecular graph convo-

lution methods were reported by Kearnes et al. [25] and 

Coley [26] as extensions to Duvenaud’s method. Recently 

researchers from Google [27] put forward an new NN 

architecture called as message passing neural networks 

(MPNNs) and used the MPNNs to predict quantum 

chemical properties. The MPNN framework contains 

three common steps: (1) message passing step, where, 

for each atom, features (atom or bond features) from its 

neighbours are propagated, based on the graph structure, 

into a so called a message vector; (2) update step, where 

embedded atom features are updated by the message vec-

tor; (3) aggregation step, where the atomic features in the 

molecule are aggregated into the molecule feature vec-

tor. These molecule feature vector can then be used in a 

dense layer to correlate with the endpoint property. It has 

been shown that the MPNN framework has a high gener-

alizability such that several popular graph neural network 

algorithms [24–26, 28, 29] can be translated into the 

MPNN framework. Several research groups have made 

various extensions to the MPNN framework to augment 

it for work on cheminformatic problems [30].

Like GCN methods, MPNN model learns task specific 

molecule features from the graph structure and avoid 

feature engineering in the pre-processing stage. This 

type of method also presents an approach for the secure 

sharing of chemical data, i.e. it is possible to disseminate 

trained models for activity predictions without the risk of 

reverse-engineering IP-sensitive structural information 

[31–33].

We introduce a selection of augmentations to known 

MPNN architectures, which we refer to as Attention 

MPNN (AMPNN) and Edge Memory Neural Network 

(EMNN) [34], and evaluate them against published 

benchmark results with a range of metrics. The EMNN 

network shares architectural similarities to the D-MPNN 

model published by Yang et  al. [35] that was developed 

concurrently to this work [36], but the D-MPNN includes 

additional chemical descriptor information. We applied 

these two types of neural network to eight datasets 

from the MoleculeNet [30] benchmark and analyse the 

performances and offer chemical justification for these 

results with respect to both architecture and parameter 

selection.

Method
Concepts of graphs

A graph G = (V, E) is a set V of nodes and a set E of 

edges, which are pairs of elements of V . If the members 

of E are ordered pairs, the graph is said to be directed. In 

the graph representation of a molecule, atoms are viewed 

as nodes and (v,w) ∈ E indicates there is a bond between 

atoms v and w . This representation is an undirected 
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graph: we do not consider a bond to have a direction, so 

we do not distinguish between (v,w) and (w, v).

In the given context, a graph comes together with a fea-

ture vector xv corresponding to each node v and an edge 

feature vector evw corresponding to each edge (v,w).

Message passing neural network

The Message Passing Neural Network [27] is a deep learn-

ing architecture designed for implementation in chemical, 

pharmaceutical and material science contexts. They were 

introduced as a framework to generalise several proposed 

techniques [14, 24, 25, 28, 29, 37, 38], and have demon-

strated state-of-the-art results on multiple related bench-

marks. For the specific MPNN implementations used for 

experiments in this paper, the most important predecessor 

is the Gated Graph Sequence Neural Network (GGNN) 

[28].

In simplistic terms, MPNNs operate by the following 

mechanism: An initial set of states is constructed, one 

for each node in the graph. Then, each node is allowed to 

exchange information, to “message”, with its neighbours. 

After one such step, each node state will contain an aware-

ness of its immediate neighbourhood. Repeating the step 

makes each node aware of its second order neighbourhood, 

and so forth. After a chosen number of “messaging rounds”, 

all these context-aware node states are collected and con-

verted to a summary representing the whole graph. All the 

transformations in the steps above are carried out with 

neural networks, yielding a model that can be trained with 

known techniques to optimise the summary representation 

for the task at hand.

More formally, MPNNs contain three major operations: 

message passing, node update, and readout. Using a mes-

sage passing neural network entails iteratively updating a 

hidden state hv ∈ R
D of each node v . This is done according 

to the following formulas:

(1)m
(t)
v =

∑

w∈N (v)

Mt

(

h
(t)
v , h

(t)
w , evw

)

(2)h
(t+1)
v = Ut

(

h
(t)
v ,m

(t)
v

)

where Mt is the message function, Ut is the node update 

function, N (v) is the set of neighbours of node v in graph 

G , h
(t)
v  is the hidden state of node v at time t , and m

(t)
v  is 

a corresponding message vector. For each atom v , mes-

sages will be passed from its neighbours and aggregated 

as the message vector m
(t)
v  from its surrounding environ-

ment. Then the atom hidden state hv is updated by the 

message vector.

The formula for the readout function is shown in 

formula 3:

where ŷ is a resulting fixed-length feature vector gen-

erated for the graph, and R is a readout function that is 

invariant to node ordering, an important feature that 

allows the MPNN framework to be invariant to graph 

isomorphism. The graph feature vector ŷ then is passed 

to a fully connected layer to give prediction. All func-

tions Mt , Ut and R are neural networks and their weights 

are learned during training. While details are given in 

the following sections, we provide summary differences 

between our presented architectures in Tables 1, 2, 3 and 

4.

SELU message passing neural network (SELU‑MPNN)

Our first architecture involved the basic MPNN frame-

work, but with the use of the SELU activation function 

[39] instead of more traditional batch or layer norm 

functions. The SELU activation function is parameter-

ised to converge towards a zero mean and unit variance, 

and removed the need to experiment with different nor-

malisation approaches (batch, layer, tensor, etc.) explic-

itly. All other architectures we propose also use SELU 

as their activation functions. Whilst many of the graph 

neural network approaches presented by MolNet can be 

cast into the MPNN framework, we chose to use SELU-

MPNN as our baseline for our implementation of the 

framework due to the increased convergence speed that 

SELU offers [40]. This affords us consistent results within 

our framework for a less biased comparison to more 

basic methods.

(3)ŷ = R
({

h(K )
v |v ∈ G

})

Table 1 Core differences between model architectures

Model Hidden states Denotion of neighbourhood Message aggregation scheme

MPNN h
(t)
v

N(v)
m

(t)
v =

∑

w∈N(v)

Mt

(

h
(t)
v , h

(t)
w , evw

)

AMPNN h
(t)
v

N(v)
m

(t)
v = At

(

h
(t)
v , S

(t)
v

)

 , where
S
(t)
v =

{(

h
(t)
w , evw

)

|w ∈ N(v)

}

EMNN h
(t)
vw

{(k, v)|k ∈ N(v), k �= w}
m

(t)
vw = At

(

evw , S
(t)
vw

)

 , where
S
(t)
vw = {hkv |k ∈ N(v), k �= w}
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Apart from the different choice of activation function 

and hidden layers in the message function, the model we 

in our experiments denote SELU-MPNN shares great 

similarity with the original GGNN.

Attention message passing neural network (AMPNN)

Here we propose a further augmentation to the MPNN 

architecture by considering a more general form of the 

MPNN message summation step (Eq.  1). Using simple 

summation to convert an unknown cardinality set of 

vectors into a single vector is hypothetically an expres-

sive bottleneck. Potential better ways to implement such 

aggregation functions are currently being researched 

[41–44]. In the current study we extend previous 

MPNN models for graph-level prediction by employing 

a straight forward aggregation function with an atten-

tion mechanism. The attention mechanism has been 

proposed on image recognition and language translation 

problems amongst others [41, 45, 46] and have achieved 

better performance compared with normal deep neural 

network algorithms. We denote our specific implemen-

tation of the extended framework an Attention Message 

Passing Neural Network (AMPNN). Its most important 

predecessor is, as for our SELU-MPNN, the GGNN [28].

As mentioned earlier, the non-weighted summation in 

message passing function (Eq.  1) of the original MPNN 

constitutes a potential limitation. In the AMPNN frame-

work, a computationally heavier but potentially more 

expressive attention layer is proposed in the message 

passing stage to aggregate messages (Eq. 4). Equation 1 is 

replaced by the more general formula:

where At is an aggregate function invariant to the order-

ing of set members at step t. Just as for the original 

MPNN, the message to node v is computed based on its 

neighbours {w|w ∈ N (v)} , but the method of aggrega-

tion is not restricted to being a simple summation. The 

At here chosen to be able to investigate the architecture 

is that of the SELU-MPNN augmented with an attention 

mechanism. This is mainly inspired by [41] and essen-

tially eliminates the cardinality dimension of the set of 

neighbours by taking weighted sums. Formally, our layer 

is

Two feed forward neural network (FFNN) f
(evw)
NN  and 

g
(evw)
NN  are used for each edge type evw and give output 

vectors with the same length. The ⊙ and the fraction 

(4)m
(t)
v = At

(

h
(t)
v ,

{(

h
(t)
w , evw

)

|w ∈ N (v)

})

(5)

At

(

h(t)
v ,

{(

h(t)
w , evw

)})

=

∑

w∈N (v)

f
(evw)
NN

(

h(t)
w

)

⊙

exp
(

g
(evw)
NN

(

h
(t)
w

))

∑

w′∈N (v) exp
(

g
(evw′)
NN

(

h
(t)
w′

)) .

Table 2 Aggregation function special cases

Model Hidden states Aggregation form

MPNN h
(t)
v Mt

(

h
(t)
v , h

(t)
w , evw

)

= f
(evw )
NN

(

h
(t)
w

)

AMPNN h
(t)
v

At

(

h
(t)
v ,

{(

h
(t)
w , evw

)})

=
∑

w∈N(v)

f
(evw )
NN

(

h
(t)
w

)

⊙
exp

(

g
(evw )
NN

(

h
(t)
w

))

∑

w′∈N(v) exp

(

g
(evw′ )
NN

(

h
(t)

w′

)

)

EMNN h
(t)
vw At

(

e′
vw , S

(t)
vw

)

=
∑

x∈S′(t)
vw

fNN(x) ⊙
exp(gNN(x))

∑

x′∈S′
(t)
vw

exp(gNN(x′))

S
′(t)
vw = S

(t)
vw

⋃
{

evw
′
}

Table 3 Other model architecture differences

Model Pre‑message passing Update Pre‑readout

MPNN
AMPNN

NA
h

(t+1)
v = GRU

(

m
(t)
v , h

(t)
v

)

NA

EMNN
evw

′
= f

emb
NN

((

evw , h
(0)
v , h

(0)
w

))

h
(t+1)
vw = GRU

(

m
(t)
vw , h

(t)
vw

)

h
(K)
v =

∑

w∈N(v)

h
(K)
vw

Table 4 Model readout function and  post-readout 

function

Model Readout function Post‑readout

All R
({(

h
(K)
v , h

(0)
v

)})

=
∑

v∈G

pNN

(

h
(K)
v

)

⊙ σ

(

qNN

((

h
(K)
v , h

(0)
v

)))

FFNN
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bar represent Hadamard multiplication and Hadamard 

division, respectively. Note that because of the output 

dimensionality of g
(evw)
NN  , the softmax-like operation 

embodied in the fraction of Eq.  5 uses a multitude of 

weightings rather than just one.

The f
(evw)
NN  network turns the hidden state of atom into 

an embedding vector, while the g
(evw)
NN  network embeds 

the atom hidden states into weight vectors which are 

turned into weight coefficients after the softmax opera-

tion. Notably, the softmax operation is done along the 

cardinality dimension of the set of weight vectors. Thus, 

the contribution of one element in the embedding vec-

tor depends on equivalent element of weight vectors in 

the set.

In the node update stage, similar to the GGNN, the 

node hidden states are updated via a gated recurrent 

unit, where the m
(t)
v  is treated as the input and the cur-

rent node hidden state h
(t)
v  is used as the hidden state of 

the GRU 

At the initial state (t = 0), h
(0)
v  is the predefined atom 

feature vector. After the message passing and node 

updating steps are iterated for K steps, a readout func-

tion is applied to aggregate the hidden state of all the 

nodes in the graph into a graph level feature vector using 

two FFNNs. More precisely we use the GGNN readout 

function,

where pNN and qNN are FFNNs, the ⊙ denotes Hadamard 

multiplication, σ is the sigmoid function and the (,) of the 

right hand side denotes concatenation. The generated 

(6)h
(t+1)
v = GRU

(

h
(t)
v ,m

(t)
v

)

.

(7)

R
({(

h(K )
v , h(0)

v

)})

=

∑

v∈G

pNN

(

h(K )
v

)

⊙ σ

(

qNN

((

h(K )
v , h(0)

v

)))

graph feature vector is then passed into the final FFNN 

layer to make prediction.

Edge Memory Neural Network (EMNN)

The message passing concept in the MPNN framework 

computes the message to a centre atom by aggregating 

information from its neighbourhood atoms in a symmet-

ric fashion. Another MPNN-inspired model in our study 

has a hidden state in each directed edge (every bond has 

two directed edges in the directed graph) instead of in the 

nodes. In the directed graph, each bond (node–node con-

nection) has two directed edges, thus two hidden states. 

The hidden state of a directed edge is updated based on 

hidden states of edges whose heads coincide with its tail 

(Fig. 1). We call this model an Edge Memory Neural Net-

work (EMNN). In the resulting message passing step, the 

update of a hidden state has a corresponding direction.

This model shares underlying principles with the 

D-MPNN architecture proposed by Yang et  al. [35] 

which also uses directed edges to improve MPNN per-

formance. Their proposed model also injects additional 

chemical descriptor information alongside the FFNN 

after the message passing stage. Another notable dif-

ference between these architectures is our implemen-

tation of the afore-mentioned attention mechanism 

in the aggregation function. We include the D-MPNN 

model in our result and discussion to compare imple-

mentations and contrast the performance benefits of 

additional descriptor information, as has been explored 

in other literature [47]. We refer to their manu-

script for further details on their implementation and 

architecture.

One hypothetical advantage compared to MPNN is 

explained in the following. Consider a small graph of 

three nodes A, B and C connected as A–B–C, as illus-

trated on the right-hand side of Fig.  1. If information 

passage from A to C is relevant to the task, two message 

passes are necessary with conventional MPNN. In the 

first pass, information is passed from A to B, as desired. 

However, information is also passed from C to B, so that 

part of B’s memory is being occupied with information 

that C already has. This back-and-forth passing of infor-

mation happening in an MPNN hypothetically dilutes the 

useful information content in the hidden state of node B. 

When hidden states instead reside in the directed edges 

as per EMNN, this cannot happen. The closest thing cor-

responding to a hidden state in B is the hidden states in 

the edges 
−→

AB and 
−→

CB . The update of 
−→

BC uses information 

from 
−→

AB , but not from 
−→

CB.

As shown in Fig. 1, the flow of messages in each edge 

is directional where the message flows from a node (tail 

node) to another node (head node). Formally, the set of 

Fig. 1 The message passing from directed neighbouring edges to 
another edge in EMNN. Blue and green dots represent each directed 
hidden state for edges. Each coloured arrow is used to represent a 
respective message pass within the graph—purple represents the 
transition from one arbitrary direction to the other when the graph 
branches
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edge hidden states taken into account when updating 

edge (v,w) of the directed graph G = (V ,E) is

In the EMNN, before message passing takes place, the 

two node features are embedded into an edge feature by 

feeding a concatenation of the original edge and node 

feature vectors through a FFNN f emb
NN ,

At the initial state (t = 0) , evw , h
(0)
v  are the raw bond fea-

ture vector and atom feature vector respectively and (,) 

refers to the concatenation operation.

The edge hidden state h
(t)
vw of (v,w) at time t is updated 

according to Eqs. 8–10:

Note that each directed edge has both a static edge fea-

ture evw
′ and the time-mutated edge state h

(t)
vw contribut-

ing. h
(0)
vw is instantiated as a vector of zeros. One choice of 

aggregation function At is

m
(t)
vw is the message for edge (v,w) at iteration t . Ae

t is an 

attention based aggregation function similar to the one 

used in the AMPNN. S′(t)
vw means all the edges involving 

node v including the edge (v,w) itself. Equation 10 is the 

update of edge (v,w) using a GRU unit.

After K  message passing iterations, a node hidden state 

for each node is taken as the sum of the edge hidden state 

of edges that the node is end to,

This is done to be able to utilize the same readout func-

tions as seen effective for the MPNNs. The readout func-

tion for EMNN is the same as in AMPNN (Eq. 7).

S
(t)
vw =

{

hkv|k ∈ N (v), k �= w
}

.

e′vw = f emb
NN

((

evw , h
(0)
v , h(0)

w

))

(8)















m
(t)
vw = At

�

evw
′, S

(t)
vw

�

h
(t+1)
vw = Ut

�

h
(t)
vw ,m

(t)
vw

�

.

(9)

Ae
t

(

e′vw , S
(t)
vw

)

=

∑

x∈S′
(t)
vw

fNN (x) ⊙
exp

(

gNN (x)
)

∑

x′∈S′
(t)
vw
exp

(

gNN (x′)
)

where S′(t)
vw = S(t)

vw ∪
{

e′vw
}

(10)h
(t+1)
vw = GRU

(

h
(t)
vw ,m

(t)
vw

)

h
(K )
v =

∑

w∈N (v)

h
(K )
vw

Summary of architectural differences

All models we present are available from our git reposi-

tory as abstract classes, and have been designed from the 

ground-up in the Pytorch [48] framework to allow modi-

fication at all points, and have been tested using CUDA 

libraries for GPU acceleration.

Bayesian optimisation

Bayesian Optimisation is a method for returning the 

next best expected value of an N-dimensional surface 

by utilising all available information, in contrast to local 

gradient or Hessian approximation techniques. Gauss-

ian processes are fit around datapoints as they become 

available, and by using suitable evaluator types, estimates 

of the next datapoints to be evaluated can be obtained, 

and a balance between surface exploration and locality 

Table 5 A list of  hyperparameters optimised for  each 

architecture type, and  the  domains over  which they were 

optimised

Square brackets indicate discrete domains

NA not applicable

Hyperparameter SELU‑MPNN AMPNN EMNN

Learn-rate {10−6
− 10

−4} {10−6
− 10

−4} {10−6
− 10

−4}

Message-size [10,16,25,40] [10,16,25,40] NA

Message-passes [1–10] [1–10] [1–8]

Msg-hidden-dim [50,85,150] [50,85,150] [50,85,150]

Gather-width [30,45,70,100] [30,45,70,100] [30,45,70,100]

Gather-emb-hidden-dim [15,26,45,80] [15,26,45,80] [15, 26, 45]

Gather-att-hidden-dim [15,26,45,80] [15,26,45,80] [15, 26, 45]

Out-hidden-dim [360,450,560] [360,450,560] [360,450,560]

Out-dropout-p {0.0–0.1} {0.0–0.1} {0.0–0.1}

Out-layer-shrinkage {0.2–0.6} {0.2–0.6} {0.2–0.6}

Att-hidden-dim NA [50,85,150] [50,85,150]

Edge-emb-hidden-dim NA NA [60,105,180]

Edge-embedding-size NA NA [30,50,80]

Table 6 The selection of  datasets on  which models were 

trained, and details pertaining to these sets

Dataset Tasks Type Compounds Split Metric

MUV 17 Classification 93,127 Random PRC-AUC 

HIV 1 Classification 41,913 Scaffold ROC-AUC 

BBBP 1 Classification 2053 Scaffold ROC-AUC 

Tox21 12 Classification 8014 Random ROC-AUC 

SIDER 27 Classification 1427 Random ROC-AUC 

QM8 12 Regression 21,786 Random MAE

ESOL 1 Regression 1128 Random RMSE

LIPO 1 Regression 4200 Random RMSE
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optimisation can be struck. We used Expected Improve-

ment as the acquisition function, and Local Penalisation 

[49] as the evaluator type in order to make batch predic-

tions and hence explore our hyperparameter surface in 

parallel. The hyperparameters used in the NN were tuned 

using the Bayesian optimization package GPyOpt [50].

The hyperparameters searched in Bayesian optimiza-

tion and their constrained ranges are listed in Table  5. 

Due to architectural differences and an increased number 

of parameters, the optimisation range for the EMNN was 

slightly tightened.

Datasets

We used a selection of 8 datasets presented in the Mol-

eculeNet (MolNet) [30] benchmarking paper to evalu-

ate the networks. Datasets (shown in Table 6) were split 

according to the methods described in the MolNet paper. 

Datasets were split either randomly, or by Bemis-Murcko 

scaffold [51]. In the case of randomly split sets, three sets 

were produced, split by fixed random seeds. Each data-

set was split into train/test/validation sets in the ratio 

80/10/10 as per the MolNet procedure. Optimal hyper-

parameters were determined based on their performance 

on the validation set of the primary split. Once opti-

mal hyperparameters were selected three models were 

trained, one for each split, and the test scores for the 

best validation set epoch were averaged and the standard 

deviation calculated. In the case of scaffold splitting, test 

runs were still performed three times, and variation in 

the runs is the result of randomly initiated weights and 

biases. Each task in each dataset was normalised prior 

to training, and the results were transformed back after 

being passed through the model. Normalisation was done 

the same way as MolNet, with the notable exception of 

QM8.1 The node features generated from the datasets 

were: Atom Type, Atom Degree, Implicit Valence, Formal 

Charge, Number of Radical Electrons, Hybridization (SP, 

SP2, SP3, SP3D, SP3D2), Aromaticity, and Total Num-

ber of Hydrogens. These features were generated as per 

the MolNet Deepchem functions. For edge features, the 

bond types were limited to single bonds, double bonds, 

triple bonds and aromatic bonds.

The QM8 dataset [52] contains electronic spectra cal-

culated from coupled-cluster (CC2) and TD-DFT data 

on synthetically feasible small organic molecules. The 

ESOL [53] dataset comprises aqueous solubility values 

for small molecules, “medium” pesticide molecules, and 

large proprietary compounds from in-house Syngenta 

measurements. The LIPO dataset comprises lipophilic-

ity data. The MUV dataset [54] contains PubChem bio-

activity data specially selected and arranged by refined 

nearest-neighbour analysis for benchmarking virtual 

screening approaches. The HIV dataset [55] comprises 

classification data for compound anti-HIV activity. The 

BBBP dataset [56] contains data regarding compound 

ability to penetrate the blood–brain barrier. The Tox21 

dataset [57] was released as a data analysis challenge to 

predict compound toxicity against 12 biochemical path-

ways. The SIDER set [58] is a collection of drugs and 

corresponding potential adverse reactions grouped fol-

lowing MedDRA classifications [59] according to previ-

ous usage [60].

Preprocessing

Datasets were used both directly as provided from the 

MolNet repository without any preprocessing, and with 

some preprocessing procedure. Dataset preprocessing 

constituted transformation of the given SMILES string 

to that of the standardised charge-parent molecule, and 

reintroduction of ‘missing value’ labels where appropriate 

in multitask sets, which we refer to as SMD (Standardised 

Missing Data) preprocessing (Fig. 2). Charge-parent frag-

mentation was performed using the MolVS standardizer 

[61], which returned the uncharged version of the largest 

organic covalent unit in the molecule or complex. In the 

original datasets, these values were imputed as inactive 

as per previous literature. The reintroduction of ‘missing 

value’ labels allows the use of a masking loss function that 

operates over the set [Active, Inactive, Missing] and does 

not include missing data in the loss calculation. This pre-

vents backpropagation of molecule-target information in 

multitask datasets when it is not available.

Results
We present our results as a comparison against the Mol-

eculeNet paper [30], showing test set performances and 

relative test set errors to the best reported graph-based 

MoleculeNet architecture, as well as other classical 

machine learning models. We show our architectures 

(SELU-MPNN, AMPNN and EMNN models) for both 

the unaltered and for the SMD preprocessed data, com-

pared against the literature values for the original data-

sets to allow for fair benchmarking comparison for both 

the methods and for the preprocessing approaches. Com-

plete tables are available in Additional file  1, alongside 

model performance information and statistical tests. 

The results from the literature for other machine learn-

ing methods were also reported to have hyperparameters 

optimised by the authors, using Bayesian Optimisation 

where applicable, so should present a fair comparison. 

Some techniques are missing for some larger datasets; 

1 In other regression datasets, the dataset was normalised, and then split into 

train/test/validation splits, whereas QM8 was split and then each split nor-

malised. We chose to normalise QM8 in the same manner as the other regres-

sion sets, splitting after normalising over the whole set.
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this is because they were not reported in the original 

publications, presumably due to computational limits. 

Our runs were performed only for the models we pre-

sent, and these are compared against values taken from 

literature benchmark studies for other models.

Performance in terms of AUC in classification on the 

original dataset was on par with state of the art for the 

majority of models, with the exception of the MUV set 

(Fig.  3), where a modest increase in performance was 

observed relative to MolNet. However, this increase was 

not significant compared to Support-Vector Machines, 

which had the highest performance by a large margin. 

The AMPNN architecture was the best of our presented 

approaches, with the third highest overall performance 

Fig. 2 Examples of ionic complexes found in the datasets, and their charge-parent standardized counterparts, as used in the SMD datasets

Fig. 3 Predictive performances of machine-learning approaches relative to the best MolNet graph model. With the exception of MUV, the metric 
used is ROC-AUC. The higher the y-axis is, the better the model performs
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on the MUV dataset. The D-MPNN showed a mild per-

formance increase over our architectures for sets other 

than MUV.

In terms of regression on the original datasets (Fig. 4), 

the AMPNN was also one of the best performing archi-

tectures we present, achieving the lowest error with 

smallest variance on two of the three sets, covering single 

and multi-task problems. Performance on the QM8 and 

ESOL datasets over our three presented architectures 

was more-or-less on par with MolNet, performing bet-

ter than Random Forest and XGBoost models, and being 

beaten by the D-MPNN consistently. However, on the 

lipophilicity set, all our presented architectures achieved 

a lower error than all other presented approaches except-

ing the D-MPNN, which was rivalled by the AMPNN 

implementation. The Random Forest and XGBoost 

results are to be expected, as these approaches are much 

more suited to classification than regression.

Performance in classification on the SMD preprocessed 

dataset was also on par with state of the art for the major-

ity of models, again with the exception of the MUV set 

(Fig. 5). Little change was observed between the preproc-

essing techniques for the rest of the datasets, with minor 

improvement observed in the Tox21 models, a couple 

of the SIDER and HIV models, and one BBBP model. 

However, the MUV performance was considerably 

increased, with two of our architectures (SELU-MPNN 

and AMPNN) performing as well as SVM model, at three 

times the predictive power of the presented MolNet 

architecture. The EMNN network was the best perform-

ing architecture, beating SVM models and presenting a 

predictive power on average over four times higher than 

MoleculeNet original performance, with only a slightly 

higher variance.

Regression on the SMD datasets (Fig.  6) also showed 

a little improvement overall versus the original data-

sets. The AMPNN was again one of the best performing 

architectures we present, achieving the lowest error with 

the smallest variance of the SMD models on the same 

two of the three sets as before, and showing a marked 

improvement on the ESOL dataset with this preproc-

essing approach. The lipophilicity set also showed lower 

overall error with these approaches, though the improve-

ment is minor compared to the improved performance in 

classification.

Overall, we have demonstrated increased predictive 

power for some of our architectures dependent on task 

modelled. We have also demonstrated an improved 

dataset preprocessing technique that can increase the 

Fig. 4 Regression errors of machine-learning approaches relative to the best MolNet graph model. Metrics are specified for each dataset. The lower 
the y-axis is, the better the model performs
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modelling capabilities of our networks under certain 

circumstances.

Discussion
Datasets

Classification

The reintroduction of missing data labels is likely the 

cause of the increased MUV performance over other 

methods. As shown in Table 7 and Fig. 7, approximately 

84% of the data points in the MUV multitask set are unla-

belled. In the original datasets, these points are imputed 

as inactives, which may introduce a large erroneous class 

imbalance to the dataset and affect performance.

When treating missing data as inactive in the origi-

nal datasets, actives represent only 0.03% of the data-

set, whereas ignoring missing data as with SMD sets 

the actives represent approximately 0.2% of the dataset, 

nearly an order of magnitude more. Heavily unbalanced 

datasets are notoriously tricky to train models on, and 

a reduction of this bias may explain the performance 

improvements of SMD processed data over the original 

MUV dataset.

As the SMD MUV dataset greatly outperformed other 

deep-learning approaches, we present a deeper analy-

sis on this set. Per-task results (Fig.  8) ranged between 

minimal learned knowledge and well-learned knowl-

edge when averaged across the three runs, and were on 

the whole very consistent between architectures. Tasks 

548 and 644, and tasks 832, 846 and 852 are of particular 

note: These correspond to Kinase Inhibitors and Protease 

Inhibitors respectively, and are our highest-performing 

tasks with the exception of task 712.

An analysis of these tasks gave a greater insight into 

one reason for the performance boost. As shown in 

Fig. 9, these tasks had a much greater activity correlation 

than others, i.e. ligands observed to be active or inac-

tive for these tasks were likely to share similar activity 

with the others. This allows the network to much more 

Fig. 5 Predictive performances of our machine-learning approaches on the SMD sets relative to MolNet and the respective original models. With 
the exception of MUV, the metric used is ROC-AUC. The higher the y-axis is, the better the model performs

Table 7 Number of  Actives, inactives, and  missing 

datapoints in the classification sets used in the study

Classification 
set

Number 
of actives

Missing 
datapoints

Number 
of inactives

MUV 398 1,066,216 199,359

HIV 1232 0 31,669

BBBP 1341 0 290

Tox21 4617 12,821 57,730

SIDER 17,440 0 13,367
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effectively pick up on common structural features and 

learn them as reported in other studies [62, 63]. However, 

in the case where missing data is imputed as inactive, 

these correlations become more difficult to learn, as 

negative counterexamples examples are artificially intro-

duced. Other tasks, such as the PPIc or GPCR tasks, are 

Fig. 6 Regression errors of our machine-learning approaches for the SMD sets relative to MolNet and the respective original models. Metrics are 
specified for each dataset. The lower the y-axis is, the better the model performs

Table 8 Task Information for the MUV dataset

Task label Target Mode of interaction Target class Assay type

MUV-466 S1P1 rec. Agonists GPCR Reporter Gene

MUV-548 PKA Inhibitors Kinase Enzyme

MUV-600 SF1 Inhibitors Nuclear Receptor Reporter Gene

MUV-644 Rho-Kinase2 Inhibitors Kinase Enzyme

MUV-652 HIV RT-RNase Inhibitors RNase Enzyme

MUV-689 Eph rec. A4 Inhibitors Rec. Tyr. Kinase Enzyme

MUV-692 SF1 Agonists Nuclear Receptor Reporter Gene

MUV-712 HSP 90 Inhibitors Chaperone Enzyme

MUV-713 ER-a-coact. bind. Inhibitors PPIc Enzyme

MUV-733 ER-β-coact. bind. Inhibitors PPIc Enzyme

MUV-737 ER-a-coact. bind. Potentiators PPIc Enzyme

MUV-810 FAK Inhibitors Kinase Enzyme

MUV-832 Cathepsin G Inhibitors Protease Enzyme

MUV-846 FXIa Inhibitors Protease Enzyme

MUV-852 FXIIa Inhibitors Protease Enzyme

MUV-858 D1 rec. Allosteric modulators GPCR Reporter Gene

MUV-859 M1 rec. Allosteric inhibitors GPCR Reporter Gene
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Fig. 7 Ratio of actives, inactives, and missing data for each task in the MUV dataset. Actives represent such a small proportion that they are not 
visible in this diagram

Fig. 8 Per-task results for the SMD MUV test set. Translations between task label and target information are available in Table 8
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more challenging to learn; by the nature of the target, 

the structural diversity of the actives compounded with 

the sparsity of the data, the class imbalances and the 

lack of transfer learning examples, results in very low 

performance.

The other tasks display generally poor activity, or occa-

sional performance peaks. Due to the extremely limited 

number of active compounds per task in the test-set, 

these performance peaks are expected to be sporadic 

and not true signal. Indeed, for task MUV-733, there 

were no active compounds in the test set for two of the 

three splits2 as split by MolNet procedure. As a method 

for improving performance, for future work we suggest 

encoding structural features of the target alongside the 

ligand may be one approach that could be used when cor-

related target information is not available.

The imputation of missing data as inactives in smaller 

sets with fewer missing labels has a much smaller impact. 

Tox21, with only approximately 17% missing data, has a 

barely perceptible change in active/inactive ratios when 

missing data is ignored—changing from 6.1% active to 

7.4% (Additional file  1). The performance increase here 

is therefore more likely to be due to false imputation of 

inactives in the dataset disrupting the learning process 

and making learning molecular features harder, than it is 

to be from a confusion of transfer learning examples.

The SIDER (no missing labels) performance demon-

strates our algorithms are remarkably resilient to mul-

tiple unbalanced sets in a multitask setting, performing 

on par with most other contemporary machine learning 

algorithms (Additional file  1). They maintain an advan-

tage even against algorithms that must be trained as mul-

tiple single-task models instead of a singular multitask 

algorithm. The performance increase between the Origi-

nal and SMD datasets was found to be negligible.

The networks perform on-par with other approaches 

for single-task classification—the HIV and BBBP clas-

sification sets. During the dataset analysis we observed 

that some compounds exist in counterionic forms in 

some datasets, which may not be optimal for ADMETox 

modelling: the charge-parent aspect of the SMD pre-

processing was introduced to convert molecules to more 

pharmacologically-relevant forms as they may exist in 

the body. This was naïvely done by removing complexes 

from the datasets, notably ionic complexes such as those 

shown in Fig.  2, under the assumption that the largest 

fragment contributes the effect, and to ensure the con-

sistency of charge representation. Further, there was an 

initial concern that, as ionic bonds are not modelled in 

the models’ edge types, information would not be able to 

propagate between the disjoint components of the com-

plex, and smaller components such as the sodium ions 

would act as artefacts in the graph and introduce noise. 

However, the lack of performance difference between 

the two suggests that the readout function bridged these 

gaps successfully, and the network can be robust against 

multiple fragments. As well as HIV and BBBP, this is 

Fig. 9 Correlation heatmaps between tasks for the training and test sets. These have been averaged across all splits. White indicates no data 
available for correlation (at least one missing datapoint for all pairs)

2 In future work, to mitigate these issues in highly sparse, highly unbalanced 

datasets, we encourage the use of alternative splitting approaches such as 

stratified sampling. Alternatively, if random sampling is preferring, repeat 

selection of seeds until at least one active is available for each task is recom-

mended.
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supported by the negligible performance difference 

between the SIDER models of the two sets.

Regression

The models performed in general on-par with existing 

models in regression modelling, with a significant reduc-

tion in error when working on the LIPO dataset. The 

models seem robust against various distributions of val-

ues, with ESOL and LIPO datasets resembling skewed 

normal distributions and QM8 resembling a much more 

atypical distribution, with most values centred in a singu-

lar narrow range close to zero (Fig. 10).

It is not known whether improvement can be further 

gained in some of these modelled tasks. The ESOL sol-

ubility models, for example, are close to the estimated 

experimental error of the original data. The estimated 

experimental error of drug-like compound solubility 

is usually cited as an RMSE around 0.6 logS units [64]. 

Simpler molecules nevertheless can be modelled with 

a much lower error around 0.3–0.4 log units [65]—this 

same study further suggests that the limit of ca. 0.6 log 

units for drug-like compounds may not be due to experi-

mental or data curation issues, but a limit of QSPR mod-

elling as applied to these databases. The creation of large 

datasets suitable for training complex models with lower 

experimental error is a nontrivial task, as solubility is a 

difficult property to measure correctly in a high through-

put scenario: The ‘gold-standard’ measure for solubility—

the shake-flask method, is a comparatively costly and 

time-consuming approach.

In contrast to the estimation of error for experimental 

physical chemical properties, other datasets can be diffi-

cult to give a lower bound of error, for example the QM8 

dataset. DFT is in theory exact, however in practice a 

small but important energy component must be approxi-

mated. Though modern approximations provide useful 

Fig. 10 Distribution of property values from the ESOL, LIPO and QM8 regression datasets after normalisation by mean and standard deviation
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accuracy for practical purposes, errors are not strictly 

variational, so systematic improvement is problematic. 

Compounding this, practical implementations introduce 

other errors (from e.g. choice of basis set, grid resolu-

tion), and as such quantifying the limit of how well neural 

networks can model these properties is difficult.

Hyperparameters

Due to the extensive hyperparameter optimisation that 

was performed during the training process, we analysed 

the distributions of hyperparameters to see if there were 

any tendencies towards optimal configurations for future 

work. Of the optimised hyperparameters (Table  5) we 

found that the shrinkage rate of the output fully-con-

nected layer, the learning rate, the number of message 

passing iterations, and the output layer dropout rate were 

of note (Fig. 11). Other hyperparameters did not display 

any notable trends.

We found that generally a higher output layer shrink-

age rate and a higher learning rate was more optimal for 

network performance. The learning rate was often hitting 

the maximum allowed value of the specified optimisation 

domain, which may indicate that performance could be 

further improved if this limit was expanded, pushing the 

distribution towards a more uniform coverage.

Conversely, dropout was observed to be generally lower 

in optimal hyperparameters across model training. Whilst 

this may generally be undesirable as it can lead to model 

overfitting, the evaluation of the model in a train/test/vali-

dation splitting approach should penalise any tendencies to 

overfit. This would imply that other aspects of the MPNN 

architecture act as feature regularisation and prevent this, 

though this cannot be stated conclusively. Figures supplied 

in the ESI suggest that no notable overfitting was observed 

during training, which may give the approach inherent 

advantages over machine learning methods that are tradi-

tionally more prone to overfitting. The number of message 

Fig. 11 Aggregate distributions of hyperparameters observed over all tasks and architectures on the SMD datasets after optimisation
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passes did not show any clear trend, and can be assumed to 

be heavily dependent on task and other hyperparameters. 

Some tasks such as ESOL and Tox21 however showed a 

small bias towards fewer message passing iterations, which 

makes sense as features such as hydrogen bond donors/

acceptors, toxicophores etc. can be very localised and large 

contributing factors to these properties.

Conclusion
We have introduced two augmentations to the MPNN 

framework that have shown performance on-par or 

greater than existing benchmarking models. One is the 

Attention MPNN, and the other the Edge Memory NN, 

both of which performed competitively with state of the 

art machine learning techniques of both traditional and 

deep learning varieties. The introduction of the attention 

scheme to our baseline MPNN framework added mini-

mal model overhead, and offers no disadvantages for its 

use compared to the baseline model, in situations where 

it is effective. The EMNN had computational cost disad-

vantages, however, its use may be justified in  situations 

where it offers significant performance increases: We 

demonstrate that our algorithms can outperform state-

of-the-art models in virtual screening settings, notably 

demonstrated on sparse multi-task datasets, even without 

the inclusion of target structural information. Further, the 

inclusion of an attention mechanism may aid in model 

interpretability, as explored in other literature [66]. We 

were fairly consistently outperformed by the analogous 

D-MPNN architecture on other tasks, however we noted 

generally comparable performance without the inclusion 

of additional chemical descriptor information, using only 

low-level chemical graph data. We have analysed different 

approaches to multitask modelling and dataset preproc-

essing that have demonstrated increased performance 

under specific conditions, most notably presenting that 

the graceful handling of missing data can contribute sig-

nificantly to model performance in highly sparse datasets. 

Further, we have performed an extensive hyperparameter 

optimisation over many model parameters and provided 

a summary analysis of some more common hyperparam-

eters, indicating potential starting values for future work.

Supplementary information
Supplementary information accompanies this paper at https ://doi.
org/10.1186/s1332 1-019-0407-y.

Additional file 1. Additional tables and figures.

Acknowledgements

We would like to thank Zhenqin Wu for assistance in reproducing the MolNet 
datasets for use in this publication, and Dr. Igor Tetko for comments that 
improved the manuscript.

Authors’ contributions

MW assisted with code development, experiment design and analysis, and 
wrote the manuscript. EL assisted heavily with the development of the 
codebase and the initial augmentations, and co-authored the manuscript. HC 
helped with project analysis and cosupervised the project with OE. All authors 
read and approved the final manuscript.

Funding

The project leading to this article received funding from the European Union’s 
Horizon 2020 research and innovation program under the Marie Skłodowska‐

Curie Grant Agreement No. 676434, “Big Data in Chemistry” (“BIGCHEM”, 
http://bigch em.eu). The article reflects only the authors’ view, and neither the 
European Commission nor the Research Executive Agency are responsible for 
any use that may be made of the information it contains.

Availability of data and materials

The code we used in this paper is published and available at https ://githu 
b.com/edvar dlind elof/graph -neura l-netwo rks-for-drug-disco very.

Competing interests

The authors declare that they have no competing interests.

Author details
1 Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden. 
2 Centre of Chemistry and Chemical Biology, Guangzhou Regenerative Medi-
cine and Health-Guangdong Laboratory, 190 Kai Yuan Avenue, Science Park, 
Guangzhou, China. 

Received: 17 September 2019   Accepted: 25 December 2019

References

 1. Flynn GL (1980) Substituent constants for correlation analysis in chemis-
try and biology. J Pharm Sci. https ://doi.org/10.1002/jps.26006 90938 

 2. Ruecker G, Ruecker C (1993) Counts of all walks as atomic and molecular 
descriptors. J Chem Inf Comput Sci 33(5):683–695

 3. Mauri A, Consonni V, Pavan M, Todeschini R (2006) Dragon software: an 
easy approach to molecular descriptor calculations. Match 56(2):237–248

 4. Nettles JH et al (2007) Flexible 3D pharmacophores as descriptors of 
dynamic biological space. J Mol Graph Model 26(3):622–633. https ://doi.
org/10.1016/j.jmgm.2007.02.005

 5. Todeschini R, Consonni V (2000) Handbook of molecular descriptors. 
Wiley VCH, Weinheim

 6. Todeschini R, Lasagni M, Marengo E (1994) New molecular descriptors for 
2D and 3D structures. Theory. J Chemom 8(4):263–272

 7. Kriege NM, Johansson FD, Morris C (2019) A Survey on Graph Kernels. 
ArXiv190311835 Cs Stat

 8. Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf 
Model 50(5):742–754. https ://doi.org/10.1021/ci100 050t

 9. Chen H, Engkvist O, Wang Y, Olivecrona M, Blaschke T (2018) The rise of 
deep learning in drug discovery. Drug Discov Today 23(6):1241–1250. 
https ://doi.org/10.1016/j.drudi s.2018.01.039

 10. Baskin II, Winkler D, Tetko IV (2016) A renaissance of neural networks 
in drug discovery. Expert Opin Drug Discov 11(8):785–795. https ://doi.
org/10.1080/17460 441.2016.12012 62

 11. Gori M, Monfardini G, Scarselli F (2005) A new model for learning in 
graph domains. In: Proceedings. 2005 IEEE international joint conference 
on neural networks, vol. 2, pp 729–734 https ://doi.org/10.1109/ijcnn 
.2005.15559 42

 12. Micheli A (2009) Neural network for graphs: a contextual constructive 
approach. IEEE Trans Neural Netw 20(3):498–511. https ://doi.org/10.1109/
TNN.2008.20103 50

 13. Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G (2009) The 
graph neural network model. IEEE Trans Neural Netw 20(1):61–80. https ://
doi.org/10.1109/TNN.2008.20056 05

 14. Bruna J, Zaremba W, Szlam A, LeCun Y (2013) Spectral networks and 
locally connected networks on graphs. ArXiv13126203 Cs

https://doi.org/10.1186/s13321-019-0407-y
https://doi.org/10.1186/s13321-019-0407-y
http://bigchem.eu
https://github.com/edvardlindelof/graph-neural-networks-for-drug-discovery
https://github.com/edvardlindelof/graph-neural-networks-for-drug-discovery
https://doi.org/10.1002/jps.2600690938
https://doi.org/10.1016/j.jmgm.2007.02.005
https://doi.org/10.1016/j.jmgm.2007.02.005
https://doi.org/10.1021/ci100050t
https://doi.org/10.1016/j.drudis.2018.01.039
https://doi.org/10.1080/17460441.2016.1201262
https://doi.org/10.1080/17460441.2016.1201262
https://doi.org/10.1109/ijcnn.2005.1555942
https://doi.org/10.1109/ijcnn.2005.1555942
https://doi.org/10.1109/TNN.2008.2010350
https://doi.org/10.1109/TNN.2008.2010350
https://doi.org/10.1109/TNN.2008.2005605
https://doi.org/10.1109/TNN.2008.2005605


Page 17 of 18Withnall et al. J Cheminform            (2020) 12:1 

 15. Lee JB, Rossi RA, Kim S, Ahmed NK, Koh E (2018) Attention models in 
graphs: a survey. ArXiv180707984 Cs

 16. Cao S, Lu W, Xu Q (2016) Deep neural networks for learning graph repre-
sentations. In: Thirtieth AAAI conference on artificial intelligence

 17. Wang D, Cui P, Zhu W (2016) Structural deep network embedding. In: 
Proceedings of the 22Nd ACM SIGKDD international conference on 
knowledge discovery and data mining, New York, pp 1225–1234. https ://
doi.org/10.1145/29396 72.29397 53

 18. Pan S, Hu R, Long G, Jiang J, Yao L, Zhang C (2018) Adversarially regular-
ized graph Autoencoder for graph embedding. ArXiv180204407 Cs Stat

 19. Yu W, et al. (2018) Learning Deep Network Representations with Adver-
sarially Regularized Autoencoders. In: Proceedings of the 24th ACM 
SIGKDD international conference on knowledge discovery & data mining, 
New York, pp 2663–2671. https ://doi.org/10.1145/32198 19.32200 00

 20. Yan S, Xiong Y, Lin D. Spatial temporal graph convolutional networks for 
skeleton-based action recognition. In: Thirty-second AAAI conference on 
artificial intelligence

 21. Li Y, Yu R, Shahabi C, Liu Y (2017) Diffusion convolutional recurrent neural 
network: data-driven traffic forecasting. ArXiv170701926 Cs Stat

 22. Jain A, Zamir AR, Savarese S, Saxena A (2016) Structural-RNN: deep learn-
ing on spatio-temporal graphs presented at the Proceedings of the IEEE 
conference on computer vision and pattern recognition. pp 5308–5317

 23. Yu B, Yin H, Zhu Z (2018) Spatio-temporal graph convolutional networks: a 
deep learning framework for traffic forecasting. In: Proc. Twenty-Seventh Int 
Jt Conf Artif Intell. pp 3634–3640. https ://doi.org/10.24963 /ijcai .2018/505

 24. Duvenaud DK et al (2015) Convolutional networks on graphs for learning 
molecular fingerprints. In: Cortes C, Lawrence ND, Lee DD, Sugiyama M, 
Garnett R (eds) Advances in neural information processing systems. Cur-
ran Associates Inc, New York, pp 2224–2232

 25. Kearnes S, McCloskey K, Berndl M, Pande V, Riley P (2016) Molecular graph 
convolutions: moving beyond fingerprints. J Comput Aided Mol Des 
30(8):595–608. https ://doi.org/10.1007/s1082 2-016-9938-8

 26. Coley CW, Barzilay R, Green WH, Jaakkola TS, Jensen KF (2017) Convolu-
tional embedding of attributed molecular graphs for physical property 
prediction. Journal of chemical information and modeling. 57(8):1757–
1772. https ://doi.org/10.1021/acs.jcim.6b006 01

 27. Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE (2017) Neural Mes-
sage Passing for Quantum Chemistry. ArXiv170401212 Cs

 28. Li Y, Tarlow D, Brockschmidt M, Zemel R (2015) Gated Graph Sequence 
Neural Networks. ArXiv151105493 Cs Stat

 29. Kipf TN, Welling M (2016) Semi-supervised classification with graph 
convolutional networks. ArXiv160902907 Cs Stat

 30. Wu Z et al (2018) MoleculeNet: a benchmark for molecular machine 
learning. Chem Sci 9(2):513–530. https ://doi.org/10.1039/C7SC0 2664A 

 31. Bologa C, Allu TK, Olah M, Kappler MA, Oprea TI (2005) Descriptor colli-
sion and confusion: toward the design of descriptors to mask chemical 
structures. J Comput Aided Mol Des 19(9–10):625–635. https ://doi.
org/10.1007/s1082 2-005-9020-4

 32. Filimonov D, Poroikov V (2005) Why relevant chemical information cannot 
be exchanged without disclosing structures. J Comput Aided Mol Des 
19(9–10):705–713. https ://doi.org/10.1007/s1082 2-005-9014-2

 33. Tetko IV, Abagyan R, Oprea TI (2005) Surrogate data—a secure way to 
share corporate data. J Comput Aided Mol Des 19(9–10):749–764. https 
://doi.org/10.1007/s1082 2-005-9013-3

 34. Withnall M, Lindelöf E, Engkvist O, Chen H (2019) Attention and edge 
memory convolution for bioactivity prediction. In: Artificial neural 
networks and machine learning—ICANN 2019: Workshop and Special 
Sessions. Springer, Cham. pp 752–757. https ://doi.org/10.1007/978-3-
030-30493 -5_69

 35. Yang K, et al (2019) Are learned molecular representations ready for 
prime time?,” ArXiv190401561 Cs Stat

 36. Lindelöf (2019) Deep Learning for Drug Discovery, Property Prediction with 
Neural Networks on Raw Molecular Graphs,” Masters Thesis, Chalmers

 37. Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional neural 
networks on graphs with fast localized spectral filtering. In: Lee DD, Sugiy-
ama M, Luxburg UV, Guyon I, Garnett R (eds) Advances in neural informa-
tion processing systems. Curran Associates Inc, New York, pp 3844–3852

 38. Schütt KT, Arbabzadah F, Chmiela S, Müller KR, Tkatchenko A (2017) 
Quantum-chemical insights from deep tensor neural networks. Nat Com-
mun 8:13890. https ://doi.org/10.1038/ncomm s1389 0

 39. Klambauer G, Unterthiner T, Mayr A, Hochreiter S (2017) Self-normalizing 
neural networks. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, 
Vishwanathan S, Garnett R (eds) Advances in neural information process-
ing systems. Curran Associates Inc, New York, pp 971–980

 40. “Deepchem/contrib/mpnn at master deepchem/deepchem GitHub.” 
https ://githu b.com/deepc hem/deepc hem/tree/maste r/contr ib/mpnn. 
Accessed 12 Aug 2019

 41. Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y (2017) 
Graph attention networks. ArXiv171010903 Cs Stat

 42. Rezatofighi SH, et al.(2018) Deep Perm-Set Net: Learn to predict sets 
with unknown permutation and cardinality using deep neural networks. 
ArXiv180500613 Cs

 43. Zaheer M, Kottur S, Ravanbakhsh S, Poczos B, Salakhutdinov R, Smola A 
(2017) Deep Sets. ArXiv170306114 Cs Stat

 44. Ilse M, Tomczak JM, Welling M (2018) Attention-based deep multiple 
instance learning. ArXiv180204712 Cs Stat

 45. Liu Y, Sun C, Lin L, Wang X (2016) Learning natural language inference 
using bidirectional LSTM model and inner-attention. ArXiv160509090 Cs

 46. Fu J, Zheng H, Mei T (2017) Look closer to see better: recurrent attention 
convolutional neural network for fine-grained image recognition. In: 
Proceedings of the IEEE conference on computer vision and pattern 
recognition. p. 4438–4446

 47. Kimber TB, Engelke S, Tetko IV, Bruno E, Godin G (2018) Synergy effect 
between convolutional neural networks and the multiplicity of SMILES 
for improvement of molecular prediction. ArXiv181204439 Cs Stat

 48. Paszke A, et al. (2017) Automatic differentiation in PyTorch
 49. González J, Dai Z, Hennig P, Lawrence N (2015) Batch Bayesian optimiza-

tion via local penalization. ArXiv150508052 Stat

 50. González J (2016) Gpyopt: A bayesian optimization framework in python
 51. Bemis GW, Murcko MA (1996) The properties of known drugs. 1. Molecu-

lar frameworks. J Med Chem 39(15):2887–2893. https ://doi.org/10.1021/
jm960 2928

 52. Ramakrishnan R, Hartmann M, Tapavicza E, von Lilienfeld OA (2015) 
Electronic spectra from TDDFT and machine learning in chemical space. J 
Chem Phys 143(8):084111. https ://doi.org/10.1063/1.49287 57

 53. Delaney JS (2004) ESOL: estimating aqueous solubility directly from 
molecular structure. J Chem Inf Comput Sci 44(3):1000–1005. https ://doi.
org/10.1021/ci034 243x

 54. Rohrer SG, Baumann K (2009) Maximum unbiased validation (MUV) data 
sets for virtual screening based on PubChem bioactivity data. J Chem Inf 
Model 49(2):169–184. https ://doi.org/10.1021/ci800 2649

 55. AIDS Antiviral Screen Data - NCI DTP Data - National Cancer Insti-
tute - Confluence Wiki. https ://wiki.nci.nih.gov/displ ay/NCIDT Pdata /
AIDS+Antiv iral+Scree n+Data. Accessed 10 July 2019

 56. Martins IF, Teixeira AL, Pinheiro L, Falcao AO (2012) A Bayesian approach 
to in silico blood-brain barrier penetration modeling. J Chem Inf Model 
52(6):1686–1697. https ://doi.org/10.1021/ci300 124c

 57. “Tox21.” https ://tripo d.nih.gov/tox21 /chall enge/index .jsp. Accessed 10 
July 2019

 58. Kuhn M, Letunic I, Jensen LJ, Bork P (2016) The SIDER database of drugs 
and side effects. Nucleic Acids Res 44(D1):D1075–D1079. https ://doi.
org/10.1093/nar/gkv10 75

 59. “MedDRA |.” https ://www.meddr a.org/. Accessed 10 July 2019
 60. Altae-Tran H, Ramsundar B, Pappu AS, Pande V (2017) Low data drug 

discovery with one-shot learning. ACS Cent Sci 3(4):283–293. https ://doi.
org/10.1021/acsce ntsci .6b003 67

 61. Swain M (2018) MolVS: molecule validation and standardization
 62. Ishida F, Saji H, Maruya E, Furihata K (1991) Human platelet-specific 

antigen, Siba, is associated with the molecular weight polymorphism of 
glycoprotein Ib alpha. Blood 78(7):1722–1729

 63. Sosnin S, Vashurina M, Withnall M, Karpov P, Fedorov M, Tetko IV (2019) A 
survey of multi-task learning methods in chemoinformatics. Mol Inform 
38(4):e1800108. https ://doi.org/10.1002/minf.20180 0108

 64. Jorgensen WL, Duffy EM (2002) Prediction of drug solubility from struc-
ture. Adv Drug Deliv Rev 54(3):355–366. https ://doi.org/10.1016/S0169 
-409X(02)00008 -X

 65. Palmer DS, Mitchell JBO (2014) Is experimental data quality the limiting 
factor in predicting the aqueous solubility of druglike molecules? Mol 
Pharm 11(8):2962–2972. https ://doi.org/10.1021/mp500 103r

https://doi.org/10.1145/2939672.2939753
https://doi.org/10.1145/2939672.2939753
https://doi.org/10.1145/3219819.3220000
https://doi.org/10.24963/ijcai.2018/505
https://doi.org/10.1007/s10822-016-9938-8
https://doi.org/10.1021/acs.jcim.6b00601
https://doi.org/10.1039/C7SC02664A
https://doi.org/10.1007/s10822-005-9020-4
https://doi.org/10.1007/s10822-005-9020-4
https://doi.org/10.1007/s10822-005-9014-2
https://doi.org/10.1007/s10822-005-9013-3
https://doi.org/10.1007/s10822-005-9013-3
https://doi.org/10.1007/978-3-030-30493-5_69
https://doi.org/10.1007/978-3-030-30493-5_69
https://doi.org/10.1038/ncomms13890
https://github.com/deepchem/deepchem/tree/master/contrib/mpnn
https://doi.org/10.1021/jm9602928
https://doi.org/10.1021/jm9602928
https://doi.org/10.1063/1.4928757
https://doi.org/10.1021/ci034243x
https://doi.org/10.1021/ci034243x
https://doi.org/10.1021/ci8002649
https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS%2bAntiviral%2bScreen%2bData
https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS%2bAntiviral%2bScreen%2bData
https://doi.org/10.1021/ci300124c
https://tripod.nih.gov/tox21/challenge/index.jsp
https://doi.org/10.1093/nar/gkv1075
https://doi.org/10.1093/nar/gkv1075
https://www.meddra.org/
https://doi.org/10.1021/acscentsci.6b00367
https://doi.org/10.1021/acscentsci.6b00367
https://doi.org/10.1002/minf.201800108
https://doi.org/10.1016/S0169-409X(02)00008-X
https://doi.org/10.1016/S0169-409X(02)00008-X
https://doi.org/10.1021/mp500103r


Page 18 of 18Withnall et al. J Cheminform            (2020) 12:1 

•

 

fast, convenient online submission

 
•

  

thorough peer review by experienced researchers in your field

• 

 

rapid publication on acceptance

• 

 

support for research data, including large and complex data types

•

  

gold Open Access which fosters wider collaboration and increased citations 

 

maximum visibility for your research: over 100M website views per year •

  
At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research  ?  Choose BMC and benefit from: 

 66. Chen C, Hou J, Shi X, Yang H, Birchler JA, Cheng J (2019) Interpretable 
attention model in transcription factor binding site prediction with deep 
neural networks. bioRxiv, p 648691. https ://doi.org/10.1101/64869 1

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1101/648691

	Building attention and edge message passing neural networks for bioactivity and physical–chemical property prediction
	Abstract 
	Introduction
	Method
	Concepts of graphs
	Message passing neural network
	SELU message passing neural network (SELU-MPNN)
	Attention message passing neural network (AMPNN)
	Edge Memory Neural Network (EMNN)
	Summary of architectural differences

	Bayesian optimisation
	Datasets
	Preprocessing

	Results
	Discussion
	Datasets
	Classification
	Regression

	Hyperparameters

	Conclusion
	Acknowledgements
	References


