
BUILDING BLOCKS OF A SIMULATION ENVIRONMENT OF

THE OSI NETWORK LAYER OF PACKET-SWITCHING

NETWORKS

A. Gerisch A.T. Lawniczak B. Di Stefano
Dept. of Math. and Comp. Sc. Dept. of Math. and Stat. Nuptek Systems, Ltd.

University of Halle University of Guelph Toronto, Ont M5R 3M6
06099 Halle (Saale), Germany Guelph, Ont N1G 2W1, Canada Canada

gerisch@mathematik.uni-halle.de alawnicz@uoguelph.ca nuptek@sympatico.ca

Abstract
This paper describes the main building blocks of

a simulation environment of the OSI Network Layer
of packet-switching networks. The need for such a
tool is presented and pitfalls of previous solutions
are described. Remedies provided by the most recent
solution are discussed. Architecture, organisation, and
architectural decisions are explained.

Keywords: Packet-switching networks; OSI Net-
work Layer; simulation environment; Netzwerk-1.

1. INTRODUCTION
The global Internet, wireless communication sys-

tems, ad-hoc networks, and sensors networks are some
of the examples of data networks of packet-switching
type. These packet-switching networks (PSNs) have
experienced unprecedented growth that is going to con-
tinue in the foreseeable future.

The dynamics of PSNs is highly heterogeneous and
unpredictable. For instance, the dynamics of flow and
congestion in PSNs are influenced by many different
independent variables. At infrastructure level some of
the most important variables are connection topologies
and routing strategies, while at business level the most
significant independent variables include frequent and,
often, sudden changes in quantity, quality, and type of
service demanded by the user. The Internet is charac-
terised by simultaneous coexistence of overloaded hot-
spots and underutilised resources.

Many small scale models and experiments tried by
several researchers do not allow to scale up and do not
accurately model the effect of the propagation of such
phenomena as denial of service attacks or the spread
of computer viruses on the global Internet. There is a
need of simulation environments that can easily scale

from small networks of the order of up to 103 nodes
to large networks of the order of up to 105-106 nodes.
Even if limitations imposed by available computing re-
sources forces the simulation of small networks, the de-
velopment of simulation tools that can scale up is war-
ranted by the forecasted evolution of computer speeds,
memory size, and by the availability of grid computers.

The evolution of PSNs and improvements in their
design depend strongly on the ability to predict systems
performance using analytical and simulation methods.
For instance, the dynamics of large PSNs might sig-
nificantly influence the performance of proposed new
protocols and routing schemes. In general, protocol in-
dependent simulation tools are needed to better under-
stand which characteristics the protocols should have.

One of the authors has had extensive experience in
this research and has supervised the development of
four different generations of simulation environments.
Results obtained using the first generation are reported
in [1, 2] and those using the second and third generation
in [3, 4]. Some of the results obtained so far using the
fourth generation software are reported in [4, 5, 6, 7].

This paper focuses on the description of software
building blocks used to set up digital laboratories to
perform large-scale simulation and to run digital ex-
periments to test various hypothesis. Design decisions
have been made in such a way as to allow for the use
of existing public domain or readily available standard
software as well as for portability across different oper-
ating systems and across different hardware platforms.

2. ARCHITECTURE OF THE
SOFTWARE ENVIRONMENT

By software environment we mean the set of soft-
ware modules and tools that make up the universe of

CCECE 2003 - CCGEI 2003, Montréal, May/mai 2003

0-7803-7781-8/03/$17.00 c© 2003 IEEE - 001 -

the software used for conducting our research. Previ-
ously developed simulation environments [1, 2, 3], con-
sisted of a MS Windows compatible simulator program
with real-time GUIs and a set of Matlab scripts used to
process the raw data produced during the simulation
for the purpose of evaluation. However, the intrinsic
slow response of computer display technology and the
large amount of data to be generated, made it clear
that to simulate relatively large size PSNs required to
eliminate the real-time GUIs.

In the experiment to study flow and congestion of
a PSN, the simulation model consists of a number of
switching nodes which are interconnected by bidirec-
tional communication links and its purpose is to trans-
mit packets from nodes of origin to destination nodes.
A packet is a capsule which carries the information pay-
load and some additional information related to the
internal structure of the network. One or more pack-
ets make up a message which a user wants to transmit
over the network from a node of origin to a destination
node. The simplifying hypothesis of messages consist-
ing of one packet only allows to neglect issues such as
message reconstruction at the destination node, an is-
sue that does not contribute to the study of flow and
congestion over the network. Each switching node can
perform two functions: that of a host (source and desti-
nation of packets) and that of a router (message proces-
sor, that can store and forward packets). To simulate
a wide variety of traffic situations, packets are created
randomly at each node and independently from the
other nodes, with a probability called source load. An
incoming queue and outgoing queues are maintained by
each node to store packets on this node. The outgoing
queue can be just one per node or one per neighbour-
ing node (that is per link connected to the node). With
each delivered packet we associate the following num-
bers:
• the number of hops of the packet (the number of

links traversed between source and destination),
• the delay time of the packet (time of delivery at

destination minus time of creation at source), and
• the average speed of the packet (the number of

hops divided by its delay time).
As described in [5], a number of sums and averages

are calculated at every time step. Clearly, an attempt
to display in real-time these sums and averages would
result in a very slowly running program. Moreover, ev-
ery experiment has to be repeated for a range of source
loads. The modelling tool of the fourth generation,
Netzwerk-1 [8], does not include any direct graphical
user interface support. Rather it has a text based inter-
face which can also be used to execute simple scripts.
Selected simulation and statistical data can be saved

in text files (MATLAB format) for further evaluation
and processing. The choice of the text based interface
in combination with script files has proven to be an
efficient and very convenient way of running the large
number of simulation experiments.

The abstraction used to model a PSN depends on
which aspect of the system one wants to study. Re-
search on the effects of network connection topology
and routing algorithm on flow and congestion, as is
currently our main interest, can be carried out if only
the Network Layer of the OSI Reference Model is sim-
ulated. Research on the effects of the nature of data,
e.g. studies on mice (small data bursts, e.g. short text
messages) and elephants (large amount of data, e.g.
streaming video files), on flow and congestion requires
that also the Application Layer be modelled.

3. Netzwerk-1 — A PSN SIMULATION
TOOL

The implementation of Netzwerk-1 follows the
object-oriented programming methodology and uses
the programming language C++ including its Stan-
dard Template Library[9]. Employing these standard-
ised programming languages guarantees portability and
maintainability.

The objects of a packet-switching network are obvi-
ously packets and switching nodes including their out-
going links to neighbouring switching nodes. These are
implemented in the classes Packet and SwitchingNode, re-
spectively. Further, the central object responsible for
setting up a PSN and running as well as monitoring its
operation is provided by the class PacketSwitchingNet-

work.

3.1 Class Packet

The class Packet provides the functionality of a
packet in a PSN. We assume that all packets have equal
length and therefore ignore their payload. Each in-
stance of the class has four data members: destination
address, creation time, the number of hops already per-
formed, and its state (either INTRANSIT, ARRIVED,
or DISCARDED).

A packet is always in exactly one state. Each packet,
created with the only constructor Packet(Destination,

CreationTime) is initially in state INTRANSIT. From
this state it can be switched to one of the other (final)
states: ARRIVED, i.e. the packet is successfully deliv-
ered to its destination, or DISCARDED, i.e. the packet
is going to be destroyed for some other reason. The
public methods switchToArrived(ArrivalTime), return-
ing the packet’s delay time, and switchToDiscarded(),
respectively, must be used for these state changes.

- 002 -

These methods raise an error if applied to packets not
in state INTRANSIT. Further, the destructor of the
class raises an error if it destroys a packet in a non-
final state. Those mechanisms prevent the unintended
loss of packets and aid in debugging the code.

The number of hops of a packet is initialised with
zero (constructor) and must be incremented whenever
the packet has traversed a link. This is achieved by
calling its method incHopCounter() which also raises
an error if the packet’s state is not INTRANSIT.

The class Packet provides a basic statistic by main-
taining a set of static counters (stored as doubles to
avoid overflow). These include the number of packets
created, arrived and discarded, and sums of quantities
associated with each delivered packet, see Sec. 2..

3.2 Class SwitchingNode
The class SwitchingNode sets up and runs a switching

node in a PSN. For this purpose it maintains queues of
packets and lists of neighbouring switching nodes. It
has the capability to create and receive packets, and
to store and forward (route) packets destined for other
nodes of the network. In order to do the latter, it
maintains a routing table which is used to determine
the next switching node on an efficient path, accord-
ing to some least-cost criterion, to a packets destina-
tion. The class SwitchingNode can also update its rout-
ing table values based on the routing table values of
its neighbouring nodes. This capability is used to per-
form a distributed routing table update of the whole
network. The class SwitchingNode is implemented as
an abstract class and hence no objects of it can be
instantiated. However, the class still provides all the
functionality described by declaring pure virtual func-
tions which must be implemented by derived classes
of SwitchingNode. We derive two classes SwitchingNode1

and SwitchingNodeN. These classes maintain one outgo-
ing queue in total per node and one outgoing queue
for each neighbouring node, respectively. This implies
that instances of class SwitchingNode1 can forward at
most one packet per time step whereas instances of
SwitchingNodeN can forward at most one packet to each
neighbour.

3.3 Class PacketSwitchedNetwork
The class PacketSwitchedNetwork sets up a PSN by

creating a network topology with switching nodes and
interconnecting links. A variety of topologies (periodic
and non-periodic; based on a square or a triangular lat-
tice; with l additional, randomly generated links) can
be created. The characteristic attributes (centralised or
distributed routing table update, parameters for com-
puting the costs of traversing links, the source load,

etc.) of the network are initialised here.
After initialisation, this class operates as a supervi-

sor of the created network: it can run the network for
a specified amount of cycles of the network update al-
gorithm, see [5], and in doing so it collects and stores
statistical data as time series. This data can be saved
for a more detailed evaluation with other tools. As the
supervisor of the network, the class PacketSwitchedNet-

work has also the capability to run a centralised update
of the routing tables of all switching nodes.

3.4 Random Choices

An important part in the simulation process are ran-
dom choices with certain probabilities, like creation of
a packet or not, choice of an outgoing edge from a set
of possible outgoing edges, etc. The user is free in its
choice of the pseudo-random number generator as long
as this generator is implemented in a class providing
three public methods to serve the following purposes:
• void SetSeed(unsigned long seed) to set the seed

of the generator,
• double DrawDouble(void) to draw a real valued

pseudo-random number from the interval [0, 1) with
uniform probability, and
• unsigned int DrawInteger(unsigned int n) to se-

lect a value from the set {1, 2, . . . , n} with uniform
probability. If n = 0 then 0 is returned.

Based on these methods, we can, e.g., decide on suc-
cess or failure of a Bernoulli trial with probability of
success p ∈ [0, 1]: if DrawDouble()< p then the trial is
successful, otherwise it failed.

The reason why the pseudo-random number gener-
ator should be implemented as a class is that the se-
quence of each instance used in the program must be
independent of the others. We are not content with one
sequence of random numbers in the simulation system
because we use them for different purposes. For ex-
ample we compare simulation results of PSNs with the
same topology for various source load values and in this
case we must fix the random number sequence used to
select additional, randomly generated links.

Netzwerk-1 implements the pseudo-random number
generator described in [10]. This generator combines a
subtract-with-borrow generator with a Weyl generator.
The combination generator returns unsigned int values
in the inclusive range 0, 1, 2, ..., 232 − 1. The period of
the combined generator is not known but in [10] it is
stated that there is theoretical support for the empirical
observation that combining two generators will produce
better results, or at least no worse, than either of the
component generators. Hence we expect a period of at
least ≈ 10414—sufficiently long for large PSN models
and long simulation times.

- 003 -

3.5 The Text Interface
We provide an easy-to-use text-based interface to

the simulation system. The set of commands that can
be executed is rather rich and can easily be expanded
as needed by defining new command functions and by
suitably designing and coding them. The current state
of the system is saved in a structure which can be ac-
cessed and modified by all command functions. A rudi-
mentary help system is provided, too.

The text interface allows for the following opera-
tions:
• setting of parameter values for the definition of the

PSN model,
• creating and running a PSN model including mon-

itoring of individual nodes and queue, and
• saving the gathered statistical data about the PSN

network and the simulation run to text files.
The text interface allows control of the simulation

system by script files. A simple script file for running
a single simulation is the following:
set LatticeSize = 20

set Geometry = SQUARE

set NumberOfRandomLinks = 1

set FinalSimulationTime = 200

set UpdateRoutingTable = DISTRIBUTED

set SwitchingNodeType = SN1

set OutputFileName = network.out

set UPRSeed = 1

createPSN

runPSN

savePSN

destroyPSN

quit

4. CONCLUDING REMARKS

We have presented main design decisions of our
packet-switching network simulation tool Netzwerk-1.
We placed emphasis on a portable code using standard-
ised programming tools. The proposed structure is ex-
tendable to include other routing mechanisms, such as
partial table routing [1], or more heterogeneous net-
work connection topologies. Currently the packet traf-
fic generation at each node uses a Bernoulli distribution
specified by a given source load value. In order to in-
corporate the observed long-range dependence of real
packet traffic in the PSN model, it is straightforward
to replace the packet creation method at each node by
implementing other distributions or the chaotic map
described in [11]. The software system Netzwerk-1 is
completed by a set of Matlab scripts, described else-
where, which read the saved statistical data and eval-
uate and compare simulation runs.
Acknowledgements: A.T. Lawniczak and A. Gerisch

acknowledge partial support from the University of Guelph

and The Fields Institute for Research in Mathematical Sci-

ences. A.T. Lawniczak acknowledges additionally partial

support from the Natural Science and Engineering Research

Council (NSERC) of Canada. B. Di Stefano acknowledges

total financial support from Nuptek Systems Ltd. The au-

thors acknowledge the use of the SHARCNET computa-

tional resources at the University of Guelph.

References
[1] H. Fukś, A.T. Lawniczak, “Performance of data net-

works with random links”, Mathematics and Comput-
ers in Simulation, vol. 51, 101-17, 1999.

[2] H. Fukś, A.T. Lawniczak, and S. Volkov, “Packet De-
lay in Models of Data Networks”, ACM Transactions
on Modeling and Computer Simulation, vol. 11, 1-18,
2001.

[3] A.T. Lawniczak, P.Zhao, A. Gerisch, and B. Di Ste-
fano, “Modeling flow and congestion in packets switch-
ing networks”, IEEE Canadian Review, 23-27, Winter
2002.

[4] A.T. Lawniczak, A. Gerisch, P.Zhao, and B. Di Ste-
fano, “Effects of Randomly Added Links on Average
Delay and Number of Packets in Transit in Data Net-
work Traffic Models”, To appear in the Proceedings of
DCDIS’2003, Guelph , Ontario, Canada, May 15-18,
2003.

[5] A.T. Lawniczak, A. Gerisch, B. Di Stefano, “OSI
Network-layer Abstraction: Analysis of Simulation
Dynamics and Performance Indicators” (submitted for
publication), 2003.

[6] A.T. Lawniczak, A. Gerisch, B. Di Stefano, “Develop-
ment and Performance of Cellular Automaton Model
of OSI Network Layer of Packet Switching Networks”,
To appear in the Proceedings of CCECE’2003, Mon-
treal Quebec, Canada May 4-7, 2003.

[7] A.T.Lawniczak, A. Gerisch, and K.Maxie, “Effects of
randomly added links on a phase transition in data
network traffic models”, To appear in the Proceedings
of DCDIS’2003, Guelph , Ontario, Canada, May 15-18,
2003.

[8] A. Gerisch, A.T. Lawniczak, B. Di Stefano, “Netzwerk-
a packet-switching network simulation enviroment”,
(in preparation), 2003.

[9] D. R. Musser, G. J. Derge, A. Saini, “STL Tuto-
rial and Reference Guide. C++ Programming with
the Standard Template Library”, 2nd Edition, Boston:
Addison-Wesley, 2001.

[10] G. Marsaglia, B. Narasimhan, A. Zaman, “A random
number generator for PC’s”, Comp. Phys. Comm., vol.
60, 345-49, 1990.

[11] M. Woolf, D. K. Arrowsmith, R. J. Mondragón-C and
J. M. Pitts, “Optimization and phase transitions in a
chaotic model of data traffic”, Phys. Rev. E, vol. 66,
046106, 2002.

- 004 -

