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Investigation into the neural and computational bases of decision-making has proceeded

in two parallel but distinct streams. Perceptual decision-making (PDM) is concerned with

how observers detect, discriminate, and categorize noisy sensory information. Economic

decision-making (EDM) explores how options are selected on the basis of their rein-

forcement history. Traditionally, the sub-fields of PDM and EDM have employed different

paradigms, proposed different mechanistic models, explored different brain regions, dis-

agreed about whether decisions approach optimality. Nevertheless, we argue that there

is a common framework for understanding decisions made in both tasks, under which

an agent has to combine sensory information (what is the stimulus) with value informa-

tion (what is it worth). We review computational models of the decision process typically

used in PDM, based around the idea that decisions involve a serial integration of evidence,

and assess their applicability to decisions between good and gambles. Subsequently, we

consider the contribution of three key brain regions – the parietal cortex, the basal gan-

glia, and the orbitofrontal cortex (OFC) – to perceptual and EDM, with a focus on the

mechanisms by which sensory and reward information are integrated during choice. We

find that although the parietal cortex is often implicated in the integration of sensory evi-

dence, there is evidence for its role in encoding the expected value of a decision. Similarly,

although much research has emphasized the role of the striatum and OFC in value-guided

choices, they may play an important role in categorization of perceptual information. In

conclusion, we consider how findings from the two fields might be brought together, in

order to move toward a general framework for understanding decision-making in humans

and other primates.
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INTRODUCTION

Over the past 10 years, there has been a resurgence of interest

in the neural and computational mechanisms by which humans

and other primates make decisions under uncertainty. This work

has bridged multiple levels of description, with some researchers

focusing on the contributions of individual neurons to decision-

making, and others trying to map entire brain circuits for volun-

tary choice. Computational accounts have ranged from biophys-

ically plausible neural network models to large-scale simulations

in which the behavior of millions of neurons is captured in a

single variable. Correspondingly, the techniques involved have

included those focused on both local neuronal circuits, such as

single-cell electrophysiology or microstimulation and global brain

systems, such as functional neuroimaging, lesion studies, and

pharmacological manipulations.

Curiously however, this research program has largely been car-

ried out in two distinct but parallel streams. One stream, which

is sometimes called “perceptual decision-making (PDM),” grew

out of classical psychophysics, and is concerned with how humans

choose an appropriate action during the detection, discrimination,

or categorization of sensory information. The other stream, which

we refer to as “economic decision-making (EDM),” has asked how

humans choose among different options on the basis of their asso-

ciated reinforcement history. To date, we would argue, researchers

in either stream have been surprisingly reluctant to import con-

cepts or approaches from the other. Instead, researchers interested

in perceptual and economic choices have tended to use different

classes of computational model, focused on distinct neural circuits,

and have arrived at different conclusions about whether humans

make good choices or not.

However, we would argue that an understanding of the com-

putational neurobiology of voluntary choice would benefit from

increased cross-fertilization between the literatures concerned

with perceptual and economic decisions. It might be worth con-

sidering, for example, that all perceptual decisions are ultimately

motivated by reward (or the avoidance of loss) whereas all eco-

nomic decisions require perceptual appraisal of the alternatives

on offer. Moreover, there is a common structure to virtually all

decision-making tasks employed across the literature: an agent

is required to identify one or more stimuli in a given sensory

modality (what is it?), and then to select a response which will

maximize the probability of positive feedback or reward (what is

it worth?). In what follows, we will argue that despite the differ-

ences of approach between the two streams, one can conceive of
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the problem they seek to understand under one general conceptual

framework, in which decisions are sensorimotor acts that depend

on the integration of sensory evidence with information about

reward value.

In this review, we summarize the work of computational,

behavioral, and cognitive neuroscientists who have reached across

the divide between the sub-fields of perceptual and EDM. Some

researchers have considered, for example, how reward might influ-

ence sensory discrimination (Feng et al., 2009; Rorie et al., 2010;

Serences and Saproo, 2010; Summerfield and Koechlin, 2010; Weil

et al., 2010; Mulder et al., 2012), or how process models used to

describe perceptual decisions might be applied in the economic

domain (Basten et al., 2010; Philiastides et al., 2010; Hare et al.,

2011b; Krajbich and Rangel, 2011; Krajbich et al., 2011; Hunt

et al., 2012). In doing so, we emphasize a number of issues which

we believe to be of key interest for researchers concerned with

decision-making. In particular, we review work that has asked

how perceptual decisions are biased by economic information,

for example where the response options may have asymmetric

costs and benefits. We also consider the mechanisms by which

rewards (or informative feedback) might drive learning about sen-

sorimotor acts. These considerations prompt a discussion about

where in the primate brain information about the likely identity

of a stimulus and its likely reinforcement value are combined. In

conclusion, we aim to move toward a more general framework

for understanding the neurobiology of decision-making, drawing

upon approaches from the sub-fields of both perceptual and EDM.

PERCEPTUAL AND ECONOMIC DECISION-MAKING:

CONVERGENCE AND DIVERGENCE

It is beyond the scope of the current article to provide a compre-

hensive overview of the literatures concerned with perceptual and

economic choice, and we refer the reader instead to a number of

excellent summaries published in recent years (Gold and Shadlen,

2007; Heekeren et al., 2008; Kable and Glimcher, 2009; Rangel

and Hare, 2010; Rushworth et al., 2011). Rather, here we aim to

highlight the similarities and differences between the methods and

approaches in the two fields.

SOURCES OF UNCERTAINTY

Perceptual decision-making is concerned with the mechanisms by

which observers categorize sensory signals, and as such, tasks typ-

ically require observers to classify weak or noisy sensory informa-

tion. For example, one influential paradigm called the “random-

dot kinetogram” or RDK task (Britten et al., 1993) requires

observers to classify the net direction of motion of a cloud of

randomly moving dots. However, whilst the sensory information

in these tasks is ambiguous, the reinforcement contingencies (i.e.,

which action leads to reward, given the identity of the stimulus)

are usually clear and over-learned. Thus, it is the identity of the

stimulus that is uncertain, not the value of its associated action.

By contrast, EDM tasks tend to employ stimuli that are percep-

tually unambiguous, often in the visual domain. For example, in

classic “multi-armed bandit” tasks, agents usually view two easily

discriminable shapes or symbols, each associated with a distinct

reward statistics (Sutton and Barto, 1998; Daw et al., 2006). How-

ever, whilst perceptual uncertainty on these tasks is negligible, the

task is challenging because the reinforcement value associated with

the two options may drift or jump unpredictably across the experi-

ment (Behrens et al., 2007; Summerfield et al., 2011), or in different

situations, because the agent has to choose between two or more

assets whose value (learned prior to the experiment) is roughly

comparable (Kable and Glimcher, 2007; Plassmann et al., 2007),

and the value representations are themselves noisy. Thus, relative

value of each stimulus and/or its associated action is uncertain,

but its identity is known to the agent.

COMPUTATIONAL MODELS

Because uncertainty in PDM tasks is owing to the identity of the

stimulus itself, these experiments often take place in the “profi-

cient” stage of task performance, where the response-reward con-

tingencies have been either unambiguously instructed or learned

through extensive training. Thus, the computational models that

have been used to characterize performance have focused on the

choice period itself, rather than on any reinforcement learning that

occurs following feedback. One class of model that has attracted

a great deal of recent interest is premised on the idea that choices

depend on a serial sampling mechanism, in which evidence about

the identity of the stimulus is collected and integrated until a

criterial level of certainty is reached (Wald and Wolfowitz, 1948;

Bogacz et al., 2006; Ratcliff and McKoon, 2008). Many variants

of this model have been proposed (see Serial Sampling Models of

PDM below), but they share a common advantage, namely, the

ability to predict both choices and choice latencies (i.e., reaction

times) in judgment tasks. A major theme of research into PDM

is thus to understand the mental chronometry (i.e., the changing

information processing over time) of the choice process.

Two main classes of computational model have informed the

literature on EDM. One very successful class of model, that

draws upon a rich literature from learning theory in experimental

psychology (Rescorla and Wagner, 1972) and machine learning

(Sutton and Barto, 1998), describes the mechanisms by which

the value of stimuli or actions is learned (reinforcement learn-

ing or RL models). This model proposes that these values are

updated according to how surprising an outcome is (a “predic-

tion error”) scaled by a further parameter that controls the rate

of learning. Models of the choice process in this field have tended

to describe the weighting that agents give to different magnitudes

or probabilities of reward. The other successful account, called

Prospect Theory has been applied to decisions where the proba-

bilistic information about the choice is not learned by feedback but

explicitly instructed. Prospect Theory can account for proposed

violations of rational economic behavior, including preference

reversals, risk aversion, and susceptibility to framing effects, via

appeal to non-linear weighting functions mapping objective prob-

abilities and magnitudes of reward to their subjective, internal

counterparts (Kahneman and Tversky, 1979). However, Prospect

Theory describes human economic behavior without providing

a normative framework for understanding choice, and offers no

account of the processes that underpin decision-making. Simi-

larly, in most reinforcement learning tasks, choices are typically

modeled by assuming that agents simply choose the most valu-

able option (a “greedy” policy), or choose according to a sigmoidal

“softmax” function that privileges the most valuable option whilst
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permitting some stochasticity. Below, we argue that the near-

absence of process models in EDM is a major limitation to the

current state of the field, and that the application of serial sam-

pling models to economic choices may represent a fruitful avenue

for future research.

OPTIMALITY

A related concern in both the fields of PDM and EDM is whether

humans make good decisions or not. In EDM, the descriptive

account offered by Prospect Theory catalogs the heuristics and

biases that characterize human economic decisions, arriving at the

conclusion that humans often make poor and irrational choices.

In one classic example, it was shown that faced with an equiv-

alent alternative, humans will favor the option to save 400/600

people from a fictitious disease, but will reject an offer to allow

200/600 people to fall ill, despite the mathematical equivalence of

the two prospects (Tversky and Kahneman, 1981). Other examples

abound in the behavioral economic literature (Kahneman et al.,

1982). This contrasts sharply, however, with the approach taken in

psychophysical investigations of perceptual choice, where a strong

emphasis has been placed on the optimality of detection and cat-

egorization judgments. For example, humans integrate evidence

from different sources or modalities according to its reliability,

exactly as a statistically ideal observer should (Ashby and Gott,

1988; Ernst and Banks, 2002; Kording and Wolpert, 2004). Once

again, however, the notion that agents are optimal for perceptual

choice and suboptimal for economic choices may reflect a bias

in the approach or emphasis of researchers in the two sub-fields,

rather than a fundamental difference in the relevant computa-

tional mechanisms. For example, agents may approximate optimal

behavior in multi-armed bandit problems (Behrens et al., 2007);

on the other hand, sensory detection thresholds may typically be

set too high, leading to overly conservative or poorly adjusted

detection judgments (Maloney, 1991). Below, we consider the

possibility that agents appear to be closer to optimal for percep-

tual choices mainly because we have a clearer notion of what is

begin optimized in psychophysical judgment tasks (see Decision

Optimality in PDM and EDM).

NEURAL CIRCUITS

Researchers concerned with PDM and EDM share the goal of iden-

tifying a final common pathway for decisions, that is, a critical stage

at which all decision-relevant information has been integrated,and

options can be compared in a “common neural currency.” Nev-

ertheless, researchers in the two fields have tended to pin their

hopes on very different neural circuits. In PDM, where simple,

over-learned sensorimotor tasks are a ubiquitous tool, the focus

has been on dorsal stream cortical regions that receive inputs

from the sensory cortices, but which contain at least some neu-

rons which code information in the frame of reference of the

response. For example, researchers using RDK stimuli in conjunc-

tion with a saccadic response have focused on a lateral parietal

area that receives input from motion-sensitive extrastriate area

MT, but which contains neurons coding for spatial targets of an

eye movement (Roitman and Shadlen, 2002; Bennur and Gold,

2011). In other work, recordings have been made from frontal

cortical zones with similar properties (Kim and Shadlen, 1999;

de Lafuente and Romo, 2006). By contrast, in EDM, researchers

have focused on structures such as the dopaminergic midbrain or

orbitofrontal cortex (OFC), where neurons respond directly to the

reinforcing properties of food or money (Schultz, 1986; Critchley

and Rolls, 1996; O’Doherty et al., 2001), and on the structures such

as the striatum or anterior cortex, where neuronal responses scale

with reward prediction errors (Schultz et al., 1997; Matsumoto

et al., 2007). These predilections might seem a natural reflection

of the different sources of uncertainty typically manipulated in

PDM and EDM tasks (about the identity of the stimulus, presum-

ably determined in cortical circuits; and about the value of the

stimulus, presumably determined in subcortical and limbic cir-

cuits and interconnected structures). However, there may also be

strong reasons to suspect the involvement of cortical regions, such

as the parietal cortex, in representing the expected value of a choice

(Sugrue et al., 2004), as well as evidence that the OFC and BG play

an important role in discrimination and categorization judgments

even in the absence of explicit reward (Eacott and Gaffan, 1991;

Ashby et al., 2010). Below, we review this evidence, with a view to

providing an integrated account of the neural systems underlying

decision-making in primates.

In summary, thus, researchers interested in perceptual and eco-

nomic choices have made different assumptions, used different

approaches, focused on different models and neural circuits, and,

not surprisingly, drawn different conclusions. However, we can

conceive of the decisions made in both perceptual and economic

choice tasks under a common framework – the agent must (i)

disambiguate one or more stimuli, and (ii) estimate their worth.

Whilst we know much from the PDM and EDM literatures about

the neural and computational mechanisms underlying these two

processes separately, we know very little about how perceptual and

reward information is integrated in the primate brain. In other

words, we have as yet no general understanding of the mechanisms

by which primates make decisions.

COMPUTATIONAL APPROACHES

A renewed interest in the computational mechanisms underly-

ing decision-making has enriched the field in recent years. In this

section, we focus on the sequential sampling framework, the most

prominent computational theory in PDM. Crucially, however, we

also point to successful applications of serial sampling models

in accounting for economic choices, and argue that such models

may be promising candidates for inclusion in a unified theory of

choice. We start this section with a general introduction on sequen-

tial sampling models (SSMs) of PDM, and motivate their use in

theorizing value-guided behavior. We continue our discussion by

contemplating computational accounts of how decision-relevant

information is fed into the decision process. Finally, we attempt

to provide a mechanistic overview of the decision process with

regards to optimality.

ORIGINS OF THE SEQUENTIAL SAMPLING FRAMEWORK

Two prominent frameworks have been proposed to account for

the psychology of PDM: signal detection theory (SDT; Green and

Swets, 1966) and SSMs (Laming, 1968; Ratcliff, 1978; Vickers,

1979). While SDT assumes that a decision is settled on the basis

of a single sample of information, SSMs suggest that multiple
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samples of evidence are integrated across time up to a critical

level of certainty. Because SSMs are dynamic, they have predictive

power unavailable to static SDT accounts, allowing us to model not

only choice behavior but also the full time-course of the deliber-

ation process. Theoretical research in the field has explored these

models’ relation to statistically optimal inference (Bogacz et al.,

2006; Bogacz, 2007), and used both behavioral and neural record-

ings to validate and compare between models (Ratcliff et al., 2007;

Kiani et al., 2008; Ditterich, 2010; Tsetsos et al., 2011). On the

contrary, in EDM the focus has not been placed on developing

explanatory mechanisms of the deliberative process but on ad hoc,

descriptive modifications of the normative theory (Von Neumann

and Morgenstern, 1944) in order to account for choice biases and

apparently paradoxical behavior (Kahneman and Tversky, 1984;

Gilovich et al., 2002). The absence of process models in EDM

stands in sharp contrast with the state-of-the-art in PDM and

poses a serious challenge for the development of a unified theory

of choice. However, the recent development of dynamical models

of preference formation, which build upon the tradition of SSMS,

promises to establish a theoretical link between PDM and EDM

(Busemeyer and Townsend, 1993; Usher and McClelland, 2004;

Johnson and Busemeyer, 2005; Otter et al., 2008). We next provide

an overview of serial sampling models of PDM and subsequently

motivate their use in EDM.

Serial sampling models of PDM

In mathematical statistics, the optimal solution to the problem

of disambiguating two competing hypotheses given a series of

noisy information is provided by the sequential probability ratio

test (Wald, 1947; Gold and Shadlen, 2001). For a fixed error rate,

SPRT uses the minimum possible amount of evidence in order to

generate a categorical decision (Wald and Wolfowitz, 1948). This

is achieved by updating at each sampling step the log likelihood

ratio of the evidence given the two alternative hypotheses, until

it exceeds a pre-defined threshold, at which point the process is

terminated and a decision occurs favoring the hypothesis with the

larger likelihood. This simple, optimal process explains fundamen-

tal aspects of human choices, such as the speed-accuracy trade-off

(SAT), whereby higher decision thresholds, and thus more pro-

longed sampling, leads to more accurate choices (Johnson, 1939).

However, although the SPRT has proved able to capture many

aspects of human binary choices, it assumes that the observer has

perfect prior knowledge of the distributions of evidence. Thus,

psychological models of PDM have attempted to approximate the

sequential sampling process in more psychologically plausible and

computationally feasible ways.

Two different broad classes of SSM of PDM have been proposed

in the literature. The first class encompasses accumulator or race

models (Figure 1A) that assume the independent integration of

pieces of sensory evidence toward a common response criterion,

analogous to a race among athletes running on independent tracks

(Vickers, 1979; Townsend and Ashby, 1983; Brown and Heathcote,

2008). This mechanism contrasts with that of the diffusion model

(Figure 1B), in which the net difference in evidence favoring either

option is accumulated (Laming, 1968; Ratcliff, 1978; Ratcliff and

McKoon, 2008). Thus, we can differentiate among PDM mod-

els according to whether the input to the decision process is an

absolute or a relative signal (see Decision Input). A third class

of PDM models has also emerged, building on mechanisms of

existing mathematical models but also on principles of neural

computation, such as the leaky competing accumulator model or

LCA (Usher and McClelland, 2001) and the Wang model (Wang,

2002; Figure 1C). These models share with the race framework

the idea that the absolute evidence for each alternative is inte-

grated. However, similar to the diffusion, they induce competition

among the alternative hypotheses in the form of lateral inhibition

at the response level (see Decision Processes and their Relation to

Optimality).

Serial sampling models of EDM

Most PDM tasks require the observer to categorize noisy evidence

presented in series. Serial sampling thus provides a natural mech-

anism for optimizing decisions, by averaging out the noise-driven

fluctuations over time and steadily enhancing the signal-to-noise

ratio. In EDM tasks, however, stimuli tend to be static and per-

ceptually unambiguous. What benefit might be conferred by serial

sampling in EDM tasks, and what might be accumulated? In EDM

tasks, uncertainty is derived from variability in internal informa-

tion about the expected value of each option. A growing consensus

indicates that dedicating more processing time to an economic

choice confers similar benefits as in PDM tasks, as if the partici-

pants were “accumulating” internal information about economic

value, rather than averaging over external noise. For example,

subjective values may be sampled stochastically from long-term

memory, allowing a subjective value representation to be actively

constructed on the basis of past experience (Sigman and Dehaene,

2005; Milosavljevic et al., 2010). These samples could be defined

either with respect to the immediate context (i.e., how good is

an option compared to the other alternatives), or in relation to

memory contents (how good is an option relative to other similar

options encountered in the past; Stewart et al., 2006). Whether

this covert sampling process is governed by similar principles and

mechanisms to the mental process that underlies PDM remains an

open question.

One important model, called Decision Field Theory (DFT; Buse-

meyer and Townsend, 1993; Johnson and Busemeyer, 2005) argues

that sampling of competing options is biased in part by expected

reward, so that more valuable sources are sampled more frequently.

In DFT, different attributes of a percept or good are sampled in

turn according to where attention is oriented, such the decision

variable (DV) corresponds to the attention-weighted sum of the

sampled information. Attention might be oriented stochastically,

or directed preferentially to a subset of the information, such as

the most valuable option. DFT is able to explain preference rever-

sals in economic behavior, such as the Allais paradox (Johnson

and Busemeyer, 2005), and contextual effects in multi-attribute

choice (Roe et al., 2001). A related account, Decision by Sampling

(DbS), proposes that utilities are constructed afresh through sam-

pling attribute values from both the immediate context and the

long-term memory, and considering the rank of the target value

within the current set of samples (Stewart et al., 2006). By assum-

ing that the contents of memory reflect the real world distribution

of decision-relevant quantities, DbS explains a range of biases

such as aversion to losses, overestimation of small probabilities
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FIGURE 1 | Computational architecture (middle panels) and

representative activation trajectories (right panels) of the race (A),

diffusion (B), and LCA (C) models in a motion discrimination task (left

panels). Middle panels: black lines with arrowheads represent excitatory

connections, and red lines terminating in filled circles correspond to inhibitory

connections. Gray circles represent units encoding left (L) and right (R)

responses or their difference (R-L). Blue “tears” stand for activation leakage.

Right panels: representative activation over time (x -axis) in L (gray) and R

(black) units, or a unit encoding their difference of activation (black, part B

only). Bounds on activation level, at which a choice is initiated, are indicated

by the dashed line signaled with lowercase letter a (or – a, part B only).

Vertical cyan line, estimated reaction time for the representative trial. In the

race model, the two options race independently toward a common upper

decision boundary. In the diffusion model, choice is determined by which

boundary is first reached (upper or lower). In the LCA model, the two options

compete against each other toward a common response criterion.

and underestimation of large probabilities, and hyperbolic tem-

poral discounting. These models contrast with more descriptive

accounts such as Prospect Theory (Kahneman and Tversky, 1979),

that simply assume that these principles are primitives of decision

behavior, rather than explaining how they occur in a plausible

computational framework.

SSM summary

The serial sampling approach has been applied with success to

PDM tasks where evidence is noisy and sequential. One might

argue that this approach is tailored to the serial nature of the

PDM tasks. However, the recent success of SSMs to explain clas-

sic puzzles and paradoxes in EDM suggests that they may offer a

domain-general mechanism by which uncertainty can be reduced

in decision-making, irrespective of whether that uncertainty arises

from the sensory or value representation. In the next subsection

we discuss what information might serve as input to the decision

process, and we then overview computational accounts of how this

process might work.

DECISION INPUT

In the PDM literature a major controversy is whether decisions are

settled on the basis of the relative or the absolute amount of the

accumulated evidence. Race models (Figure 1A), which assume

independence among the accumulated tallies of evidence, offer

prima facie neurobiological plausibility, and have the virtue of

being easy to extend to decisions between more than two alter-

natives (Bogacz et al., 2007; Furman and Wang, 2008; Tsetsos

et al., 2011). By contrast, accounts based on the SPRT, such as

the diffusion model (Figure 1B), offer closer approximations to

statistically optimal choice behavior, and are also supported by

neurophysiological evidence (see Orbitofrontal Cortex below).
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Paradoxically, the same question has provoked a major debate

in the field of behavioral economics over the last 60 years, but with

converse claims about optimality. There, expected utility theory,

the cornerstone of theories of rational choice, argues that utilities

are derived in absolute terms, independent of the context, whereas

relativist theories appear to provide a better empirical descrip-

tion of human choice behavior (see Vlaev et al., 2011 for a review).

Early psychological theories proposed that the normative expected

utility is modified in several ways during choice. For example,

Prospect Theory assumes that values are calculated with respect to

a reference point, or status quo, and introduces non-linearities to

value and probability functions. Crucially however, these theories

conserve the notion that the value of an option is independent

of other available options (Kahneman and Tversky, 1979; Keeney

and Raiffa, 1993). By contrast, relative theories of decision-making

propose that option values are computed afresh in the context of

each decision (Tversky and Simonson, 1993; Parducci and Fabre,

1995; Gonzalez-Vallejo, 2002). Thus, the value assigned to an

option reflects not only its properties but also those of the other

available alternatives. On the empirical front, context effects such

as preference reversal (Simonson, 1989; Roe et al., 2001; John-

son and Busemeyer, 2005) and prospect relativity (Stewart et al.,

2003) have supported the notion of relative valuation. Consider

for example a hypothetical choice between two laptop computers;

one is expensive and very light (A) while the other one is heavy and

cheaper (B). Paradoxically, an initial tendency to favor B can be

reversed by the appearance of a third option, (C) which is similar

in weight to A but more expensive. This asymmetric dominance

effect (Huber et al., 1982; Simonson, 1989) is representative of a

class of contextual preference reversals that pose a serious chal-

lenge to independent valuation theories, which would predict that

the valuation of A and B is a function of their attribute values only

and that irrelevant alternatives, like option C, should not affect

this valuation. This question of whether decision-relevant brain

regions encode value in an absolute (“menu-invariant”) or relative

framework is a major concern in neuroscientific studies of EDM

(see Orbitofrontal Cortex and Absolute Stimulus Value below).

Therefore, a central question for both literatures is whether the

input to the decision process is an absolute or a relative quan-

tity. Interestingly, debate has focused on how the information is

transformed before being processed by the decision mechanism,

under the assumption that all available information is utilized. An

alternative approach posits that the sampling process is biased by

selective attention or endogenous factors (e.g., preference states).

In what follows we review the literature, drawing attention to the

distinction between unbiased and biased sampling of information.

Biased sampling

In most PDM tasks, choices are typically made on the basis of a

single stimulus feature or dimension, and observers are instructed

to hold fixation steady (but see Siegel et al., 2008 for an exception).

It is thus implicitly assumed that fluctuations in visual attention

are controlled for, such that information is sampled evenly for all

alternatives. However, choices are known to be biased by atten-

tional factors, such as where observers place their gaze (Russo and

Rosen, 1975; Russo and Leclerc, 1994; Payne, 1976; Glockner and

Herbold, 2011). This phenomenon was investigated recently on

an economic decision task, in which eye movements were mea-

sured whilst hungry observers chosen between two food items

displayed visually on either side of the screen (Krajbich et al.,

2011). The authors compared the ability of variants of the drift-

diffusion model (DDM) to account for choices and choice latencies

made in the experiment, reporting that the winning model was

one in which the gain of accumulation was modulated multi-

plicatively by the value of the currently fixated item. A follow-up

study demonstrated comparable effects for trinary choices, using a

multi-alternative version of the DDM (Krajbich and Rangel, 2011).

The modeling aspects of the work demonstrate the applicability

of serial sampling models to EDM, and highlight the importance

of recognizing the capacity-limited nature of the choice process,

something which has been notably absent particularly from PDM

models, which prefer to emphasize that decisions are made in a

strictly optimal fashion (Bogacz et al., 2006; Bogacz, 2007; van

Ravenzwaaij et al., 2012). The specific interpretation of the data

offered by the authors, that economic preferences depend on a sto-

chastic sampling of the (external) world via attention, is intriguing,

but another possibility is that the sampling process itself is biased

by the observers’ preferences (Svenson and Benthorn, 1992; Jonas

et al., 2001; Doll et al., 2011; Le Mens and Denrell, 2011). For

example if the decision maker is leaning toward one alternative,

she might sample from it more often, seeking for confirmatory evi-

dence. This would be consistent with the more general observation

that agents seek to confirm, rather than to disconfirm, hypothe-

ses that they already entertain, and would suggest that momentary

preference states could strongly bias the input to the evidence accu-

mulation process in a bidirectional fashion (Holyoak and Simon,

1999; Shimojo et al., 2003).

In EDM problems whose structure is more complex, with each

option varying along several dimensions, the selective allocation of

resources to a subset of the choice information is more imperative.

Empirical research in this area has attempted to track the regulari-

ties in information acquisition and identify what strategies people

might use in order to compare options (e.g., within-option evalu-

ation across all attributes, or across options evaluation attribute by

attribute; Russo and Rosen, 1975; Dhar et al., 2000; Fellows, 2006;

Glockner and Herbold, 2011). One possibility, attributable to DFT

(Roe et al., 2001) is that people switch their attentional focus back

and forth from attribute to attribute (Tversky, 1972). The subjec-

tive attribute values for each option are accumulated across time

and a decision is initiated once a threshold is breached. This pro-

posal is appealing as it provides a generic framework of integration

across attributes, even if these attributes are incommensurate and

thus cannot be represented in a “common currency.” For example,

DFT has applied a similar attention switching approach to address

how people’s decisions about sensory information are biased by

rewards, under the assumption that observers switch their atten-

tion between sensory evidence and information about the likely

payoffs (Diederich and Busemeyer, 2006; see Decision Optimality

in PDM and EDM). Finally, another plausible case where biased

sampling might be critical is when people are faced with multi-

alternative problems either in PDM or EDM tasks (Krajbich and

Rangel, 2011). These problems might be broken down into a mul-

titude of binary comparisons which can be based on the similarity

of the items in the decision space (Russo and Rosen, 1975). Further
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empirical work is needed to identify how people allocate their

attention when confronted with a large number of options, for

example when dining at a restaurant with an extensive menu.

DECISION PROCESSES AND THEIR RELATION TO OPTIMALITY

We describe above the current debate regarding what information

consists the input to the decision process. In this subsection we

consider how this process works, namely what mechanisms are in

play for transforming input into decisions. A central question in

both PDM and EDM is whether the decision mechanism reflects an

optimized process. However, while in PDM optimality is defined

in statistical terms (optimization of SAT) in EDM it is defined as

the maximization of the reward rate. In the next section we review

recent attempts that examine how these two different notions of

optimality are combined when making decision; and what aspects

of the choice mechanisms are responsible for suboptimal biases.

We next turn to another important aspect of the decision mech-

anism, temporal weighting, and its relation to choice optimality.

Temporal weighting is often considered to be a suboptimal prop-

erty leading to order effects and biases. We argue that in special

cases overweighting early or late information might result in better

decisions. Finally we consider response inhibition as being respon-

sible for conflict in difficult choice problems, and we discuss the

computational and descriptive merits of this mechanism.

Decision optimality in PDM and EDM

Humans’ choice behavior obeys a simple principle by which the

advantages of speed and accuracy are traded off against one

another (Johnson, 1939; Wickelgren, 1977; Bogacz et al., 2010).

Within the sequentially sampling framework this SAT is controlled

by a single parameter, the height of the decision bound (Laming,

1968); a low bound implies that decisions will be fast but overly

influenced by noise fluctuations while a high bound produces

accurate but delayed responses (Figure 2A). For fixed rewards

rates there exists a specific response criterion value that optimizes

this trade-off, and most PDM work has focused on identifying

this bound or testing whether human behavior respects it (Bogacz

et al., 2006). However, in both the real world and the lab, responses

are often associated with unstable, asymmetric rewards, raising the

question of how people maximize simultaneously their accuracy

and the reward rate. For example, a radiographer examining med-

ical scans might have to impose alternately a liberal or conservative

criterion for identifying an atypicality, such as an incipient tumor,

depending on the relative costs and benefits of missing the first

signs of disease, or inconveniencing the patient with more tests

(Diederich and Busemeyer, 2006; Feng et al., 2009; Summerfield

and Koechlin, 2010; Gao et al., 2011). In such cases, participants

exhibit a bias toward the high-reward option (Figures 2B,C), but

the computational mechanisms by which this occurs is a topic of

ongoing research. One possibility is that a higher reward changes

the way the sensory evidence for the high-reward hypothesis is

perceived, by increasing the drift rate (i.e., slope) of the corre-

sponding accumulator (Figure 2B). An alternative hypothesis is

that the way the input is processed remains unaffected but it is the

starting point of the accumulation for the high-reward hypothesis

that is shifted closer to the decision bound (Figure 2C). Specific

behavioral patterns observed in humans and other primates, such

FIGURE 2 | Representative activation trajectories from the diffusion

model with noise (black traces) and without noise (dashed red traces).

Decision bounds are signaled by the dashed line marked with lowercase

letter a or −a). In part (A), the speed-accuracy trade-off is determined by

the height of the response boundary with lower boundaries resulting in

faster and less accurate decisions (and vice versa for higher boundaries).

(B,C) Choice can be biased by the presence of asymmetric rewards. This is

achieved either by increasing the rate of evidence accumulation (high drift

trajectory in (B) for the high-reward option or by increasing its initial

activation, prior to the onset of accumulation (C). Vertical cyan lines show

RTs for representative trials under conditions where speed or accuracy are

emphasized (A) or where decisions are biased by reward (B,C).

as fast errors when the high-reward option was incorrect, could be

captured only by the latter hypothesis (Summerfield and Koechlin,

2010; Gao et al., 2011). This shift of the starting point, prior to the

onset of evidence, is independent of the decision bound and the

SAT of the observer. Other accounts emphasize that human par-

ticipants try to find a compromise between the perceived benefits

of accuracy and overt reward (Bohil and Maddox, 2003; Simen

et al., 2009).

Thus, although PDM tasks have emphasized the optimiza-

tion of accuracy, observers are swayed by factors that change

the underlying reward rate (Summerfield and Koechlin, 2010;

Gao et al., 2011). In EDM, optimality has tended to refer to the
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maximization of reward within the timeframe of the experiment, a

tradition owing to neoclassical economics, where the agent is fully

informed about all available alternatives and her behavior is ratio-

nal when it maximizes reward rate. Failure to maximize rewards

is typically considered to be irrational. In real world, however,

information about the environment is not provided but must be

actively sampled, leading to a trade-off between exploiting cur-

rent resources and exploring new alternatives. Thus, although any

organism that optimizes its fitness should jointly maximize reward

and information, traditional interpretation of laboratory findings

failed to consider optimality in this broader perspective. Although

phenomena such as hyperbolic delay-discounting (Loewenstein

and Thaler, 1989) and loss-aversion (Tversky and Kahneman,

1991) are trademarks of irrational behavior within behavioral eco-

nomics, there may be circumstances in the wild where it is optimal

to demonstrate such behavior – for example, losses can have fatal

consequences for an organism, whereas gains may be short-lived.

These concerns have been addressed in EDM by the research pro-

gram of ecological rationality highlighting that choice optimality

should not be assessed independently of the environmental struc-

ture and the way it influences the tradeoff between information

and reward acquisition (Oaksford and Chater, 1996; Gigerenzer

and Selten, 2001; Shanks et al., 2002; Behrens et al., 2007).

Temporal weighting

When people make decisions on the basis of sequential evidence,

they often weigh information differentially according to its posi-

tion in the sequence. For example, a judge may arrive at a hasty

conclusion on the basis of the first witness (primacy bias), or a

voter may judge a politician on his or her most recent debating

performance (recency bias). Such order effects have been encoun-

tered in both PDM (Usher and McClelland, 2001; Kiani et al., 2008)

and EDM tasks (Hogarth and Einhorn, 1992; Newell et al., 2009).

The PDM literature has focused on mechanistic models where the

temporal weighting of information emerges from the dynamics

of evidence integration (Usher and McClelland, 2001). On the

other hand, in EDM order effects have been captured mostly in a

descriptive fashion, with different weights being assigned to differ-

ent pieces of information (Anderson, 1981; Hogarth and Einhorn,

1992). It is important for decisions theorists to clarify what aspects

of the generic (domain-independent) decision mechanism gener-

ate order effects. An appealing possibility has been put forward

in biologically inspired models of PDM. There, depending on dif-

ferent value parameters the decision mechanism can overweight

(i.e., attractor dynamics) or downweight early information (i.e.,

leaky integration, see also (Bogacz et al., 2007) for an extensive

discussion).

What is the merit of weighing information differently at differ-

ent times? Applying stronger weights to early information (attrac-

tor dynamics and primacy) is a useful mechanism that prevents

endless procrastination when the information is weak or ambiva-

lent (see also next subsection). In these cases the choice will be

determined by random noise fluctuations early on, ensuring that

the decision maker does not engage in excessively prolonged delib-

eration (Usher and McClelland, 2001). On the other hand, over-

weighting late information (recency) is useful when the sensory

environment is volatile, because forgetting early information and

emphasizing on the latest status of the world results in faster adap-

tation to changes that occur to the underlying statistical structure

of the environment. Thus, whereas biased temporal weighting

of information (either perceptual or economical) might appear

suboptimal from the pure perspective of accuracy maximization,

it confers benefits on reward-maximization if the decisions are

challenging or if the environment is unstable.

Conflict and response competition

Choosing among two alternatives that are similar in terms of value

or sensory evidence will result in response conflict, longer decision

times (Laming, 1968; Ratcliff, 1978; Usher and McClelland, 2001),

and less confidence associated with the final decision (Vickers,

1979; Pleskac and Busemeyer, 2010). The prolongation of delib-

eration in such cases might occur because the decision bound is

raised to allow a clear winner to emerge among closely matched

alternatives. However, adjusting the bound to the decision input

requires either a priori knowledge about the difficulty of decision

problem or the online adjustment of the criterion as the input

unfolds. A more plausible way to produce longer decision times

for more difficult problems is by introducing competition between

the alternatives. In PDM this competition can be incorporated in

two ways: in the diffusion model it takes place at the input level

(section Decision Input and Figure 1B), while in accumulator

models where the decision inputs are assumed to be indepen-

dent (like in race models, Figure 1A), competitive interactions

are achieved via lateral inhibition at the response level (Usher

and McClelland, 2001; Wang, 2002), as illustrated in Figure 2C.

Response inhibition in PDM brings some computational advan-

tages in multi-alternative problems, where the activation in favor

of poor options will be early suppressed and the decision process

will continue evaluating only the strong or informative options

(Bogacz et al., 2007). Additionally, response inhibition results in

attractor dynamics (discussed in Temporal Weighting) which can

facilitate resolving difficult decisions problems within reasonable

time (Wang, 2002; Bogacz et al., 2007).

In EDM, conflict is captured in relative valuation models of

preference by assuming that the input is transformed according to

the value of its rivals (similar to the PDM diffusion, see also Biased

Sampling). Typically the actual integration of the transformed

input does not involve competitive interactions among alterna-

tives. One exception is encountered in SSM of multi-attribute

decision-making, like DFT (Roe et al., 2001) and LCA for value-

based choice (Usher and McClelland, 2004), where it is assumed

that different alternatives compete via response inhibition. It

is noteworthy that in DFT a type of local, distance-dependent

response inhibition is the key mechanism that explains a series of

preference reversal effects (e.g., the asymmetric dominance effect,

see Decision Input for an example). According to this account,

alternatives that are similar to each other in the decision space

compete more strongly while dissimilar alternatives do not inter-

act with each other [see also (Tsetsos et al., 2010) and (Hotaling

et al., 2010) for discussion of this mechanism].

COMPUTATIONAL MODELS: SUMMARY

PDM models assume that choice is the result of the accumula-

tion of sequentially sampled sensory evidence. By contrast, EDM
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models have sought to define deviations from rationality but said

little about the underlying mental process. The advent of process

models of economic preference that capitalize on the serial sam-

pling property of PDM, promises to provide an improved and

mechanistic understanding of EDM (see Serial sampling mod-

els of EDM). In the preceding section we provided an overview

of currently debated mechanistic aspects of PDM and EDM.

We first reviewed how information is transformed before being

processed by the decision mechanism (relative vs. absolute input,

see Decision Input), highlighting also the possibility that these

quantities might be actively sampled, subject to exogenous (e.g.,

visual attention) or endogenous (e.g., preference states) biases.

We then discussed how the relevant input is transformed into a

decision (see Decision Processes and their Relation to Optimal-

ity). In parallel to describing specific computational elements of

choice (e.g., temporal weighting, response competition) we also

discussed their relation to optimality. Although traditional views

state that EDM is suboptimal while PDM optimal, we propose

that this contradiction may have arisen because each literature has

defined optimality in a different way.

NEURAL APPROACHES

A number of different brain regions have been proposed as key

components of the circuit underlying simple decisions about

visual stimuli. In the primate, three of the clearest candidates are (i)

dorsal stream cortical circuits, such as the parietal and premotor

cortices, (ii) the striatum and related circuitry of the basal gan-

glia, and (iii) the medial and lateral OFC. Other regions, such as

the anterior cingulate cortex (ACC) and prefrontal cortex (PFC)

clearly play important roles in decision-making too; for exam-

ple, the ACC may be important for learning the value of actions

(Rushworth and Behrens, 2008), and the PFC for integrating infor-

mation over multiple time scales in the service of action selection

(Koechlin and Summerfield, 2007). However, in the interests of

brevity, we do not consider these in detail, referring the reader

instead to other reviews that have considered these regions more

comprehensively (Summerfield and Koechlin, 2009; Rushworth

et al., 2011). Below, we consider the role of parietal/premotor,

basal ganglia, and orbitofrontal structures in the decision process,

with a specific focus on how each region might contribute to the

processing and integration of perception and reward.

PARIETAL CORTEX

The parietal cortex has long been implicated in the mechanisms

by which sensation is converted to action, within initial debates

concerning whether parietal neurons encode spatial information

in the frame of reference of the stimulus or the response (Colby

and Goldberg, 1999). Patients with unilateral lesions of the parietal

cortex fail to orient saccades or other actions to the contralesional

side of space (Robertson and Halligan, 1999), and bilateral dam-

age provokes an inability to combine information from multiple

spatial locations, for example to permit accurate judgments of

similarity or dissimilarity (Friedman-Hill et al., 1995). Prominent

theories of the parietal cortex suggest that it combines information

across visual features (Treisman and Gelade, 1980) to generate a

map of the relative salience of different locations of external space

(Gottlieb, 2007). However, the parietal cortex also seems to be

important for combining information across time. This is clear

from neuropsychological studies, in which recently encoded spa-

tial information is rapidly lost (Husain et al., 2001), and from

neuroimaging studies which highlight increased in parietal blood-

oxygen (BOLD) signals during visual short-term memory main-

tenance, for example in studies requiring detection of change in

sequential arrays (Xu and Chun, 2006). Integration of information

across a cluttered visual scene is facilitated by repeated sampling of

the scene with saccadic eye movements, whose generation depend

on dedicated regions of the parietal cortex (Gottlieb and Balan,

2010).

Parietal cortex and evidence integration

However, it is single-cell research conducted over the past ten years

that has generated the most prominent evidence in favor of the

idea that parietal neurons act as cortical integrators, and that has

emphasized a role in PDM. During viewing of noisy stimulus such

as an RDK,neurons in lateral intraparietal area LIP whose receptive

fields (RFs) overlap with one of two saccadic choice targets exhibit

firing rates that accelerate with a gain proportional to level of

evidence (motion coherence) in the stimulus favoring a response

at that target (Roitman and Shadlen, 2002). Initial investigations

were at pains to demonstrate that activity in these cells was not a

mere reflection of the sensory input, or the motor response (Gold

and Shadlen, 2007). For example, the signal grows during constant

stimulation, persists after the stimulus has been extinguished, and

deviates from zero even when there is no motion signal in the stim-

ulus (0% coherence trials). Similarly, the parietal activity does not

predict the motor parameters of the eventual response (e.g., sac-

cadic latency, velocity, or precision), suggesting that it is not a mere

motor preparatory signal. However, more recent work in which

sensory and oculomotor codes are dissociated demonstrated has

demonstrated that LIP responses are more heterogenous, with

some neurons responding to the motion direction, and others

to the saccadic choice (Bennur and Gold, 2011). Nevertheless, at

least some parietal neurons encode decision-relevant information

it the frame of reference of the selected action.

One interpretation of this stereotyped increase in firing rate

during perceptual judgment is that unlike earlier visual regions

that encode the instantaneous sensory information, parietal neu-

rons represent information that is integrated across a tempo-

ral window extending for many hundreds of milliseconds. The

integration of serial samples of evidence is critical to optimiz-

ing a decision process, because repeated sampling of a noisy

stimulus enhances the precision of the estimated information

in well-described mathematical fashion. It is this intuition that

informs serial sampling models of the decision process described

above, and prompted the suggestion that parietal neurons might

implement the accumulation-to-bound process that is known to

describe decisions and decision latencies on a wide variety of per-

ceptual choice tasks. Indeed, after an initial burst, the firing rates

of neurons whose RFs overlap with the alternative, disfavored

target tend to decrease with a gain proportional to the motion

coherence, seemingly favoring one class of serial sampling models

over all others – the DDM, in which accumulators are coupled by

mutual inhibition, such that the DV represents a scalar quantity

corresponding to the relative evidence in favor of either choice (see

www.frontiersin.org May 2012 | Volume 6 | Article 70 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Decision_Neuroscience/archive


Summerfield and Tsetsos Perceptual and economic decision-making

Serial Sampling Models of PDM; see though (Huk and Shadlen,

2005) p.3027 for a discussion on the possibility of attractor models

(Wang, 2002 to better explain LIP responses). Moreover, response-

locked analyses show that the parietal activity drops off sharply

about 70 ms prior to saccade initiation, at a criterial firing rate

that does not depend on the level of information in the stimulus.

This satisfies another important prediction of most serial sampling

models, namely that a decision is made when a criterial evidence

level is reached. This work has generated a great deal of excitement,

and prompted the claim that the parietal cortex plays a key role

in the decision processes that underlie sensorimotor control, by

integrating evidence up to a choice threshold, at which point an

appropriate response is generated (Gold and Shadlen, 2007).

Cortico-cortical plasticity and reward-guided learning

One question that has received less attention, however, is how

the reinforcement value of the options is integrated into the DV

during perceptual choice tasks such as motion discrimination.

In the experiments described above, the monkey is working to

receive a liquid reward following each correct saccadic movement,

but recordings are typically made during proficient performance

of the task, where the monkey has been trained on many thou-

sands of trials over which the reward contingencies have remained

unchanged. Recall that most of the relevant parietal neurons

encode the information in the frame of reference of the choice

that will eventually be made, even when this is dissociated from the

sensory information in the stimulus. In other words, the strength

of synapses linking the visual and parietal cortical representations

must be adjusted during training to encode information about the

likely reinforcement value of each sensorimotor pairing. Recent

work has shown that the improvement in perceptual performance

on psychophysical tasks such as the random-dot kinetogram is

better explained by plastic changes in the parietal and prefrontal

regions than those in sensory cortex (Law and Gold, 2008; Kahnt

et al., 2011), and that the trajectory of learning is well-described

by a reinforcement learning scheme in which visuo-parietal con-

nection weights are gradually updated according to a prediction

error signal (Law and Gold, 2009). This leads to a steeper gain

of accumulation after repeated feedback-mediated learning, and

consequently, more sensitive perceptual judgments. However, it

remains unknown whether this prediction error is computed at

the cortex, or is dependent on processing of the subsequent reward

in subcortical regions (Kahnt et al., 2011). One study suggests

that during perceptual categorization of options that can change

unpredictably, requiring constant tracking of category statistics,

both cortical and subcortical mechanisms are employed. How-

ever, systems based in the striatum and medial PFC underlie

optimal decisions in stable environments, whereas the dorsolat-

eral PFC mediates decisions in fast-changing situations, where it

is useful to base decisions on recently buffered information (Sum-

merfield et al., 2011). In general, however, these mechanisms have

been explored in considerably less detail for perceptual than for

economic choices.

Parietal cortex and perceptual decisions biased by reward

Perceptual learning experiments chart the gradual improvement

to performance that comes with extensive training and feedback.

However, the costs and benefits associated with different types of

perceptual error can sometimes change rapidly and unpredictably,

on the basis of instructions or other contextual factors. Thus,

another line of research has attempted to characterize the neural

and computational mechanisms by which perceptual decisions

are biased by instructions or cues that signal the relative outcomes

associated with each response. As outlined above, serial sampling

models in which asymmetric rewards bias the starting point of the

accumulation process – an additive, a priori bias in favor of the

more valuable response – fit observers’ performance better than

models in which the bias influences accumulation rate in a mul-

tiplicative fashion (Whiteley and Sahani, 2008; Feng et al., 2009;

Pleger et al., 2009; Simen et al., 2009; Summerfield and Koech-

lin, 2010; Mulder et al., 2012). Correspondingly, there is evidence

from single-cell recordings that the responses of parietal neurons

reflect an outcome-related bias as an additive increase in firing

at or before the moment of stimulus onset (Platt and Glimcher,

1999; Rorie et al., 2010). This occurs during both challenging per-

ceptual discriminations, for example of the RDK stimulus (Rorie

et al., 2010), as well as during choices based on perceptually con-

spicuous information (Platt and Glimcher, 1999). Similar results

have also been observed in the premotor cortex. Consistent with

this finding, model-based fMRI studies have revealed that an addi-

tive reward-mediated bias is correlated with the BOLD signal in

the lateral parietal cortex during signal detection (Fleming et al.,

2010; Summerfield and Koechlin, 2010).

Relatedly, the responses of parietal neurons track the evolving

value of an option in n-armed bandit and other economic choice

tasks in which rewards are learned by feedback (Dorris and Glim-

cher, 2004; Sugrue et al., 2004, 2005). For example, LIP signals

during a value-based choice task are well-described by a proba-

bilistic choice model (akin to an RL model) that engages in a leaky

integration of information across recent trials, producing classi-

cal “matching” behavior typically observed in bandit and reversal

learning tasks (Sugrue et al., 2004). More recently, LIP neurons

have been observed to correlate both with the delay-discounted

value of an offer shortly after its onset, before coming to code for

a choice in the build-up to action (Louie and Glimcher, 2010).

These and other findings have led some authors to propose that

the signal-dependent build-up of activity observed during view-

ing of the RDK stimulus reflects a growing expectation that an

eye movement into the target field will be rewarded, an expecta-

tion that builds faster on high coherence trials, and is normalized

by the value of other options (Kable and Glimcher, 2009). Thus,

like brain regions classically implicated in economic choices (see

below), parietal signals can adapt rapidly to reflect the changing

expected value associated with a choice (Sugrue et al., 2005).

Parietal cortex: summary

There is good evidence, thus, that the parietal cortex is involved

in integrating sensory information during deliberation, and that

this integration occurs largely in the frame of reference of the

action. However, the relevant sensorimotor contingencies are

most likely learned via a reinforcement learning mechanism; and

parietal signals reflect the relative reward of different perceptual

alternatives, even when their value changes rapidly and unpre-

dictably. In other words, although much work has focused on the
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parietal contribution to integration of evidence in PDM, single-

cell responses there are strongly biased by the expected economic

value of the choice-relevant response, and reward-guided visuo-

motor learning rescales the responses of parietal neurons, leading

to faster accumulation for more practiced choices. In subsequent

sections, we contrast the involvement of the parietal cortex in the

decision process to that of other candidate structures, such as the

basal ganglia.

THE BASAL GANGLIA NUCLEI

The basal ganglia are a family of interconnected subcortical nuclei

that have been implicated in a complex array of overlapping cog-

nitive and motor behaviors. A detailed review of the functional

architecture of the basal ganglia is beyond the scope of this review;

we refer the reader to excellent accounts elsewhere (Alexander

and Crutcher, 1990; Chevalier and Deniau, 1990; Doll and Frank,

2009; Redgrave et al., 2011). However, we begin by highlighting

two architectural features of the basal ganglia that are of particular

relevance to our understanding of their contribution to decision-

making. Firstly, the striatum receives inputs from a number of

cortical regions, including those concerned with processing both

sensory and motor information, as well as receiving information

about reward from the ventral midbrain (Alexander and Crutcher,

1990). Moreover, its neurons show gradually accelerating firing

rates in response to a noisy RDK stimulus, “ramping” activity that

is similar in many respects to that observed at the cortex (Ding

and Gold, 2010). It is thus ideally placed to contribute to sensori-

motor integration and reward-guided learning during perceptual

choice tasks. Secondly, information passing through the basal gan-

glia is routed via one of two major conduits, known as the direct

and indirect pathway, that have opposing inhibitory and disin-

hibitory control over the thalamus and thus on subsequent cortical

motor structures such as the premotor area or superior colliculus.

Striatal inputs can thus lead to selective disinhibition of the rel-

evant motor area, a hallmark of any system engaged in efficient

selection of one action over two or more competing alternatives

(Chevalier and Deniau, 1990; Redgrave et al., 1999). Additionally,

neuropsychological evidence also attests to the importance of the

striatum in reward- and feedback-guided sensorimotor learning.

Caudate lesions impair the ability to learn new visuo-motor asso-

ciations from feedback (Packard et al., 1989), a phenomenon also

observed following degeneration of the nigro-striatal pathway in

Parkinson’s Disease (Ashby et al., 2003), whereas disconnection of

all visual cortical outputs except those to the striatum spares visuo-

motor discrimination (Eacott and Gaffan, 1991). In other words,

sensory input to the striatum seems to be both necessary and

sufficient for the learning mechanisms that lead to accurate per-

ceptual category judgments. Together, these considerations point

to the basal ganglia playing a key role in the mechanisms by which

actions are selected, on the basis of integrated sensory and reward

information.

Cortico-striatal plasticity and sensorimotor learning

Information from cortical integrators, such as those LIP neurons

that exhibit ramping activity during discrimination judgments

about randomly moving dots, is subsequently routed to the stria-

tum (Pare and Wurtz, 2001). A consensus holds that Hebbian

synaptic plasticity at the striatum depends on the presence of

phasic dopaminergic inputs arising in midbrain regions sensitive

to reinforcement (Wickens, 1993). Dopamine signaling from the

ascending nigro-striatal pathway thus gates cortico-striatal plas-

ticity, such that rewards occurring in a window lasting for a few

seconds after an action strengthen synapses linking sensory infor-

mation to the relevant action (Kerr and Wickens, 2001). The sign,

amplitude and timing of these dopaminergic inputs are tightly

correlated with those of hypothetical “prediction error” signals

that guide simulated reinforcement learning. Intriguingly, there

is evidence that both the presence and absence of dopamine

is functionally significant at the striatum. Increased dopamine

uptake at D1 receptors promotes potentiation of sensorimotor

responses that evoke positive outcomes, whereas decreased uptake

at a separate, D2-receptors mediated mechanism leads to reduced

sensorimotor efficacy where the relevant pairing is followed by a

punishment (Doll and Frank, 2009). Thus, patients with Parkin-

son’s disease, where DA signaling is chronically lowered, tend to

learn better from negative than positive outcomes, and may even

learn about punishment more effectively than controls (Frank

et al., 2004). These “go” and “no-go” signals may be routed to

the thalamus via separate direct and indirect pathways that exert

inhibitory and disinhibitory control over the thalamus respec-

tively (Frank, 2005). Thus, the architecture of the basal ganglia is

well disposed to allow learning about the value of responding (or

of inhibiting a response) in a given sensory context to proceed

in a supervised fashion, via integration with information about

unexpected reward from the ventral midbrain.

One consequence of enhanced responsiveness of cortico-

striatal synapses could be to effectively reduce the level of cortical

activity required to elicit a response in the striatum, and thus a

disinhibition of the relative output neurons in the cortex or supe-

rior colliculus. Cortico-striatal plasticity has thus been proposed

as a plausible neurobiological mechanism by which the decision

threshold (for example, the “bound” in the DDM) could be low-

ered in order to bias responding by reward (Ito and Doya, 2011),

or to adapt response times to optimize reward rate under differ-

ent conditions that emphasize speed or accuracy (Bogacz et al.,

2010), as discussed above. This account draws support from bio-

logically realistic network simulations of threshold modulation

in the random-dot motion task, in which dopamine-mediated

cortico-striatal plasticity determines the threshold level that must

be achieved for an all-or-none disinhibition of choice-appropriate

neurons in the superior colliculus mediating the required saccadic

response (Lo and Wang, 2006).

Cortico-striatal plasticity and decisions biased by reward

However, one caveat to this account is that adaptation of synap-

tic efficacy might not occur fast enough to mediate the rapid

switching between speed- and accuracy-based responding, or to

accommodate situations in which the rewards associated with two

perceptual alternative reverse rapidly, as is required by labora-

tory tasks (Furman and Wang, 2008). Nevertheless, dopaminergic

inputs might also act to bias action selection via direct exci-

tatory inputs to the striatum. For example, when choosing a

saccadic response conditioned on the spatial location of a tar-

get, the responses of striatal neurons reflect the integration of the
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action and its expected value (Hikosaka, 2007). Striatal signals

reflecting a bias toward a more valuable option can be seen even

in the period before stimulation begins, and thus are good can-

didate substrates for the offset in the accumulation of evidence

toward a more rewarded choice in serial decision models such as

the DDM (Lauwereyns et al., 2002; Ding and Hikosaka, 2007).

However, selective dopaminergic receptor blockade abolishes the

striatal responses with a corresponding effect on reaction times

(Nakamura and Hikosaka, 2006), suggesting that the influence

of reward on the choice process depends on direct inputs from

the dopaminergic system (but see Choi et al., 2005). In a similar

vein, the observed functional connectivity occurring when speed

is emphasized over accuracy might reflect a selecting boosting of

striatal activity by phasic input from cortical structures such as

the supplementary motor area, rather than slow plastic changes at

cortico-striatal synapses (Bogacz et al., 2010). In humans, support

for this view is offered by the finding that cortico-striatal func-

tional (Harsay et al., 2011) and structural (Forstmann et al., 2010)

connectivity both predict individual differences in the extent to

which a motivating stimulus enhances choice performance.

Response competition and action inhibition

Selectively lowering the threshold for one course of action (deci-

sion bound) is one candidate mechanism by which an economi-

cally favorable action might be privileged over other alternatives.

As described above in section “Conflict and Response Compe-

tition” above, however, another possibility is that active compe-

tition occurs between rival options coupled by local inhibitory

connections. This competition is proposed by several compu-

tational models of perceptual choice, including those that have

attempted to describe decisions among three or more options,

such as the Wang model (Wang, 2002; Wong and Wang, 2006),

the LCA model (Usher and McClelland, 2001), and the MSPRT

(Bogacz and Larsen, 2011). When choice alternatives conflict, an

ideal observer will prolong deliberation in order to increase the

chances that a single clear winner will emerge. Indeed, faced with

the choice between two highly valued options, humans deliberate

for longer than when choosing between a high- and a low-valued

option, apparently inhibiting the impulse to respond rapidly on

the basis of prior reinforcement (Ratcliff and Frank, 2012). At

least two models propose that this inhibition depends on compu-

tations occurring as information flows through the basal ganglia.

Bogacz and colleagues (Bogacz and Gurney, 2007; Bogacz and

Larsen, 2011) suggest that restraining responses according to the

cumulative evidence in favor of the alternatives might be one func-

tion of the indirect basal ganglia pathway, whereas Frank (Frank

et al., 2007; Doll and Frank, 2009) has convincingly argued that

this function is the province of a third, hyper-direct pathway

through the basal ganglia, which links the cortex to the basal gan-

glia output nuclei via the subthalamic nucleus (STN). For example,

patients undergoing disruptive deep-brain stimulation of the STN

will respond impulsively on choices between two highly valued

options, unlike healthy controls (Frank et al., 2007). Recent evi-

dence suggests that the STN may act to raise the decision threshold

under conditions of response competition by modulating activity

in the medial PFC (Cavanagh et al., 2011). This consistent with

a study implicating of the anterior cingulate cortex in threshold

modulation, during decisions about visual stimuli linked by fixed

transitional probabilities (Domenech and Dreher, 2010).

Basal ganglia: summary

There is thus compelling evidence that the basal ganglia con-

tribute to sensorimotor learning, via dopamine-gated changes in

cortico-striatal plasticity. Potentiated cortico-striatal connections

might be one mechanism by which an economically advantageous

alternative might be favored in a perceptual choice task such as

the RDK paradigm. Relatedly, basal ganglia structures such as

the STN might act to raise the decision threshold, particularly

in the immediate post-stimulus period, when several competing

responses simultaneously appear promising (Ratcliff and Frank,

2012). Finally, direct excitatory inputs from cortical or subcorti-

cal structures might provoke a pre-stimulus bias toward a more

rewarding option that is visible in baseline levels of activity in

striatal neurons, a factor that can account for the influence of

reward-mediated bias on reaction times in serial sampling models

such as the DDM. In the following section, we consider how we

might reconcile these findings with the suggestion that parietal

signals are also modulated by expected value during PDM (Sug-

rue et al., 2005), or that cortico-cortical plasticity is an important

substrate for sensorimotor learning (Balleine et al., 2009).

COMPARING THE CONTRIBUTIONS OF THE CORTEX AND BASAL

GANGLIA TO DECISION-MAKING

The work described in sections “Parietal Cortex” and “The Basal

Ganglia Nuclei” above suggests that both the parietal cortex and

the basal ganglia make an important contribution to the integra-

tion perceptual evidence about the identity of a stimulus with

information about its economic value. For example, (i) both pari-

etal and striatal neurons seem to act as integrators during noisy

perceptual decision tasks such as the RDK paradigm; (ii) cortico-

cortical and cortico-striatal plasticity both seem good candidates

for mediating reward-guided learning mechanisms during percep-

tual discrimination and categorization judgments, and (iii) biases

toward a more economically valuable option seem to be reflected in

an additive offset to pre-stimulus activity in both the parietal cor-

tex and striatum. How can we reconcile these two accounts? Might

it be that evolution has equipped primates with two mechanisms

for learning the value of sensorimotor acts, and if so, why?

Complementary control systems in the striatum and neocortex

According to classic accounts, cortical and subcortical regions con-

tribute to decisions over distinct timescales, with explicit action

planning about novel response contingencies occurring in the cor-

tex, before being consolidated to more phylogenetically ancient

subcortical circuits implicated in habit-based behaviors (Dickin-

son and Balleine, 2002). For example, one computational model

suggests that long-run average action values are “cached” in a

dorsolateral striatal territories, providing a stable but inflexible

representation of the value of actions that is immune to noise-

driven fluctuations in the value of different actions, in contrast

to more labile representations in the PFC (Daw et al., 2005).

According to this and many similar proposals, slow “model-free”

RL processes depend on the basal ganglia, whereas the neocor-

tex and hippocampus provide the agent with an explicit model
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of the world that can be used to control behavior in a cognitively

sophisticated, “model-based” fashion (Glascher et al., 2010).

However, experimental evidence suggests that the learning in

the basal ganglia can, in fact, occur quite rapidly. For exam-

ple, in neurophysiological recordings (Schultz et al., 1997) and

functional neuroimaging studies (O’Doherty et al., 2003), ventral

midbrain or striatal responses are found to track choice values

even when they change over just tens of trials. Although this

is slower than the moment-by-moment contextual control over

action selection demonstrably afforded by the dorsolateral PFC

in humans following explicit instructions (Koechlin et al., 2003),

it is much faster than the practice-driven cortico-cortical changes

observed in incremental perceptual learning studies. Correspond-

ingly, although both the cortex and the striatum are the targets

of ascending dopaminergic signals presumed to carry reward

prediction errors, only in the striatum does dopamine reuptake

occur rapidly (Cragg et al., 1997). By contrast, the neocortical

dopamine response to a single reward, such as a food pellet, can

still be detected many minutes later (Feenstra and Botterblom,

1996). This presumably allows striatal dopamine to reinforce

punctate sensorimotor events, rather than prolonged tasks or

episodes.

Thus, one possibility is that during perceptual discrimination

tasks, supervised, dopamine-gated reinforcement learning occurs

relatively rapidly at the striatum, allowing information about more

rewarding stimuli a greater opportunity of flowing through the

basal ganglia loops to drive motor output structures back in the

cortex. Simultaneously, cortico-cortical learning proceeds in an

unsupervised fashion, allowing sensory and motor representations

that are frequently reinforced and linked through the circuitry of

the basal ganglia to be associated via Hebbian principles. One way

of thinking about this is that if we wish to term the subcortical sys-

tem“habitual,”then this cortico-cortical system is“super-habitual”

(M. J. Frank, personal communication). This theory, proposed in

a number of guises over recent years (Houk and Wise, 1995; Ashby

et al., 2007) and incorporated into leading models of basal ganglia

function (Frank, 2005; Bogacz and Larsen, 2011) draws upon the

idea familiar from theories of memory that new associations are

consolidated to the cortex, providing complementary flexible and

stable control over behavior (Norman and O’Reilly, 2003). The

most compelling evidence in favor of this view comes from single-

cell recordings in the striatum and PFC during reversal learning,

which have revealed that responses in the caudate adapt earlier

than in the cortex – within as little as five trials of an unpre-

dicted switch (Pasupathy and Miller, 2005). Effective connectivity

analyses of fMRI data in humans performing a discrimination task

also suggest that the instantiation of connectivity between sensory

regions and the frontal cortex depends on the mediating influ-

ence of the basal ganglia (den Ouden et al., 2010). Finally, a recent

perceptual learning experiment demonstrated that while practice-

driven gain enhancements to the gain of encoding of the DV in

parietal cortex and ACC were predicted by an RL model, predic-

tion error signals generated by the model correlated with activity

in the ventral striatum (Kahnt et al., 2011). These latter studies

point to striatal prediction error signals as a ubiquitous mecha-

nism by which the cortex might learn slowly about appropriate

sensorimotor contingencies, irrespective of whether they lead to

explicit incentives (as in EDM) or merely informative feedback (as

in PDM).

One attractive feature of this account is that it explains one

dissociation (familiar from computational models) between how

slow-practice-driven changes, and fast, context-dependent biases

influence reward-guided choices. Perceptual learning experiments

have suggested that practice enhances the gain of the DV (increased

drift rate in serial sampling models), a phenomenon that is cap-

tured by a steeper slope of evidence accumulation in LIP (Law

and Gold, 2009) and reflected in the scaling of the BOLD signal in

corresponding regions (Kahnt et al., 2011) after extensive training

on discrimination tasks. This would be a natural consequence of

increased synaptic weights between sensory and higher cortical

regions, such as MT and LIP during discrimination of the RDK

stimulus, following a dopaminergic “teaching” signal from sub-

cortical regions. By contrast, when the value of a choice is biased

by a pre-stimulus cue or other local context, converging neural

and computational evidence suggests the offset to accumulation

tends to be additive, rather than multiplicative. In the context of

computational models of the decision process, this is represented

as a bias to the origin of the sampling process, which leads to more

fast errors but does not increase discrimination sensitivity (Ratcliff

and Rouder, 1998). This would be consistent with a fast, excita-

tory boosting of activity in parietal neurons, either by throughput

from the basal ganglia or via the modulatory influence of other

regions, such as the prefrontal or orbitofrontal cortices. However,

more work is required to confirm this distinction.

ORBITOFRONTAL CORTEX

Given the nature of the RDK task, it is hardly surprising that

researchers have focused on understanding activity in a network of

interconnected regions involved in motion perception and oculo-

motor control. However, whilst dorsal stream cortical sites might

be the recipients of information about visual motion, it is less clear

that they are involved in identifying and comparing complex visual

objects, such as the food items whose value we might want to judge

when shopping at the local supermarket (although see Toth and

Assad, 2002). Rather, complex visual objects tend to be processed

in ventral stream sites along the temporal lobe, from where infor-

mation is routed to limbic structures in the medial temporal lobe

and OFC (Price, 2007). Below, we discuss current understanding

of the OFC’s contribution to decision-making, and compare it to

the circuits described above.

Orbitofrontal cortex and absolute stimulus value

An influential theory has argued that the OFC is responsible for

encoding the value of sensory stimuli, and that it plays a direct

role in modulating voluntary choice on the basis of absolute (or

“menu-invariant”) stimulus values, via its interconnectivity with

the ventral striatum (Kable and Glimcher, 2009). This theory

has been bolstered by a wealth of imaging studies (O’Doherty

et al., 2001; Plassmann et al., 2007) and a smaller number of

highly influential single-cell recording studies (Padoa-Schioppa

and Assad, 2006, 2008; Kennerley et al., 2009) demonstrating that

neural signals in the OFC encode the subjective value of a prospect

or gamble. For example, in some well-discussed examples, it has

been shown that fMRI signals in the medial OFC scale with the
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monetary value that hungry participants are willing to pay for a

food item (Plassmann et al., 2007) or the subjective reward asso-

ciated with an erotic image (Prevost et al., 2010), and that cells

in the OFC track the combined and relative value of two liquid

rewards on offer (Padoa-Schioppa and Assad, 2006). Lesions stud-

ies in the non-human primate (Dias et al., 1997) and in human

neuropsychological patients (Fellows and Farah, 2003) have appar-

ently shown deficits of reward-guided learning, for example in

reversal learning tasks and also decision-making tasks (Fellows

and Farah, 2007).

Importantly, because OFC signals seem to be scaled by both the

probability and magnitude of the potential reward associated with

a choice (Knutson et al., 2005), in a fashion that is in turn mod-

ulated by a discount factor reflecting how far into the future the

reward will be received (Kable and Glimcher, 2007) and an incor-

porating other well-known behavioral biases such as a sharper

scaling for losses than gains (Tom et al., 2007), it has been argued

that the OFC encodes stimulus values in a“common currency”that

allows for comparison between assets whose value is in different

dimensions or domains. For example, such a mechanism could

be important for choosing between two courses of action, one

with a low probability of a high-reward, and the other with a high

probability of a low reward; or to compare consumer items that

may have incommensurate advantages and disadvantages, such as

a small house in a desirable neighborhood and a large house in

a less sought-after area. Once value information is represented

with a common metric, it can presumably be combined with an

appropriate action in the striatum, in much the same way as was

discussed above for simpler sensory information, such as evidence

about the direction of moving dots.

Orbitofrontal cortex and goal value

However compelling this account may be, a number of recent

results suggest that we might exercise caution in assuming that

the OFC simply houses a bank of cells responsible for learning the

value of stimuli. One important consideration is that the OFC may

not be functionally homogenous. For example, the anterior and

posterior OFC have been found to respond to the value of money

and erotic stimuli, respectively (Sescousse et al., 2010). Secondly,

the medial and lateral OFC differ sharply in their pattern of inter-

connectivity with the rest of the brain, and whilst it is the lateral

OFC that enjoys monosynaptic links with ventral stream areas, it

is the medial portion that projects to the ventral striatum (Haber

et al., 2006) and that tends to be activated in concert with sub-

jective value in fMRI studies of value-guided choice. Importantly,

careful lesion studies in primates have shown that although lesions

to the lateral OFC do incur a learning deficit, monkeys lacking the

medial OFC learn new values normally (Noonan et al., 2010; Wal-

ton et al., 2010, 2011). Moreover, the sensitivity of the medial OFC

BOLD signal to reward seems to depend on the parameters of the

task. For example, fMRI correlations with willingness-to-pay evap-

orate when the participant views food items, but makes a choice

that instructed by the computer (Plassmann et al., 2007). Simi-

larly, when the choices are made by another agent, the observer’s

medial OFC seems to track the values of that agent’s choice, even

when the observer has no direct stake in the game (Cooper et al.,

2010). These argue against a simple role in absolute stimulus value

encoding. Indeed, medial OFC BOLD signals (as well as a subset

of neuronal activity) seem to reflect the relative value of the option

that is chosen and that which is not (Boorman et al., 2009). For

example, when observers are responding according to the learned

value associated with a stream of visual stimuli, the medial OFC

signals are correlated not only to the relative value of the stimuli,

but with the relative BOLD signal in visual regions encoding these

stimuli (Philiastides et al., 2010). Moreover, monkeys with medial

OFC lesions provoke a subtle pattern of deficits in which choices

between two favored options are can be disrupted by the value

of a third, lower-valued option (Noonan et al., 2010). These find-

ings seem to point more toward a more active role in the choice

process itself, rather than an automatic valuation procedure that

feeds into a subsequent decision stage. Rushworth and colleagues

have argued thus that the medial OFC may be involved in compar-

ative decisions by focusing attention on the relevant dimensions of

a choice, in the pursuit of a long-term goal (Rushworth et al., 2011).

This account diverges from other views, in which the OFC learns

stimulus values in a “menu-invariant” fashion, uninfluenced by

the value of choice alternatives, and comparative choices involve

the more dorsal cortico-cortical and cortico-subcortico-cortical

circuits discussed above (Kable and Glimcher, 2009).

Further support for this view comes from a recent fMRI study

that builds upon work described above, in which participants were

free to make eye movements as they chose between food items, and

their choices were found to be described by a diffusion model in

which drift rates were multiplicatively scaled by the value of the

currently fixated option (Krajbich et al., 2010). In the fMRI scan-

ner, medial OFC and ventral striatal signals were found to correlate

positively with the value of an option that was currently cued for

fixation, and negatively with the value of the option that was not,

suggesting that these regions are either involved in orienting atten-

tion to relevant attributes in turn, or are downstream from such

regions (Lim et al., 2011). We might assume that one contribu-

tion of the parietal cortex is to orient attention in concert with

the cue, and indeed, BOLD signals were enhanced contralateral to

the cued side in this study. Intriguingly, neuropsychological evi-

dence has revealed that when patients with medial OFC damage

make decisions about stimuli based on multiple attributes, such

as choosing which apartment to rent, they use a suboptimal strat-

egy that involves comparing attribute values within rather than

between stimuli, as if they were unable to engage in an active

comparison process across attributes (Fellows, 2006).

Thus, as outlined above another way in which choices among

perceptual stimuli might be biased by economic information is

through preferred sampling of the favored option. This idea is cen-

tral to DFT, the first serious attempt to understand the influence

of reward on perceptual choice with a process model (Busemeyer

and Townsend, 1993). In primates, the evidence above supports

the view that this mechanism depends on the medial OFC. The

fact that this region is thought to be phylogenetically relatively

new (Hill et al., 2010) might relate to the fact that preferred

sampling of choice-relevant information is most useful when max-

imizing value over the long-term, for example in pursuit of a

complex goal. For example, focusing on the healthiness of a food

item might necessitate representation of an abstract, long-term

goal, such as losing weight, rather than allowing more immediate
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considerations, such as tastiness, to guide choice. Accordingly, sig-

nals in the medial OFC scale better with health value ratings when

healthiness is emphasized, as if the health dimension were sampled

more thoroughly in the comparison process (Hare et al., 2011a).

CAVEATS AND CONTROVERSIES

Much has been learned in recent years about how humans and

other primates make decisions. But much remains to be under-

stood. In this section, we point to some issues that remain

controversial, and outline suggestions for future research.

LINKING COMPUTATIONAL MODELS AND NEURAL ACTIVITY

In our view, key issue for future research will be to establish more

convincing links between the computational mechanisms pro-

posed by process models of learning and choice (e.g., the DDM)

and neural activity recorded during voluntary choice tasks. Steps

toward this goal have been made by the single-cell research in

LIP in conjunction with the RDK paradigm, in which neural

recordings have been used to arbitrate among competing serial

sampling models of choice, such as the DDM and the LCA (Beck

et al., 2008; Kiani et al., 2008; Churchland et al., 2011). Other

valuable contributions have been made by using more realistic

models to make predictions about patterns of observed behav-

ior in disease, under pharmacological manipulations or during

deep-brain stimulation (Doll and Frank, 2009). In this review, we

have highlighted some promising new theories proposed by oth-

ers, including the idea that cortico-striatal plasticity might control

the decision bound (Lo and Wang, 2006), or that dopaminergic

inputs might control baseline levels of excitability in the striatal

integrators as a means of modulating the origin of an evidence

accumulation process (Hikosaka, 2007). Similarly, the STN might

provide a separate means to inhibit responding on the basis of

response conflict among multiple alternatives (Frank et al., 2007),

or the medial OFC might bias the sampling of decision-relevant

information and thereby modulate the gain of accumulation of

competing options (Lim et al., 2011).

However, attempts to use serial sampling models to make pre-

dictions about large-scale changes in BOLD activity across the

cortex have relied on more speculative assumptions. For exam-

ple, competing assumptions about whether evidence integration

regions should scale positively (Basten et al., 2010) or negatively

(Heekeren et al., 2004) with the uncertainty in the choice process

have led to very different regions being implicated in this function

in fMRI studies. Several recent authors have proposed that under

the assumptions of the DDM, fMRI signals should correlate pos-

itively with uncertainty, because in free-response tasks the total

integrated neuronal activity up to the choice will be greater when

sensory signals are weak or ambiguous (Basten et al., 2010; Liu

and Pleskac, 2011); indeed, parietal BOLD signals do behave in

this way. But this assumption has not been subjected to rigorous

investigation. For example, this view makes the strong prediction

that parietal BOLD signals should vary inversely with uncertainty

when viewing time is limited by the experimenter. This hypothesis

remains to be tested.

A more conceptual issue concerns proposals that neural

activity provides insights into the content of decision-relevant

“representations” – for example, that medial OFC or parietal

neurons encode the “expected value” of a choice. Applying pre-

dictions from a biophysically plausible neural network model of

perceptual choice (Wong and Wang, 2006) to an economic task

in which observers integrated the probability and magnitude of

reward, Hunt and colleagues observed oscillatory neural activity

with putative sources in the parietal and medial orbitofrontal cor-

tices whose amplitude scaled with offer and choice value (Hunt

et al., 2012). However, as they note, under the assumptions of

their model the stronger oscillations for higher-valued stimuli was

driven by more frequent network transitions in the face of these

stimuli, not because a larger fraction of neurons were active in

the relevant regions. A major goal for the future should thus be to

establish a consensus about the predictions that successful compu-

tational models of choice make about neural activity, and subject

these to systematic empirical investigation.

WHERE IN THE BRAIN ARE DECISIONS MADE?

Decisions about percepts or assets involve an irrevocable commit-

ment to one course of action over its competitors. One question

that researchers interested in both PDM and EDM are anxious

to address, thus, is where in the brain’s decision circuitry this

commitment occurs. At this point it might be worth pausing to

ask what properties, exactly, one might expect neurons in such

a region to exhibit. One possibility is that neurons involved in

making definitive choices might show activity that scales with the

choice-relevant evidence, up to a decision threshold, such as puta-

tive integrator cells in the parietal cortex (Roitman and Shadlen,

2002) and caudate (Ding and Gold, 2010). However, it is not clear

that the rapid fall-off in activity that occurs about 70 ms prior

to a saccade is a signal that exerts direct control over a down-

stream region. Rather, it seems more likely that during evidence

accumulation, the activity levels in the integrators are being con-

stantly read out in downstream decision regions – and ultimately,

in motor structures such as the superior colliculus – that show

more dichotomous responses consistent with a commitment to

choice (Sparks, 2002). Parietal integrators seem to equivocate, rep-

resenting the decision-relevant evidence in a graded fashion that

varies incrementally in a noise- and signal-driven manner, and

is incommensurate with a winner-takes-all decision mechanism.

The silencing of these cells immediately before a response might

thus reflect corollary feedback that resets the integrators in time

for a subsequent decision.

An alternative view is that neurons in regions that make deci-

sions begin by encoding the value of an offer early on in a trial,

but later come to encode the choice that the animal will eventu-

ally make. Above, we referred to neurons in the parietal cortex

and medial OFC that exhibit this property (Padoa-Schioppa and

Assad, 2006; Louie and Glimcher, 2010; Hunt et al., 2012). How-

ever, without a precise understanding of how information flows

through the brain during perceptual or economic choices, it is

hard to draw strong conclusions from this finding. For example,

information about a stimulus and its corresponding action in the

cortex might be sent to subcortical circuits, linked with value infor-

mation, and fed back to the cortex in a manner that predicts the

choice that will be made shortly after. Alternatively, other recur-

rent mechanisms may take place which allow the best option to

be uncovered via a combination of prior information and sensory
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evidence (Friston, 2005). Continued careful investigation of firing

properties of neurons in key decision regions, as well as measure-

ment of their relative timing, will be required to elucidate precisely

how an offer is turned into a choice.

CONCLUSION

In conclusion, we have tried to highlight research that has com-

bined those techniques and concepts classically employed in the

literatures concerned with perceptual and EDM. We have reviewed

computational models of the decision process, mostly inspired by

visual psychophysics, and described research that has attempted

to apply these models to economic choices. We then focused

on three brain regions – the parietal cortex, basal ganglia, and

OFC – that have been implicated in decision-making by single-cell,

neuroimaging, and other work, and detailed our current under-

standing of their relative contributions to voluntary choice. We

have attempted to link key model parameters from these mod-

els – such as the decision bound, baseline evidence levels, response

conflict, or biased sampling – to candidate neural substrates.

Finally, we hope that this review will prompt researchers con-

cerned with economic choices to seek new inspiration from the

process models offered by PDM, and those concerned with per-

ceptual decision-making to look beyond elementary sensorimotor

circuits to understand voluntary choices.
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