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BUILDING BLOCKS FOR QUADRATIC JULIA SETS

JOACHIM GRISPOLAKIS, JOHN C. MAYER, AND LEX G. OVERSTEEGEN

Abstract. We obtain results on the structure of the Julia set of a quadratic
polynomial P with an irrationally indifferent fixed point z0 in the iterative
dynamics of P . In the Cremer point case, under the assumption that the
Julia set is a decomposable continuum, we obtain a building block structure
theorem for the corresponding Julia set J = J(P ): there exists a nowhere dense
subcontinuum B ⊂ J such that P (B) = B, B is the union of the impressions
of a minimally invariant Cantor set A of external rays, B contains the critical
point, and B contains both the Cremer point z0 and its preimage. In the
Siegel disk case, under the assumption that no impression of an external ray
contains the boundary of the Siegel disk, we obtain a similar result. In this
case B contains the boundary of the Siegel disk, properly if the critical point
is not in the boundary, and B contains no periodic points.

In both cases, the Julia set J is the closure of a skeleton S which is the
increasing union of countably many copies of the building block B joined along
preimages of copies of a critical continuum C containing the critical point. In
addition, we prove that if P is any polynomial of degree d ≥ 2 with a Siegel
disk which contains no critical point on its boundary, then the Julia set J(P )
is not locally connected. We also observe that all quadratic polynomials which
have an irrationally indifferent fixed point and a locally connected Julia set
have homeomorphic Julia sets.

1. Introduction

1.1. Definitions and notation. We denote the complex plane by C, the Riemann
sphere by C∞, and the open unit disk by D. For a set A, we denote the closure
of A by A and the boundary of A by ∂A, it being understood which of the above
spaces A is a subset of. We identify ∂D with T ≡ R/Z so that we may measure
angles in revolutions. In what follows, arithmetic operations on t ∈ T, for example
2nt, t+α, etc., are to be taken modulo 1 unless context forbids. For a, b, c ∈ T, we
will denote by [a, b, c] the interval in T with endpoints a and c containing the point
b.

Let P be a polynomial (or more generally, a rational function or entire function).
The Julia set of P , denoted J(P ), is defined to be the set of all points in C (C∞
for rational functions) at which {Pn}∞n=0 is not normal. The complement of the
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Julia set is the Fatou set, or stable set, denoted F (P ). The orbit of a point z
under P is O(z) = OP (z) = {Pn(z)}∞n=0. We shall sometimes have occasion to
refer to the inverse orbit O−(z) = {y|∃n ∈ N, Pn(y) = z}, and the grand orbit
G(z) = {y|∃n,m ∈ N, Pn(y) = Pm(z)}. A point z is preperiodic iff its orbit is
finite, is periodic iff for some n ∈ Z+, Pn(z) = z, and is fixed iff n = 1. For z
a periodic point of least period n, we call λ(z) = (Pn)′(z) the eigenvalue of the
periodic orbit. A periodic point is attracting, indifferent, or repelling accordingly
as |λ| < 1, |λ| = 1, or |λ| > 1, respectively. A subset A ⊂ C∞ is invariant iff
P (A) ⊂ A and fully invariant iff P−1(A) = A.

In this paper we consider only the case where P is a polynomial. By theorems
of Julia and Fatou, generalized by Baker, the Julia set is the closure of the set of
repelling periodic points of P . Attracting periodic points are always in the Fatou
set. Indifferent periodic points may be in either the Julia set or the Fatou set, and
this dichotomy forms a focus of our paper. Basic theorems concerning Julia and
Fatou sets may be found in any of several introductions to complex dynamics, for
instance those by Milnor [20], Beardon [2], or Carleson and Gamelin [8]. Important
facts we shall use are Sullivan’s No Wandering Domains Theorem (all bounded
Fatou components are, as sets, preperiodic [33, 34]), and the fact that the Julia set
of a polynomial of degree d ≥ 2 is compact, perfect, nonempty, and bounded away
from ∞ [20, 8]. In addition, an attractive or indifferent orbit always attracts (in an
appropriate sense) a critical point [8]. A continuum is a compact connected metric
space. The Julia set is connected, hence a continuum, iff the orbit of every critical
point is bounded, as we discuss in Section 1.2.

Our attention in this paper will be focused on quadratic polynomials such that
one of the two fixed points is indifferent. Unless there is only one fixed point, the
other fixed point is then repelling. Let z0 denote an indifferent fixed point. Then
λ(z0) = e2πiα for some α(z0) ∈ T. If α = α(z0) is rational, then z0 is in the Julia
set, the so-called parabolic case. In this case the Julia set is a locally connected
continuum whose structure is well-understood [20]. If α = α(z0) is irrational, there
are two possibilities:

1. z0 is a Cremer point if z0 is in the Julia set.
2. z0 is a Siegel point if z0 is in the Fatou set.

Which branch of the dichotomy z0 falls into depends upon how irrational α(z0) is.
Consider the irrational number α, and let 〈a0, a1, ..., an, ...〉 be the continued

fraction expansion of α and pn/qn the convergents defined by the recurrences p0 =
q1 = 1 and p1 = q0 = 0, pn+1 = an+1pn +pn−1 and qn+1 = an+1qn +qn−1. Assume,
also, that a0 = 0, so 0 < α < 1. We say that α is a k-Diophantine number, for
k > 0, provided that there exists a number c > 0 such that for all n

|α− pn

qn
| ≥ c

qk
n

.

The union of all the sets of k-Diophantine numbers is called the class of Diophantine
numbers. The remaining irrational numbers are called Liouville numbers and form
a dense Gδ subset of R with Lebesgue measure 0. We say that the number α is of
constant type provided that sup an < ∞. An irrational number is called a Brjuno
number provided that ∑ log qn+1

qn
<∞.
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All Diophantine numbers are Brjuno numbers, though not conversely.
An irrationally indifferent fixed point z0 of a polynomial is in the Fatou set iff it is

locally linearizable at z0: there is a complex analytic homeomorphism φ : D → U0,
U0 a neighborhood of z0, such that for all z ∈ D, P (φ(z)) = φ(rα(z)), where
rα(z) = e2πiαz is a rigid rotation of the unit disk through angle α ∈ T. That
is, φ conjugates P on U0 to rα on D. In this case, the fixed point z0 belongs
to an invariant bounded Fatou component ∆, which is maximal with respect to
conjugating P to the linear map rα, and which is called a Siegel disk. Otherwise, z0
belongs to the Julia set J(P ) and is called a Cremer point. Siegel [30] showed that
Siegel disks occur and Cremer [9] showed that Cremer points occur. By results of
Brjuno [3] and J.C. Yoccoz [36, 35] a quadratic polynomial is locally linearizable at
the irrationally indifferent fixed point z0 if and only if the argument α is a Brjuno
number. For a quadratic polynomial, the presence of an indifferent fixed point,
parabolic, Cremer, or Siegel, forces the critical point to have a bounded orbit [8],
which in turn forces the Julia set to be a continuum as we discuss below.

1.2. External rays. For P a polynomial map of C of degree d ≥ 2, let K(P )
denote the “filled-in” Julia set: J(P ) together with all its bounded complementary
domains, if any. Equivalently, K(P ) is the set of points with bounded orbit. Let
U∞ = C∞\K(P ). This notation is appropriate since the domain C∞\K(P ) is the
basin of attraction of ∞; under iteration of P all points in U∞ tend to ∞. It can
be proved that ∂K(P ) = ∂U∞ = J(P ) [20, Problem 4.1 and Lemma 17.1].

Prime end theory, introduced by Carathéodory, is a way of studying the ap-
proaches to the boundary of a simply connected domain U with nondegenerate
boundary. The Riemann mapping theorem guarantees the existence of a conformal
isomorphism φ from the unit disk D onto U . Prime end theory is one of the most
important tools for studying the topological structure of the boundaries of Fatou
components, and consequently, of Julia sets.

It is a consequence of a classical theorem of Bötkher [20, Theorem 6.7] that if
P is a polynomial map of C of degree d ≥ 2, then there is a neighborhood N∞
of infinity on which P is analytically conjugate to the map z → zd near ∞. To
be more precise, let D∞r = C∞\Dr, for some r > 1, be a disk about ∞. Then
there exists a conformal isomorphism ψ : N∞ → D∞r taking ∞ to ∞ such that
ψ(P (z)) = ψ(z)d. In general, ψ cannot be extended as a conformal isomorphism
from the complement U∞ of the filled-in Julia set K(P ) (to some disk), because the
critical points of P in U∞ are an obstruction to the extension. However, if all the
critical points are in K(P ), then there is no obstruction, and ψ can be extended
to a conformal isomorphism ψ : U∞ → C∞\D, unique up to multiplication by a
(d− 1)st root of unity [20, Theorem 17.3].

Let D∞ = C∞\D denote the “unit disk” about ∞. Suppose each critical point of
P has a bounded orbit. It follows from the above remarks that there is a canonical
conformal map φ : D∞ → U∞ (namely ψ−1 from above) taking ∞ to ∞. This map
is called the Bötkher uniformization of U∞ = C∞\K(P ). The map φ−1Pφ on D∞
is z → zd. The induced map on T = ∂D = ∂D∞ is σd : t→ dt (mod 1). Moreover,
since K(P ) is the intersection of the disks Kr = C∞ \φ(D∞r ), for r > 1, the filled-in
Julia set is connected, as is its boundary J(P ).

The radial rays {re2πit|r > 1} from ∞ ∈ D∞ are carried by φ to rays Rt =
φ({re2πit|r > 1}) from ∞ ∈ U∞ which accumulate on ∂U∞ = J(P ). Such rays are
called external rays in complex dynamics literature. Each point t ∈ T, via the ray
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Rt, determines a unique prime end of U∞. The limit set Pr(Rt) = Rt\Rt ⊂ J(P )
is the principal continuum of the prime end corresponding to t ∈ T. Since it is the
limit set of a ray, it is easy to see that the principal continuum corresponding to t
is indeed a continuum.

Associated with each external ray is another continuum in J(P ) which always
contains the principal continuum, but may be larger. The impression of Rt, denoted
Im(Rt), is defined as

Im(Rt) = {z ∈ C|∃wi ∈ D∞, wi → t, φ(wi) → z}.
The following result follows easily from the definition:

Lemma 1.1. If ti → t0, then lim sup Im(Rti) ⊂ Im(Rt0).

Applying the Bötkher uniformization and the above definitions, one can prove
the following lemma showing that P permutes principal continua and impressions
as σd permutes angles.

Lemma 1.2 ([19, Lemma 2.1]). Let P be a polynomial of degree d ≥ 2 with all
critical orbits bounded and φ the canonical Bötkher uniformization of C∞\K(P ).
Then for all t ∈ T, P (Im(Rt)) = Im(Rdt) and P (Pr(Rt)) = Pr(Rdt).

Note that for an external ray Rt, Rt = Rt ∪ Pr(Rt). By R̂t we denote the set
Rt∪Im(Rt), sort of a “superclosure” of the external ray. The external rays “foliate”
U∞ in the sense that each point of U∞, except ∞, is in exactly one external ray.
The polynomial P then preserves this foliation, and extends this preservation to
principal continua and impressions within the boundary of U∞. However, closing
the leaves of the foliation does not generally produce a foliation of U∞, since Rt

may meet Rs even if t 6= s, and
⋃

t∈T Pr(Rt) may be properly contained in ∂U∞.
On the other hand, though Im(Rt) may meet Im(Rs) even if t 6= s, it is the case
that

⋃
t∈T Im(Rt) = ∂U∞.

The following is a classical theorem of Carathéodory:

Theorem 1.3 (Carathéodory Extension Theorem). The uniformization φ : D∞ →
U∞ extends continuously to D∞ if, and only if, ∂U∞ is locally connected.

Hence, when such an extension exists, the Julia set J(P ) = ∂U∞ is both
connected and locally connected. The extension of φ is defined in the obvious
way: φ extends continuously to carry T = ∂D onto ∂U∞ by mapping t ∈ T to
Pr(Rt) = zt ∈ ∂U∞, which is a single point in this case.

It is easy to see that if J(P ) is locally connected, then all external rays “land”;
that is, all principal continua are degenerate. It turns out this condition is not
sufficient for a Julia set to be locally connected [10]. However, some rays always
land, since accessible points of ∂U∞ are dense in ∂U∞. In the case of a polynomial
with a connected Julia set, we have the following additional information:

Theorem 1.4 (Douady/Hubbard [20, 18.1, 18.4]). If Rt is a radial ray with ratio-
nal argument t ∈ T, the principal set of Rt is a single point, which is either periodic,
and repelling or indifferent with rational argument, or preperiodic to such a periodic
point.

Theorem 1.5 (Douady/Yoccoz [20, 18.2, 18.3]). If z is a repelling or rationally
indifferent periodic point in J(P ), then at least one external ray lands on z, neces-
sarily periodic, and at most finitely many do, all of the same period.
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BUILDING BLOCKS FOR QUADRATIC JULIA SETS 1175

1.3. Locally connected Julia sets. Douady and Hubbard (independently: Sul-
livan, Lyubich) found sufficient conditions for the Julia set of a polynomial to be
locally connected.

Theorem 1.6 (Douady/Hubbard [20, 17.5]). If all critical points of a polynomial
are either attracted to an attracting periodic orbit, or preperiodic, then the Julia set
is locally connected.

They show that the Bötkher uniformization extends continuously, and apply
the Carathéodory Extension Theorem 1.3. In the case of a quadratic polynomial
P , there is only one critical point, and each of the following mutually exclusive
conditions is sufficient for the Julia set to be a locally connected continuum [20]:

1. P has an attractive periodic orbit.
2. P has a rationally indifferent (parabolic) periodic orbit.
3. P has a preperiodic critical orbit.

More recently, using new methods, Yoccoz has proved the following theorem [21]:

Theorem 1.7 (Yoccoz). Let P be a quadratic polynomial with a connected Julia
set J = J(P ). If P has no irrationally indifferent periodic points, and P is not
infinitely renormalizable, then J is locally connected.

1.4. Connected, but not locally connected, Julia sets. If a polynomial (with
a connected Julia set, if you like) has an irrationally indifferent periodic orbit, the
question of the Julia set’s local connectivity leads to some subtleties. One accessible
result is the following:

Theorem 1.8 (Douady, Sullivan [20, 18.6]). If P is a polynomial with a Cremer
orbit, then J(P ) is not locally connected.

By a similar proof, a general version of which we shall present in Section 2.1,
one can obtain the following:

Theorem 1.9 (Douady). If P is a quadratic polynomial with an invariant Siegel
disk ∆, and the critical point is not in ∂∆, then J(P ) is not locally connected.

The proofs of the above theorems offer little insight into the topological structure
of the Julia sets. We report on what is known about the structure of non-locally-
connected Julia sets with irrationally indifferent orbits in Section 3, and state our
own observations in the main theorems (Section 4) of this paper. We do not address
infinitely renormalizable polynomials.

2. Two easy pieces

We present the fairly simple proofs of two theorems which serve to introduce
some of the concepts we will call upon later in less transparent situations. First we
observe the following two facts which we will frequently use:

Theorem 2.1 (Rogers [26]). Let ∆ be a Siegel disk for a polynomial P . Then ∂∆
is an irreducible separator of the plane.

Proof. The result follows from the fact that ∂∆ ⊂ ∆ ∩ U∞.

Theorem 2.2. Let J be a locally connected Julia set of a polynomial P . Then
every subcontinuum of J is locally connected.
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Proof. Let G be a subcontinuum of the locally connected Julia set J of a polynomial
P . Suppose that G is not locally connected. Then there exists a nondegenerate
continuum of convergence K in G [18, p. 245]. Hence, there exist pairwise disjoint
continua Ki in G such that limKi = K and Ki ∩ K = ∅ for each i. Choose
x 6= y ∈ K and closure-disjoint connected neighborhoods U and V of x and y,
respectively, since J is locally connected. Then there exist i1, i2, i3 such that Ki2

meets a bounded complementary domain of Ki1 ∪ U ∪ V ∪Ki3 . This contradicts
the fact that J ⊂ U∞.

2.1. Siegel disks with no critical points in their boundary. Theorem 1.9 is
usually quoted in the literature exclusively with reference to quadratic polynomials.
However, its proof for all polynomials of degree d ≥ 2 with connected Julia set is
straightforward. We present it below to call attention to the interplay between P
on external rays and their principal sets (and impressions, later on) and the map
σ induced on T by the Bötkher uniformization. Let (X, d) be a metric space. We
will call a map f : X → X forward expansive provided there exist ε > 0 and k > 1
such that for all x, y ∈ X , if d(x, y) < ε, then d(f(x), f(y)) ≥ kd(x, y).

Theorem 2.3 ([20, 18.8]). Let h : X → X be a forward expansive homeomor-
phism. If X is compact, then X is finite.

Corollary 2.4. Let σd : T → T (d ≥ 2) be given by σd(t) = dt. Let A be a compact
subset of T. If σ(A) = A and σ|A is one-to-one, then A is finite.

Lemma 2.5. Let P be a polynomial of degree d ≥ 2 and H an invariant compact
subset of C such that P is univalent on H. If no critical point lies in ∂H, then P
is univalent on a neighborhood of H.

Proof. Let {Ui}∞i=1 be a sequence of 1
i -neighborhoods of H . By way of contradic-

tion, suppose for all i, P is not univalent on Ui. Then there are sequences {zi},
{z′i} with zi, z

′
i ∈ Ui such that P (zi) = P (z′i). By choosing subsequences, we may

assume zi → z0 and z′i → z′0. Then z0, z
′
0 ∈ ∂H . If z0 = z′0, then z0 is a critical

point in ∂H , a contradiction. If z0 6= z′0, then as P (z0) = P (z′0) we contradict the
univalence of P on H .

Theorem 2.6. Let P be a polynomial of degree d ≥ 2 with connected Julia set
J = J(P ) and ∆ an invariant Siegel disk of P . If no critical point lies in ∂∆, then
J is not locally connected.

Proof. By way of contradiction, suppose J is locally connected. By Theorems 2.1
and 2.2, ∂∆ is also locally connected and an irreducible separator of C and, hence,
∂∆ is homeomorphic to a circle. Then the Riemann map conjugating P |∆ to an
irrational rotation on D extends homeomorphically to ∂∆ and P |∆ is conjugate
to an irrational rotation of D. Hence, P is univalent on ∆. By Lemma 2.5, P is
univalent on a neighborhood of ∆. Let φ : C∞\D → C∞\K(P ) be the Bötkher
uniformization. Since K = K(P ) is locally connected, φ extends continuously to
carry T = ∂D onto J = ∂K by mapping t ∈ T to Pr(Rt) = zt ∈ J , a single point.
Define

A = {t ∈ T|Pr(Rt) = zt ∈ ∂∆}.
Since ∂∆ has infinitely many points, A is infinite. Since φ extends continuously,
A is the preimage of the compact set ∂∆, so is compact. Since P is univalent
on a neighborhood of ∂∆ and ∂∆ is invariant, the external rays which land on
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∂∆ must be permuted one-to-one by P . Thus, the map σd induced on T by the
uniformization must be one-to-one on A. By Corollary 2.4, A must be finite, a
contradiction.

2.2. Locally connected quadratic Julia sets with a Siegel disk. Our goal
in this section is to prove that all locally connected quadratic Julia sets with an
invariant Siegel disk in the complementary Fatou set are homeomorphic, regardless
of the differing dynamics.

Theorem 2.7. Let P1 and P2 be quadratic polynomials, each with a linearizable
fixed point and with locally connected Julia set. Then J(P1) and J(P2) are topolog-
ically equivalent.

To prove Theorem 2.7, we shall first prove a “Building Block” theorem for these
polynomials. In Section 6 we prove the general Building Block Theorem 4.1 in
the Siegel disk case, without the assumption that the Julia set is locally connected.
That Theorem 2.7 is nonempty is a consequence of a striking result by C. L. Petersen
[25].

Theorem 2.8 (Petersen). If P (z) = e2πiαz + z2, where α is an irrational Dio-
phantine number of constant type, then the Julia set J(P ) is locally connected.

Corollary 2.9. For all quadratic polynomials of the form Pα(z) = e2πiαz + z2,
where α is an irrational Diophantine number of constant type, the resulting Julia
sets J(Pα) are homeomorphic.

Proof. It is a classical theorem of Siegel [30] that P is linearizable at 0. The corollary
is a direct consequence of Theorems 2.7 and 2.8.

Theorem 2.10. Let P (z) = e2πiαz + z2 be a polynomial with an invariant Siegel
disk ∆ such that J = J(P ) is locally connected. Then ∂∆ is a Jordan curve denoted
by B, and there is a unique Cantor set A ⊂ T such that the following hold:

1. B is carried homeomorphically onto itself by P .
2. The critical point c of P belongs to B, and B = OP (c).
3. There is a unique θ ∈ T such that Rθ lands on v = P (c).
4. A = Oσ(θ).
5. A ⊂ [ θ

2 , θ,
θ+1
2 ], where [ θ

2 , θ,
θ+1
2 ] is the half circle in T from θ

2 to θ+1
2 con-

taining θ.
6. σ(A) = A, minimally, with rotation number α.
7. Let φ : D∞ → U∞ be the extension of the Bötkher uniformization. Then
φ(A) = B, one-to-one except onto O−P (c) ∩B.

8. The diameters of components of P−n(B) go to 0 as n→∞.
9. J\⋃∞n=0 P

−n(B) is a fully invariant, 0-dimensional, dense Gδ set in J con-
taining all the (pre)periodic points of J .

Proof. As in the proof of Theorem 2.6, B = ∂∆ is a Jordan curve, P (B) = B,
and P |B is conjugate to the irrational rotation rα. Since J is locally connected,
Theorem 2.6 implies that the critical point c lies on B. Conjugacy to an irra-
tional rotation implies P is one-to-one and O(c) is dense in B, which establishes
conclusions (1) and (2).

Since J(P ) is locally connected, the Carathéodory Extension Theorem 1.3 implies
that every point of J(P ) is the landing point of some external ray. Let Rθ be an
external ray landing at the critical value v = P (c) which proves the existence
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Figure 1. Locally connected Siegel Julia set

part of (3). Necessarily, θ is irrational, since otherwise the critical point would be
preperiodic, and, therefore, J(P ) would have no bounded complementary domains
[8, 34].

Under the map P , the rays Rθ/2 and R(θ+1)/2 map onto the ray Rθ, and, thus,
they both land on the critical point c. Hence, Rθ/2∪R(θ+1)/2 separates the Riemann
sphere into two open half-planes U1 and U ′1 with v ∈ U ′1, such that (U1 ∩ J) ∩
(U ′1 ∩ J) = {c}. Note that U1 and U ′1 are unbounded simply connected domains
whose boundary meets J only at c. We will call such a domain a wedge with vertex
the common point of the two boundary rays. See Figure 1.

Since c ∈ B, and B is invariant, the forward orbit of c remains in B, so in U ′1.
The forward orbit of the external ray Rθ consists of rays landing on the points of the
forward orbit of c on B. Hence, this orbit has to remain completely in the wedge U ′1.
Consequently, the forward orbit of θ remains in the half-circle A1 = [ θ

2 , θ,
θ+1
2 ] ⊂ T.

Let I1 = T\A1. We have already observed that θ is irrational. From these two
conditions, it follows (see Section 3.5) that

A = T\⋃∞i=0 σ
−i(I1) is a Cantor set,(1)

A ⊂ [ θ
2 , θ,

θ+1
2 ],(2)

A = O(θ),(3)

{ θ
2 ,

θ+1
2 } ⊂ A.(4)

This establishes conclusions (4) and (5).
There is an intimate connection between A and the building block B moderated

by the external rays corresponding to angles in A. Just as removing the open
interval I1 from T leaves behind the closed interval A1 containing A, so removing
the wedge U1 from C leaves behind a closed wedge B1 = C\U1 = U ′1 containing
a continuum J1 = B1 ∩ J containing B. Now, σ−i(I1) consists of 2i pairwise
disjoint open subintervals, half of which lie in Int(A1). It is successively deleting
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them that leaves a Cantor set A behind. We call each of U ′1 and U1 a wedge of
depth 0. Correspondingly, P−i(U1) consists of 2i pairwise disjoint wedges of depth
i (between pairs of rays landing on preimages of the critical point c), in one-to-one
correspondence (induced by the uniformization φ) with the intervals in σ−i(I1),
half of which are contained in Int(B1) = U ′1. For i > 1, let Bi = Bi−1\P−i(U1).
Let Ji = Bi ∩ J and let B′ =

⋂∞
i=1 Ji.

Since B ⊂ Ji for all i ≥ 1, we have that B ⊂ B′. On the other hand, if z ∈ B′,
then some external ray Rη, with η 6∈ σ−i(I1) for any i, lands on z. Thus, η ∈ A.
There is a sequence {ηi}∞i=1 in A such that ηi → η and Rηi lands on a preimage of
c in B. It follows by Theorem 1.3 that Rη lands on B. Hence, z ∈ B, so B = B′.
From this construction one can prove the following claims:

Every point of B is the landing point of at most two rays(5)
with arguments in A.

For every angle in A the corresponding ray lands on some point of B.(6)
Two “endpoint” rays of A land on each point of O−(c) ∩B.(7)

Exactly one “nonendpoint” ray lands on each point of B\O−(c).(8)

Moreover, one can show that the uniformization φ, extended to carry T onto J ,
when restricted to A, carries A onto B, at most is two-to-one, and is circular-order-
preserving. Recalling that σ : T → T denotes the map t → 2t (mod 1), we see
directly that σ|A : A→ A has the rotation number α when extended in the obvious
way to a degree 1 order-preserving map of T. That is, B rotates “from the outside”
the same as it does “from the inside.” (See Section 3.5 for a discussion of rotation
numbers of subsets of T.) This proves conclusions (6) and (7).

To establish conclusions (8) and (9) of the theorem, we observe that starting with
the Jordan curve B and the two rays landing on c ∈ B defining the two wedges
in C∞ with B in one of them, we can reconstruct J by “reflecting” B (via P−1)
across c into the other wedge. Then we can copy B (via P−2) into each of the
wedges whose vertices are the two preimages of c (one of which is in B and one of
which is in B’s first reflection). Continuing this process ad infinitum, we construct
a skeleton of J : a countable union S =

⋃∞
j=0 P

−j(B) of copies of B meeting only
at c and preimages of c. This implies that

No external ray Rs with s ∈ T\A can land on B.(9)

Note that S is an Fσ set in J , and dense, since F contains a full inverse orbit.
Recalling that any open subset of a Julia set eventually maps onto the Julia set,
we see that B has no interior in J , for it is forward invariant and clearly not all of
J . Therefore, S has no interior in J , since J is a Baire space. We claim that

G = J\S is a 0-dimensional, dense Gδ set in J .(10)
Each point z ∈ G is a limit point of copies of B in a unique way.(11)

For claim (10), that G is a dense Gδ follows from the facts that S is an Fσ and G
is backward invariant. Claim (11) follows from the fact that each point z ∈ G lies
in a maximal tower of wedges. (By “maximal” we mean that no additional wedges
can be inserted in the tower that contains z.) The existence of such a tower follows
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from the fact that

G =
∞⋂

j=0

(
P−j

( ∞⋃
i=0

P−i(U1)

))
.(12)

By using the local connectivity of the Julia set, we can show that z is the only
point of J in the intersection of its maximal tower of wedges, and that the tail of
the tower, intersected with J , has diameter going to 0. From this it follows that G
is 0-dimensional, finishing claim (10) and conclusion (8). Finally, the fact that B is
the boundary of the Siegel disk, on which P is conjugate to the irrational rotation
rα, proves that B, and consequently S, each point of which eventually maps into
B, contains no (pre)periodic point of P , finishing conclusion (9).

To see the uniqueness part of conclusion (3), assume to the contrary that another
external ray Rt for t 6= θ also lands on the critical value v. Consider the wedge
between Rt and Rθ not containing B. The forward images of Rt and Rθ must
always land on B, but never on c. Since they are different external rays, there
must be an open subset of J in the wedge which never maps onto B, contradicting
Sullivan’s No Wandering Domains theorem. (Another way the uniqueness of θ can
be seen to follow is from the one-to-one correspondence between invariant Cantor
sets in T and irrational rotation numbers discussed in Section 3.5.)

2.2.1. Proof of Theorem 2.7. Let P1 and P2 be quadratic polynomials with critical
points c1 and c2, invariant Siegel disks ∆1 and ∆2, and locally connected Julia
sets J1 and J2, respectively. Let B1 = ∂∆1, B2 = ∂∆2, S1 =

⋃∞
j=0 P

−j
1 (B1),

S2 =
⋃∞

j=0 P
−j
2 (B2) be the respective building blocks and skeleta from the proof of

Theorem 2.10. The set of points of Bi to which copies of Bi are attached in forming
Si is exactly the countable set O−(ci) ∩Bi, dense in Bi because Pi|Bi is conjugate
to some irrational rotation. It is easy to show that the pair (Bi,O−(ci) ∩ Bi) is
homeomorphic to the pair (T,Q/Z). Hence, (B1,O−(c1)∩B1) is homeomorphic to
(B2,O−(c2) ∩ B2). Since the respective skeleta are countable unions of copies of
Bi’s attached at points of O−(ci), one can extend this homeomorphism one copy
at a time to a homeomorphism of (S1,O−(c1)) onto (S2,O−(c2)). From the facts
that Ji\Si is 0-dimensional, any two distinct components of the complement of
any copy of Bi are disjoint, and the diameters of attached circles get smaller and
smaller, it follows that the homeomorphism of S1 onto S2 extends uniquely to a
homeomorphism of J1 onto J2.

Remark. The reader is cautioned that the above homeomorphism does not conju-
gate P1 to P2. The Julia sets are topologically equivalent, and have the same Fσ

skeleton and complementary Gδ “dust” structure, without necessarily being dy-
namically equivalent. Put another way, there is a single topological model J , the
closure in C of a certain countable union of circles, and each irrational α of constant
type induces a different dynamic on J as the Julia set of a quadratic polynomial
with irrationally indifferent fixed point of eigenvalue e2πiα.

3. Some subtleties

3.1. Prime ends. Alternative, though equivalent, definitions of the impression of
a prime end via “non-radial” rays and via crosscuts will be useful. For each t ∈ T,
there is some ray Σt in D∞, not necessarily radial, from ∞ to t such that St = φ(Σt)
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has as its limit set Im(Rt) = St−St. While for s 6= t, Rs∩Rt = ∅, the same cannot
be said in general for the (nonradial) rays which converge to impressions.

Let φ : D∞ → U∞ be a uniformization carrying∞ to ∞. Let Q be an open arc in
U∞ such that Q∩∂U∞ = {p, q}. Provided p 6= q, we call Q a crosscut of U∞. Each
crosscut Q of U∞ separates U∞ into exactly two subdomains. Where well-defined,
let U(Q) denote the subdomain not containing ∞. A sequence {Qi}∞i=1 of crosscuts
of U∞ is called a chain provided that for all i,

(1) U(Qi+1) ⊂ U(Qi),
(2) for j 6= i, Qi ∩Qj = ∅, and
(3) φ−1(Qi) → t for some t ∈ T.

The relationship between chains of crosscuts and external rays is as follows. To each
external ray Rt there corresponds at least one chain {Qi}∞i=1 of crosscuts satisfying
conditions (1)–(3) above such that Rt meets each Qi. Moreover, the chain can be
chosen so that if z ∈ Pr(Rt), then Qi → z. Conversely, if {Qi}∞i=1 is a chain of
crosscuts satisfying (1)–(3), then there is exactly one external ray Rt such that Rt

meets each Qi. We say that {Qi}∞i=1 defines the prime end Rt. Then the following
holds:

Im(Rt) =
∞⋂

i=1

U(Qi).(13)

The reader familiar with prime ends will have noted that the usual definition of
prime ends by means of equivalence classes of chains of crosscuts uses the following
condition in place of (3) above:
(3′) Qi → z for some z ∈ ∂U∞.

Condition (3′) implies condition (3), though not conversely. However, the two
definitions result in exactly the same prime end theory.

Let Qi be a crosscut of U∞ and U(Qi) the corresponding domain cut off. We
define the shadow of Qi to be

Sh(Qi) = U(Qi) ∩ ∂U∞.
Suppose {Qi}∞i=1 defines the prime end Rt. An equivalent formulation of equation
(13) is

Im(Rt) =
∞⋂

i=1

Sh(Qi).(14)

The following lemma is a corollary to Lemma 1.1 and equation (13):

Lemma 3.1. Let φ : D∞ → U∞ be a uniformization. Let {Qi}∞i=1 be a sequence
of crosscuts of U∞ such that φ−1(Qi) converges to t ∈ T. Then lim sup Sh(Qi) ⊂
Im(Rt).

Proof. Note that {Qi}∞i=1 need not be a chain of crosscuts. However, since φ−1(Qi)
→ t, any chain of crosscuts {Pj}∞j=1 defining the prime end Rt has the property
that U(Pj) contains all but finitely many U(Qi). Hence, lim sup Sh(Qi) ⊂ U(Pj)
for every j. By (13), lim supSh(Qi) ⊂ Im(Rt).

A priori, there are four possible outcomes in comparing the principal continuum
of a prime end to its impression. Put in the language of external rays, prime ends
can occur in any of the following mutually exclusive kinds:
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First kind: Im(Rt) = Pr(Rt) is degenerate.
Second kind: Only Im(Rt) is nondegenerate.
Third kind: Im(Rt) = Pr(Rt) is nondegenerate.
Fourth kind: Im(Rt) properly contains Pr(Rt), and both are nondegenerate.

Knowing what kinds of prime ends the complement of the filled-in Julia set has
is a step in the direction of knowing the topology of the Julia set. For instance, the
Julia set is locally connected iff all prime ends are of the first kind. (This is exactly
when the uniformization can be extended to the boundary and the Carathéodory
theorem applies.) Is the non-local-connectivity of Cremer and certain Siegel qua-
dratic Julia sets the result of external rays which determine prime ends of the
second, third, or fourth kind? We review what is known about this question in
Section 3.3.

3.2. Julia sets and indecomposable continua. A continuum X is decompos-
able iff it can be written as the union of two proper subcontinua, otherwise it is
indecomposable. It is an open question whether or not the Julia set of any polyno-
mial contains an indecomposable continuum. A theorem of Rutt’s [29] allows one
to identify indecomposable continua in the plane by means of prime ends. From it
one can immediately draw some corollaries concerning Julia sets and external rays.

Theorem 3.2 (Rutt). Suppose U is a simply connected plane domain with nonde-
generate boundary. If G is an indecomposable subcontinuum of ∂U , then there is
a prime end E such that Im(E) ⊃ G. In particular, if ∂U is indecomposable, then
some prime end of U has all of ∂U as its impression.

Corollary 3.3. Suppose P is a polynomial with connected Julia set J = J(P ). If
G is an indecomposable subcontinuum of J , then there is an external ray Rt such
that Im(Rt) ⊃ G.

Corollary 3.4. Suppose ∆ is a Siegel disk of a polynomial P with connected Julia
set J = J(P ). If ∂∆ is indecomposable, then there is an external ray Rs such that
Im(Rs) ⊃ ∂∆.

In [19] there is more on the structure of indecomposable Julia sets, if there
are any. Included are a corollary to Rutt’s theorem, proved only for quadratic
polynomials, and a converse to Rutt’s theorem for all polynomials. It is an open
question whether Corollary 3.5 works for polynomials of degree d > 2.

Corollary 3.5 (Mayer/Rogers). Suppose P is a quadratic polynomial with con-
nected Julia set J = J(P ). If J is an indecomposable continuum, then every exter-
nal ray has as its impression all of J .

Theorem 3.6 (Mayer/Rogers). Suppose P is a polynomial with connected Julia
set J = J(P ). If J is a decomposable continuum, then every external ray has
impression nowhere dense in J .

3.3. Non-landing rays and Cremer points. That some external ray does not
land is a sufficient condition for a polynomial Julia set not to be locally connected.
Such a ray defines a prime end of the third or fourth kind. For non-local-connectivity
however, it is enough to find a prime end of the second kind: one where the ray
lands, so the principal continuum is an accessible point, but whose impression is
nondegenerate. The first result about nonlanding rays was observed by Douady.
Dan Sørensen provides a proof in his MS thesis [31]. Later, in his PhD thesis [32],
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Sørensen obtained further suggestive results on the structure of quadratic Julia sets
where a nonlanding ray could be shown to exist.

Theorem 3.7 (Douady/Sørensen). For a generic set G of α ∈ T, there is a qua-
dratic polynomial P = Pα with a Cremer fixed point of eigenvalue e2πiα such that
there is an irrational θ = θ(α) ∈ T with the critical value v ∈ Pr(Rθ), and the
rotation number of θ is the irrational α. Moreover, the external ray Rθ does not
land.

At the time the authors were preparing this paper, we became aware of related
papers by two authors, each providing interesting details about the structure of
Julia sets near irrationally indifferent fixed points. These papers contain much
more than we report here. Jan Kiwi’s results in [17] for Julia sets with a Cremer
point were an inspiration for our Theorem 5.5, which presents a similar result for
a quadratic Julia set with a Siegel disk not containing the critical point in its
boundary.

Theorem 3.8 (Kiwi). Let J be the Julia set of the polynomial P with Cremer
fixed point z0 approximated by small cycles. Then there is a critical value v ∈ J
not accessible from C∞\J .

Theorem 3.9 (Kiwi). Let J be the Julia set of the quadratic polynomial P with
Cremer fixed point z0. Then the critical value v ∈ J is not accessible from C∞\J .
Indeed, if v ∈ Pr(R) (respectively, v ∈ Im(R)) for some external ray R, then
z0 ∈ Pr(R) (respectively, z0 ∈ Im(R)).

We have modified Kiwi’s statement of Theorem 3.9. Kiwi states the theorem only
for Pr(R). A slight modification of his proof works for Im(R). This observation is
useful because given any z ∈ J , there may be no ray whose principal continuum
contains z, but there is always some external ray whose impression contains z.

There is a useful and interesting connection between Cremer points and periodic
cycles. Yoccoz has proved that quadratic polynomials with a Cremer point have
small periodic cycles converging to the Cremer point with periods qnk

for some
subsequence of the denominators of the convergents of α (from the continued frac-
tion expansion; see Section 1.1). Perez-Marco [22] has also proved that, for any
polynomial, if z0 is a Cremer point and α satisfies the condition∑ log log qn+1

qn
<∞,

then there are small cycles converging to z0 with periods as above.
In [24] (see also [23]) Perez-Marco proves the theorems below. In case there is

a Siegel disk ∆ at 0 with ∆ ⊂ U , or in case 0 is a Cremer point, he calls the
continuum H of Theorem 3.10 a “hedgehog.” This is apt, since he later shows that
in these cases C∞\H has many prime ends of the second kind.

Theorem 3.10 (Perez-Marco). Let f(z) = e2πiαz + O(z2) be a holomorphic map
defined on a simply connected neighborhood U of 0 relatively compact in C, and
suppose that f is univalent on a neighborhood of U . Then there exists an H ⊂ C∞
such that

1. H is a cellular continuum (C∞\H is simply connected).
2. 0 ∈ H ⊂ U .
3. H ∩ ∂U 6= ∅.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1184 JOACHIM GRISPOLAKIS, J. C. MAYER, AND L. G. OVERSTEEGEN

4. f(H) = H.
5. 0 ∈ ∂H iff f is nonlinearizable at 0.

Moreover, if h : C∞\D → C∞\H is a uniformization, then g = h−1fh extends
continuously to an analytic circle diffeomorphism with rotation number α.

Theorem 3.11 (Perez-Marco). In the setting of Theorem 3.10, let H be a hedge-
hog and let S denote ∂∆ or 0, depending, respectively, upon whether or not f is
linearizable at 0. Then one of the following two conditions holds:

1. S is inaccessible from C∞\H.
2. For every prime end E of C∞\H such that Pr(E) is a single point z, all the

points of Im(E)\({z} ∪ S) are inaccessible.
Thus, H will always contain inaccessible points. Moreover, each accessible point of
H\S is the principal continuum of a prime end of the second kind.

In Theorems 4.1 and 4.3, for a quadratic polynomial P with an irrationally
indifferent fixed point z0, we prove the existence of an invariant “building block”
continuum B nowhere dense in the Julia set J . The critical point is in B, and,
depending upon whether P is linearizable at z0, B contains either the boundary
of the Siegel disk about z0 or the Cremer point z0. What, one may ask, is the
relationship between a hedgehog and a building block? If we add the Siegel disk
to B, so the resulting continuum is cellular, the answer is that hedgehogs live in
building blocks [24, Proposition I.3]. But, because the polynomial is not univalent
on a neighborhood of the building block, the building block is larger than any
hedgehog about z0.

We understand that Shishikura has recently shown that a Julia set containing
a Cremer point contains a set homeomorphic to a Cantor set cross an arc. This
would be consistent with the corresponding building block B being, or containing,
a Cantor bouquet. (First cited in [11]. See [6] for the definition, and question (16)
in Section 7.)

3.4. Siegel disks and their boundaries. Let P be a polynomial of degree d ≥ 2
with an irrationally indifferent periodic point z0 of period n such that (Pn)′(z0) =
e2πiα. For simplicity, and without loss of generality, we may assume that n = 1,
otherwise, we may take as our function Pn, under which z0 is a fixed point. Suppose
that z0 is a Siegel point; that is, there is an invariant Siegel disk ∆ on which P
is conjugate to the rigid rotation rα of the unit disk through angle α ∈ T. The
following is a long-standing question of Douady and Sullivan [12, 13, 34]: Must ∂∆
always be a Jordan curve?

A construction of Douady [13], following work of Ghys, showed that the bound-
ary was sometimes a Jordan curve. Petersen used this construction to prove his
previously cited theorem where he shows the entire quadratic Julia set is locally
connected provided α is of constant type. In this case the critical point is in ∂∆.
Using a similar construction, M. Herman [16, Theorem 5] has examples of a qua-
dratic polynomial of the form f(z) = e2πiα(z + z2) with a Siegel disk ∆ such that
the whole orbit of the critical point is disjoint from ∂∆ (hence, with a non-locally-
connected Julia set). In all these cases ∂∆ is a quasi-circle, that is, the image of
S1 under a quasi-conformal homeomorphism.

If ∂∆ is a Jordan curve, then the conjugation to an irrational rotation extends to
the boundary, as we have previously observed, and hence, ∂∆ contains no periodic
points of P . Three related questions are evident: Is ∂∆ a Jordan curve? Is a
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critical point in ∂∆? Is a periodic point in ∂∆? Various partial answers have been
obtained. One can expand the first question as follows: If ∂∆ is not a Jordan curve,
is it a decomposable continuum, or is it an indecomposable continuum? That this
is a useful question will be apparent from the Structure Theorem of J. T. Rogers
which we discuss below.

A continuum X is said to be irreducible if there are points p and q in X such
that no proper subcontinuum of X contains p and q. X is said to be circularly
irreducible if there exist two points p and q in X such that X = A ∪ B, where A
and B are two subcontinua of X , irreducible between p and q, and such that A∩B
consists of two disjoint subcontinua of A and B. K. Kuratowski has proved in [18]
the following result:

Theorem 3.12 (Kuratowski). Let X be a circularly irreducible continuum such
that every indecomposable subcontinuum of X is nowhere dense in X. Then there
exists a monotone map φ : X → T such that for every t ∈ T, φ−1(t) is a nowhere
dense subcontinuum of X, called the tranche at t.

Remark. E. Dyer has shown that if in addition the map φ is open, then a dense set
of tranches are indecomposable subcontinua [14].

A continuum in C is said to be tree-like iff it is nowhere dense in C and does
not separate C. Every subcontinuum of a tree-like continuum is tree-like, and the
intersection of any two subcontinua of a tree-like continuum is connected. Rogers
proved the following Structure Theorem for the boundary of a Siegel disk ∆ of a
polynomial P .

Theorem 3.13 (Rogers [26]). If ∂∆ is decomposable, then the conformal map φ :
∆ → D that results from the Riemann Mapping Theorem extends to a surjective
mapping ψ : C → R2 in such a way that ψ(∂∆) = ∂D = T and {ψ−1(t) : t ∈ T} is
an upper-semicontinuous decomposition of ∂∆ into tree-like subcontinua. Moreover,

1. the subcontinua {ψ−1(t)}t∈T are the impressions of the internal rays Rt,
2. {ψ−1(t)}t∈T are nowhere dense in ∂∆, and are accessible from inside ∆ at no

more than one point,
3. ψ|C\∆ is one-to-one, and
4. for any nondegenerate proper interval [s1, s2] ⊂ T, ψ−1([s1, s2]) is a contin-

uum which is irreducible between ψ−1(s1) and ψ−1(s2).

Remark. For t ∈ T, let Tt = ψ−1(t). We call Tt a tranche of the decomposition of ∆
induced by ψ. If we consider the Riemann map φ to be the unique representation
with φ(z0) = 0 and φ

′
(z0) ∈ R+, then the mapping ψ ◦ P ◦ ψ−1 : R2 → R2 is

well-defined and equal to the rigid rotation rα on D. Therefore, we have that
P (Tt) = Tt+α. Since α is irrational, there are no periodic continua (including
points) of the polynomial P on ∂∆ in the decomposable case. By Theorem 2.1,
∂∆ is an irreducible separator of C. Hence, ∂∆ is circularly irreducible and every
proper subcontinuum of ∂∆ is tree-like.

Independent proofs of the following theorem may be obtained without the as-
sumption that ∂∆ is decomposable, either, following Rogers [28], by combining
results of Herman, Poirier [15], and Rogers, or as a consequence of Perez-Marco
[23, Theorem IV.4.2]. Rogers further observes that if ∂∆ contains a periodic point,
then it must be indecomposable.
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Figure 2. Devil’s staircase

Theorem 3.14 (Perez-Marco, Rogers). Let P be a polynomial with an invariant
Siegel disk ∆ such that there are no critical points in an open topological disk con-
taining ∆. Then ∂∆ contains no periodic points.

3.5. The devil’s staircase. Let σ : A → T be the map σ(t) = 2t from a subset
A of the circle, which is order preserving. Let F : T → T be an order-preserving
extension of σ, and F : R → R be the lift of F satisfying F (y+1) = F (y)+1. Then
there is always a well defined rotation number associated with the set A, denoted
by νA and defined by

νA = lim
n→∞

tn − t0
n

,

where tn = σn(t0) for some point t0 ∈ A and t0 is a lift of t0, while tn is the unique
lift of tn such that 0 ≤ tn − tn−1 < 1. It is easy to see that the map σ restricted to
A is order preserving if and only if A is subset of a closed semicircle.

Let θ ∈ T be a number, and let A = {t ∈ T|Oσ(t) ⊂ [ θ
2 , θ,

θ+1
2 ]}. Then σ|A is

order preserving and A has a well defined rotation number νA which we will denote
by ν(θ) and we shall call it the rotation number of θ. The rotation number ν(θ)
is given by the “devil’s staircase” graph (see Figure 2) [7]. The following results
combine various theorems in [7].

Theorem 3.15 (Bullett/Sentenac). Let θ ∈ T be a number, and let A = {t ∈
T|Oσ(t) ⊂ [ θ

2 , θ,
θ+1
2 ]}. Then either

1. ν(θ) ∈ Q/Z, in which case A is either a finite periodic orbit or a countably
infinite set preperiodic to a periodic orbit ; or

2. ν(θ) ∈ (R \ Q)/Z, in which case A is a Cantor set, contained in the semi-
circle [ θ

2 , θ,
θ+1
2 ], unique with respect to being invariant under σ with rotation

number ν(θ), and contains both end points of the semicircle.

Theorem 3.16 (Bullett/Sentenac). Let ν ∈ T. Then there exists a unique mini-
mal closed invariant subset Aν ⊂ T, with rotation number ν. Moreover:

1. If ν ∈ Q, then Aν is a periodic orbit and there exists a unique pair of rationals
0 < θ−ν < θ+ν < 1 such that:
(a) θ−ν and θ+ν are both in Aν and are adjacent on T,
(b) {θ+ν /2, θ−ν /2 + 1/2} ⊂ Aν and Aν ⊂ [θ+ν /2, θ, θ

−
ν /2 + 1/2],

(c) if ν = p/q in reduced form, θ+ν − θ−ν = 1
2q−1 .
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2. If ν ∈ R \ Q, then Aν is a Cantor set and there exists a unique real number
θν such that Aν ⊂ [θν/2, θν, θν/2 + 1/2], {θν/2, θν/2 + 1/2} ⊂ Aν , and Aν =
Oσ(θν).

Corollary 3.17. Let θ be an irrational number such that its orbit under σ is con-
tained in the semicircle [ θ

2 , θ,
θ+1
2 ]. Then A = Oσ(θ) is a Cantor set, invariant

under σ, containing both endpoints of the semicircle, unique with the above proper-
ties, and with rotation number ν(θ) an irrational number.

4. Statements of main results

Theorem 4.1 (Building Block Theorem, Siegel Case). Let P be a quadratic poly-
nomial with a linearizable fixed point z0 with eigenvalue e2πiα and ∆ the invariant
Siegel disk about z0, Julia set J = J(P ), and critical point c. Suppose there is no
external ray Rs such that ∂∆ ⊂ Im(Rs). Then there is a building block B ⊂ J and
a unique Cantor set A ⊂ T such that the following hold:

1. B is a nowhere dense subcontinuum of J not contained in the impression of
any external ray.

2. P (B) = B.
3. ∂∆ ⊂ B.
4. O(c) ⊂ B.
5. There is a unique θ ∈ T such that v = P (c) ∈ Im(Rθ).
6. O(θ) is dense in A.
7. A ⊂ [ θ

2 , θ,
θ+1
2 ].

8. σ(A) = A, minimally, with rotation number α.
9. If t ∈ A, then Im(Rt) ⊂ B and Im(Rt) ∩ ∂∆ 6= ∅.

10. If z ∈ B, then for some t ∈ A, z ∈ Im(Rt).
11. There are no periodic points in B.

Note that the assumption that no external ray’s impression contains the bound-
ary of the Siegel disk simultaneously rules out an indecomposable Julia set and an
indecomposable Siegel disk boundary.

Corollary 4.2. In the setting of Theorem 4.1, there is a skeleton

S =
∞⋃

n=0

P−n(B)

in J such that the following hold:
1. S is a dense Fσ in J with empty interior.
2. S is fully invariant.
3. S contains no periodic points.
4. J\S is a dense Gδ, fully invariant under P , and contains all the periodic

points in J .

Theorem 4.3 (Building Block Theorem, Cremer Case). Let P be a quadratic
polynomial with a Cremer fixed point z0 with eigenvalue e2πiα. Suppose further
that the Julia set J = J(P ) is decomposable. Let c denote the critical point of
P . Then there is a building block B ⊂ J and a Cantor set A ⊂ T such that the
following hold:

1. B is a nowhere dense subcontinuum of J .
2. P (B) = B.
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3. P−1(z0) ⊂ B.
4. O(c) ⊂ B.
5. There is a θ ∈ T such that v = p(c) ∈ Im(Rθ).
6. O(θ) is a dense subset of A.
7. A ⊂ [ θ

2 , θ,
θ+1
2 ].

8. σ(A) = A, minimally, with rotation number α.
9. If t ∈ A, then Im(Rt) ⊂ B and z0 ∈ Im(Rt).

10. If z ∈ B, then for some t ∈ A, z ∈ Im(Rt).

The assumption that the Julia set is decomposable is necessary to obtain that
the impression containing v is proper in J .

Corollary 4.4. In the setting of Theorem 4.3, there is a skeleton

S =
∞⋃

n=0

P−n(B)

in J such that the following hold:
1. S is a dense Fσ in J with empty interior.
2. S is fully invariant.
3. J\S is a dense Gδ, fully invariant under P .

Remark. In the Cremer Building Block Theorem, the Cantor set A should be unique
and the building block B should contain no periodic points, but we have not been
able to prove this.

5. Supporting lemmas

Most of the results in this section can also be proved without the assumption
that the boundary of ∆ is a decomposable continuum, as well as for polynomials of
degree d ≥ 2, by using the Milnor-Goldberg Fixed Point Portrait. Proofs of these
will appear in a subsequent paper.

Lemma 5.1. Suppose ∆ is an invariant Siegel disk of a quadratic polynomial P
such that ∂∆ is a decomposable continuum. Let G be a proper subcontinuum of J .
Then G ∩ ∂∆ is either empty or a continuum.

Proof. Let z0 be the indifferent (Siegel) fixed point such that P ′(z0) = e2πiα. By
Theorem 3.13, there exists a monotone map ψ : C → R2 carrying ∂∆ to T such that
Ts = ψ−1(s) is a tree-like continuum for each s ∈ T and ψ is a homeomorphism off
∂∆.

Suppose that ψ(G ∩ ∂∆) is not connected. By the Θ-curve theorem, there is an
s ∈ T such that s does not belong to the closure of the unbounded complementary
domain of ψ(G) ∪ T. Hence, Ts ∩U∞ = ∅, a contradiction. Hence, we may assume
ψ(G∩∂∆) is connected. Then ψ(G∩∂∆) = [s1, s2], an interval in T, where s1 = s2
if either ψ(G ∩ ∂∆) = T or ψ(G ∩ ∂∆) = {s1}. Let (s1, s2) = ψ(G ∩ ∂∆)\{s1, s2}.
There are then two cases.

Case 1. Suppose that for all s ∈ (s1, s2), we have Ts ⊂ G. Set

K =
⋃

s∈(s1,s2)

Ts.
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Then K is a continuum (empty if ψ(G ∩ ∂∆) = {s1}) and

∂∆ ∩G = (Ts1 ∩G) ∪K ∪ (Ts2 ∩G).

If s1 = s2 and (s1, s2) = T\{s1}, since tranches are nowhere dense by Theorem 3.13,
it follows that Ts1 ⊂ K, and thus ∂∆∩G = ∂∆. Hence, we may assume that either
s1 6= s2 (so [s1, s2] is a proper nondegenerate subinterval of T), or s1 = s2 =
ψ(∂∆ ∩ G). If Tsi ∩ G is connected, for i = 1, 2, then ∂∆ ∩ G is connected given
either alternative.

Therefore, without loss of generality, we may suppose that Ts1 ∩ G = A ∪ B,
where A and B are disjoint closed nonempty sets, and that ψ(∂∆ ∩G) is a proper
(possibly degenerate) subinterval of T. Then Ts1 ∪G separates the plane, and there
exists a bounded complementary domain V of Ts1 ∪G such that ∂V \G 6= ∅. Since
∂V ⊂ Ts1 ∪ G and ∂V \G ⊂ Ts1 , it follows that V ∩∆ = ∅. Since V ∩ U∞ = ∅, V
must be a bounded complementary domain of J .

By Sullivan’s No Wandering Domains Theorem [34], each bounded Fatou com-
ponent is preperiodic. Since P is quadratic, all bounded Fatou components are
preperiodic to the fixed Siegel disk ∆. Hence, there exists a minimal n > 0 such
that Pn(V ) = ∆. Choose rays Ri, i ∈ {1, 2, . . . , 2n+1}, in V landing in Ts1\G.
Since Pn is at most 2n to one, Pn(Ri) are rays landing on at least two distinct
points in Pn(Ts) = Ts+nα, which contradicts the fact that, by Theorem 3.13, each
tranche of ∂∆ is accessible from ∆ in at most one point.

Case 2. Suppose there exists an s ∈ (s1, s2) such that Ts\G 6= ∅. Since tranches
are nowhere dense in ∂∆, there exist three distinct points a, b, c ∈ T such that
b ∈ [a, c] ⊂ (s1, s2) and Tb\G 6= ∅. Let B be the interval in T with endpoints a and
c that does not contain b. Set K = ψ−1(B) ∪ G. Then K is a continuum which
separates the plane. Since G ∩ ∆ = ∅ and G meets both Ta and Tc, and since
ψ−1(B) is an arc of tranches from Ta to Tc, ∆ must be contained in a bounded
complementary domain E of K, bordered in part by tranches corresponding to
points in B. Meanwhile, U∞ is contained in the unbounded complementary domain
of K. Choose x ∈ Tb\G. Since x ∈ ∆ and ∆ ⊂ E, x ∈ E. This contradicts x ∈ U∞.

Remark. Suppose that ∂∆ is a decomposable continuum. Let Rs be an external
ray and let Ks = Im(Rs) ∩ ∂∆. Given that Ks 6= ∂∆, it seems very unlikely that
Ks could hit more than one tranche, but we have been unable to prove that.

Corollary 5.2. Suppose ∆ is an invariant Siegel disk of a quadratic polynomial
P such that ∂∆ is a decomposable continuum. For each external ray Rs, Ks =
Im(Rs) ∩ ∂∆ is either empty or a continuum. Moreover, for all n ≥ 1, Pn(Ks) ⊂
K2ns.

Proof. Observe that

Pn(Ks) = Pn(∂∆ ∩ Im(Rs)) ⊂ ∂∆ ∩ Pn(Im(Rs)) = ∂∆ ∩ Im(R2ns) = K2ns.

Lemma 5.3. Let P be a polynomial of degree d ≥ 2 and ∆ an invariant Siegel disk
of P with decomposable boundary. Then ∂∆ does not contain a proper subcontinuum
invariant under Pn.
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Proof. This lemma follows immediately from the observation that the monotone
map ψ : ∂∆ → T semiconjugates P |∂∆ with an irrational rotation on T. (See the
remark after Theorem 3.13.)

Lemma 5.4. Suppose ∆ is an invariant Siegel disk of a quadratic polynomial P
such that ∂∆ is a decomposable continuum. Let Rt be an external ray whose im-
pression meets ∂∆ properly. Then t is an irrational number.

Proof. Suppose, on the contrary, that there exists some t ∈ Q such that Im(Rt)
meets ∂∆ properly. By Corollary 5.2, Kt = Im(Rt) ∩ ∂∆ is a proper nonempty
subcontinuum of ∂∆. Since t is a rational number, there exist positive integers m
and n such that

Pm(R2nt) = R2nt,

which implies that Pm(K2nt) ⊂ K2nt. Hence, K2nt is a proper invariant subcontin-
uum of ∂∆, contradicting Lemma 5.3.

Theorem 5.5. Let P be a quadratic polynomial with an invariant Siegel disk ∆
that does not contain the critical value in its boundary. Then exactly one of the
following happens:

1. There exists an external ray Rs such that ∂∆ ⊂ Im(Rs).
2. For any ray Rt with the critical value v ∈ Im(Rt), Im(Rt) ∩ ∂∆ is a proper

nonempty subcontinuum of ∂∆.

Proof. Suppose that the first does not hold, that is, there is no external ray con-
taining ∂∆ in its impression. By Corollary 3.4, ∂∆ is decomposable. Let Rt be
an external ray with v ∈ Im(Rt) and suppose that Im(Rt) does not meet ∂∆. Let
U0=C∞\R̂t, and notice that ∆ ⊂ U0. Since R̂t/2 and R̂(1+t)/2 both contain the
critical point c, R̂t/2 ∪ R̂(1+t)/2 is a separator of C∞. Hence, P−1(U0) consists of
two simply connected open sets, each of which maps conformally one-to-one onto
U0. Let U1 be the component of P−1(U0) containing ∆. We remark that P maps
∂∆ homeomorphically onto itself and the restriction of P on ∂∆ has no periodic
points (see Lemma 5.3). Let

B = {s ∈ T : Im(Rs) ∩ ∂∆ 6= ∅}.
It is clear that for each s ∈ B, Rs ⊂ U1. Since P |U1 is a conformal isomorphism
and ∂∆ is invariant, the two-shift map σ : B → B, defined by σ(s) = 2s, is a
homeomorphism. We shall prove that B is a compact subset of T. For this, let
(sn)n≥1 be a sequence in B converging to s0. Then Im(Rsn) ∩ ∂∆ 6= ∅ for each
positive integer n. By Lemma 1.1, Im(Rs0 )∩ ∂∆ 6= ∅, so s0 ∈ B. By Corollary 2.4,
since σ is an expansive homeomorphism on the compact set B, we have that B is
finite. This contradicts Lemma 5.4.

Corollary 5.6. Let P be a quadratic polynomial with an invariant Siegel disk ∆
such that no external ray contains ∂∆ in its impression. Suppose that Rt is an
external ray containing the critical value v in its impression. Then Im(Rt)∩ ∂∆ is
a nonempty proper subcontinuum of ∂∆.

Proof. If v /∈ ∂∆, this is an immediate consequence of Theorem 5.5. If v ∈ ∂∆, it
follows from Corollary 5.2.
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Lemma 5.7. Let P be a polynomial of degree d ≥ 2 with connected Julia set
J=J(P). Suppose that R and S are two external rays of J such that Im(R)∩Im(S) 6=
∅, and let U be an unbounded component of C∞\(R̂ ∪ Ŝ) and T ⊂ U an external
ray. Then Im(T ) ⊂ U ∪ Im(R) ∪ Im(S).

Proof. Note that R̂ ∪ Ŝ is a separator of C∞ and U ⊂ U ∪ R̂ ∪ Ŝ. We may assume
that T is an external ray in U . Let z ∈ Im(T ) and let φ : D∞ → U∞ be the
canonical Bötkher uniformization. Let φ−1(T ) land on t ∈ T. Then there exists
wi ∈ D∞ such that wi ∈ φ−1(U), wi → t and φ(wi) converges to z. Hence,

Im(T ) ⊂ U ⊂ U ∪ R̂ ∪ Ŝ.

Lemma 5.8. Let P be a quadratic polynomial with invariant Siegel disk ∆ such
that no external ray contains ∂∆ in its impression. Suppose that Rt is an external
ray containing the critical value v in its impression. Then the forward orbit of R̂t

is contained in the closure of the unbounded component of C\(R̂t/2 ∪ R̂(t+1)/2) that
contains Rt.

Proof. For s ∈ T, let Ks = Im(Rs) ∩ ∂∆. By Corollary 5.2, if Ks 6= ∅, then
Ks is a proper subcontinuum of ∂∆, and for all n ≥ 1, Pn(Ks) ⊂ K2ns. Since
Im(Rt/2) and Im(R(t+1)/2) both contain the critical point c, R̂t/2 ∪ R̂(t+1)/2 sep-
arates the plane into two unbounded complementary domains U1 and U2. For, if
Im(Rt/2) ∪ Im(R(t+1)/2) had a bounded complementary domain V , then by Sulli-
van’s No Wandering Domains Theorem, there would be an n such that Pn(V ) = ∆.
Thus,

∂∆ = Pn(∂V ) ⊂ Pn(Im(Rt/2) ∪ Im(R(t+1)/2)) ⊂ Pn−1(Im(Rt)) = Im(R2n−1t),

contradicting our hypothesis.
Let U1 denote the domain containing the external rayRt and U2 the domain con-

taining R0 (corresponding to the two semicircles [t/2, t, (t + 1)/2] and
[(t + 1)/2, 0, t/2] of external rays). By Corollary 5.6, Kt = ∂∆ ∩ Im(Rt) 6= ∅.
We claim that ∆ ⊂ U1. Suppose, on the contrary, that ∆ ⊂ U2. Then ∂∆∩U1 = ∅,
and hence, by Lemma 5.7,

Kt ⊂
[
∂∆ ∩ Im(Rt/2)

] ∪ [∂∆ ∩ Im(R(t+1)/2)
]
.

Thus, Kt ⊂ Kt/2 ∪ K(t+1)/2, which implies that P (Kt) ⊂ Kt, a contradiction of
Lemma 5.3.

Suppose, contrary to the statement of the theorem, that there exists some
positive integer m such that R2mt belongs to the unbounded component U2 of
C∞\(R̂t/2∪R̂(t+1)/2) that does not contain Rt. Since ∆ ⊂ U1, we have ∂∆∩U2 = ∅.
This implies, by Lemma 5.7, that

∂∆ ∩ Im(R2mt) ⊂
[
∂∆ ∩ Im(Rt/2)

] ∪ [∂∆ ∩ Im(R(t+1)/2)
]
.

Hence, Pm(Kt) ⊂ K2mt ⊂ Kt/2 ∪ K(t+1)/2. Applying P , we have Pm+1(Kt) ⊂
P (Kt/2 ∪K(t+1)/2) ⊂ Kt, contradicting Lemma 5.3.
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6. Proof of the main theorems

6.1. The Siegel disk case. We prove the Building Block Theorem 4.1 in the
case of a quadratic polynomial P with an invariant Siegel disk ∆ such that no
external ray contains ∂∆ in its impression. Since the only critical point is in the
Julia set J = J(P ), J is a continuum. Since there is no external ray Rs such
that ∂∆ ⊂ Im(Rs), we know by Corollaries 3.5 and 3.4 that both J and ∂∆ are
decomposable continua. We take up the cases of (1) a decomposable Julia set with
an indecomposable Siegel disk boundary, (2) polynomials of degree d > 2, and (3)
periodic Siegel disks, in a subsequent paper.

6.1.1. Proof of Building Block Theorem 4.1. Since J is a decomposable continuum,
by Theorem 3.6 we know that for every external ray, its impression is nowhere dense
in J . Since every point in J must be in some impression, there is some θ ∈ T such
that for the critical value v = P (c) ∈ J , we have v ∈ Im(Rθ).

By Corollary 5.6, Kθ = Im(Rθ)∩∂∆ is a nonempty proper subcontinuum of ∂∆.
By Lemma 5.4, θ is an irrational number in T. Recall that R̂θ = Rθ ∪ Im(Rθ). Let
U0 = C\R̂θ. Observe that

c ∈ Im(R θ
2
) ∩ Im(R θ+1

2
).

It follows that R̂ θ
2
∪ R̂ θ+1

2
is connected. Hence,

C\P−1(R̂θ) = C\
(
R̂ θ

2
∪ R̂ θ+1

2

)
has exactly two unbounded components, each of which maps conformally isomor-
phically onto U0 under P . Let U ′1 be the unbounded component of C\

(
R̂ θ

2
∪ R̂ θ+1

2

)
that contains Rθ, and U1 the other unbounded component (which necessarily con-
tains R0).

We define the following four collections of subsets of T and C inductively:

I0 = T\{θ}, U0 = C\R̂θ,
A0 = I0 = T, B0 = U0 = C,
I1 = component(σ−1(I0), 0), U1 = component(P−1(U0), R0),
A1 = A0\I1, B1 = B0\U1,

...
...

In = σ−1(In−1), Un = P−1(Un−1),
An = An−1\In, Bn = Bn−1\Un,

A =
∞⋂

n=0

An, B̂ =
∞⋂

n=0

Bn,

B = B̂ ∩ J =
∞⋂

n=0

(Bn ∩ J).

We shall show that A and B satisfy conclusions (1)–(11) of the theorem. The reader
may find it helpful to consult Figure 3 in what follows.

By Lemma 5.8, the forward orbit of R̂θ remains in U ′1. Hence, the forward orbit
of Rθ never enters U1, so the forward orbit of θ under σ never enters I1. This fact
plus the irrationality of θ implies by Corollary 3.17 that A is a Cantor set, which
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Figure 3. Building block construction for Siegel case

is the closure of the forward orbit of θ, contained in the half-circle A1 = [ θ
2 , θ,

θ+1
2 ],

and contains both endpoints of A1. In Theorem 6.1 below we prove that both θ and
A are unique and A has the rotation number α under σ. This establishes conclusions
(5)–(8) of the theorem. We prove that conclusion (11) holds in Theorem 6.2 below.

It remains to establish the properties of the building block B and the relationship
ofB toA. The proof of conclusions (1)–(4), (9), and (10) is based upon the following
series of claims (for all n ≥ 0):

There are no bounded components of C\
(
R̂ θ

2
∪ R̂ θ+1

2

)
.(15)

B1 = C\U1 = U ′1.(16)

B̂ = C\⋃∞n=0 P
−n(U1).(17)

R̂θ ⊂ Bn.(18)
Im(Rθ) ⊂ B.(19)

B is properly contained in J.(20)
Bn ∩ J is a nonempty continuum.(21)

P (B̂) = B̂.(22)

t ∈ An =⇒ R̂t ⊂ Bn.(23)
z ∈ Bn ∩ J =⇒ ∃t ∈ An, z ∈ Im(Rt).(24)

Assuming the claims hold, then conclusion (2) follows from claim (22) and the
fact that J is fully invariant. Conclusion (4) follows from claim (19) and conclusion
(2), since v ∈ Im(Rθ). Conclusion (3) follows from conclusion (4) and the fact
that ∂∆ ⊂ O(c). By claim (21), since the Bn’s are towered, B is a nonempty
continuum in J . If B had interior in J , its forward image would map onto J
eventually, contradicting conclusion (2) and claim (20). If B were contained in
some impression, so would ∂∆ by conclusion (3), contradicting our hypothesis.
Hence, conclusion (1) holds. The first part of conclusion (9) follows from claim (23)
by intersecting over n and with J . Conclusion (10) follows from claim (24), and
Lemma 1.1. If t ∈ A then, by conclusion (6), there is a subsequence {θn}∞n=1 of
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O(θ) which converges to t. Since Im(Rθ) meets ∂∆, Lemma 1.2 implies Im(Rθn)
meets ∂∆ for every n. By Lemma 1.1, Rt meets ∂∆, establishing the second part
of conclusion (9).

To see claim (15), suppose the contrary. If C\
(
R̂ θ

2
∪ R̂ θ+1

2

)
contains a bounded

domain G, then G contains a bounded domain H of C\J . By Sullivan’s No Wan-
dering Domains Theorem all bounded domains of C\J are preperiodic to ∆. Since
every point of ∂H is in U∞, ∂H ⊂ Im(R θ

2
)∪Im(R θ+1

2
). But then ∂P (H) ⊂ Im(Rθ).

This implies some forward image of Im(Rθ) contains ∂∆, contradicting our hypoth-
esis. Claim (16) follows immediately. Claim (17) is an immediate consequence of
the definitions of the Bn’s and B̂.

For n = 0, claim (18) is obvious. For n = 1, we have already observed that
R̂θ ⊂ U ′1 = B1. Since the forward orbit of θ remains in A, θ ∈ An for all n ≥ 0.
That is, Rθ is never in a component Wn of Un. By Lemma 5.7, R̂θ ⊂ C\Wn. By
induction on n, and intersecting over the finitely many complements of components
of Un, we get R̂θ ⊂ Bn, establishing claim (18). Claim (19) now follows immediately
by intersecting over n and with J .

To see claim (20), recall that both U1 and U ′1 map isomorphically onto U0 =
C\R̂θ, and Im(Rθ) is nowhere dense in J . Hence, both U1 and U ′1 ⊂ B1 contain
nonempty open subsets of J separated by Im(R θ

2
) ∪ Im(R θ+1

2
).

Claim (21) for n = 0 is obvious. Claim (18) implies Bn ∩ J 6= ∅ for all n ≥ 0.
Since J is connected, both U1 ∩ J and U ′1 ∩ J = B1 ∩ J are connected by the
Boundary Bumping Theorem. Since B1 ∩ J is a continuum, and the components
of U2 are isomorphic preimages of U1, we may repeat the argument with U2 and
B2 = B1\U2 to show B2 ∩ J is connected. Claim (21) follows by induction.

To see claim (22), note that by claim (17), P (B̂) ⊂ B̂. If there were z ∈ B̂ with
z /∈ P (B̂), then P−1(z) ∩ B̂ = ∅. If P−1(z) has a point in Un for some n > 1, then
z ∈ Un−1. Hence, z /∈ B̂, a contradiction. But P−1(z) ⊂ U1 contradicts the fact
that U1 contains at most one preimage of each point in C. Thus, P (B̂) = B̂.

To see claim (23), suppose t ∈ An. Then t /∈ In, so Rt is not in Un. It follows
that Rt ⊂ Bn. A proof similar to that for claim (18) shows that R̂t ⊂ Bn.

To see claim (24), suppose z ∈ Bn ∩ J for some n. Note that

Bn = C\
n⋃

k=0

P−k(U1).

Let W1, . . . ,Wm be the components of C\Bn. Observe that eachWj is a component
of P−i(U1) for some i ∈ {0, . . . , n}. Let t ∈ T be such that z ∈ Im(Rt). Suppose
there is no j ∈ {1, . . . ,m} such that Rt ⊂ W j . Then Rt ⊂ Bn, so t ∈ An. On
the contrary, suppose Rt ⊂ W j for some j ∈ {1, . . . ,m}. Let Ru and Rv be the
boundary rays of Wj . By Lemma 5.7, Im(Rt) ⊂ Wj ∪ Im(Ru) ∪ Im(Rv). Since
z /∈Wj , we have z ∈ Im(Ru) ∪ Im(Rv). Since u, v ∈ An, we are done.

Theorem 6.1. Let P be a quadratic polynomial with an invariant Siegel disk ∆
having rotation number α such that no external ray contains ∂∆ in its impression.
Let A ⊂ T be the Cantor set generated by θ, where the critical value v ∈ Im(Rθ).
Then the rotation number of A is α. In particular, A and θ are unique.

Proof. Let ψ : C → R2 be the Rogers map (Theorem 3.13) which identifies each
tranche of ∂∆ to a point and let Q : R2 → R2 be the map induced by P . For each
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t ∈ T, let Lt = ψ(Kt), where Kt = Im(Rt) ∩ ∂∆. Then ψ(∂∆) = S is a circle, Lt

is a possibly degenerate interval, and Q|S = rα is rotation by α. Compactify the
plane R2 in a disk D such that each external ray ψ(Rt) lands on the point t ∈ ∂D.
Extend the map Q : R2 → R2 to a map Q : D → D by defining Q(t) = 2t (mod 1).
Identify R2 with the interior of the open disk D. Hence, S = ψ(∂∆) is a circle in
the interior of D and A ⊂ ∂D. If we identify components of the complement of
A in ∂D to a point we obtain a monotone map m : D → D. For each t ∈ A, let
Ct = m

(
ψ(R̂t) ∪ {t}

)
. Then Ct is a continuum joining the point m(t) ∈ ∂D to

a proper subcontinuum m(Lt) in m(S), and Ct is contained in the closed annulus
D bounded by m(S) and ∂D. Note that Q(θ/2) = Q(θ/2 + 1/2) = θ. Hence,⋃

t∈A Ct is invariant under Q. Thus, Q induces a map f on
⋃

t∈A Ct. Note that
m(S) ∪ ∂D ⊂ ⋃

t∈A Ct. By definition, the rotation number of A is the rotation
number of the homeomorphism f |∂D : ∂D → ∂D. Note that f |m(S) is a rotation by
α. By an argument similar to the proof of Lemma 5.7, for each a, b, c > 0, f b(Cθ) is
contained in the closure of the component of D\ (fa(Cθ) ∪ f c(Cθ)) in the annulus
D containing the point m(2bθ). Since f |m(S) is rotation by α, f |∂D has rotation
number α.

Note that in the proof of the Building Block Theorem 4.1 we proved that θ
always generates a Cantor set A under the 2-shift map σ lying in the semi-circle
[ θ
2 , θ,

θ+1
2 ]. By Corollaries 5.6 and 5.2, we know that Kθ, is a subcontinuum of the

boundary of the Siegel disk, while, by Lemma 5.4, we know that θ is irrational.
Suppose on the contrary, that there exist two irrational numbers s1 and s2 with

0 < s1 < s2 < 1 such that the critical value v = P (c) is contained in both Im(Rs1)
and Im(Rs2). As above, we know thatKs1 = ∂∆∩Im(Rs1) andKs2 = ∂∆∩Im(Rs2)
are proper subcontinua of ∂∆. Moreover, by hypothesis, s1 and s2 generate by the
shift map σ two Cantor sets A1 and A2 lying on the intervals [ s1

2 , s1,
1+s1

2 ] and
[ s2

2 , s2,
1+s2

2 ] of T, respectively. Notice, also, that since Ai = Oσ(si), for i = 1, 2,
the fact that s1 6= s2 implies that A1 ∩ A2 = ∅. Since we have shown that the
rotation numbers of A1 and A2 both must be α, this contradicts Theorem 3.16.
Hence, θ ∈ T is such that v ∈ Im(Rθ) is unique.

Theorem 6.2. Let P be a quadratic polynomial with an invariant Siegel disk ∆
such that no external ray contains ∂∆ in its impression. Let B be the building block
of Theorem 4.1 containing ∂∆. Then B contains no periodic point of P .

Proof. Since there are no periodic points in ∂∆, suppose that there exists a point
z of period n in B\∂∆, and let Rq be an external ray with q ∈ Q/Z landing at z.
Suppose the critical value v ∈ Im(Rθ). Since the Cantor set A generated by θ is
minimally invariant, it does not contain any rational number, and hence, q 6∈ A.
Then θ+i

2m < q < θ+i+1
2m for some i,m ≥ 0. Since Rq lands at z, and z is not

contained in the interior of any removed wedge, Lemma 5.7 implies that

z ∈ Im(R θ+i
2m

) ∪ Im(R θ+i+1
2m

),

and, without loss of generality, z ∈ Im(R θ+i
2m

). This implies that

Pm(z) ∈ Im(Pm(R θ+i
2m

)) = Im(Rθ).

Since z is periodic of period n, we may assume that z ∈ Im(Rθ). Then z =
Pn(z) = P 2n(z) = · · · = P kn(z) = . . . for each k ∈ Z+, which implies that
z ∈ Im(R2knθ), for all k ≥ 0.
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Consider the set A0 = {θ, 2nθ, 22nθ, . . . , 2knθ, . . . } ⊂ A ⊂ T. By Lemma 1.1,
z ∈ Im(Rs) for all s ∈ A0. Since the orbit of θ is dense in A under σn, A0 = A, and
so z ∈ Im(Rs) for all s ∈ A. By Corollary 5.2 and Lemma 5.7, Ks ⊂ Kθ/2∪Kθ/2+1/2

for all s ∈ A. Since ∂∆ ⊂ ⋃s∈A Im(Rs), we have ∂∆ ⊂ K θ
2
∪K θ+1

2
. Therefore,

∂∆ = P (∂∆) ⊂ P (K θ
2
) ∪ P (K θ+1

2
) ⊂ Kθ,

which contradicts the hypothesis that there is no external ray containing ∂∆ in its
impression.

6.1.2. Proof of Skeleton Corollary 4.2. We prove that the Siegel building block B
generates a skeleton S =

⋃∞
n=0 P

−n(B) for the corresponding Julia set. Since Pn

is an open map and B is nowhere dense and closed in J , P−n(B) is nowhere dense
and closed. Thus, S is an Fσ, and, since J is a Baire space, S has empty interior.
However, since the inverse orbit of any point in J is dense in J , S is dense in J .
By definition, S is fully invariant. Since every point of S eventually maps into
B, any periodic points of S must be in B. But B contains no periodic points by
Theorem 6.2. It follows that J\S contains all the periodic points of J . Clearly,
J\S is a fully invariant dense Gδ in J .

One can say more: since P : U1 → U0 is a conformal isomorphism, one can pull
B\
(
Im(R θ

2
) ∪ Im(R θ+1

2
)
)

homeomorphically back into U1. We see that J contains
two copies of B joined along the “critical continuum” C = Im(R θ

2
)∪Im(R θ+1

2
). Let

Wn be a component of Un. Since Pn−1 : Wn → U1 is a conformal isomorphism,
we see that S can be viewed as the union of copies of B joined along preimages of
copies of C.

Just as B is a union of impressions of external angles in the Cantor set A, S is the
union of impressions of external angles which eventually map into A. Consequently,
by Theorem 6.1, J\S is contained in the union of impressions of external angles
that never map into A.

6.2. The Cremer point case. We prove the Building Block Theorem 4.3 in the
case of a quadratic polynomial P with an invariant Cremer point z0 of eigenvalue
e2πiα such that the Julia set J = J(P ) = K(P ) is a decomposable continuum.
Since the Cremer point must be in O(c), the only critical point c is in J . Hence, J
must be a continuum. Since the Cremer point attracts the critical point, J has no
bounded complementary domains, so is a tree-like continuum. We take up the cases
of (1) polynomials of degree d > 2, and (2) periodic Cremer points, in a subsequent
paper.

The first step in the proof of the Building Block Theorem for the Siegel disk case
was to establish the existence of a Cantor set A ⊂ T generated by an irrational
external angle θ such that Im(Rθ) contained the critical value v. We later showed
that A had rotation number α under σ, where α was the rotation number of the
Siegel disk, in Theorem 6.1. In the Cremer case, we begin with the following
theorem, finding θ such that Im(Rθ) 3 v and relating θ to α. Our proof is inspired
by the argument of Perez-Marco for Proposition II.11 in [24]; however, we have
modified the argument.

Theorem 6.3. Let P be a quadratic polynomial with Cremer fixed point z0 with
eigenvalue e2πiα. Then there exists a θ ∈ T such that Im(R θ

2
) and Im(R θ+1

2
) both
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contain z0, its other inverse z′0, and the critical point c. Moreover, θ is irrational
with rotation number α under σ.

Proof. By Yoccoz’s Theorem (see Proposition II.12 in [24]), if pn/qn are the con-
vergents to α in its continued fraction expansion, then there exists a subsequence
of convergents (pnk

/qnk
)k≥0 such that P has a periodic orbit Ck of period qnk

of
rotation number pnk

/qnk
such that Ck converges to z0.

By Theorem 3.16, for any rational number p/q there exist rational numbers
0 < θ−(p/q) < θ+(p/q) < 1 generating a finite orbit of period q under σ which has
rotation number p/q. Moreover,

{θ−(p/q), θ+(p/q),
θ+(p/q)

2
,
θ−(p/q) + 1

2
}

⊂ Oσ(θ+(p/q)) ⊂ [
θ+(p/q)

2
, θ+(p/q),

θ−(p/q) + 1
2

]
(25)

and

θ+(p/q)− θ−(p/q) =
1

2q − 1
.(26)

To simplify notation, let θ±k = θ±(pnk
/qnk

). Since pnk
/qnk

→ α, it follows that
θ±k → θ = θ(α), where θ(α) is the unique irrational corresponding to α given by the
devil’s staircase function, Figure 2 in Section 3.5. Since P is quadratic, it is clear
that the periodic points in Ck are repelling, and hence, the external ray Rθ+

k
lands

on a periodic point that generates the orbit Ck, while P i(Rθ+
k
) = R2iθ+

k
lands on the

corresponding point of the orbit Ck, for 0 ≤ i ≤ qnk
− 1. Hence, the invariant finite

set Oσ(θ+k ) = {σi(θ+k )|0 ≤ i ≤ qnk
− 1} is contained in the interval [ θ+

k

2 , θ
+
k ,

θ−k +1
2 ]

and has rotation number pnk
/qnk

under σ. By (25) above, let zk ∈ Ck be the point
on which the external ray Rθ+

k /2 lands. Let C′k = P−1(Ck)\Ck. Then C′k converges
to z′0. Moreover, the external ray Rθ−k /2 lands on a point z′k of C′k.

It follows from equation (26) that

θ+k
2
− θ−k

2
=

1
2

1
2qk − 1

.

This implies that

lim
θ+k
2

= lim
θ−k
2

=
θ

2
.(27)

We claim that

z0, z
′
0 ∈ Im(R θ

2
).(28)

To see this, let φ : C∞\D → C∞\J be the Bötkher uniformization. (Recall that
J = J(P ) = K(P ).) Referring to the discussion of crosscuts and impressions in
Section 3.1, let {Qk}k≥0 be a sequence of crosscuts of U∞ = C∞\J whose preimage
under φ is a sequence of cross-cuts of D∞ = C∞\D with the opposite endpoints

of φ−1(Qk) being θ+
k

2 and θ−k
2 . Hence, the endpoints of the crosscut Qk are the

landing points zk and z′k of the rays Rθ+
k /2 and Rθ−k /2, respectively. By (27), the

sequence {ψ−1(Qk)}k≥0 can be taken to converge to θ
2 . See Figure 4. It follows

from Lemma 3.1 that lim sup Sh(Qk) ⊂ Im(R θ
2
). Since zk, z

′
k ∈ Sh(Qk), zk → z0,

and z′k → z′0, it follows that z0, z′0 ∈ lim sup Sh(Qk), establishing claim (28).
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Figure 4. Critical impression in Cremer case

It is convenient to assume we have used the particular parameterization of qua-
dratic polynomials of the form P (z) = z2 + a. Then the Cremer point and its
preimage are z0 and −z0, and the critical point is c = 0. It is easy to show that
J is symmetric about 0 as a center; that is, rotation of the plane about 0 by half
a revolution carries J onto J , Rt onto Rt+ 1

2
, and interchanges z0 and −z0. Hence,

we also have

z0,−z0 ∈ Im(R θ+1
2

).(29)

We claim that

c ∈ Im(R θ
2
) ∩ Im(R θ+1

2
).(30)

To see that claim (30) holds, recall that c = 0 ∈ J , and let V be an open disk
centered on 0 such that V misses both z0 and −z0. Let y ∈ J ∩ V be a repelling
periodic point. Then some external ray Rs lands on y. By symmetry, Rs+ 1

2
lands

on −y ∈ V . Then Rs ∪ V ∪Rs+ 1
2

separates C between z0 and −z0. Since Im(R θ
2
)

is a continuum containing both z0 and −z0, it follows that Im(R θ
2
) ∩ V 6= ∅. Since

we can make V arbitrarily small, 0 ∈ Im(R θ
2
). Similarly, 0 ∈ Im(R θ+1

2
).

6.2.1. Proof of Building Block Theorem 4.3. Let P be a quadratic polynomial with
Cremer fixed point z0 with eigenvalue e2πiα. By Theorem 6.3, there is an irrational
θ ∈ T such that the critical value v ∈ Im(Rθ) and the rotation number of θ is α.
Since J is a decomposable continuum, by Theorem 3.6 we know that Im(Rθ) is a
nowhere dense subcontinuum of J . Since J is tree-like, so is each subcontinuum of
J . We now proceed just as in the proof of the Siegel Building Block Theorem in
Section 6.1. Let U0 = C\R̂θ. By claim (30), c ∈ Im(R θ

2
) ∩ Im(R θ+1

2
), so it follows

that

C\P−1(R̂θ) = C\
(
R̂ θ

2
∪ R̂ θ+1

2

)
has exactly two components, both unbounded, each of which maps conformally
isomorphically onto U0 under P . Let U ′1 be the component of C\

(
R̂ θ

2
∪ R̂ θ+1

2

)
that contains Rθ, and U1 the other component (which necessarily contains R0).
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We define the four collections In, An, Un, and Bn, for n ≥ 0, of subsets of
T and C, inductively, and then define A =

⋂∞
n=0An, B̂ =

⋂∞
n=0Bn, and B =

B̂ ∩ J =
⋂∞

n=0(Bn ∩ J) exactly as in Section 6.1. We shall show that A and B
satisfy conclusions (1)–(10) of the theorem.

By Theorem 6.3 and Corollary 3.17, c, z0, z′0 ∈ Im(R θ
2
)∩Im(R θ+1

2
), and A = O(θ)

is a Cantor set contained in the interval [ θ
2 , θ,

θ+1
2 ] ⊂ T, having rotation number α,

and containing θ, θ
2 , and θ+1

2 . Since the orbit of θ never enters any In, n ≥ 0, the
orbit of Rθ never enters any Un. By the above, we have conclusions (5)–(8) of the
theorem.

To establish the properties of the building block B and the relationship of B to
A we proceed for the most part just as in Section 6.1. The proof of conclusions (1)–
(4), (9), and (10) is based upon a series of claims parallel to, and worded exactly
like, (15)–(24) with the following addition:

Im(R θ
2
) ∪ Im(R θ+1

2
) ⊂ B(31)

Assuming the parallel claims hold, the proof of conclusions (1), (2), the first
part of (9), and (10) follows as in Section 6.1. Conclusions (3) and (4) follow from
claim (31) and conclusion (2), since c, z0, z′0 ∈ Im(R θ

2
). If t ∈ A then there is a

subsequence {θn}∞n=1 of O( θ
2 ) which converges to t. By claim (31) and Lemma 1.2,

since z0 is fixed, z0 ∈ Im(Rθn) for every n. By Lemma 1.1, z0 ∈ Rt, establishing
conclusion (9).

The claims parallel to (15)–(24) are proved just as in Section 6.1. To see claim
(31), note that by definition of B1, Im(R θ

2
) ∪ Im(R θ+1

2
) ⊂ B1. Since Rθ never

enters U1, R θ
2

and R θ+1
2

never enter any component Wn of Un for n > 1. Hence, by
Lemma 5.7, Im(R θ

2
)∪Im(R θ+1

2
) ⊂ C\Wn. By induction on n, and intersecting over

the finitely many complements of components of Un, we get Im(R θ
2
)∪ Im(R θ+1

2
) ⊂

Bn. Claim (31) follows by intersecting over n and with J .

6.2.2. Proof of Skeleton Corollary 4.4. The proof that the Cremer building block B
generates a skeleton S for the corresponding Julia set is the same as in Section 6.1.2.

7. Concluding questions

7.1. Siegel disk case. Let P be a quadratic polynomial with Siegel disk ∆. Let
B denote the Siegel building block, S =

⋃∞
n=0 P

−n(B) the skeleton, and C the
critical continuum joining copies of B in S.

1. Is the orbit of the critical point c dense in B?
2. Does any external ray land on B or on ∂∆?
3. Do the copies of B (and of C) in S have diameter going to 0 as n goes to ∞?
4. Are the components of J \ S points? If so, what is the dimension of J \ S?
5. Does J contain points of local connectivity?
6. To what kind(s) of prime end does t ∈ A correspond?
7. Suppose t is a point in T whose forward orbit never enters the Cantor set A.

What kind of prime end corresponds to t?
8. If s 6= t ∈ T, and neither ever maps into A, then is Im(Rs) ∩ Im(Rt) = ∅?
9. Can B contain a copy of a hairy circle? (A hairy circle is a circle with

uncountable many hairs of all lengths ≤ 1 attached at a dense set; see [1] for
an exact definition)
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7.2. Cremer case. Let P be a quadratic polynomial with Cremer point z0. One
may raise the same questions in the Cremer case regarding B, S, and C as for the
Siegel disk case. In addition, the following questions arise in the Cremer case:

10. Does the orbit of the critical point c accumulate on the preimage z′0 of the
Cremer point?

11. Does any external ray land on z0?
12. Is z0 the impression of a prime end of the first kind?
13. Is there any external angle whose impression contains B?
14. Is the impression of each external angle in A nowhere dense in B?
15. Do the impressions in B have only z0 in common?
16. Can B contain a copy of a Cantor bouquet? (A Cantor bouquet is a smooth

fan with a dense set of endpoints, see [6]. Similar objects were first introduced
in [11].)

We would like to thank Jan Kiwi for helpful comments about an earlier version
of this paper.
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