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ABSTRACT

We introduce building blocks from which a large variety of
latent variable models can be built. The blocks include con-
tinuous and discrete variables, summation, addition, non-
linearity and switching. Ensemble learning provides a cost
function which can be used for updating the variables as
well as optimising the model structure. The blocks are de-
signed to fit together and to yield efficient update rules. Em-
phasis is on local computation which results in linear com-
putational complexity. We propose and test a structure with
a hierachical nonlinear model for variances and means.

1. INTRODUCTION

We report principles which have been found useful in de-
signing and learning large factor-analysis-like latent vari-
able models. The design is based on a small number of basic
building blocks which can be flexibly combined. Three im-
portant issues arise within this design: 1) the need for a cost
function which can be used for learning the model struc-
ture, 2) a learning method which avoids over-fitting and 3)
the requirement of roughly linear computational complexity
for scalability.

Ensemble learning [1] has proven to satisfy these re-
quirements. Ensemble learning and related variational
methods have been successfully applied to various exten-
sions of linear Gaussian factor analysis. The extensions
have included mixtures-of-Gaussian distributions for source
signals [2], nonlinear units [3, 4] and MLP networks to
model nonlinear observation mappings [5] and nonlinear
dynamics of the sources [6]. Ensemble learning has also
been applied to large discrete models such as belief net-
works and hidden Markov models.

In this paper we discuss models which are build from
addition and multiplication, Gaussian variables possibly
followed by a nonlinearity, as well as discrete variables and
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switching units. Various model structures proposed in the
literature can be build out of these elements and we also
present some new model structures. They utilise Gaussian
variables which model the variance of other Gaussian vari-
ables allowing the variance to have a hierarchical or dynam-
ical model. Related model structures have been proposed
for instance in [7, 8, 9, 10, 11, 12] but with these methods
it is difficult to learn the structure of the model or compare
different model structures.

This paper is organised as follows. Section 2 gives a
brief overview of ensemble learning. The building blocks
are introduced in Section 3 and various models structures
which utilise them are discussed in Section 4. Experiments
with a hierarchical nonlinear model for means and variances
are reported in Section 5.

2. ENSEMBLE LEARNING

This section gives a brief overview of ensemble learning
with emphasis on solutions yielding linear computational
complexity. Thorough introductions to ensemble learning
can be found for instance in [13, 14].

Ensemble learning is a method for approximating pos-
terior probability distributions. It enables to choose a pos-
terior approximation ranging from point estimates to exact
posterior. The misfit of the approximation is measured by
the Kullback-Leibler divergence between the posterior and
its approximation. Let us denote the observed variables by�

, the latent variables (parameters) of the model by � and
the approximation of the true posterior ������� �	� by 
���� � .
The cost function � used in ensemble learning is

�� ��� � 
���� ���� ��� � ���� ��� � 
���� �������� �	����� � � ��� �	��� (1)

where the operator ��� � denotes an expectation over the dis-
tribution 
���� � . Note that for practical reasons the cost func-
tion equals the Kullback-Leibler divergence only up to a
constant � � � ��� �	� . This means that the cost function can
be turned into a lower bound of the model evidence ��� �	�
which can then be used for learning the model structure.
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2.1. Linear computational complexity

Each variable in the model yields one multiplicative term
in ��� ��� � � . The terms can be expressed in the form��� variable � parents

�
. The parents can be either compu-

tational nodes, such as summation, addition or switch, or
other variables. The difficult part of the cost function is� � � ��� ��� � � � which is taken over 
���� � . The logarithm splits
the product of simple terms into a sum. If each of the simple
terms can be computed in constant time, the overall compu-
tational complexity is linear.

In general, the computation time is constant if the par-
ents are independent according to 
���� � . The independence
is violated if any variable receives inputs from a latent vari-
able through multiple paths or from two latent variables
which are dependent according to 
���� � .

According to our experience, almost maximally facto-
rial 
���� � suffice for latent variable models. It seems that a
good model structure is usually more important than a good
approximation of the posterior probability of the model.
Density estimates of continuous valued latent variables of-
fer a large advantage over point estimates in being robust
against over-fitting and providing a cost function suitable
for learning model structures. With ensemble learning the
density estimates are almost as efficient as point estimates.

2.2. Pruning and local minima

Restricting the posterior approximation to have a facto-
rial form effectively means neglecting the posterior depen-
dences of variables. Taking into account posterior depen-
dences usually increases computational complexity signif-
icantly and often the computer time would be better used
in a larger model with a simple posterior approximation.
Moreover, often the latent variable models exhibit rotational
and other invariances which ensemble learning can use by
choosing a solution where the factorial approximation is
most accurate (see [6] for an example).

Factorial posterior approximation often leads to pruning
of some of the connections in the model. When there is
not enough data to estimate all the parameters, some direc-
tions are ill-determined. This causes the posterior distribu-
tion along those directions to be roughly equal to the prior
distribution. In ensemble learning with a factorial poste-
rior approximation, the ill-determined directions tend to get
aligned with the axis of the parameter space because then
the factorial approximation is most accurate.

The pruning tendency makes it easy to use for instance
sparsely connected models because the learning algorithm
automatically selects a small amount of well-determined pa-
rameters. In the early phases of learning, pruning can be
harmful, however, because large parts of the model can get
pruned away before a sensible representation has emerged.
This corresponds to a local minimum of the algorithm.

There are far less local minima with a posterior approxima-
tion taking into account the posterior dependences, but that
would sacrifice computational efficiency. It seems that lin-
ear time learning algorithms cannot avoid local minima in
general, but suitable choices of model structure and learning
scheme can ameliorate the problem considerably.

3. BUILDING BLOCKS

In this section we introduce the building blocks and equa-
tions for computation with them. The building blocks con-
sist of variable nodes and computation nodes. The symbols
we use for them are shown in Figure 1. We shall refer to
inputs and outputs of the nodes. For variable nodes, input
means a value which is used for the prior distribution and
output is the value of the variable. For computation nodes,
output is a fixed function of the inputs.

The variable nodes can be either continuous valued with
Gaussian prior models or discrete with soft-max prior mod-
els. Gaussian and soft-max are chosen because the outputs
of the Gaussian nodes can be used as inputs to Gaussian
or soft-max nodes as will be explained shortly. This makes
the nodes compatible with each other. Each variable can be
either observed or latent.

Since the variable nodes are probabilistic, the values
propagated between the nodes have distributions. When
ensemble learning together with a factorial posterior ap-
proximation is used, the cost function can be computed by
propagating certain expected values instead of full distri-
butions. Consequently the cost function can be minimised
based on gradients w.r.t. these expectations computed by
back-propagation.

The input for prior mean of a Gaussian node requires the
mean and variance. With a suitable parametrisation, mean
and expected exponential are required from the input for
prior variance. The output of a Gaussian node can provide
the mean, variance and expected exponential and can thus
be used as an input to both the mean and variance of an-
other Gaussian node. Gaussian nodes are suitable parents
for discrete nodes as well since soft-max requires the mean
and expected exponential of the input. The expectations re-
quired by the inputs and provided by the outputs of different
nodes are listed below:

Output provides:
Gaussian � � � ������� � � �
	��� � �
Gaussian with nonlinearity � � � ������� � �
addition � � � ������� � � �
	��� � �
multiplication � � � ������� � �
switch � � � ������� � � �
	��� � �
Prior for variable nodes requires:
mean of Gaussians � � � ������� � �
variance of Gaussians � � � �
	��� � �
soft-max of discrete � � � �
	��� � �
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Fig. 1. First from left: A Gaussian latent variable � , marked
with a circle, has a prior mean � and a prior variance
	��� � ��� � . Second: A nonlinearity

�
is applied immedi-

ately after a Gaussian variable. Third: A switch selects the�
th continuous valued input as the output. Fourth: Discrete

variable
�

, marked with a triangle, has a soft-max prior de-
rived from continuous valued variables ��� .
3.1. Gaussian variables

A Gaussian variable � has two inputs � and � and prior
probability ���	� � � � � � �
 �	���� � 	��� � ��� ��� . The variance
is parametrised this way because then the mean and ex-
pected exponential of � suffice for computing the cost func-
tion. It can be shown that when � , � and � are mutu-
ally independent, i.e. 
��	� � � � � �  
��	� � 
���� � 
���� � , ����� ��� � � � ���	� � � � � � � yields

����� �  �� � �
	��������� � �	� ��� ��� � ����� ������� � � �� ������� ����� � ����� � � � �! �"$# (2)

For observed variables this is the only term in the cost func-
tion but for latent variables there is also ����� % : the part re-
sulting from � � � 
��	� � � . The posterior approximation 
��	� �
is defined to be Gaussian with mean � and variance & � :
��	� � '
 �	�� � � & � � . This yields

����� %  � �� � � �! �( & � (3)

which is the negative entropy of Gaussian variable with vari-
ance & � . The parameters � and & � are to be optimised during
learning.

The output of a latent Gaussian node trivially provides
expectation and variance: �	� �  � and

����� � ��� )&� .
The expected exponential can be shown to be �
	���*� � 
	��� � � � & �,+ � � . The outputs of observed nodes are scalar val-
ues instead of distributions and thus �-� � .� , ������� ��� 0/
and �
	���*� �  	���1� .

The posterior distribution 
��	� � of a latent Gaussian node
can be updated as follows. 1) First, the gradients of �2�
w.r.t. �	� � , ������� ��� and �
	���*� � are computed. 2) Second,
the terms in �3� which depend on � and & � are assumed to be4!5 � � �76 � � � & �98 � ���
	���*� � , where : �3�;+!: �	 � 4 � � �<6 � ,: �3�;+!:=& �  4 and : �>+!: �
	���*� � ?� . This assumption holds
exactly if the output of the node is propagated to Gaussian
nodes only and not to discrete nodes. If the output is used
by a discrete node with a soft-max prior, this term gives an

upper bound of �@� as will be explained later. 3) Third, the
minimum of �  �3� � ��% is solved. This can be done
analytically if ��A/ , otherwise the minimum is obtained
iteratively.

3.2. Addition and Multiplication

Addition and multiplication nodes can be used e.g. for con-
structing linear mappings and affine transformations be-
tween the variables. Denoting the inputs by �!� , the outputs
are B � ��� for addition and C � ��� for multiplication nodes.
The mean, variance and expected exponential of the addi-
tion node are �	�!D � � � �  �	�!D � � �	� � � (4)������� �!D � � � �  ������� �!D � � ������� � � � (5)� 	��� �	�!D � � � � �  �
	���*�!D � �
	���*� � � (6)

assuming ��� independent. For multiplication node the ex-
cept exponential cannot be evaluated without knowing the
exact distribution of the inputs. Assuming independence be-
tween ��� , the mean and the variance of the output are�-�!D9� � �  �	�!D � �-� � � (7)������� �!DE� � �  �	�!D � � ������� � � � (8)� ������� �!D �GF �-� � � ��� ������� � � ��H #
The equations for larger sums or products are obtained by
induction, e.g. �ID9� � ��J  �	�!DE� � � ��J .
3.3. Gaussian variable with nonlinearity

A nonlinear computation node can be used for construct-
ing nonlinear mappings between the variable nodes. For
most nonlinear functions it is impossible to compute the re-
quired expectations analytically, but for the function

� �	� � 
	��� � �*� � � the mean and variance have analytical expres-
sions provided that they have Gaussian inputs, i.e. the non-
linearity has to follow immediately after a Gaussian node
[15]. The required expectations are

� � �	� � �  	���LK � � �� & � � �NM � � & � � � �PO1QR (9)S � �	� � �IT  	���LK � � � �U & � � �NM � U & � � � � O1QR # (10)

The variance is obtained by
������� � �	� � �  S � � �	� � T �� � �	� � � � . The update of a Gaussian node followed by the

nonlinearity is similar to the plain Gaussian node: the gra-
dients of �3� w.r.t. � � �	� � � and

������� � �	� � � are assumed to
arise from a quadratic term. This assumption holds since
the nonlinearity can only propagate to the mean of Gaus-
sian nodes.
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3.4. Discrete variables

The prior probabilities of discrete variables with � possible
values can be assigned from � continuous valued signals ���
using soft-max prior:��� �  � ��� �  	���1�9�B����� D 	���1� � # (11)

The term � � � � ��� � ��� � � of the cost function cannot be com-
puted exactly but it can be approximated from above by us-
ing

� � � � ��� � ��� � �  	 �1��
 � � � ����� D 	����� �� (12)

� � ����
 � � � � ����� D �
	���1� � �  ��
�� � � (13)

which follows from the Jensens’ inequality assuming all the
inputs independent. Note that the terms �
	���1� � � appear in-
side the concave logarithmic function. A linear approxima-
tion based on the derivative w.r.t. � 	����� � � therefore yields
an upper bound for the cost function.

For latent discrete variables there are no restrictions to
the posterior approximation 
�� � � . The term ��
�� % in the cost
function arising from � � � 
�� � � � is simply the negative en-
tropy of 
�� � � .

The update of 
�� � � is analogous to Gaussian variables:
the gradient of �@� w.r.t. the vector 
�� �  � �

with
� � � � �

is assumed to arise from a linear term B � 
�� �  � � �3��� � � �
, where �3� � �  � �

denotes the value of �@� assuming that
�� �  � �  �
. The linearity assumption holds exactly if

the value of the discrete node propagates only to Gaussian
variables (through switches) and corresponds to an upper
bound of the cost function if the values are used by other
discrete variables with soft-max prior. It can be shown that
at the minimum of the cost function it holds 
�� �  � ���
	��� � � �3� � �  � ���

.

3.5. Switch

In a switch node, an input
�

with � discrete values se-
lects one of the � continuous valued inputs �!� as the output:� out  ��
 . The required expectations are as follows:

�-� out �  �� � � D 
�� �  � � �	��� � (14)

S � �out
T  �� � � D 
�� �  � � S � �� T (15)

�
	���*� out �  �� � � D 
�� �  � � �
	���*��� � # (16)

The variance is obtained by
������� � out �  S � �out

T � �-� out � �
and

S � �� T  �	��� � � � ������� ��� � .

mv

w u(t) s(t)
v

s(t)

m

Fig. 2. Left: Source � ��� � has a time independent prior vari-
ance � . Right: A variance neuron is included to give a time
dependent prior variance ����� � for the source � ��� � .

4. EXAMPLE STRUCTURES

The building blocks can be connected together rather freely
but there are the following restrictions: 1) the resulting net-
work has to be a directed acyclic graph; 2) nonlinearity is
always immediately after a Gaussian latent variable; 3) out-
puts of multiplication or nonlinearity cannot propagate to
soft-max or variance prior because the expected exponen-
tial cannot be evaluated; 4) the output of a discrete latent
variable can only be used for a switch and 5) there should
be only one computational path from a latent variable to
variable. If there are multiple paths, ensemble learning be-
comes more complicated [5] and the situation is out of the
scope of this paper.

4.1. Variance Neurons

In most currently used models, the means of Gaussian nodes
have hierarchical or dynamical models. In many real cases
the variance is not constant either but it is more difficult
to model it. We propose a variance neuron shown in Fig-
ure 2. It can convert a prediction of mean into a prediction
of variance and thus allows to build hierarchical or dynami-
cal models for the variance. In general the variance neuron
results in a heavy-tailed super-Gaussian model for the Gaus-
sian node it is attached to. This can be useful for instance in
modelling outliers in the observations.

4.2. Linear Independent Factor Analysis

The addition and multiplication nodes can be used for build-
ing an affine transformation from Gaussian source nodes� ��� � to Gaussian observation nodes � ��� � . This corresponds
to linear factor analysis. With an independent mixture-of-
Gaussians prior for each of the sources, the model corre-
sponds to linear independent factor analysis [2]. Figure 3
shows how switches can be used to build such a prior for a
source � ��� � . A variance neuron is used in order to prevent
multiple paths from the discrete node to the source.

4.3. Hierarchical Nonlinear Variance Model

Figure 4 shows the structure for the hierarchical nonlinear
variance (HNV) model. It utilises variance neurons and
nonlinearities in building a hierarchical model for both the
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Fig. 3. A mixture-of-Gaussians prior for � ��� � is achieved
using switches.
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Fig. 4. HNV model can be built up in stages. Left: A
variance neuron is attached to each Gaussian observation
node. The nodes represent vectors. Middle: A layer of
sources with variance neurons attached to them is added.
The nodes next to the weight matrices � D and � D represent
affine transformations including a bias term. Right: Another
layer is added. The size of the layers may vary. More layers
can be added in the same manner.

means and variances. Without the variance neurons the
model would correspond to a multi-layer perceptron with
latent variables at hidden neurons. Note that computation
nodes as hidden neurons would result in multiple paths from
upper layer latent variables to the observations. This type of
structure was used in [5] and it has a quadratic as opposed
to linear computational complexity.

4.4. Dynamics

From the point of view of the equations for the nodes, con-
nections forward in time are no different from connections
down the hierarchy as long as the network remains a di-
rected acyclic graph. The building blocks can therefore be
used to build dynamical models by defining mappings from
past sources to future sources or observations.

5. THE BARS PROBLEM

We have tested the HNV model to an extension of the bars
problem [16]. The data set consists of ����� pixel image
patches with horizontal and vertical bars. In addition to the
regular bars, we used horizontal and vertical variance bars

Fig. 5. Samples from the 1000 image patches used in the
bars problem.

that are manifested by increased variance. Samples of the
image patches are shown in Figure 5.

Data was generated by first choosing whether vertical
and/or horizontal orientations are active, each with proba-
bility 1/2 independently. If an orientation is active, there is
a probability 1/3 for each bar of that orientation to be ac-
tive. For both orientations, there are 6 regular bars, one for
each row or column, and 3 variance bars that are 2 rows or
columns wide. The intensities are drawn from normalised
positive exponential distribution. Regular bars are addi-
tive and variance bars produce additive Gaussian noise with
standard deviation of its intensity. Finally, Gaussian noise
with standard deviation 0.1 was added to each pixel.

5.1. Learning Procedure

The network was initialised in stages shown in Figure 4.
The first layer was added after 20 sweeps and the second
after 100 sweeps. Each sweep corresponds to updating each
latent variable node once. To prevent falling to local min-
ima, 1) automatic pruning was discouraged initially, 2) new
sources were generated and pruned sources removed from
time to time and 3) the activations of the sources were reset
a few times.

5.2. Results

In the initial phases of learning, some of the sources rep-
resented multiple bars and there were multiple sources rep-
resenting a single bar. There was also a source which was
specialised to diminish variance in cases where both the hor-
izontal and vertical orientations were inactive. These local
minima were escaped, however, as the weights after 1200
sweeps in Figure 6 demonstrate.

The sources of the second layer are ordered for visuali-
sation purposes according to the weights � � and � � using
self-organising map. The two sources on the second layer
correspond to the horizontal and vertical orientations and
the 18 sources on the first layer correspond to the bars.

Regular bars, present in � D , are reconstructed accu-
rately but the variance bars in � D exhibit some noise. The
distinction between horizontal and vertical orientations is
clearly visible in � � .
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Fig. 6. Posterior means of the weight matrices after 1200
sweeps. The matrices are organised in patches and dark
shades represent positive values.

6. DISCUSSION

The building blocks discussed in this paper can be used for
constructing a wide variety of models. An important fu-
ture line of research will be automated construction of the
model. The search through different model structures is fa-
cilitated by the ability of ensemble learning to automatically
shut down parts of the model. In the experiments reported
here, we did not make use of sparsely connected networks
but for large models they are likely to prove useful.

The hierarchical nonlinear variance model was shown to
be able to learn the structure of the underlying data gener-
ating process. In most real cases the generative process can
be expected to be more complex, but the same model struc-
ture can handle a variety of different cases. In some of the
preliminary experiments we have conducted on image data,
second-level sources which resemble complex cells [11, 12]
have emerged. However, so far we have used fully con-
nected mappings which seems to discourage the formation
of complex-cell-like sources as each of them typically mod-
els the variance of only a small number of the lower-level
sources.

Externally the variance neurons appear as any other
Gaussian nodes. It is therefore easy to build for instance
dynamic models for the variance. These kinds of models
can be expected to be useful in many domains. For exam-
ple volatility in financial markets is known to have temporal
auto-correlations.

The scope of this paper was restricted to models with
purely local computation. In some cases it may be necessary
to use models where a group of simple elements is treated as
a single element whose external computations are local but
whose internal computations may be more complex. The
elements in Figure 3 for instance can be grouped as in [2].
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